nfs4 use mandatory attribute file type in nfs4_get_root
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slab.c
blobe49f8f46f46d6878dba427dae10fc9b5fb153a9f
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
120 #include <asm/cacheflush.h>
121 #include <asm/tlbflush.h>
122 #include <asm/page.h>
125 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
126 * 0 for faster, smaller code (especially in the critical paths).
128 * STATS - 1 to collect stats for /proc/slabinfo.
129 * 0 for faster, smaller code (especially in the critical paths).
131 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
134 #ifdef CONFIG_DEBUG_SLAB
135 #define DEBUG 1
136 #define STATS 1
137 #define FORCED_DEBUG 1
138 #else
139 #define DEBUG 0
140 #define STATS 0
141 #define FORCED_DEBUG 0
142 #endif
144 /* Shouldn't this be in a header file somewhere? */
145 #define BYTES_PER_WORD sizeof(void *)
146 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
148 #ifndef ARCH_KMALLOC_FLAGS
149 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
150 #endif
152 /* Legal flag mask for kmem_cache_create(). */
153 #if DEBUG
154 # define CREATE_MASK (SLAB_RED_ZONE | \
155 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
156 SLAB_CACHE_DMA | \
157 SLAB_STORE_USER | \
158 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
159 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
160 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
161 #else
162 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
163 SLAB_CACHE_DMA | \
164 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
165 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
166 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
167 #endif
170 * kmem_bufctl_t:
172 * Bufctl's are used for linking objs within a slab
173 * linked offsets.
175 * This implementation relies on "struct page" for locating the cache &
176 * slab an object belongs to.
177 * This allows the bufctl structure to be small (one int), but limits
178 * the number of objects a slab (not a cache) can contain when off-slab
179 * bufctls are used. The limit is the size of the largest general cache
180 * that does not use off-slab slabs.
181 * For 32bit archs with 4 kB pages, is this 56.
182 * This is not serious, as it is only for large objects, when it is unwise
183 * to have too many per slab.
184 * Note: This limit can be raised by introducing a general cache whose size
185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
188 typedef unsigned int kmem_bufctl_t;
189 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
190 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
191 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
192 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
195 * struct slab
197 * Manages the objs in a slab. Placed either at the beginning of mem allocated
198 * for a slab, or allocated from an general cache.
199 * Slabs are chained into three list: fully used, partial, fully free slabs.
201 struct slab {
202 struct list_head list;
203 unsigned long colouroff;
204 void *s_mem; /* including colour offset */
205 unsigned int inuse; /* num of objs active in slab */
206 kmem_bufctl_t free;
207 unsigned short nodeid;
211 * struct slab_rcu
213 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
214 * arrange for kmem_freepages to be called via RCU. This is useful if
215 * we need to approach a kernel structure obliquely, from its address
216 * obtained without the usual locking. We can lock the structure to
217 * stabilize it and check it's still at the given address, only if we
218 * can be sure that the memory has not been meanwhile reused for some
219 * other kind of object (which our subsystem's lock might corrupt).
221 * rcu_read_lock before reading the address, then rcu_read_unlock after
222 * taking the spinlock within the structure expected at that address.
224 * We assume struct slab_rcu can overlay struct slab when destroying.
226 struct slab_rcu {
227 struct rcu_head head;
228 struct kmem_cache *cachep;
229 void *addr;
233 * struct array_cache
235 * Purpose:
236 * - LIFO ordering, to hand out cache-warm objects from _alloc
237 * - reduce the number of linked list operations
238 * - reduce spinlock operations
240 * The limit is stored in the per-cpu structure to reduce the data cache
241 * footprint.
244 struct array_cache {
245 unsigned int avail;
246 unsigned int limit;
247 unsigned int batchcount;
248 unsigned int touched;
249 spinlock_t lock;
250 void *entry[]; /*
251 * Must have this definition in here for the proper
252 * alignment of array_cache. Also simplifies accessing
253 * the entries.
258 * bootstrap: The caches do not work without cpuarrays anymore, but the
259 * cpuarrays are allocated from the generic caches...
261 #define BOOT_CPUCACHE_ENTRIES 1
262 struct arraycache_init {
263 struct array_cache cache;
264 void *entries[BOOT_CPUCACHE_ENTRIES];
268 * The slab lists for all objects.
270 struct kmem_list3 {
271 struct list_head slabs_partial; /* partial list first, better asm code */
272 struct list_head slabs_full;
273 struct list_head slabs_free;
274 unsigned long free_objects;
275 unsigned int free_limit;
276 unsigned int colour_next; /* Per-node cache coloring */
277 spinlock_t list_lock;
278 struct array_cache *shared; /* shared per node */
279 struct array_cache **alien; /* on other nodes */
280 unsigned long next_reap; /* updated without locking */
281 int free_touched; /* updated without locking */
285 * Need this for bootstrapping a per node allocator.
287 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
288 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
289 #define CACHE_CACHE 0
290 #define SIZE_AC MAX_NUMNODES
291 #define SIZE_L3 (2 * MAX_NUMNODES)
293 static int drain_freelist(struct kmem_cache *cache,
294 struct kmem_list3 *l3, int tofree);
295 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
296 int node);
297 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
298 static void cache_reap(struct work_struct *unused);
301 * This function must be completely optimized away if a constant is passed to
302 * it. Mostly the same as what is in linux/slab.h except it returns an index.
304 static __always_inline int index_of(const size_t size)
306 extern void __bad_size(void);
308 if (__builtin_constant_p(size)) {
309 int i = 0;
311 #define CACHE(x) \
312 if (size <=x) \
313 return i; \
314 else \
315 i++;
316 #include <linux/kmalloc_sizes.h>
317 #undef CACHE
318 __bad_size();
319 } else
320 __bad_size();
321 return 0;
324 static int slab_early_init = 1;
326 #define INDEX_AC index_of(sizeof(struct arraycache_init))
327 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
329 static void kmem_list3_init(struct kmem_list3 *parent)
331 INIT_LIST_HEAD(&parent->slabs_full);
332 INIT_LIST_HEAD(&parent->slabs_partial);
333 INIT_LIST_HEAD(&parent->slabs_free);
334 parent->shared = NULL;
335 parent->alien = NULL;
336 parent->colour_next = 0;
337 spin_lock_init(&parent->list_lock);
338 parent->free_objects = 0;
339 parent->free_touched = 0;
342 #define MAKE_LIST(cachep, listp, slab, nodeid) \
343 do { \
344 INIT_LIST_HEAD(listp); \
345 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
346 } while (0)
348 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
349 do { \
350 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
351 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
352 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
353 } while (0)
355 #define CFLGS_OFF_SLAB (0x80000000UL)
356 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
358 #define BATCHREFILL_LIMIT 16
360 * Optimization question: fewer reaps means less probability for unnessary
361 * cpucache drain/refill cycles.
363 * OTOH the cpuarrays can contain lots of objects,
364 * which could lock up otherwise freeable slabs.
366 #define REAPTIMEOUT_CPUC (2*HZ)
367 #define REAPTIMEOUT_LIST3 (4*HZ)
369 #if STATS
370 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
371 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
372 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
373 #define STATS_INC_GROWN(x) ((x)->grown++)
374 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
375 #define STATS_SET_HIGH(x) \
376 do { \
377 if ((x)->num_active > (x)->high_mark) \
378 (x)->high_mark = (x)->num_active; \
379 } while (0)
380 #define STATS_INC_ERR(x) ((x)->errors++)
381 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
382 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
383 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
384 #define STATS_SET_FREEABLE(x, i) \
385 do { \
386 if ((x)->max_freeable < i) \
387 (x)->max_freeable = i; \
388 } while (0)
389 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
390 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
391 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
392 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
393 #else
394 #define STATS_INC_ACTIVE(x) do { } while (0)
395 #define STATS_DEC_ACTIVE(x) do { } while (0)
396 #define STATS_INC_ALLOCED(x) do { } while (0)
397 #define STATS_INC_GROWN(x) do { } while (0)
398 #define STATS_ADD_REAPED(x,y) do { } while (0)
399 #define STATS_SET_HIGH(x) do { } while (0)
400 #define STATS_INC_ERR(x) do { } while (0)
401 #define STATS_INC_NODEALLOCS(x) do { } while (0)
402 #define STATS_INC_NODEFREES(x) do { } while (0)
403 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
404 #define STATS_SET_FREEABLE(x, i) do { } while (0)
405 #define STATS_INC_ALLOCHIT(x) do { } while (0)
406 #define STATS_INC_ALLOCMISS(x) do { } while (0)
407 #define STATS_INC_FREEHIT(x) do { } while (0)
408 #define STATS_INC_FREEMISS(x) do { } while (0)
409 #endif
411 #if DEBUG
414 * memory layout of objects:
415 * 0 : objp
416 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
417 * the end of an object is aligned with the end of the real
418 * allocation. Catches writes behind the end of the allocation.
419 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
420 * redzone word.
421 * cachep->obj_offset: The real object.
422 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
423 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
424 * [BYTES_PER_WORD long]
426 static int obj_offset(struct kmem_cache *cachep)
428 return cachep->obj_offset;
431 static int obj_size(struct kmem_cache *cachep)
433 return cachep->obj_size;
436 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
438 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
439 return (unsigned long long*) (objp + obj_offset(cachep) -
440 sizeof(unsigned long long));
443 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
445 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
446 if (cachep->flags & SLAB_STORE_USER)
447 return (unsigned long long *)(objp + cachep->buffer_size -
448 sizeof(unsigned long long) -
449 REDZONE_ALIGN);
450 return (unsigned long long *) (objp + cachep->buffer_size -
451 sizeof(unsigned long long));
454 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
456 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
457 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
460 #else
462 #define obj_offset(x) 0
463 #define obj_size(cachep) (cachep->buffer_size)
464 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
465 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
466 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
468 #endif
470 #ifdef CONFIG_TRACING
471 size_t slab_buffer_size(struct kmem_cache *cachep)
473 return cachep->buffer_size;
475 EXPORT_SYMBOL(slab_buffer_size);
476 #endif
479 * Do not go above this order unless 0 objects fit into the slab.
481 #define BREAK_GFP_ORDER_HI 1
482 #define BREAK_GFP_ORDER_LO 0
483 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
486 * Functions for storing/retrieving the cachep and or slab from the page
487 * allocator. These are used to find the slab an obj belongs to. With kfree(),
488 * these are used to find the cache which an obj belongs to.
490 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
492 page->lru.next = (struct list_head *)cache;
495 static inline struct kmem_cache *page_get_cache(struct page *page)
497 page = compound_head(page);
498 BUG_ON(!PageSlab(page));
499 return (struct kmem_cache *)page->lru.next;
502 static inline void page_set_slab(struct page *page, struct slab *slab)
504 page->lru.prev = (struct list_head *)slab;
507 static inline struct slab *page_get_slab(struct page *page)
509 BUG_ON(!PageSlab(page));
510 return (struct slab *)page->lru.prev;
513 static inline struct kmem_cache *virt_to_cache(const void *obj)
515 struct page *page = virt_to_head_page(obj);
516 return page_get_cache(page);
519 static inline struct slab *virt_to_slab(const void *obj)
521 struct page *page = virt_to_head_page(obj);
522 return page_get_slab(page);
525 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
526 unsigned int idx)
528 return slab->s_mem + cache->buffer_size * idx;
532 * We want to avoid an expensive divide : (offset / cache->buffer_size)
533 * Using the fact that buffer_size is a constant for a particular cache,
534 * we can replace (offset / cache->buffer_size) by
535 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
537 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
538 const struct slab *slab, void *obj)
540 u32 offset = (obj - slab->s_mem);
541 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
545 * These are the default caches for kmalloc. Custom caches can have other sizes.
547 struct cache_sizes malloc_sizes[] = {
548 #define CACHE(x) { .cs_size = (x) },
549 #include <linux/kmalloc_sizes.h>
550 CACHE(ULONG_MAX)
551 #undef CACHE
553 EXPORT_SYMBOL(malloc_sizes);
555 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
556 struct cache_names {
557 char *name;
558 char *name_dma;
561 static struct cache_names __initdata cache_names[] = {
562 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
563 #include <linux/kmalloc_sizes.h>
564 {NULL,}
565 #undef CACHE
568 static struct arraycache_init initarray_cache __initdata =
569 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
570 static struct arraycache_init initarray_generic =
571 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
573 /* internal cache of cache description objs */
574 static struct kmem_cache cache_cache = {
575 .batchcount = 1,
576 .limit = BOOT_CPUCACHE_ENTRIES,
577 .shared = 1,
578 .buffer_size = sizeof(struct kmem_cache),
579 .name = "kmem_cache",
582 #define BAD_ALIEN_MAGIC 0x01020304ul
585 * chicken and egg problem: delay the per-cpu array allocation
586 * until the general caches are up.
588 static enum {
589 NONE,
590 PARTIAL_AC,
591 PARTIAL_L3,
592 EARLY,
593 FULL
594 } g_cpucache_up;
597 * used by boot code to determine if it can use slab based allocator
599 int slab_is_available(void)
601 return g_cpucache_up >= EARLY;
604 #ifdef CONFIG_LOCKDEP
607 * Slab sometimes uses the kmalloc slabs to store the slab headers
608 * for other slabs "off slab".
609 * The locking for this is tricky in that it nests within the locks
610 * of all other slabs in a few places; to deal with this special
611 * locking we put on-slab caches into a separate lock-class.
613 * We set lock class for alien array caches which are up during init.
614 * The lock annotation will be lost if all cpus of a node goes down and
615 * then comes back up during hotplug
617 static struct lock_class_key on_slab_l3_key;
618 static struct lock_class_key on_slab_alc_key;
620 static void init_node_lock_keys(int q)
622 struct cache_sizes *s = malloc_sizes;
624 if (g_cpucache_up != FULL)
625 return;
627 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
628 struct array_cache **alc;
629 struct kmem_list3 *l3;
630 int r;
632 l3 = s->cs_cachep->nodelists[q];
633 if (!l3 || OFF_SLAB(s->cs_cachep))
634 continue;
635 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
636 alc = l3->alien;
638 * FIXME: This check for BAD_ALIEN_MAGIC
639 * should go away when common slab code is taught to
640 * work even without alien caches.
641 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
642 * for alloc_alien_cache,
644 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
645 continue;
646 for_each_node(r) {
647 if (alc[r])
648 lockdep_set_class(&alc[r]->lock,
649 &on_slab_alc_key);
654 static inline void init_lock_keys(void)
656 int node;
658 for_each_node(node)
659 init_node_lock_keys(node);
661 #else
662 static void init_node_lock_keys(int q)
666 static inline void init_lock_keys(void)
669 #endif
672 * Guard access to the cache-chain.
674 static DEFINE_MUTEX(cache_chain_mutex);
675 static struct list_head cache_chain;
677 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
679 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
681 return cachep->array[smp_processor_id()];
684 static inline struct kmem_cache *__find_general_cachep(size_t size,
685 gfp_t gfpflags)
687 struct cache_sizes *csizep = malloc_sizes;
689 #if DEBUG
690 /* This happens if someone tries to call
691 * kmem_cache_create(), or __kmalloc(), before
692 * the generic caches are initialized.
694 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
695 #endif
696 if (!size)
697 return ZERO_SIZE_PTR;
699 while (size > csizep->cs_size)
700 csizep++;
703 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
704 * has cs_{dma,}cachep==NULL. Thus no special case
705 * for large kmalloc calls required.
707 #ifdef CONFIG_ZONE_DMA
708 if (unlikely(gfpflags & GFP_DMA))
709 return csizep->cs_dmacachep;
710 #endif
711 return csizep->cs_cachep;
714 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
716 return __find_general_cachep(size, gfpflags);
719 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
721 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
725 * Calculate the number of objects and left-over bytes for a given buffer size.
727 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
728 size_t align, int flags, size_t *left_over,
729 unsigned int *num)
731 int nr_objs;
732 size_t mgmt_size;
733 size_t slab_size = PAGE_SIZE << gfporder;
736 * The slab management structure can be either off the slab or
737 * on it. For the latter case, the memory allocated for a
738 * slab is used for:
740 * - The struct slab
741 * - One kmem_bufctl_t for each object
742 * - Padding to respect alignment of @align
743 * - @buffer_size bytes for each object
745 * If the slab management structure is off the slab, then the
746 * alignment will already be calculated into the size. Because
747 * the slabs are all pages aligned, the objects will be at the
748 * correct alignment when allocated.
750 if (flags & CFLGS_OFF_SLAB) {
751 mgmt_size = 0;
752 nr_objs = slab_size / buffer_size;
754 if (nr_objs > SLAB_LIMIT)
755 nr_objs = SLAB_LIMIT;
756 } else {
758 * Ignore padding for the initial guess. The padding
759 * is at most @align-1 bytes, and @buffer_size is at
760 * least @align. In the worst case, this result will
761 * be one greater than the number of objects that fit
762 * into the memory allocation when taking the padding
763 * into account.
765 nr_objs = (slab_size - sizeof(struct slab)) /
766 (buffer_size + sizeof(kmem_bufctl_t));
769 * This calculated number will be either the right
770 * amount, or one greater than what we want.
772 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
773 > slab_size)
774 nr_objs--;
776 if (nr_objs > SLAB_LIMIT)
777 nr_objs = SLAB_LIMIT;
779 mgmt_size = slab_mgmt_size(nr_objs, align);
781 *num = nr_objs;
782 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
785 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
787 static void __slab_error(const char *function, struct kmem_cache *cachep,
788 char *msg)
790 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
791 function, cachep->name, msg);
792 dump_stack();
796 * By default on NUMA we use alien caches to stage the freeing of
797 * objects allocated from other nodes. This causes massive memory
798 * inefficiencies when using fake NUMA setup to split memory into a
799 * large number of small nodes, so it can be disabled on the command
800 * line
803 static int use_alien_caches __read_mostly = 1;
804 static int __init noaliencache_setup(char *s)
806 use_alien_caches = 0;
807 return 1;
809 __setup("noaliencache", noaliencache_setup);
811 #ifdef CONFIG_NUMA
813 * Special reaping functions for NUMA systems called from cache_reap().
814 * These take care of doing round robin flushing of alien caches (containing
815 * objects freed on different nodes from which they were allocated) and the
816 * flushing of remote pcps by calling drain_node_pages.
818 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
820 static void init_reap_node(int cpu)
822 int node;
824 node = next_node(cpu_to_mem(cpu), node_online_map);
825 if (node == MAX_NUMNODES)
826 node = first_node(node_online_map);
828 per_cpu(slab_reap_node, cpu) = node;
831 static void next_reap_node(void)
833 int node = __get_cpu_var(slab_reap_node);
835 node = next_node(node, node_online_map);
836 if (unlikely(node >= MAX_NUMNODES))
837 node = first_node(node_online_map);
838 __get_cpu_var(slab_reap_node) = node;
841 #else
842 #define init_reap_node(cpu) do { } while (0)
843 #define next_reap_node(void) do { } while (0)
844 #endif
847 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
848 * via the workqueue/eventd.
849 * Add the CPU number into the expiration time to minimize the possibility of
850 * the CPUs getting into lockstep and contending for the global cache chain
851 * lock.
853 static void __cpuinit start_cpu_timer(int cpu)
855 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
858 * When this gets called from do_initcalls via cpucache_init(),
859 * init_workqueues() has already run, so keventd will be setup
860 * at that time.
862 if (keventd_up() && reap_work->work.func == NULL) {
863 init_reap_node(cpu);
864 INIT_DELAYED_WORK(reap_work, cache_reap);
865 schedule_delayed_work_on(cpu, reap_work,
866 __round_jiffies_relative(HZ, cpu));
870 static struct array_cache *alloc_arraycache(int node, int entries,
871 int batchcount, gfp_t gfp)
873 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
874 struct array_cache *nc = NULL;
876 nc = kmalloc_node(memsize, gfp, node);
878 * The array_cache structures contain pointers to free object.
879 * However, when such objects are allocated or transfered to another
880 * cache the pointers are not cleared and they could be counted as
881 * valid references during a kmemleak scan. Therefore, kmemleak must
882 * not scan such objects.
884 kmemleak_no_scan(nc);
885 if (nc) {
886 nc->avail = 0;
887 nc->limit = entries;
888 nc->batchcount = batchcount;
889 nc->touched = 0;
890 spin_lock_init(&nc->lock);
892 return nc;
896 * Transfer objects in one arraycache to another.
897 * Locking must be handled by the caller.
899 * Return the number of entries transferred.
901 static int transfer_objects(struct array_cache *to,
902 struct array_cache *from, unsigned int max)
904 /* Figure out how many entries to transfer */
905 int nr = min(min(from->avail, max), to->limit - to->avail);
907 if (!nr)
908 return 0;
910 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
911 sizeof(void *) *nr);
913 from->avail -= nr;
914 to->avail += nr;
915 return nr;
918 #ifndef CONFIG_NUMA
920 #define drain_alien_cache(cachep, alien) do { } while (0)
921 #define reap_alien(cachep, l3) do { } while (0)
923 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
925 return (struct array_cache **)BAD_ALIEN_MAGIC;
928 static inline void free_alien_cache(struct array_cache **ac_ptr)
932 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
934 return 0;
937 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
938 gfp_t flags)
940 return NULL;
943 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
944 gfp_t flags, int nodeid)
946 return NULL;
949 #else /* CONFIG_NUMA */
951 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
952 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
954 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
956 struct array_cache **ac_ptr;
957 int memsize = sizeof(void *) * nr_node_ids;
958 int i;
960 if (limit > 1)
961 limit = 12;
962 ac_ptr = kzalloc_node(memsize, gfp, node);
963 if (ac_ptr) {
964 for_each_node(i) {
965 if (i == node || !node_online(i))
966 continue;
967 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
968 if (!ac_ptr[i]) {
969 for (i--; i >= 0; i--)
970 kfree(ac_ptr[i]);
971 kfree(ac_ptr);
972 return NULL;
976 return ac_ptr;
979 static void free_alien_cache(struct array_cache **ac_ptr)
981 int i;
983 if (!ac_ptr)
984 return;
985 for_each_node(i)
986 kfree(ac_ptr[i]);
987 kfree(ac_ptr);
990 static void __drain_alien_cache(struct kmem_cache *cachep,
991 struct array_cache *ac, int node)
993 struct kmem_list3 *rl3 = cachep->nodelists[node];
995 if (ac->avail) {
996 spin_lock(&rl3->list_lock);
998 * Stuff objects into the remote nodes shared array first.
999 * That way we could avoid the overhead of putting the objects
1000 * into the free lists and getting them back later.
1002 if (rl3->shared)
1003 transfer_objects(rl3->shared, ac, ac->limit);
1005 free_block(cachep, ac->entry, ac->avail, node);
1006 ac->avail = 0;
1007 spin_unlock(&rl3->list_lock);
1012 * Called from cache_reap() to regularly drain alien caches round robin.
1014 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1016 int node = __get_cpu_var(slab_reap_node);
1018 if (l3->alien) {
1019 struct array_cache *ac = l3->alien[node];
1021 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1022 __drain_alien_cache(cachep, ac, node);
1023 spin_unlock_irq(&ac->lock);
1028 static void drain_alien_cache(struct kmem_cache *cachep,
1029 struct array_cache **alien)
1031 int i = 0;
1032 struct array_cache *ac;
1033 unsigned long flags;
1035 for_each_online_node(i) {
1036 ac = alien[i];
1037 if (ac) {
1038 spin_lock_irqsave(&ac->lock, flags);
1039 __drain_alien_cache(cachep, ac, i);
1040 spin_unlock_irqrestore(&ac->lock, flags);
1045 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1047 struct slab *slabp = virt_to_slab(objp);
1048 int nodeid = slabp->nodeid;
1049 struct kmem_list3 *l3;
1050 struct array_cache *alien = NULL;
1051 int node;
1053 node = numa_mem_id();
1056 * Make sure we are not freeing a object from another node to the array
1057 * cache on this cpu.
1059 if (likely(slabp->nodeid == node))
1060 return 0;
1062 l3 = cachep->nodelists[node];
1063 STATS_INC_NODEFREES(cachep);
1064 if (l3->alien && l3->alien[nodeid]) {
1065 alien = l3->alien[nodeid];
1066 spin_lock(&alien->lock);
1067 if (unlikely(alien->avail == alien->limit)) {
1068 STATS_INC_ACOVERFLOW(cachep);
1069 __drain_alien_cache(cachep, alien, nodeid);
1071 alien->entry[alien->avail++] = objp;
1072 spin_unlock(&alien->lock);
1073 } else {
1074 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1075 free_block(cachep, &objp, 1, nodeid);
1076 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1078 return 1;
1080 #endif
1083 * Allocates and initializes nodelists for a node on each slab cache, used for
1084 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1085 * will be allocated off-node since memory is not yet online for the new node.
1086 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1087 * already in use.
1089 * Must hold cache_chain_mutex.
1091 static int init_cache_nodelists_node(int node)
1093 struct kmem_cache *cachep;
1094 struct kmem_list3 *l3;
1095 const int memsize = sizeof(struct kmem_list3);
1097 list_for_each_entry(cachep, &cache_chain, next) {
1099 * Set up the size64 kmemlist for cpu before we can
1100 * begin anything. Make sure some other cpu on this
1101 * node has not already allocated this
1103 if (!cachep->nodelists[node]) {
1104 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1105 if (!l3)
1106 return -ENOMEM;
1107 kmem_list3_init(l3);
1108 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1109 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1112 * The l3s don't come and go as CPUs come and
1113 * go. cache_chain_mutex is sufficient
1114 * protection here.
1116 cachep->nodelists[node] = l3;
1119 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1120 cachep->nodelists[node]->free_limit =
1121 (1 + nr_cpus_node(node)) *
1122 cachep->batchcount + cachep->num;
1123 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1125 return 0;
1128 static void __cpuinit cpuup_canceled(long cpu)
1130 struct kmem_cache *cachep;
1131 struct kmem_list3 *l3 = NULL;
1132 int node = cpu_to_mem(cpu);
1133 const struct cpumask *mask = cpumask_of_node(node);
1135 list_for_each_entry(cachep, &cache_chain, next) {
1136 struct array_cache *nc;
1137 struct array_cache *shared;
1138 struct array_cache **alien;
1140 /* cpu is dead; no one can alloc from it. */
1141 nc = cachep->array[cpu];
1142 cachep->array[cpu] = NULL;
1143 l3 = cachep->nodelists[node];
1145 if (!l3)
1146 goto free_array_cache;
1148 spin_lock_irq(&l3->list_lock);
1150 /* Free limit for this kmem_list3 */
1151 l3->free_limit -= cachep->batchcount;
1152 if (nc)
1153 free_block(cachep, nc->entry, nc->avail, node);
1155 if (!cpumask_empty(mask)) {
1156 spin_unlock_irq(&l3->list_lock);
1157 goto free_array_cache;
1160 shared = l3->shared;
1161 if (shared) {
1162 free_block(cachep, shared->entry,
1163 shared->avail, node);
1164 l3->shared = NULL;
1167 alien = l3->alien;
1168 l3->alien = NULL;
1170 spin_unlock_irq(&l3->list_lock);
1172 kfree(shared);
1173 if (alien) {
1174 drain_alien_cache(cachep, alien);
1175 free_alien_cache(alien);
1177 free_array_cache:
1178 kfree(nc);
1181 * In the previous loop, all the objects were freed to
1182 * the respective cache's slabs, now we can go ahead and
1183 * shrink each nodelist to its limit.
1185 list_for_each_entry(cachep, &cache_chain, next) {
1186 l3 = cachep->nodelists[node];
1187 if (!l3)
1188 continue;
1189 drain_freelist(cachep, l3, l3->free_objects);
1193 static int __cpuinit cpuup_prepare(long cpu)
1195 struct kmem_cache *cachep;
1196 struct kmem_list3 *l3 = NULL;
1197 int node = cpu_to_mem(cpu);
1198 int err;
1201 * We need to do this right in the beginning since
1202 * alloc_arraycache's are going to use this list.
1203 * kmalloc_node allows us to add the slab to the right
1204 * kmem_list3 and not this cpu's kmem_list3
1206 err = init_cache_nodelists_node(node);
1207 if (err < 0)
1208 goto bad;
1211 * Now we can go ahead with allocating the shared arrays and
1212 * array caches
1214 list_for_each_entry(cachep, &cache_chain, next) {
1215 struct array_cache *nc;
1216 struct array_cache *shared = NULL;
1217 struct array_cache **alien = NULL;
1219 nc = alloc_arraycache(node, cachep->limit,
1220 cachep->batchcount, GFP_KERNEL);
1221 if (!nc)
1222 goto bad;
1223 if (cachep->shared) {
1224 shared = alloc_arraycache(node,
1225 cachep->shared * cachep->batchcount,
1226 0xbaadf00d, GFP_KERNEL);
1227 if (!shared) {
1228 kfree(nc);
1229 goto bad;
1232 if (use_alien_caches) {
1233 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1234 if (!alien) {
1235 kfree(shared);
1236 kfree(nc);
1237 goto bad;
1240 cachep->array[cpu] = nc;
1241 l3 = cachep->nodelists[node];
1242 BUG_ON(!l3);
1244 spin_lock_irq(&l3->list_lock);
1245 if (!l3->shared) {
1247 * We are serialised from CPU_DEAD or
1248 * CPU_UP_CANCELLED by the cpucontrol lock
1250 l3->shared = shared;
1251 shared = NULL;
1253 #ifdef CONFIG_NUMA
1254 if (!l3->alien) {
1255 l3->alien = alien;
1256 alien = NULL;
1258 #endif
1259 spin_unlock_irq(&l3->list_lock);
1260 kfree(shared);
1261 free_alien_cache(alien);
1263 init_node_lock_keys(node);
1265 return 0;
1266 bad:
1267 cpuup_canceled(cpu);
1268 return -ENOMEM;
1271 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1272 unsigned long action, void *hcpu)
1274 long cpu = (long)hcpu;
1275 int err = 0;
1277 switch (action) {
1278 case CPU_UP_PREPARE:
1279 case CPU_UP_PREPARE_FROZEN:
1280 mutex_lock(&cache_chain_mutex);
1281 err = cpuup_prepare(cpu);
1282 mutex_unlock(&cache_chain_mutex);
1283 break;
1284 case CPU_ONLINE:
1285 case CPU_ONLINE_FROZEN:
1286 start_cpu_timer(cpu);
1287 break;
1288 #ifdef CONFIG_HOTPLUG_CPU
1289 case CPU_DOWN_PREPARE:
1290 case CPU_DOWN_PREPARE_FROZEN:
1292 * Shutdown cache reaper. Note that the cache_chain_mutex is
1293 * held so that if cache_reap() is invoked it cannot do
1294 * anything expensive but will only modify reap_work
1295 * and reschedule the timer.
1297 cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
1298 /* Now the cache_reaper is guaranteed to be not running. */
1299 per_cpu(slab_reap_work, cpu).work.func = NULL;
1300 break;
1301 case CPU_DOWN_FAILED:
1302 case CPU_DOWN_FAILED_FROZEN:
1303 start_cpu_timer(cpu);
1304 break;
1305 case CPU_DEAD:
1306 case CPU_DEAD_FROZEN:
1308 * Even if all the cpus of a node are down, we don't free the
1309 * kmem_list3 of any cache. This to avoid a race between
1310 * cpu_down, and a kmalloc allocation from another cpu for
1311 * memory from the node of the cpu going down. The list3
1312 * structure is usually allocated from kmem_cache_create() and
1313 * gets destroyed at kmem_cache_destroy().
1315 /* fall through */
1316 #endif
1317 case CPU_UP_CANCELED:
1318 case CPU_UP_CANCELED_FROZEN:
1319 mutex_lock(&cache_chain_mutex);
1320 cpuup_canceled(cpu);
1321 mutex_unlock(&cache_chain_mutex);
1322 break;
1324 return notifier_from_errno(err);
1327 static struct notifier_block __cpuinitdata cpucache_notifier = {
1328 &cpuup_callback, NULL, 0
1331 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1333 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1334 * Returns -EBUSY if all objects cannot be drained so that the node is not
1335 * removed.
1337 * Must hold cache_chain_mutex.
1339 static int __meminit drain_cache_nodelists_node(int node)
1341 struct kmem_cache *cachep;
1342 int ret = 0;
1344 list_for_each_entry(cachep, &cache_chain, next) {
1345 struct kmem_list3 *l3;
1347 l3 = cachep->nodelists[node];
1348 if (!l3)
1349 continue;
1351 drain_freelist(cachep, l3, l3->free_objects);
1353 if (!list_empty(&l3->slabs_full) ||
1354 !list_empty(&l3->slabs_partial)) {
1355 ret = -EBUSY;
1356 break;
1359 return ret;
1362 static int __meminit slab_memory_callback(struct notifier_block *self,
1363 unsigned long action, void *arg)
1365 struct memory_notify *mnb = arg;
1366 int ret = 0;
1367 int nid;
1369 nid = mnb->status_change_nid;
1370 if (nid < 0)
1371 goto out;
1373 switch (action) {
1374 case MEM_GOING_ONLINE:
1375 mutex_lock(&cache_chain_mutex);
1376 ret = init_cache_nodelists_node(nid);
1377 mutex_unlock(&cache_chain_mutex);
1378 break;
1379 case MEM_GOING_OFFLINE:
1380 mutex_lock(&cache_chain_mutex);
1381 ret = drain_cache_nodelists_node(nid);
1382 mutex_unlock(&cache_chain_mutex);
1383 break;
1384 case MEM_ONLINE:
1385 case MEM_OFFLINE:
1386 case MEM_CANCEL_ONLINE:
1387 case MEM_CANCEL_OFFLINE:
1388 break;
1390 out:
1391 return ret ? notifier_from_errno(ret) : NOTIFY_OK;
1393 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1396 * swap the static kmem_list3 with kmalloced memory
1398 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1399 int nodeid)
1401 struct kmem_list3 *ptr;
1403 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1404 BUG_ON(!ptr);
1406 memcpy(ptr, list, sizeof(struct kmem_list3));
1408 * Do not assume that spinlocks can be initialized via memcpy:
1410 spin_lock_init(&ptr->list_lock);
1412 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1413 cachep->nodelists[nodeid] = ptr;
1417 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1418 * size of kmem_list3.
1420 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1422 int node;
1424 for_each_online_node(node) {
1425 cachep->nodelists[node] = &initkmem_list3[index + node];
1426 cachep->nodelists[node]->next_reap = jiffies +
1427 REAPTIMEOUT_LIST3 +
1428 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1433 * Initialisation. Called after the page allocator have been initialised and
1434 * before smp_init().
1436 void __init kmem_cache_init(void)
1438 size_t left_over;
1439 struct cache_sizes *sizes;
1440 struct cache_names *names;
1441 int i;
1442 int order;
1443 int node;
1445 if (num_possible_nodes() == 1)
1446 use_alien_caches = 0;
1448 for (i = 0; i < NUM_INIT_LISTS; i++) {
1449 kmem_list3_init(&initkmem_list3[i]);
1450 if (i < MAX_NUMNODES)
1451 cache_cache.nodelists[i] = NULL;
1453 set_up_list3s(&cache_cache, CACHE_CACHE);
1456 * Fragmentation resistance on low memory - only use bigger
1457 * page orders on machines with more than 32MB of memory.
1459 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1460 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1462 /* Bootstrap is tricky, because several objects are allocated
1463 * from caches that do not exist yet:
1464 * 1) initialize the cache_cache cache: it contains the struct
1465 * kmem_cache structures of all caches, except cache_cache itself:
1466 * cache_cache is statically allocated.
1467 * Initially an __init data area is used for the head array and the
1468 * kmem_list3 structures, it's replaced with a kmalloc allocated
1469 * array at the end of the bootstrap.
1470 * 2) Create the first kmalloc cache.
1471 * The struct kmem_cache for the new cache is allocated normally.
1472 * An __init data area is used for the head array.
1473 * 3) Create the remaining kmalloc caches, with minimally sized
1474 * head arrays.
1475 * 4) Replace the __init data head arrays for cache_cache and the first
1476 * kmalloc cache with kmalloc allocated arrays.
1477 * 5) Replace the __init data for kmem_list3 for cache_cache and
1478 * the other cache's with kmalloc allocated memory.
1479 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1482 node = numa_mem_id();
1484 /* 1) create the cache_cache */
1485 INIT_LIST_HEAD(&cache_chain);
1486 list_add(&cache_cache.next, &cache_chain);
1487 cache_cache.colour_off = cache_line_size();
1488 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1489 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1492 * struct kmem_cache size depends on nr_node_ids, which
1493 * can be less than MAX_NUMNODES.
1495 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1496 nr_node_ids * sizeof(struct kmem_list3 *);
1497 #if DEBUG
1498 cache_cache.obj_size = cache_cache.buffer_size;
1499 #endif
1500 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1501 cache_line_size());
1502 cache_cache.reciprocal_buffer_size =
1503 reciprocal_value(cache_cache.buffer_size);
1505 for (order = 0; order < MAX_ORDER; order++) {
1506 cache_estimate(order, cache_cache.buffer_size,
1507 cache_line_size(), 0, &left_over, &cache_cache.num);
1508 if (cache_cache.num)
1509 break;
1511 BUG_ON(!cache_cache.num);
1512 cache_cache.gfporder = order;
1513 cache_cache.colour = left_over / cache_cache.colour_off;
1514 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1515 sizeof(struct slab), cache_line_size());
1517 /* 2+3) create the kmalloc caches */
1518 sizes = malloc_sizes;
1519 names = cache_names;
1522 * Initialize the caches that provide memory for the array cache and the
1523 * kmem_list3 structures first. Without this, further allocations will
1524 * bug.
1527 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1528 sizes[INDEX_AC].cs_size,
1529 ARCH_KMALLOC_MINALIGN,
1530 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1531 NULL);
1533 if (INDEX_AC != INDEX_L3) {
1534 sizes[INDEX_L3].cs_cachep =
1535 kmem_cache_create(names[INDEX_L3].name,
1536 sizes[INDEX_L3].cs_size,
1537 ARCH_KMALLOC_MINALIGN,
1538 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1539 NULL);
1542 slab_early_init = 0;
1544 while (sizes->cs_size != ULONG_MAX) {
1546 * For performance, all the general caches are L1 aligned.
1547 * This should be particularly beneficial on SMP boxes, as it
1548 * eliminates "false sharing".
1549 * Note for systems short on memory removing the alignment will
1550 * allow tighter packing of the smaller caches.
1552 if (!sizes->cs_cachep) {
1553 sizes->cs_cachep = kmem_cache_create(names->name,
1554 sizes->cs_size,
1555 ARCH_KMALLOC_MINALIGN,
1556 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1557 NULL);
1559 #ifdef CONFIG_ZONE_DMA
1560 sizes->cs_dmacachep = kmem_cache_create(
1561 names->name_dma,
1562 sizes->cs_size,
1563 ARCH_KMALLOC_MINALIGN,
1564 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1565 SLAB_PANIC,
1566 NULL);
1567 #endif
1568 sizes++;
1569 names++;
1571 /* 4) Replace the bootstrap head arrays */
1573 struct array_cache *ptr;
1575 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1577 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1578 memcpy(ptr, cpu_cache_get(&cache_cache),
1579 sizeof(struct arraycache_init));
1581 * Do not assume that spinlocks can be initialized via memcpy:
1583 spin_lock_init(&ptr->lock);
1585 cache_cache.array[smp_processor_id()] = ptr;
1587 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1589 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1590 != &initarray_generic.cache);
1591 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1592 sizeof(struct arraycache_init));
1594 * Do not assume that spinlocks can be initialized via memcpy:
1596 spin_lock_init(&ptr->lock);
1598 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1599 ptr;
1601 /* 5) Replace the bootstrap kmem_list3's */
1603 int nid;
1605 for_each_online_node(nid) {
1606 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1608 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1609 &initkmem_list3[SIZE_AC + nid], nid);
1611 if (INDEX_AC != INDEX_L3) {
1612 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1613 &initkmem_list3[SIZE_L3 + nid], nid);
1618 g_cpucache_up = EARLY;
1621 void __init kmem_cache_init_late(void)
1623 struct kmem_cache *cachep;
1625 /* 6) resize the head arrays to their final sizes */
1626 mutex_lock(&cache_chain_mutex);
1627 list_for_each_entry(cachep, &cache_chain, next)
1628 if (enable_cpucache(cachep, GFP_NOWAIT))
1629 BUG();
1630 mutex_unlock(&cache_chain_mutex);
1632 /* Done! */
1633 g_cpucache_up = FULL;
1635 /* Annotate slab for lockdep -- annotate the malloc caches */
1636 init_lock_keys();
1639 * Register a cpu startup notifier callback that initializes
1640 * cpu_cache_get for all new cpus
1642 register_cpu_notifier(&cpucache_notifier);
1644 #ifdef CONFIG_NUMA
1646 * Register a memory hotplug callback that initializes and frees
1647 * nodelists.
1649 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1650 #endif
1653 * The reap timers are started later, with a module init call: That part
1654 * of the kernel is not yet operational.
1658 static int __init cpucache_init(void)
1660 int cpu;
1663 * Register the timers that return unneeded pages to the page allocator
1665 for_each_online_cpu(cpu)
1666 start_cpu_timer(cpu);
1667 return 0;
1669 __initcall(cpucache_init);
1672 * Interface to system's page allocator. No need to hold the cache-lock.
1674 * If we requested dmaable memory, we will get it. Even if we
1675 * did not request dmaable memory, we might get it, but that
1676 * would be relatively rare and ignorable.
1678 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1680 struct page *page;
1681 int nr_pages;
1682 int i;
1684 #ifndef CONFIG_MMU
1686 * Nommu uses slab's for process anonymous memory allocations, and thus
1687 * requires __GFP_COMP to properly refcount higher order allocations
1689 flags |= __GFP_COMP;
1690 #endif
1692 flags |= cachep->gfpflags;
1693 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1694 flags |= __GFP_RECLAIMABLE;
1696 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1697 if (!page)
1698 return NULL;
1700 nr_pages = (1 << cachep->gfporder);
1701 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1702 add_zone_page_state(page_zone(page),
1703 NR_SLAB_RECLAIMABLE, nr_pages);
1704 else
1705 add_zone_page_state(page_zone(page),
1706 NR_SLAB_UNRECLAIMABLE, nr_pages);
1707 for (i = 0; i < nr_pages; i++)
1708 __SetPageSlab(page + i);
1710 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1711 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1713 if (cachep->ctor)
1714 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1715 else
1716 kmemcheck_mark_unallocated_pages(page, nr_pages);
1719 return page_address(page);
1723 * Interface to system's page release.
1725 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1727 unsigned long i = (1 << cachep->gfporder);
1728 struct page *page = virt_to_page(addr);
1729 const unsigned long nr_freed = i;
1731 kmemcheck_free_shadow(page, cachep->gfporder);
1733 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1734 sub_zone_page_state(page_zone(page),
1735 NR_SLAB_RECLAIMABLE, nr_freed);
1736 else
1737 sub_zone_page_state(page_zone(page),
1738 NR_SLAB_UNRECLAIMABLE, nr_freed);
1739 while (i--) {
1740 BUG_ON(!PageSlab(page));
1741 __ClearPageSlab(page);
1742 page++;
1744 if (current->reclaim_state)
1745 current->reclaim_state->reclaimed_slab += nr_freed;
1746 free_pages((unsigned long)addr, cachep->gfporder);
1749 static void kmem_rcu_free(struct rcu_head *head)
1751 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1752 struct kmem_cache *cachep = slab_rcu->cachep;
1754 kmem_freepages(cachep, slab_rcu->addr);
1755 if (OFF_SLAB(cachep))
1756 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1759 #if DEBUG
1761 #ifdef CONFIG_DEBUG_PAGEALLOC
1762 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1763 unsigned long caller)
1765 int size = obj_size(cachep);
1767 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1769 if (size < 5 * sizeof(unsigned long))
1770 return;
1772 *addr++ = 0x12345678;
1773 *addr++ = caller;
1774 *addr++ = smp_processor_id();
1775 size -= 3 * sizeof(unsigned long);
1777 unsigned long *sptr = &caller;
1778 unsigned long svalue;
1780 while (!kstack_end(sptr)) {
1781 svalue = *sptr++;
1782 if (kernel_text_address(svalue)) {
1783 *addr++ = svalue;
1784 size -= sizeof(unsigned long);
1785 if (size <= sizeof(unsigned long))
1786 break;
1791 *addr++ = 0x87654321;
1793 #endif
1795 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1797 int size = obj_size(cachep);
1798 addr = &((char *)addr)[obj_offset(cachep)];
1800 memset(addr, val, size);
1801 *(unsigned char *)(addr + size - 1) = POISON_END;
1804 static void dump_line(char *data, int offset, int limit)
1806 int i;
1807 unsigned char error = 0;
1808 int bad_count = 0;
1810 printk(KERN_ERR "%03x:", offset);
1811 for (i = 0; i < limit; i++) {
1812 if (data[offset + i] != POISON_FREE) {
1813 error = data[offset + i];
1814 bad_count++;
1816 printk(" %02x", (unsigned char)data[offset + i]);
1818 printk("\n");
1820 if (bad_count == 1) {
1821 error ^= POISON_FREE;
1822 if (!(error & (error - 1))) {
1823 printk(KERN_ERR "Single bit error detected. Probably "
1824 "bad RAM.\n");
1825 #ifdef CONFIG_X86
1826 printk(KERN_ERR "Run memtest86+ or a similar memory "
1827 "test tool.\n");
1828 #else
1829 printk(KERN_ERR "Run a memory test tool.\n");
1830 #endif
1834 #endif
1836 #if DEBUG
1838 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1840 int i, size;
1841 char *realobj;
1843 if (cachep->flags & SLAB_RED_ZONE) {
1844 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1845 *dbg_redzone1(cachep, objp),
1846 *dbg_redzone2(cachep, objp));
1849 if (cachep->flags & SLAB_STORE_USER) {
1850 printk(KERN_ERR "Last user: [<%p>]",
1851 *dbg_userword(cachep, objp));
1852 print_symbol("(%s)",
1853 (unsigned long)*dbg_userword(cachep, objp));
1854 printk("\n");
1856 realobj = (char *)objp + obj_offset(cachep);
1857 size = obj_size(cachep);
1858 for (i = 0; i < size && lines; i += 16, lines--) {
1859 int limit;
1860 limit = 16;
1861 if (i + limit > size)
1862 limit = size - i;
1863 dump_line(realobj, i, limit);
1867 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1869 char *realobj;
1870 int size, i;
1871 int lines = 0;
1873 realobj = (char *)objp + obj_offset(cachep);
1874 size = obj_size(cachep);
1876 for (i = 0; i < size; i++) {
1877 char exp = POISON_FREE;
1878 if (i == size - 1)
1879 exp = POISON_END;
1880 if (realobj[i] != exp) {
1881 int limit;
1882 /* Mismatch ! */
1883 /* Print header */
1884 if (lines == 0) {
1885 printk(KERN_ERR
1886 "Slab corruption: %s start=%p, len=%d\n",
1887 cachep->name, realobj, size);
1888 print_objinfo(cachep, objp, 0);
1890 /* Hexdump the affected line */
1891 i = (i / 16) * 16;
1892 limit = 16;
1893 if (i + limit > size)
1894 limit = size - i;
1895 dump_line(realobj, i, limit);
1896 i += 16;
1897 lines++;
1898 /* Limit to 5 lines */
1899 if (lines > 5)
1900 break;
1903 if (lines != 0) {
1904 /* Print some data about the neighboring objects, if they
1905 * exist:
1907 struct slab *slabp = virt_to_slab(objp);
1908 unsigned int objnr;
1910 objnr = obj_to_index(cachep, slabp, objp);
1911 if (objnr) {
1912 objp = index_to_obj(cachep, slabp, objnr - 1);
1913 realobj = (char *)objp + obj_offset(cachep);
1914 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1915 realobj, size);
1916 print_objinfo(cachep, objp, 2);
1918 if (objnr + 1 < cachep->num) {
1919 objp = index_to_obj(cachep, slabp, objnr + 1);
1920 realobj = (char *)objp + obj_offset(cachep);
1921 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1922 realobj, size);
1923 print_objinfo(cachep, objp, 2);
1927 #endif
1929 #if DEBUG
1930 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1932 int i;
1933 for (i = 0; i < cachep->num; i++) {
1934 void *objp = index_to_obj(cachep, slabp, i);
1936 if (cachep->flags & SLAB_POISON) {
1937 #ifdef CONFIG_DEBUG_PAGEALLOC
1938 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1939 OFF_SLAB(cachep))
1940 kernel_map_pages(virt_to_page(objp),
1941 cachep->buffer_size / PAGE_SIZE, 1);
1942 else
1943 check_poison_obj(cachep, objp);
1944 #else
1945 check_poison_obj(cachep, objp);
1946 #endif
1948 if (cachep->flags & SLAB_RED_ZONE) {
1949 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1950 slab_error(cachep, "start of a freed object "
1951 "was overwritten");
1952 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1953 slab_error(cachep, "end of a freed object "
1954 "was overwritten");
1958 #else
1959 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1962 #endif
1965 * slab_destroy - destroy and release all objects in a slab
1966 * @cachep: cache pointer being destroyed
1967 * @slabp: slab pointer being destroyed
1969 * Destroy all the objs in a slab, and release the mem back to the system.
1970 * Before calling the slab must have been unlinked from the cache. The
1971 * cache-lock is not held/needed.
1973 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1975 void *addr = slabp->s_mem - slabp->colouroff;
1977 slab_destroy_debugcheck(cachep, slabp);
1978 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1979 struct slab_rcu *slab_rcu;
1981 slab_rcu = (struct slab_rcu *)slabp;
1982 slab_rcu->cachep = cachep;
1983 slab_rcu->addr = addr;
1984 call_rcu(&slab_rcu->head, kmem_rcu_free);
1985 } else {
1986 kmem_freepages(cachep, addr);
1987 if (OFF_SLAB(cachep))
1988 kmem_cache_free(cachep->slabp_cache, slabp);
1992 static void __kmem_cache_destroy(struct kmem_cache *cachep)
1994 int i;
1995 struct kmem_list3 *l3;
1997 for_each_online_cpu(i)
1998 kfree(cachep->array[i]);
2000 /* NUMA: free the list3 structures */
2001 for_each_online_node(i) {
2002 l3 = cachep->nodelists[i];
2003 if (l3) {
2004 kfree(l3->shared);
2005 free_alien_cache(l3->alien);
2006 kfree(l3);
2009 kmem_cache_free(&cache_cache, cachep);
2014 * calculate_slab_order - calculate size (page order) of slabs
2015 * @cachep: pointer to the cache that is being created
2016 * @size: size of objects to be created in this cache.
2017 * @align: required alignment for the objects.
2018 * @flags: slab allocation flags
2020 * Also calculates the number of objects per slab.
2022 * This could be made much more intelligent. For now, try to avoid using
2023 * high order pages for slabs. When the gfp() functions are more friendly
2024 * towards high-order requests, this should be changed.
2026 static size_t calculate_slab_order(struct kmem_cache *cachep,
2027 size_t size, size_t align, unsigned long flags)
2029 unsigned long offslab_limit;
2030 size_t left_over = 0;
2031 int gfporder;
2033 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2034 unsigned int num;
2035 size_t remainder;
2037 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2038 if (!num)
2039 continue;
2041 if (flags & CFLGS_OFF_SLAB) {
2043 * Max number of objs-per-slab for caches which
2044 * use off-slab slabs. Needed to avoid a possible
2045 * looping condition in cache_grow().
2047 offslab_limit = size - sizeof(struct slab);
2048 offslab_limit /= sizeof(kmem_bufctl_t);
2050 if (num > offslab_limit)
2051 break;
2054 /* Found something acceptable - save it away */
2055 cachep->num = num;
2056 cachep->gfporder = gfporder;
2057 left_over = remainder;
2060 * A VFS-reclaimable slab tends to have most allocations
2061 * as GFP_NOFS and we really don't want to have to be allocating
2062 * higher-order pages when we are unable to shrink dcache.
2064 if (flags & SLAB_RECLAIM_ACCOUNT)
2065 break;
2068 * Large number of objects is good, but very large slabs are
2069 * currently bad for the gfp()s.
2071 if (gfporder >= slab_break_gfp_order)
2072 break;
2075 * Acceptable internal fragmentation?
2077 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2078 break;
2080 return left_over;
2083 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2085 if (g_cpucache_up == FULL)
2086 return enable_cpucache(cachep, gfp);
2088 if (g_cpucache_up == NONE) {
2090 * Note: the first kmem_cache_create must create the cache
2091 * that's used by kmalloc(24), otherwise the creation of
2092 * further caches will BUG().
2094 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2097 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2098 * the first cache, then we need to set up all its list3s,
2099 * otherwise the creation of further caches will BUG().
2101 set_up_list3s(cachep, SIZE_AC);
2102 if (INDEX_AC == INDEX_L3)
2103 g_cpucache_up = PARTIAL_L3;
2104 else
2105 g_cpucache_up = PARTIAL_AC;
2106 } else {
2107 cachep->array[smp_processor_id()] =
2108 kmalloc(sizeof(struct arraycache_init), gfp);
2110 if (g_cpucache_up == PARTIAL_AC) {
2111 set_up_list3s(cachep, SIZE_L3);
2112 g_cpucache_up = PARTIAL_L3;
2113 } else {
2114 int node;
2115 for_each_online_node(node) {
2116 cachep->nodelists[node] =
2117 kmalloc_node(sizeof(struct kmem_list3),
2118 gfp, node);
2119 BUG_ON(!cachep->nodelists[node]);
2120 kmem_list3_init(cachep->nodelists[node]);
2124 cachep->nodelists[numa_mem_id()]->next_reap =
2125 jiffies + REAPTIMEOUT_LIST3 +
2126 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2128 cpu_cache_get(cachep)->avail = 0;
2129 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2130 cpu_cache_get(cachep)->batchcount = 1;
2131 cpu_cache_get(cachep)->touched = 0;
2132 cachep->batchcount = 1;
2133 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2134 return 0;
2138 * kmem_cache_create - Create a cache.
2139 * @name: A string which is used in /proc/slabinfo to identify this cache.
2140 * @size: The size of objects to be created in this cache.
2141 * @align: The required alignment for the objects.
2142 * @flags: SLAB flags
2143 * @ctor: A constructor for the objects.
2145 * Returns a ptr to the cache on success, NULL on failure.
2146 * Cannot be called within a int, but can be interrupted.
2147 * The @ctor is run when new pages are allocated by the cache.
2149 * @name must be valid until the cache is destroyed. This implies that
2150 * the module calling this has to destroy the cache before getting unloaded.
2151 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2152 * therefore applications must manage it themselves.
2154 * The flags are
2156 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2157 * to catch references to uninitialised memory.
2159 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2160 * for buffer overruns.
2162 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2163 * cacheline. This can be beneficial if you're counting cycles as closely
2164 * as davem.
2166 struct kmem_cache *
2167 kmem_cache_create (const char *name, size_t size, size_t align,
2168 unsigned long flags, void (*ctor)(void *))
2170 size_t left_over, slab_size, ralign;
2171 struct kmem_cache *cachep = NULL, *pc;
2172 gfp_t gfp;
2175 * Sanity checks... these are all serious usage bugs.
2177 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2178 size > KMALLOC_MAX_SIZE) {
2179 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2180 name);
2181 BUG();
2185 * We use cache_chain_mutex to ensure a consistent view of
2186 * cpu_online_mask as well. Please see cpuup_callback
2188 if (slab_is_available()) {
2189 get_online_cpus();
2190 mutex_lock(&cache_chain_mutex);
2193 list_for_each_entry(pc, &cache_chain, next) {
2194 char tmp;
2195 int res;
2198 * This happens when the module gets unloaded and doesn't
2199 * destroy its slab cache and no-one else reuses the vmalloc
2200 * area of the module. Print a warning.
2202 res = probe_kernel_address(pc->name, tmp);
2203 if (res) {
2204 printk(KERN_ERR
2205 "SLAB: cache with size %d has lost its name\n",
2206 pc->buffer_size);
2207 continue;
2210 if (!strcmp(pc->name, name)) {
2211 printk(KERN_ERR
2212 "kmem_cache_create: duplicate cache %s\n", name);
2213 dump_stack();
2214 goto oops;
2218 #if DEBUG
2219 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2220 #if FORCED_DEBUG
2222 * Enable redzoning and last user accounting, except for caches with
2223 * large objects, if the increased size would increase the object size
2224 * above the next power of two: caches with object sizes just above a
2225 * power of two have a significant amount of internal fragmentation.
2227 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2228 2 * sizeof(unsigned long long)))
2229 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2230 if (!(flags & SLAB_DESTROY_BY_RCU))
2231 flags |= SLAB_POISON;
2232 #endif
2233 if (flags & SLAB_DESTROY_BY_RCU)
2234 BUG_ON(flags & SLAB_POISON);
2235 #endif
2237 * Always checks flags, a caller might be expecting debug support which
2238 * isn't available.
2240 BUG_ON(flags & ~CREATE_MASK);
2243 * Check that size is in terms of words. This is needed to avoid
2244 * unaligned accesses for some archs when redzoning is used, and makes
2245 * sure any on-slab bufctl's are also correctly aligned.
2247 if (size & (BYTES_PER_WORD - 1)) {
2248 size += (BYTES_PER_WORD - 1);
2249 size &= ~(BYTES_PER_WORD - 1);
2252 /* calculate the final buffer alignment: */
2254 /* 1) arch recommendation: can be overridden for debug */
2255 if (flags & SLAB_HWCACHE_ALIGN) {
2257 * Default alignment: as specified by the arch code. Except if
2258 * an object is really small, then squeeze multiple objects into
2259 * one cacheline.
2261 ralign = cache_line_size();
2262 while (size <= ralign / 2)
2263 ralign /= 2;
2264 } else {
2265 ralign = BYTES_PER_WORD;
2269 * Redzoning and user store require word alignment or possibly larger.
2270 * Note this will be overridden by architecture or caller mandated
2271 * alignment if either is greater than BYTES_PER_WORD.
2273 if (flags & SLAB_STORE_USER)
2274 ralign = BYTES_PER_WORD;
2276 if (flags & SLAB_RED_ZONE) {
2277 ralign = REDZONE_ALIGN;
2278 /* If redzoning, ensure that the second redzone is suitably
2279 * aligned, by adjusting the object size accordingly. */
2280 size += REDZONE_ALIGN - 1;
2281 size &= ~(REDZONE_ALIGN - 1);
2284 /* 2) arch mandated alignment */
2285 if (ralign < ARCH_SLAB_MINALIGN) {
2286 ralign = ARCH_SLAB_MINALIGN;
2288 /* 3) caller mandated alignment */
2289 if (ralign < align) {
2290 ralign = align;
2292 /* disable debug if not aligning with REDZONE_ALIGN */
2293 if (ralign & (__alignof__(unsigned long long) - 1))
2294 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2296 * 4) Store it.
2298 align = ralign;
2300 if (slab_is_available())
2301 gfp = GFP_KERNEL;
2302 else
2303 gfp = GFP_NOWAIT;
2305 /* Get cache's description obj. */
2306 cachep = kmem_cache_zalloc(&cache_cache, gfp);
2307 if (!cachep)
2308 goto oops;
2310 #if DEBUG
2311 cachep->obj_size = size;
2314 * Both debugging options require word-alignment which is calculated
2315 * into align above.
2317 if (flags & SLAB_RED_ZONE) {
2318 /* add space for red zone words */
2319 cachep->obj_offset += align;
2320 size += align + sizeof(unsigned long long);
2322 if (flags & SLAB_STORE_USER) {
2323 /* user store requires one word storage behind the end of
2324 * the real object. But if the second red zone needs to be
2325 * aligned to 64 bits, we must allow that much space.
2327 if (flags & SLAB_RED_ZONE)
2328 size += REDZONE_ALIGN;
2329 else
2330 size += BYTES_PER_WORD;
2332 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2333 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2334 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2335 cachep->obj_offset += PAGE_SIZE - size;
2336 size = PAGE_SIZE;
2338 #endif
2339 #endif
2342 * Determine if the slab management is 'on' or 'off' slab.
2343 * (bootstrapping cannot cope with offslab caches so don't do
2344 * it too early on. Always use on-slab management when
2345 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2347 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2348 !(flags & SLAB_NOLEAKTRACE))
2350 * Size is large, assume best to place the slab management obj
2351 * off-slab (should allow better packing of objs).
2353 flags |= CFLGS_OFF_SLAB;
2355 size = ALIGN(size, align);
2357 left_over = calculate_slab_order(cachep, size, align, flags);
2359 if (!cachep->num) {
2360 printk(KERN_ERR
2361 "kmem_cache_create: couldn't create cache %s.\n", name);
2362 kmem_cache_free(&cache_cache, cachep);
2363 cachep = NULL;
2364 goto oops;
2366 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2367 + sizeof(struct slab), align);
2370 * If the slab has been placed off-slab, and we have enough space then
2371 * move it on-slab. This is at the expense of any extra colouring.
2373 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2374 flags &= ~CFLGS_OFF_SLAB;
2375 left_over -= slab_size;
2378 if (flags & CFLGS_OFF_SLAB) {
2379 /* really off slab. No need for manual alignment */
2380 slab_size =
2381 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2383 #ifdef CONFIG_PAGE_POISONING
2384 /* If we're going to use the generic kernel_map_pages()
2385 * poisoning, then it's going to smash the contents of
2386 * the redzone and userword anyhow, so switch them off.
2388 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2389 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2390 #endif
2393 cachep->colour_off = cache_line_size();
2394 /* Offset must be a multiple of the alignment. */
2395 if (cachep->colour_off < align)
2396 cachep->colour_off = align;
2397 cachep->colour = left_over / cachep->colour_off;
2398 cachep->slab_size = slab_size;
2399 cachep->flags = flags;
2400 cachep->gfpflags = 0;
2401 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2402 cachep->gfpflags |= GFP_DMA;
2403 cachep->buffer_size = size;
2404 cachep->reciprocal_buffer_size = reciprocal_value(size);
2406 if (flags & CFLGS_OFF_SLAB) {
2407 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2409 * This is a possibility for one of the malloc_sizes caches.
2410 * But since we go off slab only for object size greater than
2411 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2412 * this should not happen at all.
2413 * But leave a BUG_ON for some lucky dude.
2415 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2417 cachep->ctor = ctor;
2418 cachep->name = name;
2420 if (setup_cpu_cache(cachep, gfp)) {
2421 __kmem_cache_destroy(cachep);
2422 cachep = NULL;
2423 goto oops;
2426 /* cache setup completed, link it into the list */
2427 list_add(&cachep->next, &cache_chain);
2428 oops:
2429 if (!cachep && (flags & SLAB_PANIC))
2430 panic("kmem_cache_create(): failed to create slab `%s'\n",
2431 name);
2432 if (slab_is_available()) {
2433 mutex_unlock(&cache_chain_mutex);
2434 put_online_cpus();
2436 return cachep;
2438 EXPORT_SYMBOL(kmem_cache_create);
2440 #if DEBUG
2441 static void check_irq_off(void)
2443 BUG_ON(!irqs_disabled());
2446 static void check_irq_on(void)
2448 BUG_ON(irqs_disabled());
2451 static void check_spinlock_acquired(struct kmem_cache *cachep)
2453 #ifdef CONFIG_SMP
2454 check_irq_off();
2455 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2456 #endif
2459 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2461 #ifdef CONFIG_SMP
2462 check_irq_off();
2463 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2464 #endif
2467 #else
2468 #define check_irq_off() do { } while(0)
2469 #define check_irq_on() do { } while(0)
2470 #define check_spinlock_acquired(x) do { } while(0)
2471 #define check_spinlock_acquired_node(x, y) do { } while(0)
2472 #endif
2474 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2475 struct array_cache *ac,
2476 int force, int node);
2478 static void do_drain(void *arg)
2480 struct kmem_cache *cachep = arg;
2481 struct array_cache *ac;
2482 int node = numa_mem_id();
2484 check_irq_off();
2485 ac = cpu_cache_get(cachep);
2486 spin_lock(&cachep->nodelists[node]->list_lock);
2487 free_block(cachep, ac->entry, ac->avail, node);
2488 spin_unlock(&cachep->nodelists[node]->list_lock);
2489 ac->avail = 0;
2492 static void drain_cpu_caches(struct kmem_cache *cachep)
2494 struct kmem_list3 *l3;
2495 int node;
2497 on_each_cpu(do_drain, cachep, 1);
2498 check_irq_on();
2499 for_each_online_node(node) {
2500 l3 = cachep->nodelists[node];
2501 if (l3 && l3->alien)
2502 drain_alien_cache(cachep, l3->alien);
2505 for_each_online_node(node) {
2506 l3 = cachep->nodelists[node];
2507 if (l3)
2508 drain_array(cachep, l3, l3->shared, 1, node);
2513 * Remove slabs from the list of free slabs.
2514 * Specify the number of slabs to drain in tofree.
2516 * Returns the actual number of slabs released.
2518 static int drain_freelist(struct kmem_cache *cache,
2519 struct kmem_list3 *l3, int tofree)
2521 struct list_head *p;
2522 int nr_freed;
2523 struct slab *slabp;
2525 nr_freed = 0;
2526 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2528 spin_lock_irq(&l3->list_lock);
2529 p = l3->slabs_free.prev;
2530 if (p == &l3->slabs_free) {
2531 spin_unlock_irq(&l3->list_lock);
2532 goto out;
2535 slabp = list_entry(p, struct slab, list);
2536 #if DEBUG
2537 BUG_ON(slabp->inuse);
2538 #endif
2539 list_del(&slabp->list);
2541 * Safe to drop the lock. The slab is no longer linked
2542 * to the cache.
2544 l3->free_objects -= cache->num;
2545 spin_unlock_irq(&l3->list_lock);
2546 slab_destroy(cache, slabp);
2547 nr_freed++;
2549 out:
2550 return nr_freed;
2553 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2554 static int __cache_shrink(struct kmem_cache *cachep)
2556 int ret = 0, i = 0;
2557 struct kmem_list3 *l3;
2559 drain_cpu_caches(cachep);
2561 check_irq_on();
2562 for_each_online_node(i) {
2563 l3 = cachep->nodelists[i];
2564 if (!l3)
2565 continue;
2567 drain_freelist(cachep, l3, l3->free_objects);
2569 ret += !list_empty(&l3->slabs_full) ||
2570 !list_empty(&l3->slabs_partial);
2572 return (ret ? 1 : 0);
2576 * kmem_cache_shrink - Shrink a cache.
2577 * @cachep: The cache to shrink.
2579 * Releases as many slabs as possible for a cache.
2580 * To help debugging, a zero exit status indicates all slabs were released.
2582 int kmem_cache_shrink(struct kmem_cache *cachep)
2584 int ret;
2585 BUG_ON(!cachep || in_interrupt());
2587 get_online_cpus();
2588 mutex_lock(&cache_chain_mutex);
2589 ret = __cache_shrink(cachep);
2590 mutex_unlock(&cache_chain_mutex);
2591 put_online_cpus();
2592 return ret;
2594 EXPORT_SYMBOL(kmem_cache_shrink);
2597 * kmem_cache_destroy - delete a cache
2598 * @cachep: the cache to destroy
2600 * Remove a &struct kmem_cache object from the slab cache.
2602 * It is expected this function will be called by a module when it is
2603 * unloaded. This will remove the cache completely, and avoid a duplicate
2604 * cache being allocated each time a module is loaded and unloaded, if the
2605 * module doesn't have persistent in-kernel storage across loads and unloads.
2607 * The cache must be empty before calling this function.
2609 * The caller must guarantee that noone will allocate memory from the cache
2610 * during the kmem_cache_destroy().
2612 void kmem_cache_destroy(struct kmem_cache *cachep)
2614 BUG_ON(!cachep || in_interrupt());
2616 /* Find the cache in the chain of caches. */
2617 get_online_cpus();
2618 mutex_lock(&cache_chain_mutex);
2620 * the chain is never empty, cache_cache is never destroyed
2622 list_del(&cachep->next);
2623 if (__cache_shrink(cachep)) {
2624 slab_error(cachep, "Can't free all objects");
2625 list_add(&cachep->next, &cache_chain);
2626 mutex_unlock(&cache_chain_mutex);
2627 put_online_cpus();
2628 return;
2631 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2632 rcu_barrier();
2634 __kmem_cache_destroy(cachep);
2635 mutex_unlock(&cache_chain_mutex);
2636 put_online_cpus();
2638 EXPORT_SYMBOL(kmem_cache_destroy);
2641 * Get the memory for a slab management obj.
2642 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2643 * always come from malloc_sizes caches. The slab descriptor cannot
2644 * come from the same cache which is getting created because,
2645 * when we are searching for an appropriate cache for these
2646 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2647 * If we are creating a malloc_sizes cache here it would not be visible to
2648 * kmem_find_general_cachep till the initialization is complete.
2649 * Hence we cannot have slabp_cache same as the original cache.
2651 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2652 int colour_off, gfp_t local_flags,
2653 int nodeid)
2655 struct slab *slabp;
2657 if (OFF_SLAB(cachep)) {
2658 /* Slab management obj is off-slab. */
2659 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2660 local_flags, nodeid);
2662 * If the first object in the slab is leaked (it's allocated
2663 * but no one has a reference to it), we want to make sure
2664 * kmemleak does not treat the ->s_mem pointer as a reference
2665 * to the object. Otherwise we will not report the leak.
2667 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2668 local_flags);
2669 if (!slabp)
2670 return NULL;
2671 } else {
2672 slabp = objp + colour_off;
2673 colour_off += cachep->slab_size;
2675 slabp->inuse = 0;
2676 slabp->colouroff = colour_off;
2677 slabp->s_mem = objp + colour_off;
2678 slabp->nodeid = nodeid;
2679 slabp->free = 0;
2680 return slabp;
2683 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2685 return (kmem_bufctl_t *) (slabp + 1);
2688 static void cache_init_objs(struct kmem_cache *cachep,
2689 struct slab *slabp)
2691 int i;
2693 for (i = 0; i < cachep->num; i++) {
2694 void *objp = index_to_obj(cachep, slabp, i);
2695 #if DEBUG
2696 /* need to poison the objs? */
2697 if (cachep->flags & SLAB_POISON)
2698 poison_obj(cachep, objp, POISON_FREE);
2699 if (cachep->flags & SLAB_STORE_USER)
2700 *dbg_userword(cachep, objp) = NULL;
2702 if (cachep->flags & SLAB_RED_ZONE) {
2703 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2704 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2707 * Constructors are not allowed to allocate memory from the same
2708 * cache which they are a constructor for. Otherwise, deadlock.
2709 * They must also be threaded.
2711 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2712 cachep->ctor(objp + obj_offset(cachep));
2714 if (cachep->flags & SLAB_RED_ZONE) {
2715 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2716 slab_error(cachep, "constructor overwrote the"
2717 " end of an object");
2718 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2719 slab_error(cachep, "constructor overwrote the"
2720 " start of an object");
2722 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2723 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2724 kernel_map_pages(virt_to_page(objp),
2725 cachep->buffer_size / PAGE_SIZE, 0);
2726 #else
2727 if (cachep->ctor)
2728 cachep->ctor(objp);
2729 #endif
2730 slab_bufctl(slabp)[i] = i + 1;
2732 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2735 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2737 if (CONFIG_ZONE_DMA_FLAG) {
2738 if (flags & GFP_DMA)
2739 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2740 else
2741 BUG_ON(cachep->gfpflags & GFP_DMA);
2745 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2746 int nodeid)
2748 void *objp = index_to_obj(cachep, slabp, slabp->free);
2749 kmem_bufctl_t next;
2751 slabp->inuse++;
2752 next = slab_bufctl(slabp)[slabp->free];
2753 #if DEBUG
2754 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2755 WARN_ON(slabp->nodeid != nodeid);
2756 #endif
2757 slabp->free = next;
2759 return objp;
2762 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2763 void *objp, int nodeid)
2765 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2767 #if DEBUG
2768 /* Verify that the slab belongs to the intended node */
2769 WARN_ON(slabp->nodeid != nodeid);
2771 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2772 printk(KERN_ERR "slab: double free detected in cache "
2773 "'%s', objp %p\n", cachep->name, objp);
2774 BUG();
2776 #endif
2777 slab_bufctl(slabp)[objnr] = slabp->free;
2778 slabp->free = objnr;
2779 slabp->inuse--;
2783 * Map pages beginning at addr to the given cache and slab. This is required
2784 * for the slab allocator to be able to lookup the cache and slab of a
2785 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2787 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2788 void *addr)
2790 int nr_pages;
2791 struct page *page;
2793 page = virt_to_page(addr);
2795 nr_pages = 1;
2796 if (likely(!PageCompound(page)))
2797 nr_pages <<= cache->gfporder;
2799 do {
2800 page_set_cache(page, cache);
2801 page_set_slab(page, slab);
2802 page++;
2803 } while (--nr_pages);
2807 * Grow (by 1) the number of slabs within a cache. This is called by
2808 * kmem_cache_alloc() when there are no active objs left in a cache.
2810 static int cache_grow(struct kmem_cache *cachep,
2811 gfp_t flags, int nodeid, void *objp)
2813 struct slab *slabp;
2814 size_t offset;
2815 gfp_t local_flags;
2816 struct kmem_list3 *l3;
2819 * Be lazy and only check for valid flags here, keeping it out of the
2820 * critical path in kmem_cache_alloc().
2822 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2823 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2825 /* Take the l3 list lock to change the colour_next on this node */
2826 check_irq_off();
2827 l3 = cachep->nodelists[nodeid];
2828 spin_lock(&l3->list_lock);
2830 /* Get colour for the slab, and cal the next value. */
2831 offset = l3->colour_next;
2832 l3->colour_next++;
2833 if (l3->colour_next >= cachep->colour)
2834 l3->colour_next = 0;
2835 spin_unlock(&l3->list_lock);
2837 offset *= cachep->colour_off;
2839 if (local_flags & __GFP_WAIT)
2840 local_irq_enable();
2843 * The test for missing atomic flag is performed here, rather than
2844 * the more obvious place, simply to reduce the critical path length
2845 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2846 * will eventually be caught here (where it matters).
2848 kmem_flagcheck(cachep, flags);
2851 * Get mem for the objs. Attempt to allocate a physical page from
2852 * 'nodeid'.
2854 if (!objp)
2855 objp = kmem_getpages(cachep, local_flags, nodeid);
2856 if (!objp)
2857 goto failed;
2859 /* Get slab management. */
2860 slabp = alloc_slabmgmt(cachep, objp, offset,
2861 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2862 if (!slabp)
2863 goto opps1;
2865 slab_map_pages(cachep, slabp, objp);
2867 cache_init_objs(cachep, slabp);
2869 if (local_flags & __GFP_WAIT)
2870 local_irq_disable();
2871 check_irq_off();
2872 spin_lock(&l3->list_lock);
2874 /* Make slab active. */
2875 list_add_tail(&slabp->list, &(l3->slabs_free));
2876 STATS_INC_GROWN(cachep);
2877 l3->free_objects += cachep->num;
2878 spin_unlock(&l3->list_lock);
2879 return 1;
2880 opps1:
2881 kmem_freepages(cachep, objp);
2882 failed:
2883 if (local_flags & __GFP_WAIT)
2884 local_irq_disable();
2885 return 0;
2888 #if DEBUG
2891 * Perform extra freeing checks:
2892 * - detect bad pointers.
2893 * - POISON/RED_ZONE checking
2895 static void kfree_debugcheck(const void *objp)
2897 if (!virt_addr_valid(objp)) {
2898 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2899 (unsigned long)objp);
2900 BUG();
2904 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2906 unsigned long long redzone1, redzone2;
2908 redzone1 = *dbg_redzone1(cache, obj);
2909 redzone2 = *dbg_redzone2(cache, obj);
2912 * Redzone is ok.
2914 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2915 return;
2917 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2918 slab_error(cache, "double free detected");
2919 else
2920 slab_error(cache, "memory outside object was overwritten");
2922 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2923 obj, redzone1, redzone2);
2926 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2927 void *caller)
2929 struct page *page;
2930 unsigned int objnr;
2931 struct slab *slabp;
2933 BUG_ON(virt_to_cache(objp) != cachep);
2935 objp -= obj_offset(cachep);
2936 kfree_debugcheck(objp);
2937 page = virt_to_head_page(objp);
2939 slabp = page_get_slab(page);
2941 if (cachep->flags & SLAB_RED_ZONE) {
2942 verify_redzone_free(cachep, objp);
2943 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2944 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2946 if (cachep->flags & SLAB_STORE_USER)
2947 *dbg_userword(cachep, objp) = caller;
2949 objnr = obj_to_index(cachep, slabp, objp);
2951 BUG_ON(objnr >= cachep->num);
2952 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2954 #ifdef CONFIG_DEBUG_SLAB_LEAK
2955 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2956 #endif
2957 if (cachep->flags & SLAB_POISON) {
2958 #ifdef CONFIG_DEBUG_PAGEALLOC
2959 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2960 store_stackinfo(cachep, objp, (unsigned long)caller);
2961 kernel_map_pages(virt_to_page(objp),
2962 cachep->buffer_size / PAGE_SIZE, 0);
2963 } else {
2964 poison_obj(cachep, objp, POISON_FREE);
2966 #else
2967 poison_obj(cachep, objp, POISON_FREE);
2968 #endif
2970 return objp;
2973 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2975 kmem_bufctl_t i;
2976 int entries = 0;
2978 /* Check slab's freelist to see if this obj is there. */
2979 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2980 entries++;
2981 if (entries > cachep->num || i >= cachep->num)
2982 goto bad;
2984 if (entries != cachep->num - slabp->inuse) {
2985 bad:
2986 printk(KERN_ERR "slab: Internal list corruption detected in "
2987 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2988 cachep->name, cachep->num, slabp, slabp->inuse);
2989 for (i = 0;
2990 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2991 i++) {
2992 if (i % 16 == 0)
2993 printk("\n%03x:", i);
2994 printk(" %02x", ((unsigned char *)slabp)[i]);
2996 printk("\n");
2997 BUG();
3000 #else
3001 #define kfree_debugcheck(x) do { } while(0)
3002 #define cache_free_debugcheck(x,objp,z) (objp)
3003 #define check_slabp(x,y) do { } while(0)
3004 #endif
3006 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3008 int batchcount;
3009 struct kmem_list3 *l3;
3010 struct array_cache *ac;
3011 int node;
3013 retry:
3014 check_irq_off();
3015 node = numa_mem_id();
3016 ac = cpu_cache_get(cachep);
3017 batchcount = ac->batchcount;
3018 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3020 * If there was little recent activity on this cache, then
3021 * perform only a partial refill. Otherwise we could generate
3022 * refill bouncing.
3024 batchcount = BATCHREFILL_LIMIT;
3026 l3 = cachep->nodelists[node];
3028 BUG_ON(ac->avail > 0 || !l3);
3029 spin_lock(&l3->list_lock);
3031 /* See if we can refill from the shared array */
3032 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3033 l3->shared->touched = 1;
3034 goto alloc_done;
3037 while (batchcount > 0) {
3038 struct list_head *entry;
3039 struct slab *slabp;
3040 /* Get slab alloc is to come from. */
3041 entry = l3->slabs_partial.next;
3042 if (entry == &l3->slabs_partial) {
3043 l3->free_touched = 1;
3044 entry = l3->slabs_free.next;
3045 if (entry == &l3->slabs_free)
3046 goto must_grow;
3049 slabp = list_entry(entry, struct slab, list);
3050 check_slabp(cachep, slabp);
3051 check_spinlock_acquired(cachep);
3054 * The slab was either on partial or free list so
3055 * there must be at least one object available for
3056 * allocation.
3058 BUG_ON(slabp->inuse >= cachep->num);
3060 while (slabp->inuse < cachep->num && batchcount--) {
3061 STATS_INC_ALLOCED(cachep);
3062 STATS_INC_ACTIVE(cachep);
3063 STATS_SET_HIGH(cachep);
3065 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3066 node);
3068 check_slabp(cachep, slabp);
3070 /* move slabp to correct slabp list: */
3071 list_del(&slabp->list);
3072 if (slabp->free == BUFCTL_END)
3073 list_add(&slabp->list, &l3->slabs_full);
3074 else
3075 list_add(&slabp->list, &l3->slabs_partial);
3078 must_grow:
3079 l3->free_objects -= ac->avail;
3080 alloc_done:
3081 spin_unlock(&l3->list_lock);
3083 if (unlikely(!ac->avail)) {
3084 int x;
3085 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3087 /* cache_grow can reenable interrupts, then ac could change. */
3088 ac = cpu_cache_get(cachep);
3089 if (!x && ac->avail == 0) /* no objects in sight? abort */
3090 return NULL;
3092 if (!ac->avail) /* objects refilled by interrupt? */
3093 goto retry;
3095 ac->touched = 1;
3096 return ac->entry[--ac->avail];
3099 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3100 gfp_t flags)
3102 might_sleep_if(flags & __GFP_WAIT);
3103 #if DEBUG
3104 kmem_flagcheck(cachep, flags);
3105 #endif
3108 #if DEBUG
3109 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3110 gfp_t flags, void *objp, void *caller)
3112 if (!objp)
3113 return objp;
3114 if (cachep->flags & SLAB_POISON) {
3115 #ifdef CONFIG_DEBUG_PAGEALLOC
3116 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3117 kernel_map_pages(virt_to_page(objp),
3118 cachep->buffer_size / PAGE_SIZE, 1);
3119 else
3120 check_poison_obj(cachep, objp);
3121 #else
3122 check_poison_obj(cachep, objp);
3123 #endif
3124 poison_obj(cachep, objp, POISON_INUSE);
3126 if (cachep->flags & SLAB_STORE_USER)
3127 *dbg_userword(cachep, objp) = caller;
3129 if (cachep->flags & SLAB_RED_ZONE) {
3130 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3131 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3132 slab_error(cachep, "double free, or memory outside"
3133 " object was overwritten");
3134 printk(KERN_ERR
3135 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3136 objp, *dbg_redzone1(cachep, objp),
3137 *dbg_redzone2(cachep, objp));
3139 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3140 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3142 #ifdef CONFIG_DEBUG_SLAB_LEAK
3144 struct slab *slabp;
3145 unsigned objnr;
3147 slabp = page_get_slab(virt_to_head_page(objp));
3148 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3149 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3151 #endif
3152 objp += obj_offset(cachep);
3153 if (cachep->ctor && cachep->flags & SLAB_POISON)
3154 cachep->ctor(objp);
3155 #if ARCH_SLAB_MINALIGN
3156 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3157 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3158 objp, ARCH_SLAB_MINALIGN);
3160 #endif
3161 return objp;
3163 #else
3164 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3165 #endif
3167 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3169 if (cachep == &cache_cache)
3170 return false;
3172 return should_failslab(obj_size(cachep), flags, cachep->flags);
3175 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3177 void *objp;
3178 struct array_cache *ac;
3180 check_irq_off();
3182 ac = cpu_cache_get(cachep);
3183 if (likely(ac->avail)) {
3184 STATS_INC_ALLOCHIT(cachep);
3185 ac->touched = 1;
3186 objp = ac->entry[--ac->avail];
3187 } else {
3188 STATS_INC_ALLOCMISS(cachep);
3189 objp = cache_alloc_refill(cachep, flags);
3191 * the 'ac' may be updated by cache_alloc_refill(),
3192 * and kmemleak_erase() requires its correct value.
3194 ac = cpu_cache_get(cachep);
3197 * To avoid a false negative, if an object that is in one of the
3198 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3199 * treat the array pointers as a reference to the object.
3201 if (objp)
3202 kmemleak_erase(&ac->entry[ac->avail]);
3203 return objp;
3206 #ifdef CONFIG_NUMA
3208 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3210 * If we are in_interrupt, then process context, including cpusets and
3211 * mempolicy, may not apply and should not be used for allocation policy.
3213 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3215 int nid_alloc, nid_here;
3217 if (in_interrupt() || (flags & __GFP_THISNODE))
3218 return NULL;
3219 nid_alloc = nid_here = numa_mem_id();
3220 get_mems_allowed();
3221 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3222 nid_alloc = cpuset_slab_spread_node();
3223 else if (current->mempolicy)
3224 nid_alloc = slab_node(current->mempolicy);
3225 put_mems_allowed();
3226 if (nid_alloc != nid_here)
3227 return ____cache_alloc_node(cachep, flags, nid_alloc);
3228 return NULL;
3232 * Fallback function if there was no memory available and no objects on a
3233 * certain node and fall back is permitted. First we scan all the
3234 * available nodelists for available objects. If that fails then we
3235 * perform an allocation without specifying a node. This allows the page
3236 * allocator to do its reclaim / fallback magic. We then insert the
3237 * slab into the proper nodelist and then allocate from it.
3239 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3241 struct zonelist *zonelist;
3242 gfp_t local_flags;
3243 struct zoneref *z;
3244 struct zone *zone;
3245 enum zone_type high_zoneidx = gfp_zone(flags);
3246 void *obj = NULL;
3247 int nid;
3249 if (flags & __GFP_THISNODE)
3250 return NULL;
3252 get_mems_allowed();
3253 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3254 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3256 retry:
3258 * Look through allowed nodes for objects available
3259 * from existing per node queues.
3261 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3262 nid = zone_to_nid(zone);
3264 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3265 cache->nodelists[nid] &&
3266 cache->nodelists[nid]->free_objects) {
3267 obj = ____cache_alloc_node(cache,
3268 flags | GFP_THISNODE, nid);
3269 if (obj)
3270 break;
3274 if (!obj) {
3276 * This allocation will be performed within the constraints
3277 * of the current cpuset / memory policy requirements.
3278 * We may trigger various forms of reclaim on the allowed
3279 * set and go into memory reserves if necessary.
3281 if (local_flags & __GFP_WAIT)
3282 local_irq_enable();
3283 kmem_flagcheck(cache, flags);
3284 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3285 if (local_flags & __GFP_WAIT)
3286 local_irq_disable();
3287 if (obj) {
3289 * Insert into the appropriate per node queues
3291 nid = page_to_nid(virt_to_page(obj));
3292 if (cache_grow(cache, flags, nid, obj)) {
3293 obj = ____cache_alloc_node(cache,
3294 flags | GFP_THISNODE, nid);
3295 if (!obj)
3297 * Another processor may allocate the
3298 * objects in the slab since we are
3299 * not holding any locks.
3301 goto retry;
3302 } else {
3303 /* cache_grow already freed obj */
3304 obj = NULL;
3308 put_mems_allowed();
3309 return obj;
3313 * A interface to enable slab creation on nodeid
3315 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3316 int nodeid)
3318 struct list_head *entry;
3319 struct slab *slabp;
3320 struct kmem_list3 *l3;
3321 void *obj;
3322 int x;
3324 l3 = cachep->nodelists[nodeid];
3325 BUG_ON(!l3);
3327 retry:
3328 check_irq_off();
3329 spin_lock(&l3->list_lock);
3330 entry = l3->slabs_partial.next;
3331 if (entry == &l3->slabs_partial) {
3332 l3->free_touched = 1;
3333 entry = l3->slabs_free.next;
3334 if (entry == &l3->slabs_free)
3335 goto must_grow;
3338 slabp = list_entry(entry, struct slab, list);
3339 check_spinlock_acquired_node(cachep, nodeid);
3340 check_slabp(cachep, slabp);
3342 STATS_INC_NODEALLOCS(cachep);
3343 STATS_INC_ACTIVE(cachep);
3344 STATS_SET_HIGH(cachep);
3346 BUG_ON(slabp->inuse == cachep->num);
3348 obj = slab_get_obj(cachep, slabp, nodeid);
3349 check_slabp(cachep, slabp);
3350 l3->free_objects--;
3351 /* move slabp to correct slabp list: */
3352 list_del(&slabp->list);
3354 if (slabp->free == BUFCTL_END)
3355 list_add(&slabp->list, &l3->slabs_full);
3356 else
3357 list_add(&slabp->list, &l3->slabs_partial);
3359 spin_unlock(&l3->list_lock);
3360 goto done;
3362 must_grow:
3363 spin_unlock(&l3->list_lock);
3364 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3365 if (x)
3366 goto retry;
3368 return fallback_alloc(cachep, flags);
3370 done:
3371 return obj;
3375 * kmem_cache_alloc_node - Allocate an object on the specified node
3376 * @cachep: The cache to allocate from.
3377 * @flags: See kmalloc().
3378 * @nodeid: node number of the target node.
3379 * @caller: return address of caller, used for debug information
3381 * Identical to kmem_cache_alloc but it will allocate memory on the given
3382 * node, which can improve the performance for cpu bound structures.
3384 * Fallback to other node is possible if __GFP_THISNODE is not set.
3386 static __always_inline void *
3387 __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3388 void *caller)
3390 unsigned long save_flags;
3391 void *ptr;
3392 int slab_node = numa_mem_id();
3394 flags &= gfp_allowed_mask;
3396 lockdep_trace_alloc(flags);
3398 if (slab_should_failslab(cachep, flags))
3399 return NULL;
3401 cache_alloc_debugcheck_before(cachep, flags);
3402 local_irq_save(save_flags);
3404 if (nodeid == -1)
3405 nodeid = slab_node;
3407 if (unlikely(!cachep->nodelists[nodeid])) {
3408 /* Node not bootstrapped yet */
3409 ptr = fallback_alloc(cachep, flags);
3410 goto out;
3413 if (nodeid == slab_node) {
3415 * Use the locally cached objects if possible.
3416 * However ____cache_alloc does not allow fallback
3417 * to other nodes. It may fail while we still have
3418 * objects on other nodes available.
3420 ptr = ____cache_alloc(cachep, flags);
3421 if (ptr)
3422 goto out;
3424 /* ___cache_alloc_node can fall back to other nodes */
3425 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3426 out:
3427 local_irq_restore(save_flags);
3428 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3429 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3430 flags);
3432 if (likely(ptr))
3433 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3435 if (unlikely((flags & __GFP_ZERO) && ptr))
3436 memset(ptr, 0, obj_size(cachep));
3438 return ptr;
3441 static __always_inline void *
3442 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3444 void *objp;
3446 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3447 objp = alternate_node_alloc(cache, flags);
3448 if (objp)
3449 goto out;
3451 objp = ____cache_alloc(cache, flags);
3454 * We may just have run out of memory on the local node.
3455 * ____cache_alloc_node() knows how to locate memory on other nodes
3457 if (!objp)
3458 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3460 out:
3461 return objp;
3463 #else
3465 static __always_inline void *
3466 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3468 return ____cache_alloc(cachep, flags);
3471 #endif /* CONFIG_NUMA */
3473 static __always_inline void *
3474 __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3476 unsigned long save_flags;
3477 void *objp;
3479 flags &= gfp_allowed_mask;
3481 lockdep_trace_alloc(flags);
3483 if (slab_should_failslab(cachep, flags))
3484 return NULL;
3486 cache_alloc_debugcheck_before(cachep, flags);
3487 local_irq_save(save_flags);
3488 objp = __do_cache_alloc(cachep, flags);
3489 local_irq_restore(save_flags);
3490 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3491 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3492 flags);
3493 prefetchw(objp);
3495 if (likely(objp))
3496 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3498 if (unlikely((flags & __GFP_ZERO) && objp))
3499 memset(objp, 0, obj_size(cachep));
3501 return objp;
3505 * Caller needs to acquire correct kmem_list's list_lock
3507 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3508 int node)
3510 int i;
3511 struct kmem_list3 *l3;
3513 for (i = 0; i < nr_objects; i++) {
3514 void *objp = objpp[i];
3515 struct slab *slabp;
3517 slabp = virt_to_slab(objp);
3518 l3 = cachep->nodelists[node];
3519 list_del(&slabp->list);
3520 check_spinlock_acquired_node(cachep, node);
3521 check_slabp(cachep, slabp);
3522 slab_put_obj(cachep, slabp, objp, node);
3523 STATS_DEC_ACTIVE(cachep);
3524 l3->free_objects++;
3525 check_slabp(cachep, slabp);
3527 /* fixup slab chains */
3528 if (slabp->inuse == 0) {
3529 if (l3->free_objects > l3->free_limit) {
3530 l3->free_objects -= cachep->num;
3531 /* No need to drop any previously held
3532 * lock here, even if we have a off-slab slab
3533 * descriptor it is guaranteed to come from
3534 * a different cache, refer to comments before
3535 * alloc_slabmgmt.
3537 slab_destroy(cachep, slabp);
3538 } else {
3539 list_add(&slabp->list, &l3->slabs_free);
3541 } else {
3542 /* Unconditionally move a slab to the end of the
3543 * partial list on free - maximum time for the
3544 * other objects to be freed, too.
3546 list_add_tail(&slabp->list, &l3->slabs_partial);
3551 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3553 int batchcount;
3554 struct kmem_list3 *l3;
3555 int node = numa_mem_id();
3557 batchcount = ac->batchcount;
3558 #if DEBUG
3559 BUG_ON(!batchcount || batchcount > ac->avail);
3560 #endif
3561 check_irq_off();
3562 l3 = cachep->nodelists[node];
3563 spin_lock(&l3->list_lock);
3564 if (l3->shared) {
3565 struct array_cache *shared_array = l3->shared;
3566 int max = shared_array->limit - shared_array->avail;
3567 if (max) {
3568 if (batchcount > max)
3569 batchcount = max;
3570 memcpy(&(shared_array->entry[shared_array->avail]),
3571 ac->entry, sizeof(void *) * batchcount);
3572 shared_array->avail += batchcount;
3573 goto free_done;
3577 free_block(cachep, ac->entry, batchcount, node);
3578 free_done:
3579 #if STATS
3581 int i = 0;
3582 struct list_head *p;
3584 p = l3->slabs_free.next;
3585 while (p != &(l3->slabs_free)) {
3586 struct slab *slabp;
3588 slabp = list_entry(p, struct slab, list);
3589 BUG_ON(slabp->inuse);
3591 i++;
3592 p = p->next;
3594 STATS_SET_FREEABLE(cachep, i);
3596 #endif
3597 spin_unlock(&l3->list_lock);
3598 ac->avail -= batchcount;
3599 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3603 * Release an obj back to its cache. If the obj has a constructed state, it must
3604 * be in this state _before_ it is released. Called with disabled ints.
3606 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3608 struct array_cache *ac = cpu_cache_get(cachep);
3610 check_irq_off();
3611 kmemleak_free_recursive(objp, cachep->flags);
3612 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3614 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3617 * Skip calling cache_free_alien() when the platform is not numa.
3618 * This will avoid cache misses that happen while accessing slabp (which
3619 * is per page memory reference) to get nodeid. Instead use a global
3620 * variable to skip the call, which is mostly likely to be present in
3621 * the cache.
3623 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3624 return;
3626 if (likely(ac->avail < ac->limit)) {
3627 STATS_INC_FREEHIT(cachep);
3628 ac->entry[ac->avail++] = objp;
3629 return;
3630 } else {
3631 STATS_INC_FREEMISS(cachep);
3632 cache_flusharray(cachep, ac);
3633 ac->entry[ac->avail++] = objp;
3638 * kmem_cache_alloc - Allocate an object
3639 * @cachep: The cache to allocate from.
3640 * @flags: See kmalloc().
3642 * Allocate an object from this cache. The flags are only relevant
3643 * if the cache has no available objects.
3645 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3647 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3649 trace_kmem_cache_alloc(_RET_IP_, ret,
3650 obj_size(cachep), cachep->buffer_size, flags);
3652 return ret;
3654 EXPORT_SYMBOL(kmem_cache_alloc);
3656 #ifdef CONFIG_TRACING
3657 void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3659 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3661 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3662 #endif
3665 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3666 * @cachep: the cache we're checking against
3667 * @ptr: pointer to validate
3669 * This verifies that the untrusted pointer looks sane;
3670 * it is _not_ a guarantee that the pointer is actually
3671 * part of the slab cache in question, but it at least
3672 * validates that the pointer can be dereferenced and
3673 * looks half-way sane.
3675 * Currently only used for dentry validation.
3677 int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
3679 unsigned long size = cachep->buffer_size;
3680 struct page *page;
3682 if (unlikely(!kern_ptr_validate(ptr, size)))
3683 goto out;
3684 page = virt_to_page(ptr);
3685 if (unlikely(!PageSlab(page)))
3686 goto out;
3687 if (unlikely(page_get_cache(page) != cachep))
3688 goto out;
3689 return 1;
3690 out:
3691 return 0;
3694 #ifdef CONFIG_NUMA
3695 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3697 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3698 __builtin_return_address(0));
3700 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3701 obj_size(cachep), cachep->buffer_size,
3702 flags, nodeid);
3704 return ret;
3706 EXPORT_SYMBOL(kmem_cache_alloc_node);
3708 #ifdef CONFIG_TRACING
3709 void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3710 gfp_t flags,
3711 int nodeid)
3713 return __cache_alloc_node(cachep, flags, nodeid,
3714 __builtin_return_address(0));
3716 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3717 #endif
3719 static __always_inline void *
3720 __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3722 struct kmem_cache *cachep;
3723 void *ret;
3725 cachep = kmem_find_general_cachep(size, flags);
3726 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3727 return cachep;
3728 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3730 trace_kmalloc_node((unsigned long) caller, ret,
3731 size, cachep->buffer_size, flags, node);
3733 return ret;
3736 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3737 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3739 return __do_kmalloc_node(size, flags, node,
3740 __builtin_return_address(0));
3742 EXPORT_SYMBOL(__kmalloc_node);
3744 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3745 int node, unsigned long caller)
3747 return __do_kmalloc_node(size, flags, node, (void *)caller);
3749 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3750 #else
3751 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3753 return __do_kmalloc_node(size, flags, node, NULL);
3755 EXPORT_SYMBOL(__kmalloc_node);
3756 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3757 #endif /* CONFIG_NUMA */
3760 * __do_kmalloc - allocate memory
3761 * @size: how many bytes of memory are required.
3762 * @flags: the type of memory to allocate (see kmalloc).
3763 * @caller: function caller for debug tracking of the caller
3765 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3766 void *caller)
3768 struct kmem_cache *cachep;
3769 void *ret;
3771 /* If you want to save a few bytes .text space: replace
3772 * __ with kmem_.
3773 * Then kmalloc uses the uninlined functions instead of the inline
3774 * functions.
3776 cachep = __find_general_cachep(size, flags);
3777 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3778 return cachep;
3779 ret = __cache_alloc(cachep, flags, caller);
3781 trace_kmalloc((unsigned long) caller, ret,
3782 size, cachep->buffer_size, flags);
3784 return ret;
3788 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3789 void *__kmalloc(size_t size, gfp_t flags)
3791 return __do_kmalloc(size, flags, __builtin_return_address(0));
3793 EXPORT_SYMBOL(__kmalloc);
3795 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3797 return __do_kmalloc(size, flags, (void *)caller);
3799 EXPORT_SYMBOL(__kmalloc_track_caller);
3801 #else
3802 void *__kmalloc(size_t size, gfp_t flags)
3804 return __do_kmalloc(size, flags, NULL);
3806 EXPORT_SYMBOL(__kmalloc);
3807 #endif
3810 * kmem_cache_free - Deallocate an object
3811 * @cachep: The cache the allocation was from.
3812 * @objp: The previously allocated object.
3814 * Free an object which was previously allocated from this
3815 * cache.
3817 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3819 unsigned long flags;
3821 local_irq_save(flags);
3822 debug_check_no_locks_freed(objp, obj_size(cachep));
3823 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3824 debug_check_no_obj_freed(objp, obj_size(cachep));
3825 __cache_free(cachep, objp);
3826 local_irq_restore(flags);
3828 trace_kmem_cache_free(_RET_IP_, objp);
3830 EXPORT_SYMBOL(kmem_cache_free);
3833 * kfree - free previously allocated memory
3834 * @objp: pointer returned by kmalloc.
3836 * If @objp is NULL, no operation is performed.
3838 * Don't free memory not originally allocated by kmalloc()
3839 * or you will run into trouble.
3841 void kfree(const void *objp)
3843 struct kmem_cache *c;
3844 unsigned long flags;
3846 trace_kfree(_RET_IP_, objp);
3848 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3849 return;
3850 local_irq_save(flags);
3851 kfree_debugcheck(objp);
3852 c = virt_to_cache(objp);
3853 debug_check_no_locks_freed(objp, obj_size(c));
3854 debug_check_no_obj_freed(objp, obj_size(c));
3855 __cache_free(c, (void *)objp);
3856 local_irq_restore(flags);
3858 EXPORT_SYMBOL(kfree);
3860 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3862 return obj_size(cachep);
3864 EXPORT_SYMBOL(kmem_cache_size);
3866 const char *kmem_cache_name(struct kmem_cache *cachep)
3868 return cachep->name;
3870 EXPORT_SYMBOL_GPL(kmem_cache_name);
3873 * This initializes kmem_list3 or resizes various caches for all nodes.
3875 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3877 int node;
3878 struct kmem_list3 *l3;
3879 struct array_cache *new_shared;
3880 struct array_cache **new_alien = NULL;
3882 for_each_online_node(node) {
3884 if (use_alien_caches) {
3885 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3886 if (!new_alien)
3887 goto fail;
3890 new_shared = NULL;
3891 if (cachep->shared) {
3892 new_shared = alloc_arraycache(node,
3893 cachep->shared*cachep->batchcount,
3894 0xbaadf00d, gfp);
3895 if (!new_shared) {
3896 free_alien_cache(new_alien);
3897 goto fail;
3901 l3 = cachep->nodelists[node];
3902 if (l3) {
3903 struct array_cache *shared = l3->shared;
3905 spin_lock_irq(&l3->list_lock);
3907 if (shared)
3908 free_block(cachep, shared->entry,
3909 shared->avail, node);
3911 l3->shared = new_shared;
3912 if (!l3->alien) {
3913 l3->alien = new_alien;
3914 new_alien = NULL;
3916 l3->free_limit = (1 + nr_cpus_node(node)) *
3917 cachep->batchcount + cachep->num;
3918 spin_unlock_irq(&l3->list_lock);
3919 kfree(shared);
3920 free_alien_cache(new_alien);
3921 continue;
3923 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3924 if (!l3) {
3925 free_alien_cache(new_alien);
3926 kfree(new_shared);
3927 goto fail;
3930 kmem_list3_init(l3);
3931 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3932 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3933 l3->shared = new_shared;
3934 l3->alien = new_alien;
3935 l3->free_limit = (1 + nr_cpus_node(node)) *
3936 cachep->batchcount + cachep->num;
3937 cachep->nodelists[node] = l3;
3939 return 0;
3941 fail:
3942 if (!cachep->next.next) {
3943 /* Cache is not active yet. Roll back what we did */
3944 node--;
3945 while (node >= 0) {
3946 if (cachep->nodelists[node]) {
3947 l3 = cachep->nodelists[node];
3949 kfree(l3->shared);
3950 free_alien_cache(l3->alien);
3951 kfree(l3);
3952 cachep->nodelists[node] = NULL;
3954 node--;
3957 return -ENOMEM;
3960 struct ccupdate_struct {
3961 struct kmem_cache *cachep;
3962 struct array_cache *new[NR_CPUS];
3965 static void do_ccupdate_local(void *info)
3967 struct ccupdate_struct *new = info;
3968 struct array_cache *old;
3970 check_irq_off();
3971 old = cpu_cache_get(new->cachep);
3973 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3974 new->new[smp_processor_id()] = old;
3977 /* Always called with the cache_chain_mutex held */
3978 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3979 int batchcount, int shared, gfp_t gfp)
3981 struct ccupdate_struct *new;
3982 int i;
3984 new = kzalloc(sizeof(*new), gfp);
3985 if (!new)
3986 return -ENOMEM;
3988 for_each_online_cpu(i) {
3989 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3990 batchcount, gfp);
3991 if (!new->new[i]) {
3992 for (i--; i >= 0; i--)
3993 kfree(new->new[i]);
3994 kfree(new);
3995 return -ENOMEM;
3998 new->cachep = cachep;
4000 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4002 check_irq_on();
4003 cachep->batchcount = batchcount;
4004 cachep->limit = limit;
4005 cachep->shared = shared;
4007 for_each_online_cpu(i) {
4008 struct array_cache *ccold = new->new[i];
4009 if (!ccold)
4010 continue;
4011 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4012 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4013 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4014 kfree(ccold);
4016 kfree(new);
4017 return alloc_kmemlist(cachep, gfp);
4020 /* Called with cache_chain_mutex held always */
4021 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4023 int err;
4024 int limit, shared;
4027 * The head array serves three purposes:
4028 * - create a LIFO ordering, i.e. return objects that are cache-warm
4029 * - reduce the number of spinlock operations.
4030 * - reduce the number of linked list operations on the slab and
4031 * bufctl chains: array operations are cheaper.
4032 * The numbers are guessed, we should auto-tune as described by
4033 * Bonwick.
4035 if (cachep->buffer_size > 131072)
4036 limit = 1;
4037 else if (cachep->buffer_size > PAGE_SIZE)
4038 limit = 8;
4039 else if (cachep->buffer_size > 1024)
4040 limit = 24;
4041 else if (cachep->buffer_size > 256)
4042 limit = 54;
4043 else
4044 limit = 120;
4047 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4048 * allocation behaviour: Most allocs on one cpu, most free operations
4049 * on another cpu. For these cases, an efficient object passing between
4050 * cpus is necessary. This is provided by a shared array. The array
4051 * replaces Bonwick's magazine layer.
4052 * On uniprocessor, it's functionally equivalent (but less efficient)
4053 * to a larger limit. Thus disabled by default.
4055 shared = 0;
4056 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4057 shared = 8;
4059 #if DEBUG
4061 * With debugging enabled, large batchcount lead to excessively long
4062 * periods with disabled local interrupts. Limit the batchcount
4064 if (limit > 32)
4065 limit = 32;
4066 #endif
4067 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4068 if (err)
4069 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4070 cachep->name, -err);
4071 return err;
4075 * Drain an array if it contains any elements taking the l3 lock only if
4076 * necessary. Note that the l3 listlock also protects the array_cache
4077 * if drain_array() is used on the shared array.
4079 void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4080 struct array_cache *ac, int force, int node)
4082 int tofree;
4084 if (!ac || !ac->avail)
4085 return;
4086 if (ac->touched && !force) {
4087 ac->touched = 0;
4088 } else {
4089 spin_lock_irq(&l3->list_lock);
4090 if (ac->avail) {
4091 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4092 if (tofree > ac->avail)
4093 tofree = (ac->avail + 1) / 2;
4094 free_block(cachep, ac->entry, tofree, node);
4095 ac->avail -= tofree;
4096 memmove(ac->entry, &(ac->entry[tofree]),
4097 sizeof(void *) * ac->avail);
4099 spin_unlock_irq(&l3->list_lock);
4104 * cache_reap - Reclaim memory from caches.
4105 * @w: work descriptor
4107 * Called from workqueue/eventd every few seconds.
4108 * Purpose:
4109 * - clear the per-cpu caches for this CPU.
4110 * - return freeable pages to the main free memory pool.
4112 * If we cannot acquire the cache chain mutex then just give up - we'll try
4113 * again on the next iteration.
4115 static void cache_reap(struct work_struct *w)
4117 struct kmem_cache *searchp;
4118 struct kmem_list3 *l3;
4119 int node = numa_mem_id();
4120 struct delayed_work *work = to_delayed_work(w);
4122 if (!mutex_trylock(&cache_chain_mutex))
4123 /* Give up. Setup the next iteration. */
4124 goto out;
4126 list_for_each_entry(searchp, &cache_chain, next) {
4127 check_irq_on();
4130 * We only take the l3 lock if absolutely necessary and we
4131 * have established with reasonable certainty that
4132 * we can do some work if the lock was obtained.
4134 l3 = searchp->nodelists[node];
4136 reap_alien(searchp, l3);
4138 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4141 * These are racy checks but it does not matter
4142 * if we skip one check or scan twice.
4144 if (time_after(l3->next_reap, jiffies))
4145 goto next;
4147 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4149 drain_array(searchp, l3, l3->shared, 0, node);
4151 if (l3->free_touched)
4152 l3->free_touched = 0;
4153 else {
4154 int freed;
4156 freed = drain_freelist(searchp, l3, (l3->free_limit +
4157 5 * searchp->num - 1) / (5 * searchp->num));
4158 STATS_ADD_REAPED(searchp, freed);
4160 next:
4161 cond_resched();
4163 check_irq_on();
4164 mutex_unlock(&cache_chain_mutex);
4165 next_reap_node();
4166 out:
4167 /* Set up the next iteration */
4168 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4171 #ifdef CONFIG_SLABINFO
4173 static void print_slabinfo_header(struct seq_file *m)
4176 * Output format version, so at least we can change it
4177 * without _too_ many complaints.
4179 #if STATS
4180 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4181 #else
4182 seq_puts(m, "slabinfo - version: 2.1\n");
4183 #endif
4184 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4185 "<objperslab> <pagesperslab>");
4186 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4187 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4188 #if STATS
4189 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4190 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4191 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4192 #endif
4193 seq_putc(m, '\n');
4196 static void *s_start(struct seq_file *m, loff_t *pos)
4198 loff_t n = *pos;
4200 mutex_lock(&cache_chain_mutex);
4201 if (!n)
4202 print_slabinfo_header(m);
4204 return seq_list_start(&cache_chain, *pos);
4207 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4209 return seq_list_next(p, &cache_chain, pos);
4212 static void s_stop(struct seq_file *m, void *p)
4214 mutex_unlock(&cache_chain_mutex);
4217 static int s_show(struct seq_file *m, void *p)
4219 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4220 struct slab *slabp;
4221 unsigned long active_objs;
4222 unsigned long num_objs;
4223 unsigned long active_slabs = 0;
4224 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4225 const char *name;
4226 char *error = NULL;
4227 int node;
4228 struct kmem_list3 *l3;
4230 active_objs = 0;
4231 num_slabs = 0;
4232 for_each_online_node(node) {
4233 l3 = cachep->nodelists[node];
4234 if (!l3)
4235 continue;
4237 check_irq_on();
4238 spin_lock_irq(&l3->list_lock);
4240 list_for_each_entry(slabp, &l3->slabs_full, list) {
4241 if (slabp->inuse != cachep->num && !error)
4242 error = "slabs_full accounting error";
4243 active_objs += cachep->num;
4244 active_slabs++;
4246 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4247 if (slabp->inuse == cachep->num && !error)
4248 error = "slabs_partial inuse accounting error";
4249 if (!slabp->inuse && !error)
4250 error = "slabs_partial/inuse accounting error";
4251 active_objs += slabp->inuse;
4252 active_slabs++;
4254 list_for_each_entry(slabp, &l3->slabs_free, list) {
4255 if (slabp->inuse && !error)
4256 error = "slabs_free/inuse accounting error";
4257 num_slabs++;
4259 free_objects += l3->free_objects;
4260 if (l3->shared)
4261 shared_avail += l3->shared->avail;
4263 spin_unlock_irq(&l3->list_lock);
4265 num_slabs += active_slabs;
4266 num_objs = num_slabs * cachep->num;
4267 if (num_objs - active_objs != free_objects && !error)
4268 error = "free_objects accounting error";
4270 name = cachep->name;
4271 if (error)
4272 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4274 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4275 name, active_objs, num_objs, cachep->buffer_size,
4276 cachep->num, (1 << cachep->gfporder));
4277 seq_printf(m, " : tunables %4u %4u %4u",
4278 cachep->limit, cachep->batchcount, cachep->shared);
4279 seq_printf(m, " : slabdata %6lu %6lu %6lu",
4280 active_slabs, num_slabs, shared_avail);
4281 #if STATS
4282 { /* list3 stats */
4283 unsigned long high = cachep->high_mark;
4284 unsigned long allocs = cachep->num_allocations;
4285 unsigned long grown = cachep->grown;
4286 unsigned long reaped = cachep->reaped;
4287 unsigned long errors = cachep->errors;
4288 unsigned long max_freeable = cachep->max_freeable;
4289 unsigned long node_allocs = cachep->node_allocs;
4290 unsigned long node_frees = cachep->node_frees;
4291 unsigned long overflows = cachep->node_overflow;
4293 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4294 "%4lu %4lu %4lu %4lu %4lu",
4295 allocs, high, grown,
4296 reaped, errors, max_freeable, node_allocs,
4297 node_frees, overflows);
4299 /* cpu stats */
4301 unsigned long allochit = atomic_read(&cachep->allochit);
4302 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4303 unsigned long freehit = atomic_read(&cachep->freehit);
4304 unsigned long freemiss = atomic_read(&cachep->freemiss);
4306 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4307 allochit, allocmiss, freehit, freemiss);
4309 #endif
4310 seq_putc(m, '\n');
4311 return 0;
4315 * slabinfo_op - iterator that generates /proc/slabinfo
4317 * Output layout:
4318 * cache-name
4319 * num-active-objs
4320 * total-objs
4321 * object size
4322 * num-active-slabs
4323 * total-slabs
4324 * num-pages-per-slab
4325 * + further values on SMP and with statistics enabled
4328 static const struct seq_operations slabinfo_op = {
4329 .start = s_start,
4330 .next = s_next,
4331 .stop = s_stop,
4332 .show = s_show,
4335 #define MAX_SLABINFO_WRITE 128
4337 * slabinfo_write - Tuning for the slab allocator
4338 * @file: unused
4339 * @buffer: user buffer
4340 * @count: data length
4341 * @ppos: unused
4343 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4344 size_t count, loff_t *ppos)
4346 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4347 int limit, batchcount, shared, res;
4348 struct kmem_cache *cachep;
4350 if (count > MAX_SLABINFO_WRITE)
4351 return -EINVAL;
4352 if (copy_from_user(&kbuf, buffer, count))
4353 return -EFAULT;
4354 kbuf[MAX_SLABINFO_WRITE] = '\0';
4356 tmp = strchr(kbuf, ' ');
4357 if (!tmp)
4358 return -EINVAL;
4359 *tmp = '\0';
4360 tmp++;
4361 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4362 return -EINVAL;
4364 /* Find the cache in the chain of caches. */
4365 mutex_lock(&cache_chain_mutex);
4366 res = -EINVAL;
4367 list_for_each_entry(cachep, &cache_chain, next) {
4368 if (!strcmp(cachep->name, kbuf)) {
4369 if (limit < 1 || batchcount < 1 ||
4370 batchcount > limit || shared < 0) {
4371 res = 0;
4372 } else {
4373 res = do_tune_cpucache(cachep, limit,
4374 batchcount, shared,
4375 GFP_KERNEL);
4377 break;
4380 mutex_unlock(&cache_chain_mutex);
4381 if (res >= 0)
4382 res = count;
4383 return res;
4386 static int slabinfo_open(struct inode *inode, struct file *file)
4388 return seq_open(file, &slabinfo_op);
4391 static const struct file_operations proc_slabinfo_operations = {
4392 .open = slabinfo_open,
4393 .read = seq_read,
4394 .write = slabinfo_write,
4395 .llseek = seq_lseek,
4396 .release = seq_release,
4399 #ifdef CONFIG_DEBUG_SLAB_LEAK
4401 static void *leaks_start(struct seq_file *m, loff_t *pos)
4403 mutex_lock(&cache_chain_mutex);
4404 return seq_list_start(&cache_chain, *pos);
4407 static inline int add_caller(unsigned long *n, unsigned long v)
4409 unsigned long *p;
4410 int l;
4411 if (!v)
4412 return 1;
4413 l = n[1];
4414 p = n + 2;
4415 while (l) {
4416 int i = l/2;
4417 unsigned long *q = p + 2 * i;
4418 if (*q == v) {
4419 q[1]++;
4420 return 1;
4422 if (*q > v) {
4423 l = i;
4424 } else {
4425 p = q + 2;
4426 l -= i + 1;
4429 if (++n[1] == n[0])
4430 return 0;
4431 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4432 p[0] = v;
4433 p[1] = 1;
4434 return 1;
4437 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4439 void *p;
4440 int i;
4441 if (n[0] == n[1])
4442 return;
4443 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4444 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4445 continue;
4446 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4447 return;
4451 static void show_symbol(struct seq_file *m, unsigned long address)
4453 #ifdef CONFIG_KALLSYMS
4454 unsigned long offset, size;
4455 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4457 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4458 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4459 if (modname[0])
4460 seq_printf(m, " [%s]", modname);
4461 return;
4463 #endif
4464 seq_printf(m, "%p", (void *)address);
4467 static int leaks_show(struct seq_file *m, void *p)
4469 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4470 struct slab *slabp;
4471 struct kmem_list3 *l3;
4472 const char *name;
4473 unsigned long *n = m->private;
4474 int node;
4475 int i;
4477 if (!(cachep->flags & SLAB_STORE_USER))
4478 return 0;
4479 if (!(cachep->flags & SLAB_RED_ZONE))
4480 return 0;
4482 /* OK, we can do it */
4484 n[1] = 0;
4486 for_each_online_node(node) {
4487 l3 = cachep->nodelists[node];
4488 if (!l3)
4489 continue;
4491 check_irq_on();
4492 spin_lock_irq(&l3->list_lock);
4494 list_for_each_entry(slabp, &l3->slabs_full, list)
4495 handle_slab(n, cachep, slabp);
4496 list_for_each_entry(slabp, &l3->slabs_partial, list)
4497 handle_slab(n, cachep, slabp);
4498 spin_unlock_irq(&l3->list_lock);
4500 name = cachep->name;
4501 if (n[0] == n[1]) {
4502 /* Increase the buffer size */
4503 mutex_unlock(&cache_chain_mutex);
4504 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4505 if (!m->private) {
4506 /* Too bad, we are really out */
4507 m->private = n;
4508 mutex_lock(&cache_chain_mutex);
4509 return -ENOMEM;
4511 *(unsigned long *)m->private = n[0] * 2;
4512 kfree(n);
4513 mutex_lock(&cache_chain_mutex);
4514 /* Now make sure this entry will be retried */
4515 m->count = m->size;
4516 return 0;
4518 for (i = 0; i < n[1]; i++) {
4519 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4520 show_symbol(m, n[2*i+2]);
4521 seq_putc(m, '\n');
4524 return 0;
4527 static const struct seq_operations slabstats_op = {
4528 .start = leaks_start,
4529 .next = s_next,
4530 .stop = s_stop,
4531 .show = leaks_show,
4534 static int slabstats_open(struct inode *inode, struct file *file)
4536 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4537 int ret = -ENOMEM;
4538 if (n) {
4539 ret = seq_open(file, &slabstats_op);
4540 if (!ret) {
4541 struct seq_file *m = file->private_data;
4542 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4543 m->private = n;
4544 n = NULL;
4546 kfree(n);
4548 return ret;
4551 static const struct file_operations proc_slabstats_operations = {
4552 .open = slabstats_open,
4553 .read = seq_read,
4554 .llseek = seq_lseek,
4555 .release = seq_release_private,
4557 #endif
4559 static int __init slab_proc_init(void)
4561 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4562 #ifdef CONFIG_DEBUG_SLAB_LEAK
4563 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4564 #endif
4565 return 0;
4567 module_init(slab_proc_init);
4568 #endif
4571 * ksize - get the actual amount of memory allocated for a given object
4572 * @objp: Pointer to the object
4574 * kmalloc may internally round up allocations and return more memory
4575 * than requested. ksize() can be used to determine the actual amount of
4576 * memory allocated. The caller may use this additional memory, even though
4577 * a smaller amount of memory was initially specified with the kmalloc call.
4578 * The caller must guarantee that objp points to a valid object previously
4579 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4580 * must not be freed during the duration of the call.
4582 size_t ksize(const void *objp)
4584 BUG_ON(!objp);
4585 if (unlikely(objp == ZERO_SIZE_PTR))
4586 return 0;
4588 return obj_size(virt_to_cache(objp));
4590 EXPORT_SYMBOL(ksize);