KVM: Fix MAXPHYADDR calculation when cpuid does not support it
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / trace / ring_buffer.c
blob41ca394feb22f4e920cbbf711e201b8e1f5ee903
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/hash.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/fs.h>
24 #include <asm/local.h>
25 #include "trace.h"
28 * The ring buffer header is special. We must manually up keep it.
30 int ring_buffer_print_entry_header(struct trace_seq *s)
32 int ret;
34 ret = trace_seq_printf(s, "# compressed entry header\n");
35 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
36 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
37 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
38 ret = trace_seq_printf(s, "\n");
39 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
40 RINGBUF_TYPE_PADDING);
41 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
42 RINGBUF_TYPE_TIME_EXTEND);
43 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
44 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46 return ret;
50 * The ring buffer is made up of a list of pages. A separate list of pages is
51 * allocated for each CPU. A writer may only write to a buffer that is
52 * associated with the CPU it is currently executing on. A reader may read
53 * from any per cpu buffer.
55 * The reader is special. For each per cpu buffer, the reader has its own
56 * reader page. When a reader has read the entire reader page, this reader
57 * page is swapped with another page in the ring buffer.
59 * Now, as long as the writer is off the reader page, the reader can do what
60 * ever it wants with that page. The writer will never write to that page
61 * again (as long as it is out of the ring buffer).
63 * Here's some silly ASCII art.
65 * +------+
66 * |reader| RING BUFFER
67 * |page |
68 * +------+ +---+ +---+ +---+
69 * | |-->| |-->| |
70 * +---+ +---+ +---+
71 * ^ |
72 * | |
73 * +---------------+
76 * +------+
77 * |reader| RING BUFFER
78 * |page |------------------v
79 * +------+ +---+ +---+ +---+
80 * | |-->| |-->| |
81 * +---+ +---+ +---+
82 * ^ |
83 * | |
84 * +---------------+
87 * +------+
88 * |reader| RING BUFFER
89 * |page |------------------v
90 * +------+ +---+ +---+ +---+
91 * ^ | |-->| |-->| |
92 * | +---+ +---+ +---+
93 * | |
94 * | |
95 * +------------------------------+
98 * +------+
99 * |buffer| RING BUFFER
100 * |page |------------------v
101 * +------+ +---+ +---+ +---+
102 * ^ | | | |-->| |
103 * | New +---+ +---+ +---+
104 * | Reader------^ |
105 * | page |
106 * +------------------------------+
109 * After we make this swap, the reader can hand this page off to the splice
110 * code and be done with it. It can even allocate a new page if it needs to
111 * and swap that into the ring buffer.
113 * We will be using cmpxchg soon to make all this lockless.
118 * A fast way to enable or disable all ring buffers is to
119 * call tracing_on or tracing_off. Turning off the ring buffers
120 * prevents all ring buffers from being recorded to.
121 * Turning this switch on, makes it OK to write to the
122 * ring buffer, if the ring buffer is enabled itself.
124 * There's three layers that must be on in order to write
125 * to the ring buffer.
127 * 1) This global flag must be set.
128 * 2) The ring buffer must be enabled for recording.
129 * 3) The per cpu buffer must be enabled for recording.
131 * In case of an anomaly, this global flag has a bit set that
132 * will permantly disable all ring buffers.
136 * Global flag to disable all recording to ring buffers
137 * This has two bits: ON, DISABLED
139 * ON DISABLED
140 * ---- ----------
141 * 0 0 : ring buffers are off
142 * 1 0 : ring buffers are on
143 * X 1 : ring buffers are permanently disabled
146 enum {
147 RB_BUFFERS_ON_BIT = 0,
148 RB_BUFFERS_DISABLED_BIT = 1,
151 enum {
152 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
153 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
156 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
158 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
161 * tracing_on - enable all tracing buffers
163 * This function enables all tracing buffers that may have been
164 * disabled with tracing_off.
166 void tracing_on(void)
168 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
170 EXPORT_SYMBOL_GPL(tracing_on);
173 * tracing_off - turn off all tracing buffers
175 * This function stops all tracing buffers from recording data.
176 * It does not disable any overhead the tracers themselves may
177 * be causing. This function simply causes all recording to
178 * the ring buffers to fail.
180 void tracing_off(void)
182 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
184 EXPORT_SYMBOL_GPL(tracing_off);
187 * tracing_off_permanent - permanently disable ring buffers
189 * This function, once called, will disable all ring buffers
190 * permanently.
192 void tracing_off_permanent(void)
194 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
198 * tracing_is_on - show state of ring buffers enabled
200 int tracing_is_on(void)
202 return ring_buffer_flags == RB_BUFFERS_ON;
204 EXPORT_SYMBOL_GPL(tracing_is_on);
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT 4U
208 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
211 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
212 # define RB_FORCE_8BYTE_ALIGNMENT 0
213 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214 #else
215 # define RB_FORCE_8BYTE_ALIGNMENT 1
216 # define RB_ARCH_ALIGNMENT 8U
217 #endif
219 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
220 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
222 enum {
223 RB_LEN_TIME_EXTEND = 8,
224 RB_LEN_TIME_STAMP = 16,
227 static inline int rb_null_event(struct ring_buffer_event *event)
229 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
232 static void rb_event_set_padding(struct ring_buffer_event *event)
234 /* padding has a NULL time_delta */
235 event->type_len = RINGBUF_TYPE_PADDING;
236 event->time_delta = 0;
239 static unsigned
240 rb_event_data_length(struct ring_buffer_event *event)
242 unsigned length;
244 if (event->type_len)
245 length = event->type_len * RB_ALIGNMENT;
246 else
247 length = event->array[0];
248 return length + RB_EVNT_HDR_SIZE;
251 /* inline for ring buffer fast paths */
252 static unsigned
253 rb_event_length(struct ring_buffer_event *event)
255 switch (event->type_len) {
256 case RINGBUF_TYPE_PADDING:
257 if (rb_null_event(event))
258 /* undefined */
259 return -1;
260 return event->array[0] + RB_EVNT_HDR_SIZE;
262 case RINGBUF_TYPE_TIME_EXTEND:
263 return RB_LEN_TIME_EXTEND;
265 case RINGBUF_TYPE_TIME_STAMP:
266 return RB_LEN_TIME_STAMP;
268 case RINGBUF_TYPE_DATA:
269 return rb_event_data_length(event);
270 default:
271 BUG();
273 /* not hit */
274 return 0;
278 * ring_buffer_event_length - return the length of the event
279 * @event: the event to get the length of
281 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
283 unsigned length = rb_event_length(event);
284 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
285 return length;
286 length -= RB_EVNT_HDR_SIZE;
287 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
288 length -= sizeof(event->array[0]);
289 return length;
291 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
293 /* inline for ring buffer fast paths */
294 static void *
295 rb_event_data(struct ring_buffer_event *event)
297 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
298 /* If length is in len field, then array[0] has the data */
299 if (event->type_len)
300 return (void *)&event->array[0];
301 /* Otherwise length is in array[0] and array[1] has the data */
302 return (void *)&event->array[1];
306 * ring_buffer_event_data - return the data of the event
307 * @event: the event to get the data from
309 void *ring_buffer_event_data(struct ring_buffer_event *event)
311 return rb_event_data(event);
313 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
315 #define for_each_buffer_cpu(buffer, cpu) \
316 for_each_cpu(cpu, buffer->cpumask)
318 #define TS_SHIFT 27
319 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
320 #define TS_DELTA_TEST (~TS_MASK)
322 struct buffer_data_page {
323 u64 time_stamp; /* page time stamp */
324 local_t commit; /* write committed index */
325 unsigned char data[]; /* data of buffer page */
329 * Note, the buffer_page list must be first. The buffer pages
330 * are allocated in cache lines, which means that each buffer
331 * page will be at the beginning of a cache line, and thus
332 * the least significant bits will be zero. We use this to
333 * add flags in the list struct pointers, to make the ring buffer
334 * lockless.
336 struct buffer_page {
337 struct list_head list; /* list of buffer pages */
338 local_t write; /* index for next write */
339 unsigned read; /* index for next read */
340 local_t entries; /* entries on this page */
341 struct buffer_data_page *page; /* Actual data page */
345 * The buffer page counters, write and entries, must be reset
346 * atomically when crossing page boundaries. To synchronize this
347 * update, two counters are inserted into the number. One is
348 * the actual counter for the write position or count on the page.
350 * The other is a counter of updaters. Before an update happens
351 * the update partition of the counter is incremented. This will
352 * allow the updater to update the counter atomically.
354 * The counter is 20 bits, and the state data is 12.
356 #define RB_WRITE_MASK 0xfffff
357 #define RB_WRITE_INTCNT (1 << 20)
359 static void rb_init_page(struct buffer_data_page *bpage)
361 local_set(&bpage->commit, 0);
365 * ring_buffer_page_len - the size of data on the page.
366 * @page: The page to read
368 * Returns the amount of data on the page, including buffer page header.
370 size_t ring_buffer_page_len(void *page)
372 return local_read(&((struct buffer_data_page *)page)->commit)
373 + BUF_PAGE_HDR_SIZE;
377 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
378 * this issue out.
380 static void free_buffer_page(struct buffer_page *bpage)
382 free_page((unsigned long)bpage->page);
383 kfree(bpage);
387 * We need to fit the time_stamp delta into 27 bits.
389 static inline int test_time_stamp(u64 delta)
391 if (delta & TS_DELTA_TEST)
392 return 1;
393 return 0;
396 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
398 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
399 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
401 /* Max number of timestamps that can fit on a page */
402 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
404 int ring_buffer_print_page_header(struct trace_seq *s)
406 struct buffer_data_page field;
407 int ret;
409 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
410 "offset:0;\tsize:%u;\tsigned:%u;\n",
411 (unsigned int)sizeof(field.time_stamp),
412 (unsigned int)is_signed_type(u64));
414 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
415 "offset:%u;\tsize:%u;\tsigned:%u;\n",
416 (unsigned int)offsetof(typeof(field), commit),
417 (unsigned int)sizeof(field.commit),
418 (unsigned int)is_signed_type(long));
420 ret = trace_seq_printf(s, "\tfield: char data;\t"
421 "offset:%u;\tsize:%u;\tsigned:%u;\n",
422 (unsigned int)offsetof(typeof(field), data),
423 (unsigned int)BUF_PAGE_SIZE,
424 (unsigned int)is_signed_type(char));
426 return ret;
430 * head_page == tail_page && head == tail then buffer is empty.
432 struct ring_buffer_per_cpu {
433 int cpu;
434 struct ring_buffer *buffer;
435 spinlock_t reader_lock; /* serialize readers */
436 arch_spinlock_t lock;
437 struct lock_class_key lock_key;
438 struct list_head *pages;
439 struct buffer_page *head_page; /* read from head */
440 struct buffer_page *tail_page; /* write to tail */
441 struct buffer_page *commit_page; /* committed pages */
442 struct buffer_page *reader_page;
443 local_t commit_overrun;
444 local_t overrun;
445 local_t entries;
446 local_t committing;
447 local_t commits;
448 unsigned long read;
449 u64 write_stamp;
450 u64 read_stamp;
451 atomic_t record_disabled;
454 struct ring_buffer {
455 unsigned pages;
456 unsigned flags;
457 int cpus;
458 atomic_t record_disabled;
459 cpumask_var_t cpumask;
461 struct lock_class_key *reader_lock_key;
463 struct mutex mutex;
465 struct ring_buffer_per_cpu **buffers;
467 #ifdef CONFIG_HOTPLUG_CPU
468 struct notifier_block cpu_notify;
469 #endif
470 u64 (*clock)(void);
473 struct ring_buffer_iter {
474 struct ring_buffer_per_cpu *cpu_buffer;
475 unsigned long head;
476 struct buffer_page *head_page;
477 struct buffer_page *cache_reader_page;
478 unsigned long cache_read;
479 u64 read_stamp;
482 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
483 #define RB_WARN_ON(b, cond) \
484 ({ \
485 int _____ret = unlikely(cond); \
486 if (_____ret) { \
487 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
488 struct ring_buffer_per_cpu *__b = \
489 (void *)b; \
490 atomic_inc(&__b->buffer->record_disabled); \
491 } else \
492 atomic_inc(&b->record_disabled); \
493 WARN_ON(1); \
495 _____ret; \
498 /* Up this if you want to test the TIME_EXTENTS and normalization */
499 #define DEBUG_SHIFT 0
501 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
503 /* shift to debug/test normalization and TIME_EXTENTS */
504 return buffer->clock() << DEBUG_SHIFT;
507 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
509 u64 time;
511 preempt_disable_notrace();
512 time = rb_time_stamp(buffer);
513 preempt_enable_no_resched_notrace();
515 return time;
517 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
519 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
520 int cpu, u64 *ts)
522 /* Just stupid testing the normalize function and deltas */
523 *ts >>= DEBUG_SHIFT;
525 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
528 * Making the ring buffer lockless makes things tricky.
529 * Although writes only happen on the CPU that they are on,
530 * and they only need to worry about interrupts. Reads can
531 * happen on any CPU.
533 * The reader page is always off the ring buffer, but when the
534 * reader finishes with a page, it needs to swap its page with
535 * a new one from the buffer. The reader needs to take from
536 * the head (writes go to the tail). But if a writer is in overwrite
537 * mode and wraps, it must push the head page forward.
539 * Here lies the problem.
541 * The reader must be careful to replace only the head page, and
542 * not another one. As described at the top of the file in the
543 * ASCII art, the reader sets its old page to point to the next
544 * page after head. It then sets the page after head to point to
545 * the old reader page. But if the writer moves the head page
546 * during this operation, the reader could end up with the tail.
548 * We use cmpxchg to help prevent this race. We also do something
549 * special with the page before head. We set the LSB to 1.
551 * When the writer must push the page forward, it will clear the
552 * bit that points to the head page, move the head, and then set
553 * the bit that points to the new head page.
555 * We also don't want an interrupt coming in and moving the head
556 * page on another writer. Thus we use the second LSB to catch
557 * that too. Thus:
559 * head->list->prev->next bit 1 bit 0
560 * ------- -------
561 * Normal page 0 0
562 * Points to head page 0 1
563 * New head page 1 0
565 * Note we can not trust the prev pointer of the head page, because:
567 * +----+ +-----+ +-----+
568 * | |------>| T |---X--->| N |
569 * | |<------| | | |
570 * +----+ +-----+ +-----+
571 * ^ ^ |
572 * | +-----+ | |
573 * +----------| R |----------+ |
574 * | |<-----------+
575 * +-----+
577 * Key: ---X--> HEAD flag set in pointer
578 * T Tail page
579 * R Reader page
580 * N Next page
582 * (see __rb_reserve_next() to see where this happens)
584 * What the above shows is that the reader just swapped out
585 * the reader page with a page in the buffer, but before it
586 * could make the new header point back to the new page added
587 * it was preempted by a writer. The writer moved forward onto
588 * the new page added by the reader and is about to move forward
589 * again.
591 * You can see, it is legitimate for the previous pointer of
592 * the head (or any page) not to point back to itself. But only
593 * temporarially.
596 #define RB_PAGE_NORMAL 0UL
597 #define RB_PAGE_HEAD 1UL
598 #define RB_PAGE_UPDATE 2UL
601 #define RB_FLAG_MASK 3UL
603 /* PAGE_MOVED is not part of the mask */
604 #define RB_PAGE_MOVED 4UL
607 * rb_list_head - remove any bit
609 static struct list_head *rb_list_head(struct list_head *list)
611 unsigned long val = (unsigned long)list;
613 return (struct list_head *)(val & ~RB_FLAG_MASK);
617 * rb_is_head_page - test if the given page is the head page
619 * Because the reader may move the head_page pointer, we can
620 * not trust what the head page is (it may be pointing to
621 * the reader page). But if the next page is a header page,
622 * its flags will be non zero.
624 static int inline
625 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
626 struct buffer_page *page, struct list_head *list)
628 unsigned long val;
630 val = (unsigned long)list->next;
632 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
633 return RB_PAGE_MOVED;
635 return val & RB_FLAG_MASK;
639 * rb_is_reader_page
641 * The unique thing about the reader page, is that, if the
642 * writer is ever on it, the previous pointer never points
643 * back to the reader page.
645 static int rb_is_reader_page(struct buffer_page *page)
647 struct list_head *list = page->list.prev;
649 return rb_list_head(list->next) != &page->list;
653 * rb_set_list_to_head - set a list_head to be pointing to head.
655 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
656 struct list_head *list)
658 unsigned long *ptr;
660 ptr = (unsigned long *)&list->next;
661 *ptr |= RB_PAGE_HEAD;
662 *ptr &= ~RB_PAGE_UPDATE;
666 * rb_head_page_activate - sets up head page
668 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
670 struct buffer_page *head;
672 head = cpu_buffer->head_page;
673 if (!head)
674 return;
677 * Set the previous list pointer to have the HEAD flag.
679 rb_set_list_to_head(cpu_buffer, head->list.prev);
682 static void rb_list_head_clear(struct list_head *list)
684 unsigned long *ptr = (unsigned long *)&list->next;
686 *ptr &= ~RB_FLAG_MASK;
690 * rb_head_page_dactivate - clears head page ptr (for free list)
692 static void
693 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
695 struct list_head *hd;
697 /* Go through the whole list and clear any pointers found. */
698 rb_list_head_clear(cpu_buffer->pages);
700 list_for_each(hd, cpu_buffer->pages)
701 rb_list_head_clear(hd);
704 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
705 struct buffer_page *head,
706 struct buffer_page *prev,
707 int old_flag, int new_flag)
709 struct list_head *list;
710 unsigned long val = (unsigned long)&head->list;
711 unsigned long ret;
713 list = &prev->list;
715 val &= ~RB_FLAG_MASK;
717 ret = cmpxchg((unsigned long *)&list->next,
718 val | old_flag, val | new_flag);
720 /* check if the reader took the page */
721 if ((ret & ~RB_FLAG_MASK) != val)
722 return RB_PAGE_MOVED;
724 return ret & RB_FLAG_MASK;
727 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
728 struct buffer_page *head,
729 struct buffer_page *prev,
730 int old_flag)
732 return rb_head_page_set(cpu_buffer, head, prev,
733 old_flag, RB_PAGE_UPDATE);
736 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
737 struct buffer_page *head,
738 struct buffer_page *prev,
739 int old_flag)
741 return rb_head_page_set(cpu_buffer, head, prev,
742 old_flag, RB_PAGE_HEAD);
745 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
746 struct buffer_page *head,
747 struct buffer_page *prev,
748 int old_flag)
750 return rb_head_page_set(cpu_buffer, head, prev,
751 old_flag, RB_PAGE_NORMAL);
754 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
755 struct buffer_page **bpage)
757 struct list_head *p = rb_list_head((*bpage)->list.next);
759 *bpage = list_entry(p, struct buffer_page, list);
762 static struct buffer_page *
763 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
765 struct buffer_page *head;
766 struct buffer_page *page;
767 struct list_head *list;
768 int i;
770 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
771 return NULL;
773 /* sanity check */
774 list = cpu_buffer->pages;
775 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
776 return NULL;
778 page = head = cpu_buffer->head_page;
780 * It is possible that the writer moves the header behind
781 * where we started, and we miss in one loop.
782 * A second loop should grab the header, but we'll do
783 * three loops just because I'm paranoid.
785 for (i = 0; i < 3; i++) {
786 do {
787 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
788 cpu_buffer->head_page = page;
789 return page;
791 rb_inc_page(cpu_buffer, &page);
792 } while (page != head);
795 RB_WARN_ON(cpu_buffer, 1);
797 return NULL;
800 static int rb_head_page_replace(struct buffer_page *old,
801 struct buffer_page *new)
803 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
804 unsigned long val;
805 unsigned long ret;
807 val = *ptr & ~RB_FLAG_MASK;
808 val |= RB_PAGE_HEAD;
810 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
812 return ret == val;
816 * rb_tail_page_update - move the tail page forward
818 * Returns 1 if moved tail page, 0 if someone else did.
820 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
821 struct buffer_page *tail_page,
822 struct buffer_page *next_page)
824 struct buffer_page *old_tail;
825 unsigned long old_entries;
826 unsigned long old_write;
827 int ret = 0;
830 * The tail page now needs to be moved forward.
832 * We need to reset the tail page, but without messing
833 * with possible erasing of data brought in by interrupts
834 * that have moved the tail page and are currently on it.
836 * We add a counter to the write field to denote this.
838 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
839 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
842 * Just make sure we have seen our old_write and synchronize
843 * with any interrupts that come in.
845 barrier();
848 * If the tail page is still the same as what we think
849 * it is, then it is up to us to update the tail
850 * pointer.
852 if (tail_page == cpu_buffer->tail_page) {
853 /* Zero the write counter */
854 unsigned long val = old_write & ~RB_WRITE_MASK;
855 unsigned long eval = old_entries & ~RB_WRITE_MASK;
858 * This will only succeed if an interrupt did
859 * not come in and change it. In which case, we
860 * do not want to modify it.
862 * We add (void) to let the compiler know that we do not care
863 * about the return value of these functions. We use the
864 * cmpxchg to only update if an interrupt did not already
865 * do it for us. If the cmpxchg fails, we don't care.
867 (void)local_cmpxchg(&next_page->write, old_write, val);
868 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
871 * No need to worry about races with clearing out the commit.
872 * it only can increment when a commit takes place. But that
873 * only happens in the outer most nested commit.
875 local_set(&next_page->page->commit, 0);
877 old_tail = cmpxchg(&cpu_buffer->tail_page,
878 tail_page, next_page);
880 if (old_tail == tail_page)
881 ret = 1;
884 return ret;
887 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
888 struct buffer_page *bpage)
890 unsigned long val = (unsigned long)bpage;
892 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
893 return 1;
895 return 0;
899 * rb_check_list - make sure a pointer to a list has the last bits zero
901 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
902 struct list_head *list)
904 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
905 return 1;
906 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
907 return 1;
908 return 0;
912 * check_pages - integrity check of buffer pages
913 * @cpu_buffer: CPU buffer with pages to test
915 * As a safety measure we check to make sure the data pages have not
916 * been corrupted.
918 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
920 struct list_head *head = cpu_buffer->pages;
921 struct buffer_page *bpage, *tmp;
923 rb_head_page_deactivate(cpu_buffer);
925 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
926 return -1;
927 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
928 return -1;
930 if (rb_check_list(cpu_buffer, head))
931 return -1;
933 list_for_each_entry_safe(bpage, tmp, head, list) {
934 if (RB_WARN_ON(cpu_buffer,
935 bpage->list.next->prev != &bpage->list))
936 return -1;
937 if (RB_WARN_ON(cpu_buffer,
938 bpage->list.prev->next != &bpage->list))
939 return -1;
940 if (rb_check_list(cpu_buffer, &bpage->list))
941 return -1;
944 rb_head_page_activate(cpu_buffer);
946 return 0;
949 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
950 unsigned nr_pages)
952 struct buffer_page *bpage, *tmp;
953 unsigned long addr;
954 LIST_HEAD(pages);
955 unsigned i;
957 WARN_ON(!nr_pages);
959 for (i = 0; i < nr_pages; i++) {
960 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
961 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
962 if (!bpage)
963 goto free_pages;
965 rb_check_bpage(cpu_buffer, bpage);
967 list_add(&bpage->list, &pages);
969 addr = __get_free_page(GFP_KERNEL);
970 if (!addr)
971 goto free_pages;
972 bpage->page = (void *)addr;
973 rb_init_page(bpage->page);
977 * The ring buffer page list is a circular list that does not
978 * start and end with a list head. All page list items point to
979 * other pages.
981 cpu_buffer->pages = pages.next;
982 list_del(&pages);
984 rb_check_pages(cpu_buffer);
986 return 0;
988 free_pages:
989 list_for_each_entry_safe(bpage, tmp, &pages, list) {
990 list_del_init(&bpage->list);
991 free_buffer_page(bpage);
993 return -ENOMEM;
996 static struct ring_buffer_per_cpu *
997 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
999 struct ring_buffer_per_cpu *cpu_buffer;
1000 struct buffer_page *bpage;
1001 unsigned long addr;
1002 int ret;
1004 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1005 GFP_KERNEL, cpu_to_node(cpu));
1006 if (!cpu_buffer)
1007 return NULL;
1009 cpu_buffer->cpu = cpu;
1010 cpu_buffer->buffer = buffer;
1011 spin_lock_init(&cpu_buffer->reader_lock);
1012 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1013 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1015 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1016 GFP_KERNEL, cpu_to_node(cpu));
1017 if (!bpage)
1018 goto fail_free_buffer;
1020 rb_check_bpage(cpu_buffer, bpage);
1022 cpu_buffer->reader_page = bpage;
1023 addr = __get_free_page(GFP_KERNEL);
1024 if (!addr)
1025 goto fail_free_reader;
1026 bpage->page = (void *)addr;
1027 rb_init_page(bpage->page);
1029 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1031 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1032 if (ret < 0)
1033 goto fail_free_reader;
1035 cpu_buffer->head_page
1036 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1037 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1039 rb_head_page_activate(cpu_buffer);
1041 return cpu_buffer;
1043 fail_free_reader:
1044 free_buffer_page(cpu_buffer->reader_page);
1046 fail_free_buffer:
1047 kfree(cpu_buffer);
1048 return NULL;
1051 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1053 struct list_head *head = cpu_buffer->pages;
1054 struct buffer_page *bpage, *tmp;
1056 free_buffer_page(cpu_buffer->reader_page);
1058 rb_head_page_deactivate(cpu_buffer);
1060 if (head) {
1061 list_for_each_entry_safe(bpage, tmp, head, list) {
1062 list_del_init(&bpage->list);
1063 free_buffer_page(bpage);
1065 bpage = list_entry(head, struct buffer_page, list);
1066 free_buffer_page(bpage);
1069 kfree(cpu_buffer);
1072 #ifdef CONFIG_HOTPLUG_CPU
1073 static int rb_cpu_notify(struct notifier_block *self,
1074 unsigned long action, void *hcpu);
1075 #endif
1078 * ring_buffer_alloc - allocate a new ring_buffer
1079 * @size: the size in bytes per cpu that is needed.
1080 * @flags: attributes to set for the ring buffer.
1082 * Currently the only flag that is available is the RB_FL_OVERWRITE
1083 * flag. This flag means that the buffer will overwrite old data
1084 * when the buffer wraps. If this flag is not set, the buffer will
1085 * drop data when the tail hits the head.
1087 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1088 struct lock_class_key *key)
1090 struct ring_buffer *buffer;
1091 int bsize;
1092 int cpu;
1094 /* keep it in its own cache line */
1095 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1096 GFP_KERNEL);
1097 if (!buffer)
1098 return NULL;
1100 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1101 goto fail_free_buffer;
1103 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1104 buffer->flags = flags;
1105 buffer->clock = trace_clock_local;
1106 buffer->reader_lock_key = key;
1108 /* need at least two pages */
1109 if (buffer->pages < 2)
1110 buffer->pages = 2;
1113 * In case of non-hotplug cpu, if the ring-buffer is allocated
1114 * in early initcall, it will not be notified of secondary cpus.
1115 * In that off case, we need to allocate for all possible cpus.
1117 #ifdef CONFIG_HOTPLUG_CPU
1118 get_online_cpus();
1119 cpumask_copy(buffer->cpumask, cpu_online_mask);
1120 #else
1121 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1122 #endif
1123 buffer->cpus = nr_cpu_ids;
1125 bsize = sizeof(void *) * nr_cpu_ids;
1126 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1127 GFP_KERNEL);
1128 if (!buffer->buffers)
1129 goto fail_free_cpumask;
1131 for_each_buffer_cpu(buffer, cpu) {
1132 buffer->buffers[cpu] =
1133 rb_allocate_cpu_buffer(buffer, cpu);
1134 if (!buffer->buffers[cpu])
1135 goto fail_free_buffers;
1138 #ifdef CONFIG_HOTPLUG_CPU
1139 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1140 buffer->cpu_notify.priority = 0;
1141 register_cpu_notifier(&buffer->cpu_notify);
1142 #endif
1144 put_online_cpus();
1145 mutex_init(&buffer->mutex);
1147 return buffer;
1149 fail_free_buffers:
1150 for_each_buffer_cpu(buffer, cpu) {
1151 if (buffer->buffers[cpu])
1152 rb_free_cpu_buffer(buffer->buffers[cpu]);
1154 kfree(buffer->buffers);
1156 fail_free_cpumask:
1157 free_cpumask_var(buffer->cpumask);
1158 put_online_cpus();
1160 fail_free_buffer:
1161 kfree(buffer);
1162 return NULL;
1164 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1167 * ring_buffer_free - free a ring buffer.
1168 * @buffer: the buffer to free.
1170 void
1171 ring_buffer_free(struct ring_buffer *buffer)
1173 int cpu;
1175 get_online_cpus();
1177 #ifdef CONFIG_HOTPLUG_CPU
1178 unregister_cpu_notifier(&buffer->cpu_notify);
1179 #endif
1181 for_each_buffer_cpu(buffer, cpu)
1182 rb_free_cpu_buffer(buffer->buffers[cpu]);
1184 put_online_cpus();
1186 kfree(buffer->buffers);
1187 free_cpumask_var(buffer->cpumask);
1189 kfree(buffer);
1191 EXPORT_SYMBOL_GPL(ring_buffer_free);
1193 void ring_buffer_set_clock(struct ring_buffer *buffer,
1194 u64 (*clock)(void))
1196 buffer->clock = clock;
1199 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1201 static void
1202 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1204 struct buffer_page *bpage;
1205 struct list_head *p;
1206 unsigned i;
1208 spin_lock_irq(&cpu_buffer->reader_lock);
1209 rb_head_page_deactivate(cpu_buffer);
1211 for (i = 0; i < nr_pages; i++) {
1212 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1213 goto out;
1214 p = cpu_buffer->pages->next;
1215 bpage = list_entry(p, struct buffer_page, list);
1216 list_del_init(&bpage->list);
1217 free_buffer_page(bpage);
1219 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1220 goto out;
1222 rb_reset_cpu(cpu_buffer);
1223 rb_check_pages(cpu_buffer);
1225 out:
1226 spin_unlock_irq(&cpu_buffer->reader_lock);
1229 static void
1230 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1231 struct list_head *pages, unsigned nr_pages)
1233 struct buffer_page *bpage;
1234 struct list_head *p;
1235 unsigned i;
1237 spin_lock_irq(&cpu_buffer->reader_lock);
1238 rb_head_page_deactivate(cpu_buffer);
1240 for (i = 0; i < nr_pages; i++) {
1241 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1242 goto out;
1243 p = pages->next;
1244 bpage = list_entry(p, struct buffer_page, list);
1245 list_del_init(&bpage->list);
1246 list_add_tail(&bpage->list, cpu_buffer->pages);
1248 rb_reset_cpu(cpu_buffer);
1249 rb_check_pages(cpu_buffer);
1251 out:
1252 spin_unlock_irq(&cpu_buffer->reader_lock);
1256 * ring_buffer_resize - resize the ring buffer
1257 * @buffer: the buffer to resize.
1258 * @size: the new size.
1260 * Minimum size is 2 * BUF_PAGE_SIZE.
1262 * Returns -1 on failure.
1264 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1266 struct ring_buffer_per_cpu *cpu_buffer;
1267 unsigned nr_pages, rm_pages, new_pages;
1268 struct buffer_page *bpage, *tmp;
1269 unsigned long buffer_size;
1270 unsigned long addr;
1271 LIST_HEAD(pages);
1272 int i, cpu;
1275 * Always succeed at resizing a non-existent buffer:
1277 if (!buffer)
1278 return size;
1280 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1281 size *= BUF_PAGE_SIZE;
1282 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1284 /* we need a minimum of two pages */
1285 if (size < BUF_PAGE_SIZE * 2)
1286 size = BUF_PAGE_SIZE * 2;
1288 if (size == buffer_size)
1289 return size;
1291 atomic_inc(&buffer->record_disabled);
1293 /* Make sure all writers are done with this buffer. */
1294 synchronize_sched();
1296 mutex_lock(&buffer->mutex);
1297 get_online_cpus();
1299 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1301 if (size < buffer_size) {
1303 /* easy case, just free pages */
1304 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1305 goto out_fail;
1307 rm_pages = buffer->pages - nr_pages;
1309 for_each_buffer_cpu(buffer, cpu) {
1310 cpu_buffer = buffer->buffers[cpu];
1311 rb_remove_pages(cpu_buffer, rm_pages);
1313 goto out;
1317 * This is a bit more difficult. We only want to add pages
1318 * when we can allocate enough for all CPUs. We do this
1319 * by allocating all the pages and storing them on a local
1320 * link list. If we succeed in our allocation, then we
1321 * add these pages to the cpu_buffers. Otherwise we just free
1322 * them all and return -ENOMEM;
1324 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1325 goto out_fail;
1327 new_pages = nr_pages - buffer->pages;
1329 for_each_buffer_cpu(buffer, cpu) {
1330 for (i = 0; i < new_pages; i++) {
1331 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1332 cache_line_size()),
1333 GFP_KERNEL, cpu_to_node(cpu));
1334 if (!bpage)
1335 goto free_pages;
1336 list_add(&bpage->list, &pages);
1337 addr = __get_free_page(GFP_KERNEL);
1338 if (!addr)
1339 goto free_pages;
1340 bpage->page = (void *)addr;
1341 rb_init_page(bpage->page);
1345 for_each_buffer_cpu(buffer, cpu) {
1346 cpu_buffer = buffer->buffers[cpu];
1347 rb_insert_pages(cpu_buffer, &pages, new_pages);
1350 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1351 goto out_fail;
1353 out:
1354 buffer->pages = nr_pages;
1355 put_online_cpus();
1356 mutex_unlock(&buffer->mutex);
1358 atomic_dec(&buffer->record_disabled);
1360 return size;
1362 free_pages:
1363 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1364 list_del_init(&bpage->list);
1365 free_buffer_page(bpage);
1367 put_online_cpus();
1368 mutex_unlock(&buffer->mutex);
1369 atomic_dec(&buffer->record_disabled);
1370 return -ENOMEM;
1373 * Something went totally wrong, and we are too paranoid
1374 * to even clean up the mess.
1376 out_fail:
1377 put_online_cpus();
1378 mutex_unlock(&buffer->mutex);
1379 atomic_dec(&buffer->record_disabled);
1380 return -1;
1382 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1384 static inline void *
1385 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1387 return bpage->data + index;
1390 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1392 return bpage->page->data + index;
1395 static inline struct ring_buffer_event *
1396 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1398 return __rb_page_index(cpu_buffer->reader_page,
1399 cpu_buffer->reader_page->read);
1402 static inline struct ring_buffer_event *
1403 rb_iter_head_event(struct ring_buffer_iter *iter)
1405 return __rb_page_index(iter->head_page, iter->head);
1408 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1410 return local_read(&bpage->write) & RB_WRITE_MASK;
1413 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1415 return local_read(&bpage->page->commit);
1418 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1420 return local_read(&bpage->entries) & RB_WRITE_MASK;
1423 /* Size is determined by what has been commited */
1424 static inline unsigned rb_page_size(struct buffer_page *bpage)
1426 return rb_page_commit(bpage);
1429 static inline unsigned
1430 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1432 return rb_page_commit(cpu_buffer->commit_page);
1435 static inline unsigned
1436 rb_event_index(struct ring_buffer_event *event)
1438 unsigned long addr = (unsigned long)event;
1440 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1443 static inline int
1444 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1445 struct ring_buffer_event *event)
1447 unsigned long addr = (unsigned long)event;
1448 unsigned long index;
1450 index = rb_event_index(event);
1451 addr &= PAGE_MASK;
1453 return cpu_buffer->commit_page->page == (void *)addr &&
1454 rb_commit_index(cpu_buffer) == index;
1457 static void
1458 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1460 unsigned long max_count;
1463 * We only race with interrupts and NMIs on this CPU.
1464 * If we own the commit event, then we can commit
1465 * all others that interrupted us, since the interruptions
1466 * are in stack format (they finish before they come
1467 * back to us). This allows us to do a simple loop to
1468 * assign the commit to the tail.
1470 again:
1471 max_count = cpu_buffer->buffer->pages * 100;
1473 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1474 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1475 return;
1476 if (RB_WARN_ON(cpu_buffer,
1477 rb_is_reader_page(cpu_buffer->tail_page)))
1478 return;
1479 local_set(&cpu_buffer->commit_page->page->commit,
1480 rb_page_write(cpu_buffer->commit_page));
1481 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1482 cpu_buffer->write_stamp =
1483 cpu_buffer->commit_page->page->time_stamp;
1484 /* add barrier to keep gcc from optimizing too much */
1485 barrier();
1487 while (rb_commit_index(cpu_buffer) !=
1488 rb_page_write(cpu_buffer->commit_page)) {
1490 local_set(&cpu_buffer->commit_page->page->commit,
1491 rb_page_write(cpu_buffer->commit_page));
1492 RB_WARN_ON(cpu_buffer,
1493 local_read(&cpu_buffer->commit_page->page->commit) &
1494 ~RB_WRITE_MASK);
1495 barrier();
1498 /* again, keep gcc from optimizing */
1499 barrier();
1502 * If an interrupt came in just after the first while loop
1503 * and pushed the tail page forward, we will be left with
1504 * a dangling commit that will never go forward.
1506 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1507 goto again;
1510 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1512 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1513 cpu_buffer->reader_page->read = 0;
1516 static void rb_inc_iter(struct ring_buffer_iter *iter)
1518 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1521 * The iterator could be on the reader page (it starts there).
1522 * But the head could have moved, since the reader was
1523 * found. Check for this case and assign the iterator
1524 * to the head page instead of next.
1526 if (iter->head_page == cpu_buffer->reader_page)
1527 iter->head_page = rb_set_head_page(cpu_buffer);
1528 else
1529 rb_inc_page(cpu_buffer, &iter->head_page);
1531 iter->read_stamp = iter->head_page->page->time_stamp;
1532 iter->head = 0;
1536 * ring_buffer_update_event - update event type and data
1537 * @event: the even to update
1538 * @type: the type of event
1539 * @length: the size of the event field in the ring buffer
1541 * Update the type and data fields of the event. The length
1542 * is the actual size that is written to the ring buffer,
1543 * and with this, we can determine what to place into the
1544 * data field.
1546 static void
1547 rb_update_event(struct ring_buffer_event *event,
1548 unsigned type, unsigned length)
1550 event->type_len = type;
1552 switch (type) {
1554 case RINGBUF_TYPE_PADDING:
1555 case RINGBUF_TYPE_TIME_EXTEND:
1556 case RINGBUF_TYPE_TIME_STAMP:
1557 break;
1559 case 0:
1560 length -= RB_EVNT_HDR_SIZE;
1561 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1562 event->array[0] = length;
1563 else
1564 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1565 break;
1566 default:
1567 BUG();
1572 * rb_handle_head_page - writer hit the head page
1574 * Returns: +1 to retry page
1575 * 0 to continue
1576 * -1 on error
1578 static int
1579 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1580 struct buffer_page *tail_page,
1581 struct buffer_page *next_page)
1583 struct buffer_page *new_head;
1584 int entries;
1585 int type;
1586 int ret;
1588 entries = rb_page_entries(next_page);
1591 * The hard part is here. We need to move the head
1592 * forward, and protect against both readers on
1593 * other CPUs and writers coming in via interrupts.
1595 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1596 RB_PAGE_HEAD);
1599 * type can be one of four:
1600 * NORMAL - an interrupt already moved it for us
1601 * HEAD - we are the first to get here.
1602 * UPDATE - we are the interrupt interrupting
1603 * a current move.
1604 * MOVED - a reader on another CPU moved the next
1605 * pointer to its reader page. Give up
1606 * and try again.
1609 switch (type) {
1610 case RB_PAGE_HEAD:
1612 * We changed the head to UPDATE, thus
1613 * it is our responsibility to update
1614 * the counters.
1616 local_add(entries, &cpu_buffer->overrun);
1619 * The entries will be zeroed out when we move the
1620 * tail page.
1623 /* still more to do */
1624 break;
1626 case RB_PAGE_UPDATE:
1628 * This is an interrupt that interrupt the
1629 * previous update. Still more to do.
1631 break;
1632 case RB_PAGE_NORMAL:
1634 * An interrupt came in before the update
1635 * and processed this for us.
1636 * Nothing left to do.
1638 return 1;
1639 case RB_PAGE_MOVED:
1641 * The reader is on another CPU and just did
1642 * a swap with our next_page.
1643 * Try again.
1645 return 1;
1646 default:
1647 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1648 return -1;
1652 * Now that we are here, the old head pointer is
1653 * set to UPDATE. This will keep the reader from
1654 * swapping the head page with the reader page.
1655 * The reader (on another CPU) will spin till
1656 * we are finished.
1658 * We just need to protect against interrupts
1659 * doing the job. We will set the next pointer
1660 * to HEAD. After that, we set the old pointer
1661 * to NORMAL, but only if it was HEAD before.
1662 * otherwise we are an interrupt, and only
1663 * want the outer most commit to reset it.
1665 new_head = next_page;
1666 rb_inc_page(cpu_buffer, &new_head);
1668 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1669 RB_PAGE_NORMAL);
1672 * Valid returns are:
1673 * HEAD - an interrupt came in and already set it.
1674 * NORMAL - One of two things:
1675 * 1) We really set it.
1676 * 2) A bunch of interrupts came in and moved
1677 * the page forward again.
1679 switch (ret) {
1680 case RB_PAGE_HEAD:
1681 case RB_PAGE_NORMAL:
1682 /* OK */
1683 break;
1684 default:
1685 RB_WARN_ON(cpu_buffer, 1);
1686 return -1;
1690 * It is possible that an interrupt came in,
1691 * set the head up, then more interrupts came in
1692 * and moved it again. When we get back here,
1693 * the page would have been set to NORMAL but we
1694 * just set it back to HEAD.
1696 * How do you detect this? Well, if that happened
1697 * the tail page would have moved.
1699 if (ret == RB_PAGE_NORMAL) {
1701 * If the tail had moved passed next, then we need
1702 * to reset the pointer.
1704 if (cpu_buffer->tail_page != tail_page &&
1705 cpu_buffer->tail_page != next_page)
1706 rb_head_page_set_normal(cpu_buffer, new_head,
1707 next_page,
1708 RB_PAGE_HEAD);
1712 * If this was the outer most commit (the one that
1713 * changed the original pointer from HEAD to UPDATE),
1714 * then it is up to us to reset it to NORMAL.
1716 if (type == RB_PAGE_HEAD) {
1717 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1718 tail_page,
1719 RB_PAGE_UPDATE);
1720 if (RB_WARN_ON(cpu_buffer,
1721 ret != RB_PAGE_UPDATE))
1722 return -1;
1725 return 0;
1728 static unsigned rb_calculate_event_length(unsigned length)
1730 struct ring_buffer_event event; /* Used only for sizeof array */
1732 /* zero length can cause confusions */
1733 if (!length)
1734 length = 1;
1736 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1737 length += sizeof(event.array[0]);
1739 length += RB_EVNT_HDR_SIZE;
1740 length = ALIGN(length, RB_ARCH_ALIGNMENT);
1742 return length;
1745 static inline void
1746 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1747 struct buffer_page *tail_page,
1748 unsigned long tail, unsigned long length)
1750 struct ring_buffer_event *event;
1753 * Only the event that crossed the page boundary
1754 * must fill the old tail_page with padding.
1756 if (tail >= BUF_PAGE_SIZE) {
1757 local_sub(length, &tail_page->write);
1758 return;
1761 event = __rb_page_index(tail_page, tail);
1762 kmemcheck_annotate_bitfield(event, bitfield);
1765 * If this event is bigger than the minimum size, then
1766 * we need to be careful that we don't subtract the
1767 * write counter enough to allow another writer to slip
1768 * in on this page.
1769 * We put in a discarded commit instead, to make sure
1770 * that this space is not used again.
1772 * If we are less than the minimum size, we don't need to
1773 * worry about it.
1775 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1776 /* No room for any events */
1778 /* Mark the rest of the page with padding */
1779 rb_event_set_padding(event);
1781 /* Set the write back to the previous setting */
1782 local_sub(length, &tail_page->write);
1783 return;
1786 /* Put in a discarded event */
1787 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1788 event->type_len = RINGBUF_TYPE_PADDING;
1789 /* time delta must be non zero */
1790 event->time_delta = 1;
1792 /* Set write to end of buffer */
1793 length = (tail + length) - BUF_PAGE_SIZE;
1794 local_sub(length, &tail_page->write);
1797 static struct ring_buffer_event *
1798 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1799 unsigned long length, unsigned long tail,
1800 struct buffer_page *tail_page, u64 *ts)
1802 struct buffer_page *commit_page = cpu_buffer->commit_page;
1803 struct ring_buffer *buffer = cpu_buffer->buffer;
1804 struct buffer_page *next_page;
1805 int ret;
1807 next_page = tail_page;
1809 rb_inc_page(cpu_buffer, &next_page);
1812 * If for some reason, we had an interrupt storm that made
1813 * it all the way around the buffer, bail, and warn
1814 * about it.
1816 if (unlikely(next_page == commit_page)) {
1817 local_inc(&cpu_buffer->commit_overrun);
1818 goto out_reset;
1822 * This is where the fun begins!
1824 * We are fighting against races between a reader that
1825 * could be on another CPU trying to swap its reader
1826 * page with the buffer head.
1828 * We are also fighting against interrupts coming in and
1829 * moving the head or tail on us as well.
1831 * If the next page is the head page then we have filled
1832 * the buffer, unless the commit page is still on the
1833 * reader page.
1835 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1838 * If the commit is not on the reader page, then
1839 * move the header page.
1841 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1843 * If we are not in overwrite mode,
1844 * this is easy, just stop here.
1846 if (!(buffer->flags & RB_FL_OVERWRITE))
1847 goto out_reset;
1849 ret = rb_handle_head_page(cpu_buffer,
1850 tail_page,
1851 next_page);
1852 if (ret < 0)
1853 goto out_reset;
1854 if (ret)
1855 goto out_again;
1856 } else {
1858 * We need to be careful here too. The
1859 * commit page could still be on the reader
1860 * page. We could have a small buffer, and
1861 * have filled up the buffer with events
1862 * from interrupts and such, and wrapped.
1864 * Note, if the tail page is also the on the
1865 * reader_page, we let it move out.
1867 if (unlikely((cpu_buffer->commit_page !=
1868 cpu_buffer->tail_page) &&
1869 (cpu_buffer->commit_page ==
1870 cpu_buffer->reader_page))) {
1871 local_inc(&cpu_buffer->commit_overrun);
1872 goto out_reset;
1877 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1878 if (ret) {
1880 * Nested commits always have zero deltas, so
1881 * just reread the time stamp
1883 *ts = rb_time_stamp(buffer);
1884 next_page->page->time_stamp = *ts;
1887 out_again:
1889 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1891 /* fail and let the caller try again */
1892 return ERR_PTR(-EAGAIN);
1894 out_reset:
1895 /* reset write */
1896 rb_reset_tail(cpu_buffer, tail_page, tail, length);
1898 return NULL;
1901 static struct ring_buffer_event *
1902 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1903 unsigned type, unsigned long length, u64 *ts)
1905 struct buffer_page *tail_page;
1906 struct ring_buffer_event *event;
1907 unsigned long tail, write;
1909 tail_page = cpu_buffer->tail_page;
1910 write = local_add_return(length, &tail_page->write);
1912 /* set write to only the index of the write */
1913 write &= RB_WRITE_MASK;
1914 tail = write - length;
1916 /* See if we shot pass the end of this buffer page */
1917 if (write > BUF_PAGE_SIZE)
1918 return rb_move_tail(cpu_buffer, length, tail,
1919 tail_page, ts);
1921 /* We reserved something on the buffer */
1923 event = __rb_page_index(tail_page, tail);
1924 kmemcheck_annotate_bitfield(event, bitfield);
1925 rb_update_event(event, type, length);
1927 /* The passed in type is zero for DATA */
1928 if (likely(!type))
1929 local_inc(&tail_page->entries);
1932 * If this is the first commit on the page, then update
1933 * its timestamp.
1935 if (!tail)
1936 tail_page->page->time_stamp = *ts;
1938 return event;
1941 static inline int
1942 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1943 struct ring_buffer_event *event)
1945 unsigned long new_index, old_index;
1946 struct buffer_page *bpage;
1947 unsigned long index;
1948 unsigned long addr;
1950 new_index = rb_event_index(event);
1951 old_index = new_index + rb_event_length(event);
1952 addr = (unsigned long)event;
1953 addr &= PAGE_MASK;
1955 bpage = cpu_buffer->tail_page;
1957 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1958 unsigned long write_mask =
1959 local_read(&bpage->write) & ~RB_WRITE_MASK;
1961 * This is on the tail page. It is possible that
1962 * a write could come in and move the tail page
1963 * and write to the next page. That is fine
1964 * because we just shorten what is on this page.
1966 old_index += write_mask;
1967 new_index += write_mask;
1968 index = local_cmpxchg(&bpage->write, old_index, new_index);
1969 if (index == old_index)
1970 return 1;
1973 /* could not discard */
1974 return 0;
1977 static int
1978 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1979 u64 *ts, u64 *delta)
1981 struct ring_buffer_event *event;
1982 static int once;
1983 int ret;
1985 if (unlikely(*delta > (1ULL << 59) && !once++)) {
1986 printk(KERN_WARNING "Delta way too big! %llu"
1987 " ts=%llu write stamp = %llu\n",
1988 (unsigned long long)*delta,
1989 (unsigned long long)*ts,
1990 (unsigned long long)cpu_buffer->write_stamp);
1991 WARN_ON(1);
1995 * The delta is too big, we to add a
1996 * new timestamp.
1998 event = __rb_reserve_next(cpu_buffer,
1999 RINGBUF_TYPE_TIME_EXTEND,
2000 RB_LEN_TIME_EXTEND,
2001 ts);
2002 if (!event)
2003 return -EBUSY;
2005 if (PTR_ERR(event) == -EAGAIN)
2006 return -EAGAIN;
2008 /* Only a commited time event can update the write stamp */
2009 if (rb_event_is_commit(cpu_buffer, event)) {
2011 * If this is the first on the page, then it was
2012 * updated with the page itself. Try to discard it
2013 * and if we can't just make it zero.
2015 if (rb_event_index(event)) {
2016 event->time_delta = *delta & TS_MASK;
2017 event->array[0] = *delta >> TS_SHIFT;
2018 } else {
2019 /* try to discard, since we do not need this */
2020 if (!rb_try_to_discard(cpu_buffer, event)) {
2021 /* nope, just zero it */
2022 event->time_delta = 0;
2023 event->array[0] = 0;
2026 cpu_buffer->write_stamp = *ts;
2027 /* let the caller know this was the commit */
2028 ret = 1;
2029 } else {
2030 /* Try to discard the event */
2031 if (!rb_try_to_discard(cpu_buffer, event)) {
2032 /* Darn, this is just wasted space */
2033 event->time_delta = 0;
2034 event->array[0] = 0;
2036 ret = 0;
2039 *delta = 0;
2041 return ret;
2044 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2046 local_inc(&cpu_buffer->committing);
2047 local_inc(&cpu_buffer->commits);
2050 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2052 unsigned long commits;
2054 if (RB_WARN_ON(cpu_buffer,
2055 !local_read(&cpu_buffer->committing)))
2056 return;
2058 again:
2059 commits = local_read(&cpu_buffer->commits);
2060 /* synchronize with interrupts */
2061 barrier();
2062 if (local_read(&cpu_buffer->committing) == 1)
2063 rb_set_commit_to_write(cpu_buffer);
2065 local_dec(&cpu_buffer->committing);
2067 /* synchronize with interrupts */
2068 barrier();
2071 * Need to account for interrupts coming in between the
2072 * updating of the commit page and the clearing of the
2073 * committing counter.
2075 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2076 !local_read(&cpu_buffer->committing)) {
2077 local_inc(&cpu_buffer->committing);
2078 goto again;
2082 static struct ring_buffer_event *
2083 rb_reserve_next_event(struct ring_buffer *buffer,
2084 struct ring_buffer_per_cpu *cpu_buffer,
2085 unsigned long length)
2087 struct ring_buffer_event *event;
2088 u64 ts, delta = 0;
2089 int commit = 0;
2090 int nr_loops = 0;
2092 rb_start_commit(cpu_buffer);
2094 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2096 * Due to the ability to swap a cpu buffer from a buffer
2097 * it is possible it was swapped before we committed.
2098 * (committing stops a swap). We check for it here and
2099 * if it happened, we have to fail the write.
2101 barrier();
2102 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2103 local_dec(&cpu_buffer->committing);
2104 local_dec(&cpu_buffer->commits);
2105 return NULL;
2107 #endif
2109 length = rb_calculate_event_length(length);
2110 again:
2112 * We allow for interrupts to reenter here and do a trace.
2113 * If one does, it will cause this original code to loop
2114 * back here. Even with heavy interrupts happening, this
2115 * should only happen a few times in a row. If this happens
2116 * 1000 times in a row, there must be either an interrupt
2117 * storm or we have something buggy.
2118 * Bail!
2120 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2121 goto out_fail;
2123 ts = rb_time_stamp(cpu_buffer->buffer);
2126 * Only the first commit can update the timestamp.
2127 * Yes there is a race here. If an interrupt comes in
2128 * just after the conditional and it traces too, then it
2129 * will also check the deltas. More than one timestamp may
2130 * also be made. But only the entry that did the actual
2131 * commit will be something other than zero.
2133 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2134 rb_page_write(cpu_buffer->tail_page) ==
2135 rb_commit_index(cpu_buffer))) {
2136 u64 diff;
2138 diff = ts - cpu_buffer->write_stamp;
2140 /* make sure this diff is calculated here */
2141 barrier();
2143 /* Did the write stamp get updated already? */
2144 if (unlikely(ts < cpu_buffer->write_stamp))
2145 goto get_event;
2147 delta = diff;
2148 if (unlikely(test_time_stamp(delta))) {
2150 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2151 if (commit == -EBUSY)
2152 goto out_fail;
2154 if (commit == -EAGAIN)
2155 goto again;
2157 RB_WARN_ON(cpu_buffer, commit < 0);
2161 get_event:
2162 event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2163 if (unlikely(PTR_ERR(event) == -EAGAIN))
2164 goto again;
2166 if (!event)
2167 goto out_fail;
2169 if (!rb_event_is_commit(cpu_buffer, event))
2170 delta = 0;
2172 event->time_delta = delta;
2174 return event;
2176 out_fail:
2177 rb_end_commit(cpu_buffer);
2178 return NULL;
2181 #ifdef CONFIG_TRACING
2183 #define TRACE_RECURSIVE_DEPTH 16
2185 static int trace_recursive_lock(void)
2187 current->trace_recursion++;
2189 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2190 return 0;
2192 /* Disable all tracing before we do anything else */
2193 tracing_off_permanent();
2195 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2196 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2197 current->trace_recursion,
2198 hardirq_count() >> HARDIRQ_SHIFT,
2199 softirq_count() >> SOFTIRQ_SHIFT,
2200 in_nmi());
2202 WARN_ON_ONCE(1);
2203 return -1;
2206 static void trace_recursive_unlock(void)
2208 WARN_ON_ONCE(!current->trace_recursion);
2210 current->trace_recursion--;
2213 #else
2215 #define trace_recursive_lock() (0)
2216 #define trace_recursive_unlock() do { } while (0)
2218 #endif
2220 static DEFINE_PER_CPU(int, rb_need_resched);
2223 * ring_buffer_lock_reserve - reserve a part of the buffer
2224 * @buffer: the ring buffer to reserve from
2225 * @length: the length of the data to reserve (excluding event header)
2227 * Returns a reseverd event on the ring buffer to copy directly to.
2228 * The user of this interface will need to get the body to write into
2229 * and can use the ring_buffer_event_data() interface.
2231 * The length is the length of the data needed, not the event length
2232 * which also includes the event header.
2234 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2235 * If NULL is returned, then nothing has been allocated or locked.
2237 struct ring_buffer_event *
2238 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2240 struct ring_buffer_per_cpu *cpu_buffer;
2241 struct ring_buffer_event *event;
2242 int cpu, resched;
2244 if (ring_buffer_flags != RB_BUFFERS_ON)
2245 return NULL;
2247 /* If we are tracing schedule, we don't want to recurse */
2248 resched = ftrace_preempt_disable();
2250 if (atomic_read(&buffer->record_disabled))
2251 goto out_nocheck;
2253 if (trace_recursive_lock())
2254 goto out_nocheck;
2256 cpu = raw_smp_processor_id();
2258 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2259 goto out;
2261 cpu_buffer = buffer->buffers[cpu];
2263 if (atomic_read(&cpu_buffer->record_disabled))
2264 goto out;
2266 if (length > BUF_MAX_DATA_SIZE)
2267 goto out;
2269 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2270 if (!event)
2271 goto out;
2274 * Need to store resched state on this cpu.
2275 * Only the first needs to.
2278 if (preempt_count() == 1)
2279 per_cpu(rb_need_resched, cpu) = resched;
2281 return event;
2283 out:
2284 trace_recursive_unlock();
2286 out_nocheck:
2287 ftrace_preempt_enable(resched);
2288 return NULL;
2290 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2292 static void
2293 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2294 struct ring_buffer_event *event)
2297 * The event first in the commit queue updates the
2298 * time stamp.
2300 if (rb_event_is_commit(cpu_buffer, event))
2301 cpu_buffer->write_stamp += event->time_delta;
2304 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2305 struct ring_buffer_event *event)
2307 local_inc(&cpu_buffer->entries);
2308 rb_update_write_stamp(cpu_buffer, event);
2309 rb_end_commit(cpu_buffer);
2313 * ring_buffer_unlock_commit - commit a reserved
2314 * @buffer: The buffer to commit to
2315 * @event: The event pointer to commit.
2317 * This commits the data to the ring buffer, and releases any locks held.
2319 * Must be paired with ring_buffer_lock_reserve.
2321 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2322 struct ring_buffer_event *event)
2324 struct ring_buffer_per_cpu *cpu_buffer;
2325 int cpu = raw_smp_processor_id();
2327 cpu_buffer = buffer->buffers[cpu];
2329 rb_commit(cpu_buffer, event);
2331 trace_recursive_unlock();
2334 * Only the last preempt count needs to restore preemption.
2336 if (preempt_count() == 1)
2337 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2338 else
2339 preempt_enable_no_resched_notrace();
2341 return 0;
2343 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2345 static inline void rb_event_discard(struct ring_buffer_event *event)
2347 /* array[0] holds the actual length for the discarded event */
2348 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2349 event->type_len = RINGBUF_TYPE_PADDING;
2350 /* time delta must be non zero */
2351 if (!event->time_delta)
2352 event->time_delta = 1;
2356 * Decrement the entries to the page that an event is on.
2357 * The event does not even need to exist, only the pointer
2358 * to the page it is on. This may only be called before the commit
2359 * takes place.
2361 static inline void
2362 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2363 struct ring_buffer_event *event)
2365 unsigned long addr = (unsigned long)event;
2366 struct buffer_page *bpage = cpu_buffer->commit_page;
2367 struct buffer_page *start;
2369 addr &= PAGE_MASK;
2371 /* Do the likely case first */
2372 if (likely(bpage->page == (void *)addr)) {
2373 local_dec(&bpage->entries);
2374 return;
2378 * Because the commit page may be on the reader page we
2379 * start with the next page and check the end loop there.
2381 rb_inc_page(cpu_buffer, &bpage);
2382 start = bpage;
2383 do {
2384 if (bpage->page == (void *)addr) {
2385 local_dec(&bpage->entries);
2386 return;
2388 rb_inc_page(cpu_buffer, &bpage);
2389 } while (bpage != start);
2391 /* commit not part of this buffer?? */
2392 RB_WARN_ON(cpu_buffer, 1);
2396 * ring_buffer_commit_discard - discard an event that has not been committed
2397 * @buffer: the ring buffer
2398 * @event: non committed event to discard
2400 * Sometimes an event that is in the ring buffer needs to be ignored.
2401 * This function lets the user discard an event in the ring buffer
2402 * and then that event will not be read later.
2404 * This function only works if it is called before the the item has been
2405 * committed. It will try to free the event from the ring buffer
2406 * if another event has not been added behind it.
2408 * If another event has been added behind it, it will set the event
2409 * up as discarded, and perform the commit.
2411 * If this function is called, do not call ring_buffer_unlock_commit on
2412 * the event.
2414 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2415 struct ring_buffer_event *event)
2417 struct ring_buffer_per_cpu *cpu_buffer;
2418 int cpu;
2420 /* The event is discarded regardless */
2421 rb_event_discard(event);
2423 cpu = smp_processor_id();
2424 cpu_buffer = buffer->buffers[cpu];
2427 * This must only be called if the event has not been
2428 * committed yet. Thus we can assume that preemption
2429 * is still disabled.
2431 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2433 rb_decrement_entry(cpu_buffer, event);
2434 if (rb_try_to_discard(cpu_buffer, event))
2435 goto out;
2438 * The commit is still visible by the reader, so we
2439 * must still update the timestamp.
2441 rb_update_write_stamp(cpu_buffer, event);
2442 out:
2443 rb_end_commit(cpu_buffer);
2445 trace_recursive_unlock();
2448 * Only the last preempt count needs to restore preemption.
2450 if (preempt_count() == 1)
2451 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2452 else
2453 preempt_enable_no_resched_notrace();
2456 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2459 * ring_buffer_write - write data to the buffer without reserving
2460 * @buffer: The ring buffer to write to.
2461 * @length: The length of the data being written (excluding the event header)
2462 * @data: The data to write to the buffer.
2464 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2465 * one function. If you already have the data to write to the buffer, it
2466 * may be easier to simply call this function.
2468 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2469 * and not the length of the event which would hold the header.
2471 int ring_buffer_write(struct ring_buffer *buffer,
2472 unsigned long length,
2473 void *data)
2475 struct ring_buffer_per_cpu *cpu_buffer;
2476 struct ring_buffer_event *event;
2477 void *body;
2478 int ret = -EBUSY;
2479 int cpu, resched;
2481 if (ring_buffer_flags != RB_BUFFERS_ON)
2482 return -EBUSY;
2484 resched = ftrace_preempt_disable();
2486 if (atomic_read(&buffer->record_disabled))
2487 goto out;
2489 cpu = raw_smp_processor_id();
2491 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2492 goto out;
2494 cpu_buffer = buffer->buffers[cpu];
2496 if (atomic_read(&cpu_buffer->record_disabled))
2497 goto out;
2499 if (length > BUF_MAX_DATA_SIZE)
2500 goto out;
2502 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2503 if (!event)
2504 goto out;
2506 body = rb_event_data(event);
2508 memcpy(body, data, length);
2510 rb_commit(cpu_buffer, event);
2512 ret = 0;
2513 out:
2514 ftrace_preempt_enable(resched);
2516 return ret;
2518 EXPORT_SYMBOL_GPL(ring_buffer_write);
2520 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2522 struct buffer_page *reader = cpu_buffer->reader_page;
2523 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2524 struct buffer_page *commit = cpu_buffer->commit_page;
2526 /* In case of error, head will be NULL */
2527 if (unlikely(!head))
2528 return 1;
2530 return reader->read == rb_page_commit(reader) &&
2531 (commit == reader ||
2532 (commit == head &&
2533 head->read == rb_page_commit(commit)));
2537 * ring_buffer_record_disable - stop all writes into the buffer
2538 * @buffer: The ring buffer to stop writes to.
2540 * This prevents all writes to the buffer. Any attempt to write
2541 * to the buffer after this will fail and return NULL.
2543 * The caller should call synchronize_sched() after this.
2545 void ring_buffer_record_disable(struct ring_buffer *buffer)
2547 atomic_inc(&buffer->record_disabled);
2549 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2552 * ring_buffer_record_enable - enable writes to the buffer
2553 * @buffer: The ring buffer to enable writes
2555 * Note, multiple disables will need the same number of enables
2556 * to truly enable the writing (much like preempt_disable).
2558 void ring_buffer_record_enable(struct ring_buffer *buffer)
2560 atomic_dec(&buffer->record_disabled);
2562 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2565 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2566 * @buffer: The ring buffer to stop writes to.
2567 * @cpu: The CPU buffer to stop
2569 * This prevents all writes to the buffer. Any attempt to write
2570 * to the buffer after this will fail and return NULL.
2572 * The caller should call synchronize_sched() after this.
2574 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2576 struct ring_buffer_per_cpu *cpu_buffer;
2578 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2579 return;
2581 cpu_buffer = buffer->buffers[cpu];
2582 atomic_inc(&cpu_buffer->record_disabled);
2584 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2587 * ring_buffer_record_enable_cpu - enable writes to the buffer
2588 * @buffer: The ring buffer to enable writes
2589 * @cpu: The CPU to enable.
2591 * Note, multiple disables will need the same number of enables
2592 * to truly enable the writing (much like preempt_disable).
2594 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2596 struct ring_buffer_per_cpu *cpu_buffer;
2598 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2599 return;
2601 cpu_buffer = buffer->buffers[cpu];
2602 atomic_dec(&cpu_buffer->record_disabled);
2604 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2607 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2608 * @buffer: The ring buffer
2609 * @cpu: The per CPU buffer to get the entries from.
2611 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2613 struct ring_buffer_per_cpu *cpu_buffer;
2614 unsigned long ret;
2616 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2617 return 0;
2619 cpu_buffer = buffer->buffers[cpu];
2620 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2621 - cpu_buffer->read;
2623 return ret;
2625 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2628 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2629 * @buffer: The ring buffer
2630 * @cpu: The per CPU buffer to get the number of overruns from
2632 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2634 struct ring_buffer_per_cpu *cpu_buffer;
2635 unsigned long ret;
2637 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2638 return 0;
2640 cpu_buffer = buffer->buffers[cpu];
2641 ret = local_read(&cpu_buffer->overrun);
2643 return ret;
2645 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2648 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2649 * @buffer: The ring buffer
2650 * @cpu: The per CPU buffer to get the number of overruns from
2652 unsigned long
2653 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2655 struct ring_buffer_per_cpu *cpu_buffer;
2656 unsigned long ret;
2658 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2659 return 0;
2661 cpu_buffer = buffer->buffers[cpu];
2662 ret = local_read(&cpu_buffer->commit_overrun);
2664 return ret;
2666 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2669 * ring_buffer_entries - get the number of entries in a buffer
2670 * @buffer: The ring buffer
2672 * Returns the total number of entries in the ring buffer
2673 * (all CPU entries)
2675 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2677 struct ring_buffer_per_cpu *cpu_buffer;
2678 unsigned long entries = 0;
2679 int cpu;
2681 /* if you care about this being correct, lock the buffer */
2682 for_each_buffer_cpu(buffer, cpu) {
2683 cpu_buffer = buffer->buffers[cpu];
2684 entries += (local_read(&cpu_buffer->entries) -
2685 local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2688 return entries;
2690 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2693 * ring_buffer_overruns - get the number of overruns in buffer
2694 * @buffer: The ring buffer
2696 * Returns the total number of overruns in the ring buffer
2697 * (all CPU entries)
2699 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2701 struct ring_buffer_per_cpu *cpu_buffer;
2702 unsigned long overruns = 0;
2703 int cpu;
2705 /* if you care about this being correct, lock the buffer */
2706 for_each_buffer_cpu(buffer, cpu) {
2707 cpu_buffer = buffer->buffers[cpu];
2708 overruns += local_read(&cpu_buffer->overrun);
2711 return overruns;
2713 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2715 static void rb_iter_reset(struct ring_buffer_iter *iter)
2717 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2719 /* Iterator usage is expected to have record disabled */
2720 if (list_empty(&cpu_buffer->reader_page->list)) {
2721 iter->head_page = rb_set_head_page(cpu_buffer);
2722 if (unlikely(!iter->head_page))
2723 return;
2724 iter->head = iter->head_page->read;
2725 } else {
2726 iter->head_page = cpu_buffer->reader_page;
2727 iter->head = cpu_buffer->reader_page->read;
2729 if (iter->head)
2730 iter->read_stamp = cpu_buffer->read_stamp;
2731 else
2732 iter->read_stamp = iter->head_page->page->time_stamp;
2733 iter->cache_reader_page = cpu_buffer->reader_page;
2734 iter->cache_read = cpu_buffer->read;
2738 * ring_buffer_iter_reset - reset an iterator
2739 * @iter: The iterator to reset
2741 * Resets the iterator, so that it will start from the beginning
2742 * again.
2744 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2746 struct ring_buffer_per_cpu *cpu_buffer;
2747 unsigned long flags;
2749 if (!iter)
2750 return;
2752 cpu_buffer = iter->cpu_buffer;
2754 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2755 rb_iter_reset(iter);
2756 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2758 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2761 * ring_buffer_iter_empty - check if an iterator has no more to read
2762 * @iter: The iterator to check
2764 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2766 struct ring_buffer_per_cpu *cpu_buffer;
2768 cpu_buffer = iter->cpu_buffer;
2770 return iter->head_page == cpu_buffer->commit_page &&
2771 iter->head == rb_commit_index(cpu_buffer);
2773 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2775 static void
2776 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2777 struct ring_buffer_event *event)
2779 u64 delta;
2781 switch (event->type_len) {
2782 case RINGBUF_TYPE_PADDING:
2783 return;
2785 case RINGBUF_TYPE_TIME_EXTEND:
2786 delta = event->array[0];
2787 delta <<= TS_SHIFT;
2788 delta += event->time_delta;
2789 cpu_buffer->read_stamp += delta;
2790 return;
2792 case RINGBUF_TYPE_TIME_STAMP:
2793 /* FIXME: not implemented */
2794 return;
2796 case RINGBUF_TYPE_DATA:
2797 cpu_buffer->read_stamp += event->time_delta;
2798 return;
2800 default:
2801 BUG();
2803 return;
2806 static void
2807 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2808 struct ring_buffer_event *event)
2810 u64 delta;
2812 switch (event->type_len) {
2813 case RINGBUF_TYPE_PADDING:
2814 return;
2816 case RINGBUF_TYPE_TIME_EXTEND:
2817 delta = event->array[0];
2818 delta <<= TS_SHIFT;
2819 delta += event->time_delta;
2820 iter->read_stamp += delta;
2821 return;
2823 case RINGBUF_TYPE_TIME_STAMP:
2824 /* FIXME: not implemented */
2825 return;
2827 case RINGBUF_TYPE_DATA:
2828 iter->read_stamp += event->time_delta;
2829 return;
2831 default:
2832 BUG();
2834 return;
2837 static struct buffer_page *
2838 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2840 struct buffer_page *reader = NULL;
2841 unsigned long flags;
2842 int nr_loops = 0;
2843 int ret;
2845 local_irq_save(flags);
2846 arch_spin_lock(&cpu_buffer->lock);
2848 again:
2850 * This should normally only loop twice. But because the
2851 * start of the reader inserts an empty page, it causes
2852 * a case where we will loop three times. There should be no
2853 * reason to loop four times (that I know of).
2855 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2856 reader = NULL;
2857 goto out;
2860 reader = cpu_buffer->reader_page;
2862 /* If there's more to read, return this page */
2863 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2864 goto out;
2866 /* Never should we have an index greater than the size */
2867 if (RB_WARN_ON(cpu_buffer,
2868 cpu_buffer->reader_page->read > rb_page_size(reader)))
2869 goto out;
2871 /* check if we caught up to the tail */
2872 reader = NULL;
2873 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2874 goto out;
2877 * Reset the reader page to size zero.
2879 local_set(&cpu_buffer->reader_page->write, 0);
2880 local_set(&cpu_buffer->reader_page->entries, 0);
2881 local_set(&cpu_buffer->reader_page->page->commit, 0);
2883 spin:
2885 * Splice the empty reader page into the list around the head.
2887 reader = rb_set_head_page(cpu_buffer);
2888 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2889 cpu_buffer->reader_page->list.prev = reader->list.prev;
2892 * cpu_buffer->pages just needs to point to the buffer, it
2893 * has no specific buffer page to point to. Lets move it out
2894 * of our way so we don't accidently swap it.
2896 cpu_buffer->pages = reader->list.prev;
2898 /* The reader page will be pointing to the new head */
2899 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2902 * Here's the tricky part.
2904 * We need to move the pointer past the header page.
2905 * But we can only do that if a writer is not currently
2906 * moving it. The page before the header page has the
2907 * flag bit '1' set if it is pointing to the page we want.
2908 * but if the writer is in the process of moving it
2909 * than it will be '2' or already moved '0'.
2912 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2915 * If we did not convert it, then we must try again.
2917 if (!ret)
2918 goto spin;
2921 * Yeah! We succeeded in replacing the page.
2923 * Now make the new head point back to the reader page.
2925 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2926 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2928 /* Finally update the reader page to the new head */
2929 cpu_buffer->reader_page = reader;
2930 rb_reset_reader_page(cpu_buffer);
2932 goto again;
2934 out:
2935 arch_spin_unlock(&cpu_buffer->lock);
2936 local_irq_restore(flags);
2938 return reader;
2941 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2943 struct ring_buffer_event *event;
2944 struct buffer_page *reader;
2945 unsigned length;
2947 reader = rb_get_reader_page(cpu_buffer);
2949 /* This function should not be called when buffer is empty */
2950 if (RB_WARN_ON(cpu_buffer, !reader))
2951 return;
2953 event = rb_reader_event(cpu_buffer);
2955 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2956 cpu_buffer->read++;
2958 rb_update_read_stamp(cpu_buffer, event);
2960 length = rb_event_length(event);
2961 cpu_buffer->reader_page->read += length;
2964 static void rb_advance_iter(struct ring_buffer_iter *iter)
2966 struct ring_buffer *buffer;
2967 struct ring_buffer_per_cpu *cpu_buffer;
2968 struct ring_buffer_event *event;
2969 unsigned length;
2971 cpu_buffer = iter->cpu_buffer;
2972 buffer = cpu_buffer->buffer;
2975 * Check if we are at the end of the buffer.
2977 if (iter->head >= rb_page_size(iter->head_page)) {
2978 /* discarded commits can make the page empty */
2979 if (iter->head_page == cpu_buffer->commit_page)
2980 return;
2981 rb_inc_iter(iter);
2982 return;
2985 event = rb_iter_head_event(iter);
2987 length = rb_event_length(event);
2990 * This should not be called to advance the header if we are
2991 * at the tail of the buffer.
2993 if (RB_WARN_ON(cpu_buffer,
2994 (iter->head_page == cpu_buffer->commit_page) &&
2995 (iter->head + length > rb_commit_index(cpu_buffer))))
2996 return;
2998 rb_update_iter_read_stamp(iter, event);
3000 iter->head += length;
3002 /* check for end of page padding */
3003 if ((iter->head >= rb_page_size(iter->head_page)) &&
3004 (iter->head_page != cpu_buffer->commit_page))
3005 rb_advance_iter(iter);
3008 static struct ring_buffer_event *
3009 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3011 struct ring_buffer_event *event;
3012 struct buffer_page *reader;
3013 int nr_loops = 0;
3015 again:
3017 * We repeat when a timestamp is encountered. It is possible
3018 * to get multiple timestamps from an interrupt entering just
3019 * as one timestamp is about to be written, or from discarded
3020 * commits. The most that we can have is the number on a single page.
3022 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3023 return NULL;
3025 reader = rb_get_reader_page(cpu_buffer);
3026 if (!reader)
3027 return NULL;
3029 event = rb_reader_event(cpu_buffer);
3031 switch (event->type_len) {
3032 case RINGBUF_TYPE_PADDING:
3033 if (rb_null_event(event))
3034 RB_WARN_ON(cpu_buffer, 1);
3036 * Because the writer could be discarding every
3037 * event it creates (which would probably be bad)
3038 * if we were to go back to "again" then we may never
3039 * catch up, and will trigger the warn on, or lock
3040 * the box. Return the padding, and we will release
3041 * the current locks, and try again.
3043 return event;
3045 case RINGBUF_TYPE_TIME_EXTEND:
3046 /* Internal data, OK to advance */
3047 rb_advance_reader(cpu_buffer);
3048 goto again;
3050 case RINGBUF_TYPE_TIME_STAMP:
3051 /* FIXME: not implemented */
3052 rb_advance_reader(cpu_buffer);
3053 goto again;
3055 case RINGBUF_TYPE_DATA:
3056 if (ts) {
3057 *ts = cpu_buffer->read_stamp + event->time_delta;
3058 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3059 cpu_buffer->cpu, ts);
3061 return event;
3063 default:
3064 BUG();
3067 return NULL;
3069 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3071 static struct ring_buffer_event *
3072 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3074 struct ring_buffer *buffer;
3075 struct ring_buffer_per_cpu *cpu_buffer;
3076 struct ring_buffer_event *event;
3077 int nr_loops = 0;
3079 cpu_buffer = iter->cpu_buffer;
3080 buffer = cpu_buffer->buffer;
3083 * Check if someone performed a consuming read to
3084 * the buffer. A consuming read invalidates the iterator
3085 * and we need to reset the iterator in this case.
3087 if (unlikely(iter->cache_read != cpu_buffer->read ||
3088 iter->cache_reader_page != cpu_buffer->reader_page))
3089 rb_iter_reset(iter);
3091 again:
3092 if (ring_buffer_iter_empty(iter))
3093 return NULL;
3096 * We repeat when a timestamp is encountered.
3097 * We can get multiple timestamps by nested interrupts or also
3098 * if filtering is on (discarding commits). Since discarding
3099 * commits can be frequent we can get a lot of timestamps.
3100 * But we limit them by not adding timestamps if they begin
3101 * at the start of a page.
3103 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3104 return NULL;
3106 if (rb_per_cpu_empty(cpu_buffer))
3107 return NULL;
3109 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3110 rb_inc_iter(iter);
3111 goto again;
3114 event = rb_iter_head_event(iter);
3116 switch (event->type_len) {
3117 case RINGBUF_TYPE_PADDING:
3118 if (rb_null_event(event)) {
3119 rb_inc_iter(iter);
3120 goto again;
3122 rb_advance_iter(iter);
3123 return event;
3125 case RINGBUF_TYPE_TIME_EXTEND:
3126 /* Internal data, OK to advance */
3127 rb_advance_iter(iter);
3128 goto again;
3130 case RINGBUF_TYPE_TIME_STAMP:
3131 /* FIXME: not implemented */
3132 rb_advance_iter(iter);
3133 goto again;
3135 case RINGBUF_TYPE_DATA:
3136 if (ts) {
3137 *ts = iter->read_stamp + event->time_delta;
3138 ring_buffer_normalize_time_stamp(buffer,
3139 cpu_buffer->cpu, ts);
3141 return event;
3143 default:
3144 BUG();
3147 return NULL;
3149 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3151 static inline int rb_ok_to_lock(void)
3154 * If an NMI die dumps out the content of the ring buffer
3155 * do not grab locks. We also permanently disable the ring
3156 * buffer too. A one time deal is all you get from reading
3157 * the ring buffer from an NMI.
3159 if (likely(!in_nmi()))
3160 return 1;
3162 tracing_off_permanent();
3163 return 0;
3167 * ring_buffer_peek - peek at the next event to be read
3168 * @buffer: The ring buffer to read
3169 * @cpu: The cpu to peak at
3170 * @ts: The timestamp counter of this event.
3172 * This will return the event that will be read next, but does
3173 * not consume the data.
3175 struct ring_buffer_event *
3176 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3178 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3179 struct ring_buffer_event *event;
3180 unsigned long flags;
3181 int dolock;
3183 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3184 return NULL;
3186 dolock = rb_ok_to_lock();
3187 again:
3188 local_irq_save(flags);
3189 if (dolock)
3190 spin_lock(&cpu_buffer->reader_lock);
3191 event = rb_buffer_peek(cpu_buffer, ts);
3192 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3193 rb_advance_reader(cpu_buffer);
3194 if (dolock)
3195 spin_unlock(&cpu_buffer->reader_lock);
3196 local_irq_restore(flags);
3198 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3199 goto again;
3201 return event;
3205 * ring_buffer_iter_peek - peek at the next event to be read
3206 * @iter: The ring buffer iterator
3207 * @ts: The timestamp counter of this event.
3209 * This will return the event that will be read next, but does
3210 * not increment the iterator.
3212 struct ring_buffer_event *
3213 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3215 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3216 struct ring_buffer_event *event;
3217 unsigned long flags;
3219 again:
3220 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3221 event = rb_iter_peek(iter, ts);
3222 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3224 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3225 goto again;
3227 return event;
3231 * ring_buffer_consume - return an event and consume it
3232 * @buffer: The ring buffer to get the next event from
3234 * Returns the next event in the ring buffer, and that event is consumed.
3235 * Meaning, that sequential reads will keep returning a different event,
3236 * and eventually empty the ring buffer if the producer is slower.
3238 struct ring_buffer_event *
3239 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3241 struct ring_buffer_per_cpu *cpu_buffer;
3242 struct ring_buffer_event *event = NULL;
3243 unsigned long flags;
3244 int dolock;
3246 dolock = rb_ok_to_lock();
3248 again:
3249 /* might be called in atomic */
3250 preempt_disable();
3252 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3253 goto out;
3255 cpu_buffer = buffer->buffers[cpu];
3256 local_irq_save(flags);
3257 if (dolock)
3258 spin_lock(&cpu_buffer->reader_lock);
3260 event = rb_buffer_peek(cpu_buffer, ts);
3261 if (event)
3262 rb_advance_reader(cpu_buffer);
3264 if (dolock)
3265 spin_unlock(&cpu_buffer->reader_lock);
3266 local_irq_restore(flags);
3268 out:
3269 preempt_enable();
3271 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3272 goto again;
3274 return event;
3276 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3279 * ring_buffer_read_start - start a non consuming read of the buffer
3280 * @buffer: The ring buffer to read from
3281 * @cpu: The cpu buffer to iterate over
3283 * This starts up an iteration through the buffer. It also disables
3284 * the recording to the buffer until the reading is finished.
3285 * This prevents the reading from being corrupted. This is not
3286 * a consuming read, so a producer is not expected.
3288 * Must be paired with ring_buffer_finish.
3290 struct ring_buffer_iter *
3291 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3293 struct ring_buffer_per_cpu *cpu_buffer;
3294 struct ring_buffer_iter *iter;
3295 unsigned long flags;
3297 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3298 return NULL;
3300 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3301 if (!iter)
3302 return NULL;
3304 cpu_buffer = buffer->buffers[cpu];
3306 iter->cpu_buffer = cpu_buffer;
3308 atomic_inc(&cpu_buffer->record_disabled);
3309 synchronize_sched();
3311 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3312 arch_spin_lock(&cpu_buffer->lock);
3313 rb_iter_reset(iter);
3314 arch_spin_unlock(&cpu_buffer->lock);
3315 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3317 return iter;
3319 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3322 * ring_buffer_finish - finish reading the iterator of the buffer
3323 * @iter: The iterator retrieved by ring_buffer_start
3325 * This re-enables the recording to the buffer, and frees the
3326 * iterator.
3328 void
3329 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3331 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3333 atomic_dec(&cpu_buffer->record_disabled);
3334 kfree(iter);
3336 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3339 * ring_buffer_read - read the next item in the ring buffer by the iterator
3340 * @iter: The ring buffer iterator
3341 * @ts: The time stamp of the event read.
3343 * This reads the next event in the ring buffer and increments the iterator.
3345 struct ring_buffer_event *
3346 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3348 struct ring_buffer_event *event;
3349 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3350 unsigned long flags;
3352 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3353 again:
3354 event = rb_iter_peek(iter, ts);
3355 if (!event)
3356 goto out;
3358 if (event->type_len == RINGBUF_TYPE_PADDING)
3359 goto again;
3361 rb_advance_iter(iter);
3362 out:
3363 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3365 return event;
3367 EXPORT_SYMBOL_GPL(ring_buffer_read);
3370 * ring_buffer_size - return the size of the ring buffer (in bytes)
3371 * @buffer: The ring buffer.
3373 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3375 return BUF_PAGE_SIZE * buffer->pages;
3377 EXPORT_SYMBOL_GPL(ring_buffer_size);
3379 static void
3380 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3382 rb_head_page_deactivate(cpu_buffer);
3384 cpu_buffer->head_page
3385 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3386 local_set(&cpu_buffer->head_page->write, 0);
3387 local_set(&cpu_buffer->head_page->entries, 0);
3388 local_set(&cpu_buffer->head_page->page->commit, 0);
3390 cpu_buffer->head_page->read = 0;
3392 cpu_buffer->tail_page = cpu_buffer->head_page;
3393 cpu_buffer->commit_page = cpu_buffer->head_page;
3395 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3396 local_set(&cpu_buffer->reader_page->write, 0);
3397 local_set(&cpu_buffer->reader_page->entries, 0);
3398 local_set(&cpu_buffer->reader_page->page->commit, 0);
3399 cpu_buffer->reader_page->read = 0;
3401 local_set(&cpu_buffer->commit_overrun, 0);
3402 local_set(&cpu_buffer->overrun, 0);
3403 local_set(&cpu_buffer->entries, 0);
3404 local_set(&cpu_buffer->committing, 0);
3405 local_set(&cpu_buffer->commits, 0);
3406 cpu_buffer->read = 0;
3408 cpu_buffer->write_stamp = 0;
3409 cpu_buffer->read_stamp = 0;
3411 rb_head_page_activate(cpu_buffer);
3415 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3416 * @buffer: The ring buffer to reset a per cpu buffer of
3417 * @cpu: The CPU buffer to be reset
3419 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3421 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3422 unsigned long flags;
3424 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425 return;
3427 atomic_inc(&cpu_buffer->record_disabled);
3429 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3431 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3432 goto out;
3434 arch_spin_lock(&cpu_buffer->lock);
3436 rb_reset_cpu(cpu_buffer);
3438 arch_spin_unlock(&cpu_buffer->lock);
3440 out:
3441 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3443 atomic_dec(&cpu_buffer->record_disabled);
3445 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3448 * ring_buffer_reset - reset a ring buffer
3449 * @buffer: The ring buffer to reset all cpu buffers
3451 void ring_buffer_reset(struct ring_buffer *buffer)
3453 int cpu;
3455 for_each_buffer_cpu(buffer, cpu)
3456 ring_buffer_reset_cpu(buffer, cpu);
3458 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3461 * rind_buffer_empty - is the ring buffer empty?
3462 * @buffer: The ring buffer to test
3464 int ring_buffer_empty(struct ring_buffer *buffer)
3466 struct ring_buffer_per_cpu *cpu_buffer;
3467 unsigned long flags;
3468 int dolock;
3469 int cpu;
3470 int ret;
3472 dolock = rb_ok_to_lock();
3474 /* yes this is racy, but if you don't like the race, lock the buffer */
3475 for_each_buffer_cpu(buffer, cpu) {
3476 cpu_buffer = buffer->buffers[cpu];
3477 local_irq_save(flags);
3478 if (dolock)
3479 spin_lock(&cpu_buffer->reader_lock);
3480 ret = rb_per_cpu_empty(cpu_buffer);
3481 if (dolock)
3482 spin_unlock(&cpu_buffer->reader_lock);
3483 local_irq_restore(flags);
3485 if (!ret)
3486 return 0;
3489 return 1;
3491 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3494 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3495 * @buffer: The ring buffer
3496 * @cpu: The CPU buffer to test
3498 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3500 struct ring_buffer_per_cpu *cpu_buffer;
3501 unsigned long flags;
3502 int dolock;
3503 int ret;
3505 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3506 return 1;
3508 dolock = rb_ok_to_lock();
3510 cpu_buffer = buffer->buffers[cpu];
3511 local_irq_save(flags);
3512 if (dolock)
3513 spin_lock(&cpu_buffer->reader_lock);
3514 ret = rb_per_cpu_empty(cpu_buffer);
3515 if (dolock)
3516 spin_unlock(&cpu_buffer->reader_lock);
3517 local_irq_restore(flags);
3519 return ret;
3521 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3523 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3525 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3526 * @buffer_a: One buffer to swap with
3527 * @buffer_b: The other buffer to swap with
3529 * This function is useful for tracers that want to take a "snapshot"
3530 * of a CPU buffer and has another back up buffer lying around.
3531 * it is expected that the tracer handles the cpu buffer not being
3532 * used at the moment.
3534 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3535 struct ring_buffer *buffer_b, int cpu)
3537 struct ring_buffer_per_cpu *cpu_buffer_a;
3538 struct ring_buffer_per_cpu *cpu_buffer_b;
3539 int ret = -EINVAL;
3541 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3542 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3543 goto out;
3545 /* At least make sure the two buffers are somewhat the same */
3546 if (buffer_a->pages != buffer_b->pages)
3547 goto out;
3549 ret = -EAGAIN;
3551 if (ring_buffer_flags != RB_BUFFERS_ON)
3552 goto out;
3554 if (atomic_read(&buffer_a->record_disabled))
3555 goto out;
3557 if (atomic_read(&buffer_b->record_disabled))
3558 goto out;
3560 cpu_buffer_a = buffer_a->buffers[cpu];
3561 cpu_buffer_b = buffer_b->buffers[cpu];
3563 if (atomic_read(&cpu_buffer_a->record_disabled))
3564 goto out;
3566 if (atomic_read(&cpu_buffer_b->record_disabled))
3567 goto out;
3570 * We can't do a synchronize_sched here because this
3571 * function can be called in atomic context.
3572 * Normally this will be called from the same CPU as cpu.
3573 * If not it's up to the caller to protect this.
3575 atomic_inc(&cpu_buffer_a->record_disabled);
3576 atomic_inc(&cpu_buffer_b->record_disabled);
3578 ret = -EBUSY;
3579 if (local_read(&cpu_buffer_a->committing))
3580 goto out_dec;
3581 if (local_read(&cpu_buffer_b->committing))
3582 goto out_dec;
3584 buffer_a->buffers[cpu] = cpu_buffer_b;
3585 buffer_b->buffers[cpu] = cpu_buffer_a;
3587 cpu_buffer_b->buffer = buffer_a;
3588 cpu_buffer_a->buffer = buffer_b;
3590 ret = 0;
3592 out_dec:
3593 atomic_dec(&cpu_buffer_a->record_disabled);
3594 atomic_dec(&cpu_buffer_b->record_disabled);
3595 out:
3596 return ret;
3598 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3599 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3602 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3603 * @buffer: the buffer to allocate for.
3605 * This function is used in conjunction with ring_buffer_read_page.
3606 * When reading a full page from the ring buffer, these functions
3607 * can be used to speed up the process. The calling function should
3608 * allocate a few pages first with this function. Then when it
3609 * needs to get pages from the ring buffer, it passes the result
3610 * of this function into ring_buffer_read_page, which will swap
3611 * the page that was allocated, with the read page of the buffer.
3613 * Returns:
3614 * The page allocated, or NULL on error.
3616 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3618 struct buffer_data_page *bpage;
3619 unsigned long addr;
3621 addr = __get_free_page(GFP_KERNEL);
3622 if (!addr)
3623 return NULL;
3625 bpage = (void *)addr;
3627 rb_init_page(bpage);
3629 return bpage;
3631 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3634 * ring_buffer_free_read_page - free an allocated read page
3635 * @buffer: the buffer the page was allocate for
3636 * @data: the page to free
3638 * Free a page allocated from ring_buffer_alloc_read_page.
3640 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3642 free_page((unsigned long)data);
3644 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3647 * ring_buffer_read_page - extract a page from the ring buffer
3648 * @buffer: buffer to extract from
3649 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3650 * @len: amount to extract
3651 * @cpu: the cpu of the buffer to extract
3652 * @full: should the extraction only happen when the page is full.
3654 * This function will pull out a page from the ring buffer and consume it.
3655 * @data_page must be the address of the variable that was returned
3656 * from ring_buffer_alloc_read_page. This is because the page might be used
3657 * to swap with a page in the ring buffer.
3659 * for example:
3660 * rpage = ring_buffer_alloc_read_page(buffer);
3661 * if (!rpage)
3662 * return error;
3663 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3664 * if (ret >= 0)
3665 * process_page(rpage, ret);
3667 * When @full is set, the function will not return true unless
3668 * the writer is off the reader page.
3670 * Note: it is up to the calling functions to handle sleeps and wakeups.
3671 * The ring buffer can be used anywhere in the kernel and can not
3672 * blindly call wake_up. The layer that uses the ring buffer must be
3673 * responsible for that.
3675 * Returns:
3676 * >=0 if data has been transferred, returns the offset of consumed data.
3677 * <0 if no data has been transferred.
3679 int ring_buffer_read_page(struct ring_buffer *buffer,
3680 void **data_page, size_t len, int cpu, int full)
3682 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3683 struct ring_buffer_event *event;
3684 struct buffer_data_page *bpage;
3685 struct buffer_page *reader;
3686 unsigned long flags;
3687 unsigned int commit;
3688 unsigned int read;
3689 u64 save_timestamp;
3690 int ret = -1;
3692 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3693 goto out;
3696 * If len is not big enough to hold the page header, then
3697 * we can not copy anything.
3699 if (len <= BUF_PAGE_HDR_SIZE)
3700 goto out;
3702 len -= BUF_PAGE_HDR_SIZE;
3704 if (!data_page)
3705 goto out;
3707 bpage = *data_page;
3708 if (!bpage)
3709 goto out;
3711 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3713 reader = rb_get_reader_page(cpu_buffer);
3714 if (!reader)
3715 goto out_unlock;
3717 event = rb_reader_event(cpu_buffer);
3719 read = reader->read;
3720 commit = rb_page_commit(reader);
3723 * If this page has been partially read or
3724 * if len is not big enough to read the rest of the page or
3725 * a writer is still on the page, then
3726 * we must copy the data from the page to the buffer.
3727 * Otherwise, we can simply swap the page with the one passed in.
3729 if (read || (len < (commit - read)) ||
3730 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3731 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3732 unsigned int rpos = read;
3733 unsigned int pos = 0;
3734 unsigned int size;
3736 if (full)
3737 goto out_unlock;
3739 if (len > (commit - read))
3740 len = (commit - read);
3742 size = rb_event_length(event);
3744 if (len < size)
3745 goto out_unlock;
3747 /* save the current timestamp, since the user will need it */
3748 save_timestamp = cpu_buffer->read_stamp;
3750 /* Need to copy one event at a time */
3751 do {
3752 memcpy(bpage->data + pos, rpage->data + rpos, size);
3754 len -= size;
3756 rb_advance_reader(cpu_buffer);
3757 rpos = reader->read;
3758 pos += size;
3760 event = rb_reader_event(cpu_buffer);
3761 size = rb_event_length(event);
3762 } while (len > size);
3764 /* update bpage */
3765 local_set(&bpage->commit, pos);
3766 bpage->time_stamp = save_timestamp;
3768 /* we copied everything to the beginning */
3769 read = 0;
3770 } else {
3771 /* update the entry counter */
3772 cpu_buffer->read += rb_page_entries(reader);
3774 /* swap the pages */
3775 rb_init_page(bpage);
3776 bpage = reader->page;
3777 reader->page = *data_page;
3778 local_set(&reader->write, 0);
3779 local_set(&reader->entries, 0);
3780 reader->read = 0;
3781 *data_page = bpage;
3783 ret = read;
3785 out_unlock:
3786 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3788 out:
3789 return ret;
3791 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3793 #ifdef CONFIG_TRACING
3794 static ssize_t
3795 rb_simple_read(struct file *filp, char __user *ubuf,
3796 size_t cnt, loff_t *ppos)
3798 unsigned long *p = filp->private_data;
3799 char buf[64];
3800 int r;
3802 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3803 r = sprintf(buf, "permanently disabled\n");
3804 else
3805 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3807 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3810 static ssize_t
3811 rb_simple_write(struct file *filp, const char __user *ubuf,
3812 size_t cnt, loff_t *ppos)
3814 unsigned long *p = filp->private_data;
3815 char buf[64];
3816 unsigned long val;
3817 int ret;
3819 if (cnt >= sizeof(buf))
3820 return -EINVAL;
3822 if (copy_from_user(&buf, ubuf, cnt))
3823 return -EFAULT;
3825 buf[cnt] = 0;
3827 ret = strict_strtoul(buf, 10, &val);
3828 if (ret < 0)
3829 return ret;
3831 if (val)
3832 set_bit(RB_BUFFERS_ON_BIT, p);
3833 else
3834 clear_bit(RB_BUFFERS_ON_BIT, p);
3836 (*ppos)++;
3838 return cnt;
3841 static const struct file_operations rb_simple_fops = {
3842 .open = tracing_open_generic,
3843 .read = rb_simple_read,
3844 .write = rb_simple_write,
3848 static __init int rb_init_debugfs(void)
3850 struct dentry *d_tracer;
3852 d_tracer = tracing_init_dentry();
3854 trace_create_file("tracing_on", 0644, d_tracer,
3855 &ring_buffer_flags, &rb_simple_fops);
3857 return 0;
3860 fs_initcall(rb_init_debugfs);
3861 #endif
3863 #ifdef CONFIG_HOTPLUG_CPU
3864 static int rb_cpu_notify(struct notifier_block *self,
3865 unsigned long action, void *hcpu)
3867 struct ring_buffer *buffer =
3868 container_of(self, struct ring_buffer, cpu_notify);
3869 long cpu = (long)hcpu;
3871 switch (action) {
3872 case CPU_UP_PREPARE:
3873 case CPU_UP_PREPARE_FROZEN:
3874 if (cpumask_test_cpu(cpu, buffer->cpumask))
3875 return NOTIFY_OK;
3877 buffer->buffers[cpu] =
3878 rb_allocate_cpu_buffer(buffer, cpu);
3879 if (!buffer->buffers[cpu]) {
3880 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3881 cpu);
3882 return NOTIFY_OK;
3884 smp_wmb();
3885 cpumask_set_cpu(cpu, buffer->cpumask);
3886 break;
3887 case CPU_DOWN_PREPARE:
3888 case CPU_DOWN_PREPARE_FROZEN:
3890 * Do nothing.
3891 * If we were to free the buffer, then the user would
3892 * lose any trace that was in the buffer.
3894 break;
3895 default:
3896 break;
3898 return NOTIFY_OK;
3900 #endif