2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
11 * This handles all read/write requests to block devices
13 #include <linux/config.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
35 #include <scsi/scsi_cmnd.h>
37 static void blk_unplug_work(void *data
);
38 static void blk_unplug_timeout(unsigned long data
);
39 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
);
40 static void init_request_from_bio(struct request
*req
, struct bio
*bio
);
41 static int __make_request(request_queue_t
*q
, struct bio
*bio
);
44 * For the allocated request tables
46 static kmem_cache_t
*request_cachep
;
49 * For queue allocation
51 static kmem_cache_t
*requestq_cachep
;
54 * For io context allocations
56 static kmem_cache_t
*iocontext_cachep
;
58 static wait_queue_head_t congestion_wqh
[2] = {
59 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[0]),
60 __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh
[1])
64 * Controlling structure to kblockd
66 static struct workqueue_struct
*kblockd_workqueue
;
68 unsigned long blk_max_low_pfn
, blk_max_pfn
;
70 EXPORT_SYMBOL(blk_max_low_pfn
);
71 EXPORT_SYMBOL(blk_max_pfn
);
73 static DEFINE_PER_CPU(struct list_head
, blk_cpu_done
);
75 /* Amount of time in which a process may batch requests */
76 #define BLK_BATCH_TIME (HZ/50UL)
78 /* Number of requests a "batching" process may submit */
79 #define BLK_BATCH_REQ 32
82 * Return the threshold (number of used requests) at which the queue is
83 * considered to be congested. It include a little hysteresis to keep the
84 * context switch rate down.
86 static inline int queue_congestion_on_threshold(struct request_queue
*q
)
88 return q
->nr_congestion_on
;
92 * The threshold at which a queue is considered to be uncongested
94 static inline int queue_congestion_off_threshold(struct request_queue
*q
)
96 return q
->nr_congestion_off
;
99 static void blk_queue_congestion_threshold(struct request_queue
*q
)
103 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
104 if (nr
> q
->nr_requests
)
106 q
->nr_congestion_on
= nr
;
108 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
111 q
->nr_congestion_off
= nr
;
115 * A queue has just exitted congestion. Note this in the global counter of
116 * congested queues, and wake up anyone who was waiting for requests to be
119 static void clear_queue_congested(request_queue_t
*q
, int rw
)
122 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
124 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
125 clear_bit(bit
, &q
->backing_dev_info
.state
);
126 smp_mb__after_clear_bit();
127 if (waitqueue_active(wqh
))
132 * A queue has just entered congestion. Flag that in the queue's VM-visible
133 * state flags and increment the global gounter of congested queues.
135 static void set_queue_congested(request_queue_t
*q
, int rw
)
139 bit
= (rw
== WRITE
) ? BDI_write_congested
: BDI_read_congested
;
140 set_bit(bit
, &q
->backing_dev_info
.state
);
144 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
147 * Locates the passed device's request queue and returns the address of its
150 * Will return NULL if the request queue cannot be located.
152 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
154 struct backing_dev_info
*ret
= NULL
;
155 request_queue_t
*q
= bdev_get_queue(bdev
);
158 ret
= &q
->backing_dev_info
;
162 EXPORT_SYMBOL(blk_get_backing_dev_info
);
164 void blk_queue_activity_fn(request_queue_t
*q
, activity_fn
*fn
, void *data
)
167 q
->activity_data
= data
;
170 EXPORT_SYMBOL(blk_queue_activity_fn
);
173 * blk_queue_prep_rq - set a prepare_request function for queue
175 * @pfn: prepare_request function
177 * It's possible for a queue to register a prepare_request callback which
178 * is invoked before the request is handed to the request_fn. The goal of
179 * the function is to prepare a request for I/O, it can be used to build a
180 * cdb from the request data for instance.
183 void blk_queue_prep_rq(request_queue_t
*q
, prep_rq_fn
*pfn
)
188 EXPORT_SYMBOL(blk_queue_prep_rq
);
191 * blk_queue_merge_bvec - set a merge_bvec function for queue
193 * @mbfn: merge_bvec_fn
195 * Usually queues have static limitations on the max sectors or segments that
196 * we can put in a request. Stacking drivers may have some settings that
197 * are dynamic, and thus we have to query the queue whether it is ok to
198 * add a new bio_vec to a bio at a given offset or not. If the block device
199 * has such limitations, it needs to register a merge_bvec_fn to control
200 * the size of bio's sent to it. Note that a block device *must* allow a
201 * single page to be added to an empty bio. The block device driver may want
202 * to use the bio_split() function to deal with these bio's. By default
203 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
206 void blk_queue_merge_bvec(request_queue_t
*q
, merge_bvec_fn
*mbfn
)
208 q
->merge_bvec_fn
= mbfn
;
211 EXPORT_SYMBOL(blk_queue_merge_bvec
);
213 void blk_queue_softirq_done(request_queue_t
*q
, softirq_done_fn
*fn
)
215 q
->softirq_done_fn
= fn
;
218 EXPORT_SYMBOL(blk_queue_softirq_done
);
221 * blk_queue_make_request - define an alternate make_request function for a device
222 * @q: the request queue for the device to be affected
223 * @mfn: the alternate make_request function
226 * The normal way for &struct bios to be passed to a device
227 * driver is for them to be collected into requests on a request
228 * queue, and then to allow the device driver to select requests
229 * off that queue when it is ready. This works well for many block
230 * devices. However some block devices (typically virtual devices
231 * such as md or lvm) do not benefit from the processing on the
232 * request queue, and are served best by having the requests passed
233 * directly to them. This can be achieved by providing a function
234 * to blk_queue_make_request().
237 * The driver that does this *must* be able to deal appropriately
238 * with buffers in "highmemory". This can be accomplished by either calling
239 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
240 * blk_queue_bounce() to create a buffer in normal memory.
242 void blk_queue_make_request(request_queue_t
* q
, make_request_fn
* mfn
)
247 q
->nr_requests
= BLKDEV_MAX_RQ
;
248 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
249 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
250 q
->make_request_fn
= mfn
;
251 q
->backing_dev_info
.ra_pages
= (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
252 q
->backing_dev_info
.state
= 0;
253 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
254 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
255 blk_queue_hardsect_size(q
, 512);
256 blk_queue_dma_alignment(q
, 511);
257 blk_queue_congestion_threshold(q
);
258 q
->nr_batching
= BLK_BATCH_REQ
;
260 q
->unplug_thresh
= 4; /* hmm */
261 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
262 if (q
->unplug_delay
== 0)
265 INIT_WORK(&q
->unplug_work
, blk_unplug_work
, q
);
267 q
->unplug_timer
.function
= blk_unplug_timeout
;
268 q
->unplug_timer
.data
= (unsigned long)q
;
271 * by default assume old behaviour and bounce for any highmem page
273 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
275 blk_queue_activity_fn(q
, NULL
, NULL
);
278 EXPORT_SYMBOL(blk_queue_make_request
);
280 static inline void rq_init(request_queue_t
*q
, struct request
*rq
)
282 INIT_LIST_HEAD(&rq
->queuelist
);
283 INIT_LIST_HEAD(&rq
->donelist
);
286 rq
->rq_status
= RQ_ACTIVE
;
287 rq
->bio
= rq
->biotail
= NULL
;
296 rq
->nr_phys_segments
= 0;
299 rq
->end_io_data
= NULL
;
300 rq
->completion_data
= NULL
;
304 * blk_queue_ordered - does this queue support ordered writes
305 * @q: the request queue
306 * @ordered: one of QUEUE_ORDERED_*
309 * For journalled file systems, doing ordered writes on a commit
310 * block instead of explicitly doing wait_on_buffer (which is bad
311 * for performance) can be a big win. Block drivers supporting this
312 * feature should call this function and indicate so.
315 int blk_queue_ordered(request_queue_t
*q
, unsigned ordered
,
316 prepare_flush_fn
*prepare_flush_fn
)
318 if (ordered
& (QUEUE_ORDERED_PREFLUSH
| QUEUE_ORDERED_POSTFLUSH
) &&
319 prepare_flush_fn
== NULL
) {
320 printk(KERN_ERR
"blk_queue_ordered: prepare_flush_fn required\n");
324 if (ordered
!= QUEUE_ORDERED_NONE
&&
325 ordered
!= QUEUE_ORDERED_DRAIN
&&
326 ordered
!= QUEUE_ORDERED_DRAIN_FLUSH
&&
327 ordered
!= QUEUE_ORDERED_DRAIN_FUA
&&
328 ordered
!= QUEUE_ORDERED_TAG
&&
329 ordered
!= QUEUE_ORDERED_TAG_FLUSH
&&
330 ordered
!= QUEUE_ORDERED_TAG_FUA
) {
331 printk(KERN_ERR
"blk_queue_ordered: bad value %d\n", ordered
);
335 q
->next_ordered
= ordered
;
336 q
->prepare_flush_fn
= prepare_flush_fn
;
341 EXPORT_SYMBOL(blk_queue_ordered
);
344 * blk_queue_issue_flush_fn - set function for issuing a flush
345 * @q: the request queue
346 * @iff: the function to be called issuing the flush
349 * If a driver supports issuing a flush command, the support is notified
350 * to the block layer by defining it through this call.
353 void blk_queue_issue_flush_fn(request_queue_t
*q
, issue_flush_fn
*iff
)
355 q
->issue_flush_fn
= iff
;
358 EXPORT_SYMBOL(blk_queue_issue_flush_fn
);
361 * Cache flushing for ordered writes handling
363 inline unsigned blk_ordered_cur_seq(request_queue_t
*q
)
367 return 1 << ffz(q
->ordseq
);
370 unsigned blk_ordered_req_seq(struct request
*rq
)
372 request_queue_t
*q
= rq
->q
;
374 BUG_ON(q
->ordseq
== 0);
376 if (rq
== &q
->pre_flush_rq
)
377 return QUEUE_ORDSEQ_PREFLUSH
;
378 if (rq
== &q
->bar_rq
)
379 return QUEUE_ORDSEQ_BAR
;
380 if (rq
== &q
->post_flush_rq
)
381 return QUEUE_ORDSEQ_POSTFLUSH
;
383 if ((rq
->flags
& REQ_ORDERED_COLOR
) ==
384 (q
->orig_bar_rq
->flags
& REQ_ORDERED_COLOR
))
385 return QUEUE_ORDSEQ_DRAIN
;
387 return QUEUE_ORDSEQ_DONE
;
390 void blk_ordered_complete_seq(request_queue_t
*q
, unsigned seq
, int error
)
395 if (error
&& !q
->orderr
)
398 BUG_ON(q
->ordseq
& seq
);
401 if (blk_ordered_cur_seq(q
) != QUEUE_ORDSEQ_DONE
)
405 * Okay, sequence complete.
408 uptodate
= q
->orderr
? q
->orderr
: 1;
412 end_that_request_first(rq
, uptodate
, rq
->hard_nr_sectors
);
413 end_that_request_last(rq
, uptodate
);
416 static void pre_flush_end_io(struct request
*rq
, int error
)
418 elv_completed_request(rq
->q
, rq
);
419 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_PREFLUSH
, error
);
422 static void bar_end_io(struct request
*rq
, int error
)
424 elv_completed_request(rq
->q
, rq
);
425 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_BAR
, error
);
428 static void post_flush_end_io(struct request
*rq
, int error
)
430 elv_completed_request(rq
->q
, rq
);
431 blk_ordered_complete_seq(rq
->q
, QUEUE_ORDSEQ_POSTFLUSH
, error
);
434 static void queue_flush(request_queue_t
*q
, unsigned which
)
437 rq_end_io_fn
*end_io
;
439 if (which
== QUEUE_ORDERED_PREFLUSH
) {
440 rq
= &q
->pre_flush_rq
;
441 end_io
= pre_flush_end_io
;
443 rq
= &q
->post_flush_rq
;
444 end_io
= post_flush_end_io
;
448 rq
->flags
= REQ_HARDBARRIER
;
449 rq
->elevator_private
= NULL
;
450 rq
->rq_disk
= q
->bar_rq
.rq_disk
;
453 q
->prepare_flush_fn(q
, rq
);
455 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FRONT
, 0);
458 static inline struct request
*start_ordered(request_queue_t
*q
,
463 q
->ordered
= q
->next_ordered
;
464 q
->ordseq
|= QUEUE_ORDSEQ_STARTED
;
467 * Prep proxy barrier request.
469 blkdev_dequeue_request(rq
);
473 rq
->flags
= bio_data_dir(q
->orig_bar_rq
->bio
);
474 rq
->flags
|= q
->ordered
& QUEUE_ORDERED_FUA
? REQ_FUA
: 0;
475 rq
->elevator_private
= NULL
;
477 init_request_from_bio(rq
, q
->orig_bar_rq
->bio
);
478 rq
->end_io
= bar_end_io
;
481 * Queue ordered sequence. As we stack them at the head, we
482 * need to queue in reverse order. Note that we rely on that
483 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
484 * request gets inbetween ordered sequence.
486 if (q
->ordered
& QUEUE_ORDERED_POSTFLUSH
)
487 queue_flush(q
, QUEUE_ORDERED_POSTFLUSH
);
489 q
->ordseq
|= QUEUE_ORDSEQ_POSTFLUSH
;
491 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FRONT
, 0);
493 if (q
->ordered
& QUEUE_ORDERED_PREFLUSH
) {
494 queue_flush(q
, QUEUE_ORDERED_PREFLUSH
);
495 rq
= &q
->pre_flush_rq
;
497 q
->ordseq
|= QUEUE_ORDSEQ_PREFLUSH
;
499 if ((q
->ordered
& QUEUE_ORDERED_TAG
) || q
->in_flight
== 0)
500 q
->ordseq
|= QUEUE_ORDSEQ_DRAIN
;
507 int blk_do_ordered(request_queue_t
*q
, struct request
**rqp
)
509 struct request
*rq
= *rqp
, *allowed_rq
;
510 int is_barrier
= blk_fs_request(rq
) && blk_barrier_rq(rq
);
516 if (q
->next_ordered
!= QUEUE_ORDERED_NONE
) {
517 *rqp
= start_ordered(q
, rq
);
521 * This can happen when the queue switches to
522 * ORDERED_NONE while this request is on it.
524 blkdev_dequeue_request(rq
);
525 end_that_request_first(rq
, -EOPNOTSUPP
,
526 rq
->hard_nr_sectors
);
527 end_that_request_last(rq
, -EOPNOTSUPP
);
533 if (q
->ordered
& QUEUE_ORDERED_TAG
) {
534 if (is_barrier
&& rq
!= &q
->bar_rq
)
539 switch (blk_ordered_cur_seq(q
)) {
540 case QUEUE_ORDSEQ_PREFLUSH
:
541 allowed_rq
= &q
->pre_flush_rq
;
543 case QUEUE_ORDSEQ_BAR
:
544 allowed_rq
= &q
->bar_rq
;
546 case QUEUE_ORDSEQ_POSTFLUSH
:
547 allowed_rq
= &q
->post_flush_rq
;
554 if (rq
!= allowed_rq
&&
555 (blk_fs_request(rq
) || rq
== &q
->pre_flush_rq
||
556 rq
== &q
->post_flush_rq
))
562 static int flush_dry_bio_endio(struct bio
*bio
, unsigned int bytes
, int error
)
564 request_queue_t
*q
= bio
->bi_private
;
565 struct bio_vec
*bvec
;
569 * This is dry run, restore bio_sector and size. We'll finish
570 * this request again with the original bi_end_io after an
571 * error occurs or post flush is complete.
580 bio_for_each_segment(bvec
, bio
, i
) {
581 bvec
->bv_len
+= bvec
->bv_offset
;
586 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
587 bio
->bi_size
= q
->bi_size
;
588 bio
->bi_sector
-= (q
->bi_size
>> 9);
594 static inline int ordered_bio_endio(struct request
*rq
, struct bio
*bio
,
595 unsigned int nbytes
, int error
)
597 request_queue_t
*q
= rq
->q
;
601 if (&q
->bar_rq
!= rq
)
605 * Okay, this is the barrier request in progress, dry finish it.
607 if (error
&& !q
->orderr
)
610 endio
= bio
->bi_end_io
;
611 private = bio
->bi_private
;
612 bio
->bi_end_io
= flush_dry_bio_endio
;
615 bio_endio(bio
, nbytes
, error
);
617 bio
->bi_end_io
= endio
;
618 bio
->bi_private
= private;
624 * blk_queue_bounce_limit - set bounce buffer limit for queue
625 * @q: the request queue for the device
626 * @dma_addr: bus address limit
629 * Different hardware can have different requirements as to what pages
630 * it can do I/O directly to. A low level driver can call
631 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
632 * buffers for doing I/O to pages residing above @page. By default
633 * the block layer sets this to the highest numbered "low" memory page.
635 void blk_queue_bounce_limit(request_queue_t
*q
, u64 dma_addr
)
637 unsigned long bounce_pfn
= dma_addr
>> PAGE_SHIFT
;
640 * set appropriate bounce gfp mask -- unfortunately we don't have a
641 * full 4GB zone, so we have to resort to low memory for any bounces.
642 * ISA has its own < 16MB zone.
644 if (bounce_pfn
< blk_max_low_pfn
) {
645 BUG_ON(dma_addr
< BLK_BOUNCE_ISA
);
646 init_emergency_isa_pool();
647 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
649 q
->bounce_gfp
= GFP_NOIO
;
651 q
->bounce_pfn
= bounce_pfn
;
654 EXPORT_SYMBOL(blk_queue_bounce_limit
);
657 * blk_queue_max_sectors - set max sectors for a request for this queue
658 * @q: the request queue for the device
659 * @max_sectors: max sectors in the usual 512b unit
662 * Enables a low level driver to set an upper limit on the size of
665 void blk_queue_max_sectors(request_queue_t
*q
, unsigned short max_sectors
)
667 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
668 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
669 printk("%s: set to minimum %d\n", __FUNCTION__
, max_sectors
);
672 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
673 q
->max_hw_sectors
= q
->max_sectors
= max_sectors
;
675 q
->max_sectors
= BLK_DEF_MAX_SECTORS
;
676 q
->max_hw_sectors
= max_sectors
;
680 EXPORT_SYMBOL(blk_queue_max_sectors
);
683 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
684 * @q: the request queue for the device
685 * @max_segments: max number of segments
688 * Enables a low level driver to set an upper limit on the number of
689 * physical data segments in a request. This would be the largest sized
690 * scatter list the driver could handle.
692 void blk_queue_max_phys_segments(request_queue_t
*q
, unsigned short max_segments
)
696 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
699 q
->max_phys_segments
= max_segments
;
702 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
705 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
706 * @q: the request queue for the device
707 * @max_segments: max number of segments
710 * Enables a low level driver to set an upper limit on the number of
711 * hw data segments in a request. This would be the largest number of
712 * address/length pairs the host adapter can actually give as once
715 void blk_queue_max_hw_segments(request_queue_t
*q
, unsigned short max_segments
)
719 printk("%s: set to minimum %d\n", __FUNCTION__
, max_segments
);
722 q
->max_hw_segments
= max_segments
;
725 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
728 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
729 * @q: the request queue for the device
730 * @max_size: max size of segment in bytes
733 * Enables a low level driver to set an upper limit on the size of a
736 void blk_queue_max_segment_size(request_queue_t
*q
, unsigned int max_size
)
738 if (max_size
< PAGE_CACHE_SIZE
) {
739 max_size
= PAGE_CACHE_SIZE
;
740 printk("%s: set to minimum %d\n", __FUNCTION__
, max_size
);
743 q
->max_segment_size
= max_size
;
746 EXPORT_SYMBOL(blk_queue_max_segment_size
);
749 * blk_queue_hardsect_size - set hardware sector size for the queue
750 * @q: the request queue for the device
751 * @size: the hardware sector size, in bytes
754 * This should typically be set to the lowest possible sector size
755 * that the hardware can operate on (possible without reverting to
756 * even internal read-modify-write operations). Usually the default
757 * of 512 covers most hardware.
759 void blk_queue_hardsect_size(request_queue_t
*q
, unsigned short size
)
761 q
->hardsect_size
= size
;
764 EXPORT_SYMBOL(blk_queue_hardsect_size
);
767 * Returns the minimum that is _not_ zero, unless both are zero.
769 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
772 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
773 * @t: the stacking driver (top)
774 * @b: the underlying device (bottom)
776 void blk_queue_stack_limits(request_queue_t
*t
, request_queue_t
*b
)
778 /* zero is "infinity" */
779 t
->max_sectors
= min_not_zero(t
->max_sectors
,b
->max_sectors
);
780 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
,b
->max_hw_sectors
);
782 t
->max_phys_segments
= min(t
->max_phys_segments
,b
->max_phys_segments
);
783 t
->max_hw_segments
= min(t
->max_hw_segments
,b
->max_hw_segments
);
784 t
->max_segment_size
= min(t
->max_segment_size
,b
->max_segment_size
);
785 t
->hardsect_size
= max(t
->hardsect_size
,b
->hardsect_size
);
788 EXPORT_SYMBOL(blk_queue_stack_limits
);
791 * blk_queue_segment_boundary - set boundary rules for segment merging
792 * @q: the request queue for the device
793 * @mask: the memory boundary mask
795 void blk_queue_segment_boundary(request_queue_t
*q
, unsigned long mask
)
797 if (mask
< PAGE_CACHE_SIZE
- 1) {
798 mask
= PAGE_CACHE_SIZE
- 1;
799 printk("%s: set to minimum %lx\n", __FUNCTION__
, mask
);
802 q
->seg_boundary_mask
= mask
;
805 EXPORT_SYMBOL(blk_queue_segment_boundary
);
808 * blk_queue_dma_alignment - set dma length and memory alignment
809 * @q: the request queue for the device
810 * @mask: alignment mask
813 * set required memory and length aligment for direct dma transactions.
814 * this is used when buiding direct io requests for the queue.
817 void blk_queue_dma_alignment(request_queue_t
*q
, int mask
)
819 q
->dma_alignment
= mask
;
822 EXPORT_SYMBOL(blk_queue_dma_alignment
);
825 * blk_queue_find_tag - find a request by its tag and queue
826 * @q: The request queue for the device
827 * @tag: The tag of the request
830 * Should be used when a device returns a tag and you want to match
833 * no locks need be held.
835 struct request
*blk_queue_find_tag(request_queue_t
*q
, int tag
)
837 struct blk_queue_tag
*bqt
= q
->queue_tags
;
839 if (unlikely(bqt
== NULL
|| tag
>= bqt
->real_max_depth
))
842 return bqt
->tag_index
[tag
];
845 EXPORT_SYMBOL(blk_queue_find_tag
);
848 * __blk_queue_free_tags - release tag maintenance info
849 * @q: the request queue for the device
852 * blk_cleanup_queue() will take care of calling this function, if tagging
853 * has been used. So there's no need to call this directly.
855 static void __blk_queue_free_tags(request_queue_t
*q
)
857 struct blk_queue_tag
*bqt
= q
->queue_tags
;
862 if (atomic_dec_and_test(&bqt
->refcnt
)) {
864 BUG_ON(!list_empty(&bqt
->busy_list
));
866 kfree(bqt
->tag_index
);
867 bqt
->tag_index
= NULL
;
875 q
->queue_tags
= NULL
;
876 q
->queue_flags
&= ~(1 << QUEUE_FLAG_QUEUED
);
880 * blk_queue_free_tags - release tag maintenance info
881 * @q: the request queue for the device
884 * This is used to disabled tagged queuing to a device, yet leave
887 void blk_queue_free_tags(request_queue_t
*q
)
889 clear_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
892 EXPORT_SYMBOL(blk_queue_free_tags
);
895 init_tag_map(request_queue_t
*q
, struct blk_queue_tag
*tags
, int depth
)
897 struct request
**tag_index
;
898 unsigned long *tag_map
;
901 if (depth
> q
->nr_requests
* 2) {
902 depth
= q
->nr_requests
* 2;
903 printk(KERN_ERR
"%s: adjusted depth to %d\n",
904 __FUNCTION__
, depth
);
907 tag_index
= kmalloc(depth
* sizeof(struct request
*), GFP_ATOMIC
);
911 nr_ulongs
= ALIGN(depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
912 tag_map
= kmalloc(nr_ulongs
* sizeof(unsigned long), GFP_ATOMIC
);
916 memset(tag_index
, 0, depth
* sizeof(struct request
*));
917 memset(tag_map
, 0, nr_ulongs
* sizeof(unsigned long));
918 tags
->real_max_depth
= depth
;
919 tags
->max_depth
= depth
;
920 tags
->tag_index
= tag_index
;
921 tags
->tag_map
= tag_map
;
930 * blk_queue_init_tags - initialize the queue tag info
931 * @q: the request queue for the device
932 * @depth: the maximum queue depth supported
933 * @tags: the tag to use
935 int blk_queue_init_tags(request_queue_t
*q
, int depth
,
936 struct blk_queue_tag
*tags
)
940 BUG_ON(tags
&& q
->queue_tags
&& tags
!= q
->queue_tags
);
942 if (!tags
&& !q
->queue_tags
) {
943 tags
= kmalloc(sizeof(struct blk_queue_tag
), GFP_ATOMIC
);
947 if (init_tag_map(q
, tags
, depth
))
950 INIT_LIST_HEAD(&tags
->busy_list
);
952 atomic_set(&tags
->refcnt
, 1);
953 } else if (q
->queue_tags
) {
954 if ((rc
= blk_queue_resize_tags(q
, depth
)))
956 set_bit(QUEUE_FLAG_QUEUED
, &q
->queue_flags
);
959 atomic_inc(&tags
->refcnt
);
962 * assign it, all done
964 q
->queue_tags
= tags
;
965 q
->queue_flags
|= (1 << QUEUE_FLAG_QUEUED
);
972 EXPORT_SYMBOL(blk_queue_init_tags
);
975 * blk_queue_resize_tags - change the queueing depth
976 * @q: the request queue for the device
977 * @new_depth: the new max command queueing depth
980 * Must be called with the queue lock held.
982 int blk_queue_resize_tags(request_queue_t
*q
, int new_depth
)
984 struct blk_queue_tag
*bqt
= q
->queue_tags
;
985 struct request
**tag_index
;
986 unsigned long *tag_map
;
987 int max_depth
, nr_ulongs
;
993 * if we already have large enough real_max_depth. just
994 * adjust max_depth. *NOTE* as requests with tag value
995 * between new_depth and real_max_depth can be in-flight, tag
996 * map can not be shrunk blindly here.
998 if (new_depth
<= bqt
->real_max_depth
) {
999 bqt
->max_depth
= new_depth
;
1004 * save the old state info, so we can copy it back
1006 tag_index
= bqt
->tag_index
;
1007 tag_map
= bqt
->tag_map
;
1008 max_depth
= bqt
->real_max_depth
;
1010 if (init_tag_map(q
, bqt
, new_depth
))
1013 memcpy(bqt
->tag_index
, tag_index
, max_depth
* sizeof(struct request
*));
1014 nr_ulongs
= ALIGN(max_depth
, BITS_PER_LONG
) / BITS_PER_LONG
;
1015 memcpy(bqt
->tag_map
, tag_map
, nr_ulongs
* sizeof(unsigned long));
1022 EXPORT_SYMBOL(blk_queue_resize_tags
);
1025 * blk_queue_end_tag - end tag operations for a request
1026 * @q: the request queue for the device
1027 * @rq: the request that has completed
1030 * Typically called when end_that_request_first() returns 0, meaning
1031 * all transfers have been done for a request. It's important to call
1032 * this function before end_that_request_last(), as that will put the
1033 * request back on the free list thus corrupting the internal tag list.
1036 * queue lock must be held.
1038 void blk_queue_end_tag(request_queue_t
*q
, struct request
*rq
)
1040 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1045 if (unlikely(tag
>= bqt
->real_max_depth
))
1047 * This can happen after tag depth has been reduced.
1048 * FIXME: how about a warning or info message here?
1052 if (unlikely(!__test_and_clear_bit(tag
, bqt
->tag_map
))) {
1053 printk(KERN_ERR
"%s: attempt to clear non-busy tag (%d)\n",
1058 list_del_init(&rq
->queuelist
);
1059 rq
->flags
&= ~REQ_QUEUED
;
1062 if (unlikely(bqt
->tag_index
[tag
] == NULL
))
1063 printk(KERN_ERR
"%s: tag %d is missing\n",
1066 bqt
->tag_index
[tag
] = NULL
;
1070 EXPORT_SYMBOL(blk_queue_end_tag
);
1073 * blk_queue_start_tag - find a free tag and assign it
1074 * @q: the request queue for the device
1075 * @rq: the block request that needs tagging
1078 * This can either be used as a stand-alone helper, or possibly be
1079 * assigned as the queue &prep_rq_fn (in which case &struct request
1080 * automagically gets a tag assigned). Note that this function
1081 * assumes that any type of request can be queued! if this is not
1082 * true for your device, you must check the request type before
1083 * calling this function. The request will also be removed from
1084 * the request queue, so it's the drivers responsibility to readd
1085 * it if it should need to be restarted for some reason.
1088 * queue lock must be held.
1090 int blk_queue_start_tag(request_queue_t
*q
, struct request
*rq
)
1092 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1095 if (unlikely((rq
->flags
& REQ_QUEUED
))) {
1097 "%s: request %p for device [%s] already tagged %d",
1099 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->tag
);
1103 tag
= find_first_zero_bit(bqt
->tag_map
, bqt
->max_depth
);
1104 if (tag
>= bqt
->max_depth
)
1107 __set_bit(tag
, bqt
->tag_map
);
1109 rq
->flags
|= REQ_QUEUED
;
1111 bqt
->tag_index
[tag
] = rq
;
1112 blkdev_dequeue_request(rq
);
1113 list_add(&rq
->queuelist
, &bqt
->busy_list
);
1118 EXPORT_SYMBOL(blk_queue_start_tag
);
1121 * blk_queue_invalidate_tags - invalidate all pending tags
1122 * @q: the request queue for the device
1125 * Hardware conditions may dictate a need to stop all pending requests.
1126 * In this case, we will safely clear the block side of the tag queue and
1127 * readd all requests to the request queue in the right order.
1130 * queue lock must be held.
1132 void blk_queue_invalidate_tags(request_queue_t
*q
)
1134 struct blk_queue_tag
*bqt
= q
->queue_tags
;
1135 struct list_head
*tmp
, *n
;
1138 list_for_each_safe(tmp
, n
, &bqt
->busy_list
) {
1139 rq
= list_entry_rq(tmp
);
1141 if (rq
->tag
== -1) {
1143 "%s: bad tag found on list\n", __FUNCTION__
);
1144 list_del_init(&rq
->queuelist
);
1145 rq
->flags
&= ~REQ_QUEUED
;
1147 blk_queue_end_tag(q
, rq
);
1149 rq
->flags
&= ~REQ_STARTED
;
1150 __elv_add_request(q
, rq
, ELEVATOR_INSERT_BACK
, 0);
1154 EXPORT_SYMBOL(blk_queue_invalidate_tags
);
1156 static const char * const rq_flags
[] = {
1177 "REQ_DRIVE_TASKFILE",
1182 "REQ_ORDERED_COLOR",
1185 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
1189 printk("%s: dev %s: flags = ", msg
,
1190 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?");
1193 if (rq
->flags
& (1 << bit
))
1194 printk("%s ", rq_flags
[bit
]);
1196 } while (bit
< __REQ_NR_BITS
);
1198 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq
->sector
,
1200 rq
->current_nr_sectors
);
1201 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq
->bio
, rq
->biotail
, rq
->buffer
, rq
->data
, rq
->data_len
);
1203 if (rq
->flags
& (REQ_BLOCK_PC
| REQ_PC
)) {
1205 for (bit
= 0; bit
< sizeof(rq
->cmd
); bit
++)
1206 printk("%02x ", rq
->cmd
[bit
]);
1211 EXPORT_SYMBOL(blk_dump_rq_flags
);
1213 void blk_recount_segments(request_queue_t
*q
, struct bio
*bio
)
1215 struct bio_vec
*bv
, *bvprv
= NULL
;
1216 int i
, nr_phys_segs
, nr_hw_segs
, seg_size
, hw_seg_size
, cluster
;
1217 int high
, highprv
= 1;
1219 if (unlikely(!bio
->bi_io_vec
))
1222 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1223 hw_seg_size
= seg_size
= nr_phys_segs
= nr_hw_segs
= 0;
1224 bio_for_each_segment(bv
, bio
, i
) {
1226 * the trick here is making sure that a high page is never
1227 * considered part of another segment, since that might
1228 * change with the bounce page.
1230 high
= page_to_pfn(bv
->bv_page
) >= q
->bounce_pfn
;
1231 if (high
|| highprv
)
1232 goto new_hw_segment
;
1234 if (seg_size
+ bv
->bv_len
> q
->max_segment_size
)
1236 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bv
))
1238 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bv
))
1240 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
))
1241 goto new_hw_segment
;
1243 seg_size
+= bv
->bv_len
;
1244 hw_seg_size
+= bv
->bv_len
;
1249 if (BIOVEC_VIRT_MERGEABLE(bvprv
, bv
) &&
1250 !BIOVEC_VIRT_OVERSIZE(hw_seg_size
+ bv
->bv_len
)) {
1251 hw_seg_size
+= bv
->bv_len
;
1254 if (hw_seg_size
> bio
->bi_hw_front_size
)
1255 bio
->bi_hw_front_size
= hw_seg_size
;
1256 hw_seg_size
= BIOVEC_VIRT_START_SIZE(bv
) + bv
->bv_len
;
1262 seg_size
= bv
->bv_len
;
1265 if (hw_seg_size
> bio
->bi_hw_back_size
)
1266 bio
->bi_hw_back_size
= hw_seg_size
;
1267 if (nr_hw_segs
== 1 && hw_seg_size
> bio
->bi_hw_front_size
)
1268 bio
->bi_hw_front_size
= hw_seg_size
;
1269 bio
->bi_phys_segments
= nr_phys_segs
;
1270 bio
->bi_hw_segments
= nr_hw_segs
;
1271 bio
->bi_flags
|= (1 << BIO_SEG_VALID
);
1275 static int blk_phys_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1278 if (!(q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
)))
1281 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)))
1283 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1287 * bio and nxt are contigous in memory, check if the queue allows
1288 * these two to be merged into one
1290 if (BIO_SEG_BOUNDARY(q
, bio
, nxt
))
1296 static int blk_hw_contig_segment(request_queue_t
*q
, struct bio
*bio
,
1299 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1300 blk_recount_segments(q
, bio
);
1301 if (unlikely(!bio_flagged(nxt
, BIO_SEG_VALID
)))
1302 blk_recount_segments(q
, nxt
);
1303 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(nxt
)) ||
1304 BIOVEC_VIRT_OVERSIZE(bio
->bi_hw_front_size
+ bio
->bi_hw_back_size
))
1306 if (bio
->bi_size
+ nxt
->bi_size
> q
->max_segment_size
)
1313 * map a request to scatterlist, return number of sg entries setup. Caller
1314 * must make sure sg can hold rq->nr_phys_segments entries
1316 int blk_rq_map_sg(request_queue_t
*q
, struct request
*rq
, struct scatterlist
*sg
)
1318 struct bio_vec
*bvec
, *bvprv
;
1320 int nsegs
, i
, cluster
;
1323 cluster
= q
->queue_flags
& (1 << QUEUE_FLAG_CLUSTER
);
1326 * for each bio in rq
1329 rq_for_each_bio(bio
, rq
) {
1331 * for each segment in bio
1333 bio_for_each_segment(bvec
, bio
, i
) {
1334 int nbytes
= bvec
->bv_len
;
1336 if (bvprv
&& cluster
) {
1337 if (sg
[nsegs
- 1].length
+ nbytes
> q
->max_segment_size
)
1340 if (!BIOVEC_PHYS_MERGEABLE(bvprv
, bvec
))
1342 if (!BIOVEC_SEG_BOUNDARY(q
, bvprv
, bvec
))
1345 sg
[nsegs
- 1].length
+= nbytes
;
1348 memset(&sg
[nsegs
],0,sizeof(struct scatterlist
));
1349 sg
[nsegs
].page
= bvec
->bv_page
;
1350 sg
[nsegs
].length
= nbytes
;
1351 sg
[nsegs
].offset
= bvec
->bv_offset
;
1356 } /* segments in bio */
1362 EXPORT_SYMBOL(blk_rq_map_sg
);
1365 * the standard queue merge functions, can be overridden with device
1366 * specific ones if so desired
1369 static inline int ll_new_mergeable(request_queue_t
*q
,
1370 struct request
*req
,
1373 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1375 if (req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1376 req
->flags
|= REQ_NOMERGE
;
1377 if (req
== q
->last_merge
)
1378 q
->last_merge
= NULL
;
1383 * A hw segment is just getting larger, bump just the phys
1386 req
->nr_phys_segments
+= nr_phys_segs
;
1390 static inline int ll_new_hw_segment(request_queue_t
*q
,
1391 struct request
*req
,
1394 int nr_hw_segs
= bio_hw_segments(q
, bio
);
1395 int nr_phys_segs
= bio_phys_segments(q
, bio
);
1397 if (req
->nr_hw_segments
+ nr_hw_segs
> q
->max_hw_segments
1398 || req
->nr_phys_segments
+ nr_phys_segs
> q
->max_phys_segments
) {
1399 req
->flags
|= REQ_NOMERGE
;
1400 if (req
== q
->last_merge
)
1401 q
->last_merge
= NULL
;
1406 * This will form the start of a new hw segment. Bump both
1409 req
->nr_hw_segments
+= nr_hw_segs
;
1410 req
->nr_phys_segments
+= nr_phys_segs
;
1414 static int ll_back_merge_fn(request_queue_t
*q
, struct request
*req
,
1417 unsigned short max_sectors
;
1420 if (unlikely(blk_pc_request(req
)))
1421 max_sectors
= q
->max_hw_sectors
;
1423 max_sectors
= q
->max_sectors
;
1425 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1426 req
->flags
|= REQ_NOMERGE
;
1427 if (req
== q
->last_merge
)
1428 q
->last_merge
= NULL
;
1431 if (unlikely(!bio_flagged(req
->biotail
, BIO_SEG_VALID
)))
1432 blk_recount_segments(q
, req
->biotail
);
1433 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1434 blk_recount_segments(q
, bio
);
1435 len
= req
->biotail
->bi_hw_back_size
+ bio
->bi_hw_front_size
;
1436 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req
->biotail
), __BVEC_START(bio
)) &&
1437 !BIOVEC_VIRT_OVERSIZE(len
)) {
1438 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1441 if (req
->nr_hw_segments
== 1)
1442 req
->bio
->bi_hw_front_size
= len
;
1443 if (bio
->bi_hw_segments
== 1)
1444 bio
->bi_hw_back_size
= len
;
1449 return ll_new_hw_segment(q
, req
, bio
);
1452 static int ll_front_merge_fn(request_queue_t
*q
, struct request
*req
,
1455 unsigned short max_sectors
;
1458 if (unlikely(blk_pc_request(req
)))
1459 max_sectors
= q
->max_hw_sectors
;
1461 max_sectors
= q
->max_sectors
;
1464 if (req
->nr_sectors
+ bio_sectors(bio
) > max_sectors
) {
1465 req
->flags
|= REQ_NOMERGE
;
1466 if (req
== q
->last_merge
)
1467 q
->last_merge
= NULL
;
1470 len
= bio
->bi_hw_back_size
+ req
->bio
->bi_hw_front_size
;
1471 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
1472 blk_recount_segments(q
, bio
);
1473 if (unlikely(!bio_flagged(req
->bio
, BIO_SEG_VALID
)))
1474 blk_recount_segments(q
, req
->bio
);
1475 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio
), __BVEC_START(req
->bio
)) &&
1476 !BIOVEC_VIRT_OVERSIZE(len
)) {
1477 int mergeable
= ll_new_mergeable(q
, req
, bio
);
1480 if (bio
->bi_hw_segments
== 1)
1481 bio
->bi_hw_front_size
= len
;
1482 if (req
->nr_hw_segments
== 1)
1483 req
->biotail
->bi_hw_back_size
= len
;
1488 return ll_new_hw_segment(q
, req
, bio
);
1491 static int ll_merge_requests_fn(request_queue_t
*q
, struct request
*req
,
1492 struct request
*next
)
1494 int total_phys_segments
;
1495 int total_hw_segments
;
1498 * First check if the either of the requests are re-queued
1499 * requests. Can't merge them if they are.
1501 if (req
->special
|| next
->special
)
1505 * Will it become too large?
1507 if ((req
->nr_sectors
+ next
->nr_sectors
) > q
->max_sectors
)
1510 total_phys_segments
= req
->nr_phys_segments
+ next
->nr_phys_segments
;
1511 if (blk_phys_contig_segment(q
, req
->biotail
, next
->bio
))
1512 total_phys_segments
--;
1514 if (total_phys_segments
> q
->max_phys_segments
)
1517 total_hw_segments
= req
->nr_hw_segments
+ next
->nr_hw_segments
;
1518 if (blk_hw_contig_segment(q
, req
->biotail
, next
->bio
)) {
1519 int len
= req
->biotail
->bi_hw_back_size
+ next
->bio
->bi_hw_front_size
;
1521 * propagate the combined length to the end of the requests
1523 if (req
->nr_hw_segments
== 1)
1524 req
->bio
->bi_hw_front_size
= len
;
1525 if (next
->nr_hw_segments
== 1)
1526 next
->biotail
->bi_hw_back_size
= len
;
1527 total_hw_segments
--;
1530 if (total_hw_segments
> q
->max_hw_segments
)
1533 /* Merge is OK... */
1534 req
->nr_phys_segments
= total_phys_segments
;
1535 req
->nr_hw_segments
= total_hw_segments
;
1540 * "plug" the device if there are no outstanding requests: this will
1541 * force the transfer to start only after we have put all the requests
1544 * This is called with interrupts off and no requests on the queue and
1545 * with the queue lock held.
1547 void blk_plug_device(request_queue_t
*q
)
1549 WARN_ON(!irqs_disabled());
1552 * don't plug a stopped queue, it must be paired with blk_start_queue()
1553 * which will restart the queueing
1555 if (test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
))
1558 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1559 mod_timer(&q
->unplug_timer
, jiffies
+ q
->unplug_delay
);
1562 EXPORT_SYMBOL(blk_plug_device
);
1565 * remove the queue from the plugged list, if present. called with
1566 * queue lock held and interrupts disabled.
1568 int blk_remove_plug(request_queue_t
*q
)
1570 WARN_ON(!irqs_disabled());
1572 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED
, &q
->queue_flags
))
1575 del_timer(&q
->unplug_timer
);
1579 EXPORT_SYMBOL(blk_remove_plug
);
1582 * remove the plug and let it rip..
1584 void __generic_unplug_device(request_queue_t
*q
)
1586 if (unlikely(test_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
)))
1589 if (!blk_remove_plug(q
))
1594 EXPORT_SYMBOL(__generic_unplug_device
);
1597 * generic_unplug_device - fire a request queue
1598 * @q: The &request_queue_t in question
1601 * Linux uses plugging to build bigger requests queues before letting
1602 * the device have at them. If a queue is plugged, the I/O scheduler
1603 * is still adding and merging requests on the queue. Once the queue
1604 * gets unplugged, the request_fn defined for the queue is invoked and
1605 * transfers started.
1607 void generic_unplug_device(request_queue_t
*q
)
1609 spin_lock_irq(q
->queue_lock
);
1610 __generic_unplug_device(q
);
1611 spin_unlock_irq(q
->queue_lock
);
1613 EXPORT_SYMBOL(generic_unplug_device
);
1615 static void blk_backing_dev_unplug(struct backing_dev_info
*bdi
,
1618 request_queue_t
*q
= bdi
->unplug_io_data
;
1621 * devices don't necessarily have an ->unplug_fn defined
1627 static void blk_unplug_work(void *data
)
1629 request_queue_t
*q
= data
;
1634 static void blk_unplug_timeout(unsigned long data
)
1636 request_queue_t
*q
= (request_queue_t
*)data
;
1638 kblockd_schedule_work(&q
->unplug_work
);
1642 * blk_start_queue - restart a previously stopped queue
1643 * @q: The &request_queue_t in question
1646 * blk_start_queue() will clear the stop flag on the queue, and call
1647 * the request_fn for the queue if it was in a stopped state when
1648 * entered. Also see blk_stop_queue(). Queue lock must be held.
1650 void blk_start_queue(request_queue_t
*q
)
1652 clear_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1655 * one level of recursion is ok and is much faster than kicking
1656 * the unplug handling
1658 if (!test_and_set_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
)) {
1660 clear_bit(QUEUE_FLAG_REENTER
, &q
->queue_flags
);
1663 kblockd_schedule_work(&q
->unplug_work
);
1667 EXPORT_SYMBOL(blk_start_queue
);
1670 * blk_stop_queue - stop a queue
1671 * @q: The &request_queue_t in question
1674 * The Linux block layer assumes that a block driver will consume all
1675 * entries on the request queue when the request_fn strategy is called.
1676 * Often this will not happen, because of hardware limitations (queue
1677 * depth settings). If a device driver gets a 'queue full' response,
1678 * or if it simply chooses not to queue more I/O at one point, it can
1679 * call this function to prevent the request_fn from being called until
1680 * the driver has signalled it's ready to go again. This happens by calling
1681 * blk_start_queue() to restart queue operations. Queue lock must be held.
1683 void blk_stop_queue(request_queue_t
*q
)
1686 set_bit(QUEUE_FLAG_STOPPED
, &q
->queue_flags
);
1688 EXPORT_SYMBOL(blk_stop_queue
);
1691 * blk_sync_queue - cancel any pending callbacks on a queue
1695 * The block layer may perform asynchronous callback activity
1696 * on a queue, such as calling the unplug function after a timeout.
1697 * A block device may call blk_sync_queue to ensure that any
1698 * such activity is cancelled, thus allowing it to release resources
1699 * the the callbacks might use. The caller must already have made sure
1700 * that its ->make_request_fn will not re-add plugging prior to calling
1704 void blk_sync_queue(struct request_queue
*q
)
1706 del_timer_sync(&q
->unplug_timer
);
1709 EXPORT_SYMBOL(blk_sync_queue
);
1712 * blk_run_queue - run a single device queue
1713 * @q: The queue to run
1715 void blk_run_queue(struct request_queue
*q
)
1717 unsigned long flags
;
1719 spin_lock_irqsave(q
->queue_lock
, flags
);
1721 if (!elv_queue_empty(q
))
1723 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1725 EXPORT_SYMBOL(blk_run_queue
);
1728 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1729 * @q: the request queue to be released
1732 * blk_cleanup_queue is the pair to blk_init_queue() or
1733 * blk_queue_make_request(). It should be called when a request queue is
1734 * being released; typically when a block device is being de-registered.
1735 * Currently, its primary task it to free all the &struct request
1736 * structures that were allocated to the queue and the queue itself.
1739 * Hopefully the low level driver will have finished any
1740 * outstanding requests first...
1742 void blk_cleanup_queue(request_queue_t
* q
)
1744 struct request_list
*rl
= &q
->rq
;
1746 if (!atomic_dec_and_test(&q
->refcnt
))
1750 elevator_exit(q
->elevator
);
1755 mempool_destroy(rl
->rq_pool
);
1758 __blk_queue_free_tags(q
);
1760 kmem_cache_free(requestq_cachep
, q
);
1763 EXPORT_SYMBOL(blk_cleanup_queue
);
1765 static int blk_init_free_list(request_queue_t
*q
)
1767 struct request_list
*rl
= &q
->rq
;
1769 rl
->count
[READ
] = rl
->count
[WRITE
] = 0;
1770 rl
->starved
[READ
] = rl
->starved
[WRITE
] = 0;
1772 init_waitqueue_head(&rl
->wait
[READ
]);
1773 init_waitqueue_head(&rl
->wait
[WRITE
]);
1775 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
1776 mempool_free_slab
, request_cachep
, q
->node
);
1784 request_queue_t
*blk_alloc_queue(gfp_t gfp_mask
)
1786 return blk_alloc_queue_node(gfp_mask
, -1);
1788 EXPORT_SYMBOL(blk_alloc_queue
);
1790 request_queue_t
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
1794 q
= kmem_cache_alloc_node(requestq_cachep
, gfp_mask
, node_id
);
1798 memset(q
, 0, sizeof(*q
));
1799 init_timer(&q
->unplug_timer
);
1800 atomic_set(&q
->refcnt
, 1);
1802 q
->backing_dev_info
.unplug_io_fn
= blk_backing_dev_unplug
;
1803 q
->backing_dev_info
.unplug_io_data
= q
;
1807 EXPORT_SYMBOL(blk_alloc_queue_node
);
1810 * blk_init_queue - prepare a request queue for use with a block device
1811 * @rfn: The function to be called to process requests that have been
1812 * placed on the queue.
1813 * @lock: Request queue spin lock
1816 * If a block device wishes to use the standard request handling procedures,
1817 * which sorts requests and coalesces adjacent requests, then it must
1818 * call blk_init_queue(). The function @rfn will be called when there
1819 * are requests on the queue that need to be processed. If the device
1820 * supports plugging, then @rfn may not be called immediately when requests
1821 * are available on the queue, but may be called at some time later instead.
1822 * Plugged queues are generally unplugged when a buffer belonging to one
1823 * of the requests on the queue is needed, or due to memory pressure.
1825 * @rfn is not required, or even expected, to remove all requests off the
1826 * queue, but only as many as it can handle at a time. If it does leave
1827 * requests on the queue, it is responsible for arranging that the requests
1828 * get dealt with eventually.
1830 * The queue spin lock must be held while manipulating the requests on the
1833 * Function returns a pointer to the initialized request queue, or NULL if
1834 * it didn't succeed.
1837 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1838 * when the block device is deactivated (such as at module unload).
1841 request_queue_t
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1843 return blk_init_queue_node(rfn
, lock
, -1);
1845 EXPORT_SYMBOL(blk_init_queue
);
1848 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1850 request_queue_t
*q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
1856 if (blk_init_free_list(q
))
1860 * if caller didn't supply a lock, they get per-queue locking with
1864 spin_lock_init(&q
->__queue_lock
);
1865 lock
= &q
->__queue_lock
;
1868 q
->request_fn
= rfn
;
1869 q
->back_merge_fn
= ll_back_merge_fn
;
1870 q
->front_merge_fn
= ll_front_merge_fn
;
1871 q
->merge_requests_fn
= ll_merge_requests_fn
;
1872 q
->prep_rq_fn
= NULL
;
1873 q
->unplug_fn
= generic_unplug_device
;
1874 q
->queue_flags
= (1 << QUEUE_FLAG_CLUSTER
);
1875 q
->queue_lock
= lock
;
1877 blk_queue_segment_boundary(q
, 0xffffffff);
1879 blk_queue_make_request(q
, __make_request
);
1880 blk_queue_max_segment_size(q
, MAX_SEGMENT_SIZE
);
1882 blk_queue_max_hw_segments(q
, MAX_HW_SEGMENTS
);
1883 blk_queue_max_phys_segments(q
, MAX_PHYS_SEGMENTS
);
1888 if (!elevator_init(q
, NULL
)) {
1889 blk_queue_congestion_threshold(q
);
1893 blk_cleanup_queue(q
);
1895 kmem_cache_free(requestq_cachep
, q
);
1898 EXPORT_SYMBOL(blk_init_queue_node
);
1900 int blk_get_queue(request_queue_t
*q
)
1902 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
1903 atomic_inc(&q
->refcnt
);
1910 EXPORT_SYMBOL(blk_get_queue
);
1912 static inline void blk_free_request(request_queue_t
*q
, struct request
*rq
)
1914 if (rq
->flags
& REQ_ELVPRIV
)
1915 elv_put_request(q
, rq
);
1916 mempool_free(rq
, q
->rq
.rq_pool
);
1919 static inline struct request
*
1920 blk_alloc_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
1921 int priv
, gfp_t gfp_mask
)
1923 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
1929 * first three bits are identical in rq->flags and bio->bi_rw,
1930 * see bio.h and blkdev.h
1935 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
))) {
1936 mempool_free(rq
, q
->rq
.rq_pool
);
1939 rq
->flags
|= REQ_ELVPRIV
;
1946 * ioc_batching returns true if the ioc is a valid batching request and
1947 * should be given priority access to a request.
1949 static inline int ioc_batching(request_queue_t
*q
, struct io_context
*ioc
)
1955 * Make sure the process is able to allocate at least 1 request
1956 * even if the batch times out, otherwise we could theoretically
1959 return ioc
->nr_batch_requests
== q
->nr_batching
||
1960 (ioc
->nr_batch_requests
> 0
1961 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1965 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1966 * will cause the process to be a "batcher" on all queues in the system. This
1967 * is the behaviour we want though - once it gets a wakeup it should be given
1970 static void ioc_set_batching(request_queue_t
*q
, struct io_context
*ioc
)
1972 if (!ioc
|| ioc_batching(q
, ioc
))
1975 ioc
->nr_batch_requests
= q
->nr_batching
;
1976 ioc
->last_waited
= jiffies
;
1979 static void __freed_request(request_queue_t
*q
, int rw
)
1981 struct request_list
*rl
= &q
->rq
;
1983 if (rl
->count
[rw
] < queue_congestion_off_threshold(q
))
1984 clear_queue_congested(q
, rw
);
1986 if (rl
->count
[rw
] + 1 <= q
->nr_requests
) {
1987 if (waitqueue_active(&rl
->wait
[rw
]))
1988 wake_up(&rl
->wait
[rw
]);
1990 blk_clear_queue_full(q
, rw
);
1995 * A request has just been released. Account for it, update the full and
1996 * congestion status, wake up any waiters. Called under q->queue_lock.
1998 static void freed_request(request_queue_t
*q
, int rw
, int priv
)
2000 struct request_list
*rl
= &q
->rq
;
2006 __freed_request(q
, rw
);
2008 if (unlikely(rl
->starved
[rw
^ 1]))
2009 __freed_request(q
, rw
^ 1);
2012 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2014 * Get a free request, queue_lock must be held.
2015 * Returns NULL on failure, with queue_lock held.
2016 * Returns !NULL on success, with queue_lock *not held*.
2018 static struct request
*get_request(request_queue_t
*q
, int rw
, struct bio
*bio
,
2021 struct request
*rq
= NULL
;
2022 struct request_list
*rl
= &q
->rq
;
2023 struct io_context
*ioc
= NULL
;
2024 int may_queue
, priv
;
2026 may_queue
= elv_may_queue(q
, rw
, bio
);
2027 if (may_queue
== ELV_MQUEUE_NO
)
2030 if (rl
->count
[rw
]+1 >= queue_congestion_on_threshold(q
)) {
2031 if (rl
->count
[rw
]+1 >= q
->nr_requests
) {
2032 ioc
= current_io_context(GFP_ATOMIC
);
2034 * The queue will fill after this allocation, so set
2035 * it as full, and mark this process as "batching".
2036 * This process will be allowed to complete a batch of
2037 * requests, others will be blocked.
2039 if (!blk_queue_full(q
, rw
)) {
2040 ioc_set_batching(q
, ioc
);
2041 blk_set_queue_full(q
, rw
);
2043 if (may_queue
!= ELV_MQUEUE_MUST
2044 && !ioc_batching(q
, ioc
)) {
2046 * The queue is full and the allocating
2047 * process is not a "batcher", and not
2048 * exempted by the IO scheduler
2054 set_queue_congested(q
, rw
);
2058 * Only allow batching queuers to allocate up to 50% over the defined
2059 * limit of requests, otherwise we could have thousands of requests
2060 * allocated with any setting of ->nr_requests
2062 if (rl
->count
[rw
] >= (3 * q
->nr_requests
/ 2))
2066 rl
->starved
[rw
] = 0;
2068 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
2072 spin_unlock_irq(q
->queue_lock
);
2074 rq
= blk_alloc_request(q
, rw
, bio
, priv
, gfp_mask
);
2075 if (unlikely(!rq
)) {
2077 * Allocation failed presumably due to memory. Undo anything
2078 * we might have messed up.
2080 * Allocating task should really be put onto the front of the
2081 * wait queue, but this is pretty rare.
2083 spin_lock_irq(q
->queue_lock
);
2084 freed_request(q
, rw
, priv
);
2087 * in the very unlikely event that allocation failed and no
2088 * requests for this direction was pending, mark us starved
2089 * so that freeing of a request in the other direction will
2090 * notice us. another possible fix would be to split the
2091 * rq mempool into READ and WRITE
2094 if (unlikely(rl
->count
[rw
] == 0))
2095 rl
->starved
[rw
] = 1;
2101 * ioc may be NULL here, and ioc_batching will be false. That's
2102 * OK, if the queue is under the request limit then requests need
2103 * not count toward the nr_batch_requests limit. There will always
2104 * be some limit enforced by BLK_BATCH_TIME.
2106 if (ioc_batching(q
, ioc
))
2107 ioc
->nr_batch_requests
--;
2116 * No available requests for this queue, unplug the device and wait for some
2117 * requests to become available.
2119 * Called with q->queue_lock held, and returns with it unlocked.
2121 static struct request
*get_request_wait(request_queue_t
*q
, int rw
,
2126 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2129 struct request_list
*rl
= &q
->rq
;
2131 prepare_to_wait_exclusive(&rl
->wait
[rw
], &wait
,
2132 TASK_UNINTERRUPTIBLE
);
2134 rq
= get_request(q
, rw
, bio
, GFP_NOIO
);
2137 struct io_context
*ioc
;
2139 __generic_unplug_device(q
);
2140 spin_unlock_irq(q
->queue_lock
);
2144 * After sleeping, we become a "batching" process and
2145 * will be able to allocate at least one request, and
2146 * up to a big batch of them for a small period time.
2147 * See ioc_batching, ioc_set_batching
2149 ioc
= current_io_context(GFP_NOIO
);
2150 ioc_set_batching(q
, ioc
);
2152 spin_lock_irq(q
->queue_lock
);
2154 finish_wait(&rl
->wait
[rw
], &wait
);
2160 struct request
*blk_get_request(request_queue_t
*q
, int rw
, gfp_t gfp_mask
)
2164 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
2166 spin_lock_irq(q
->queue_lock
);
2167 if (gfp_mask
& __GFP_WAIT
) {
2168 rq
= get_request_wait(q
, rw
, NULL
);
2170 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
2172 spin_unlock_irq(q
->queue_lock
);
2174 /* q->queue_lock is unlocked at this point */
2178 EXPORT_SYMBOL(blk_get_request
);
2181 * blk_requeue_request - put a request back on queue
2182 * @q: request queue where request should be inserted
2183 * @rq: request to be inserted
2186 * Drivers often keep queueing requests until the hardware cannot accept
2187 * more, when that condition happens we need to put the request back
2188 * on the queue. Must be called with queue lock held.
2190 void blk_requeue_request(request_queue_t
*q
, struct request
*rq
)
2192 if (blk_rq_tagged(rq
))
2193 blk_queue_end_tag(q
, rq
);
2195 elv_requeue_request(q
, rq
);
2198 EXPORT_SYMBOL(blk_requeue_request
);
2201 * blk_insert_request - insert a special request in to a request queue
2202 * @q: request queue where request should be inserted
2203 * @rq: request to be inserted
2204 * @at_head: insert request at head or tail of queue
2205 * @data: private data
2208 * Many block devices need to execute commands asynchronously, so they don't
2209 * block the whole kernel from preemption during request execution. This is
2210 * accomplished normally by inserting aritficial requests tagged as
2211 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2212 * scheduled for actual execution by the request queue.
2214 * We have the option of inserting the head or the tail of the queue.
2215 * Typically we use the tail for new ioctls and so forth. We use the head
2216 * of the queue for things like a QUEUE_FULL message from a device, or a
2217 * host that is unable to accept a particular command.
2219 void blk_insert_request(request_queue_t
*q
, struct request
*rq
,
2220 int at_head
, void *data
)
2222 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2223 unsigned long flags
;
2226 * tell I/O scheduler that this isn't a regular read/write (ie it
2227 * must not attempt merges on this) and that it acts as a soft
2230 rq
->flags
|= REQ_SPECIAL
| REQ_SOFTBARRIER
;
2234 spin_lock_irqsave(q
->queue_lock
, flags
);
2237 * If command is tagged, release the tag
2239 if (blk_rq_tagged(rq
))
2240 blk_queue_end_tag(q
, rq
);
2242 drive_stat_acct(rq
, rq
->nr_sectors
, 1);
2243 __elv_add_request(q
, rq
, where
, 0);
2245 if (blk_queue_plugged(q
))
2246 __generic_unplug_device(q
);
2249 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2252 EXPORT_SYMBOL(blk_insert_request
);
2255 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2256 * @q: request queue where request should be inserted
2257 * @rq: request structure to fill
2258 * @ubuf: the user buffer
2259 * @len: length of user data
2262 * Data will be mapped directly for zero copy io, if possible. Otherwise
2263 * a kernel bounce buffer is used.
2265 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2266 * still in process context.
2268 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2269 * before being submitted to the device, as pages mapped may be out of
2270 * reach. It's the callers responsibility to make sure this happens. The
2271 * original bio must be passed back in to blk_rq_unmap_user() for proper
2274 int blk_rq_map_user(request_queue_t
*q
, struct request
*rq
, void __user
*ubuf
,
2277 unsigned long uaddr
;
2281 if (len
> (q
->max_hw_sectors
<< 9))
2286 reading
= rq_data_dir(rq
) == READ
;
2289 * if alignment requirement is satisfied, map in user pages for
2290 * direct dma. else, set up kernel bounce buffers
2292 uaddr
= (unsigned long) ubuf
;
2293 if (!(uaddr
& queue_dma_alignment(q
)) && !(len
& queue_dma_alignment(q
)))
2294 bio
= bio_map_user(q
, NULL
, uaddr
, len
, reading
);
2296 bio
= bio_copy_user(q
, uaddr
, len
, reading
);
2299 rq
->bio
= rq
->biotail
= bio
;
2300 blk_rq_bio_prep(q
, rq
, bio
);
2302 rq
->buffer
= rq
->data
= NULL
;
2308 * bio is the err-ptr
2310 return PTR_ERR(bio
);
2313 EXPORT_SYMBOL(blk_rq_map_user
);
2316 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2317 * @q: request queue where request should be inserted
2318 * @rq: request to map data to
2319 * @iov: pointer to the iovec
2320 * @iov_count: number of elements in the iovec
2323 * Data will be mapped directly for zero copy io, if possible. Otherwise
2324 * a kernel bounce buffer is used.
2326 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2327 * still in process context.
2329 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2330 * before being submitted to the device, as pages mapped may be out of
2331 * reach. It's the callers responsibility to make sure this happens. The
2332 * original bio must be passed back in to blk_rq_unmap_user() for proper
2335 int blk_rq_map_user_iov(request_queue_t
*q
, struct request
*rq
,
2336 struct sg_iovec
*iov
, int iov_count
)
2340 if (!iov
|| iov_count
<= 0)
2343 /* we don't allow misaligned data like bio_map_user() does. If the
2344 * user is using sg, they're expected to know the alignment constraints
2345 * and respect them accordingly */
2346 bio
= bio_map_user_iov(q
, NULL
, iov
, iov_count
, rq_data_dir(rq
)== READ
);
2348 return PTR_ERR(bio
);
2350 rq
->bio
= rq
->biotail
= bio
;
2351 blk_rq_bio_prep(q
, rq
, bio
);
2352 rq
->buffer
= rq
->data
= NULL
;
2353 rq
->data_len
= bio
->bi_size
;
2357 EXPORT_SYMBOL(blk_rq_map_user_iov
);
2360 * blk_rq_unmap_user - unmap a request with user data
2361 * @bio: bio to be unmapped
2362 * @ulen: length of user buffer
2365 * Unmap a bio previously mapped by blk_rq_map_user().
2367 int blk_rq_unmap_user(struct bio
*bio
, unsigned int ulen
)
2372 if (bio_flagged(bio
, BIO_USER_MAPPED
))
2373 bio_unmap_user(bio
);
2375 ret
= bio_uncopy_user(bio
);
2381 EXPORT_SYMBOL(blk_rq_unmap_user
);
2384 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2385 * @q: request queue where request should be inserted
2386 * @rq: request to fill
2387 * @kbuf: the kernel buffer
2388 * @len: length of user data
2389 * @gfp_mask: memory allocation flags
2391 int blk_rq_map_kern(request_queue_t
*q
, struct request
*rq
, void *kbuf
,
2392 unsigned int len
, gfp_t gfp_mask
)
2396 if (len
> (q
->max_hw_sectors
<< 9))
2401 bio
= bio_map_kern(q
, kbuf
, len
, gfp_mask
);
2403 return PTR_ERR(bio
);
2405 if (rq_data_dir(rq
) == WRITE
)
2406 bio
->bi_rw
|= (1 << BIO_RW
);
2408 rq
->bio
= rq
->biotail
= bio
;
2409 blk_rq_bio_prep(q
, rq
, bio
);
2411 rq
->buffer
= rq
->data
= NULL
;
2416 EXPORT_SYMBOL(blk_rq_map_kern
);
2419 * blk_execute_rq_nowait - insert a request into queue for execution
2420 * @q: queue to insert the request in
2421 * @bd_disk: matching gendisk
2422 * @rq: request to insert
2423 * @at_head: insert request at head or tail of queue
2424 * @done: I/O completion handler
2427 * Insert a fully prepared request at the back of the io scheduler queue
2428 * for execution. Don't wait for completion.
2430 void blk_execute_rq_nowait(request_queue_t
*q
, struct gendisk
*bd_disk
,
2431 struct request
*rq
, int at_head
,
2434 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
2436 rq
->rq_disk
= bd_disk
;
2437 rq
->flags
|= REQ_NOMERGE
;
2439 elv_add_request(q
, rq
, where
, 1);
2440 generic_unplug_device(q
);
2443 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait
);
2446 * blk_execute_rq - insert a request into queue for execution
2447 * @q: queue to insert the request in
2448 * @bd_disk: matching gendisk
2449 * @rq: request to insert
2450 * @at_head: insert request at head or tail of queue
2453 * Insert a fully prepared request at the back of the io scheduler queue
2454 * for execution and wait for completion.
2456 int blk_execute_rq(request_queue_t
*q
, struct gendisk
*bd_disk
,
2457 struct request
*rq
, int at_head
)
2459 DECLARE_COMPLETION(wait
);
2460 char sense
[SCSI_SENSE_BUFFERSIZE
];
2464 * we need an extra reference to the request, so we can look at
2465 * it after io completion
2470 memset(sense
, 0, sizeof(sense
));
2475 rq
->waiting
= &wait
;
2476 blk_execute_rq_nowait(q
, bd_disk
, rq
, at_head
, blk_end_sync_rq
);
2477 wait_for_completion(&wait
);
2486 EXPORT_SYMBOL(blk_execute_rq
);
2489 * blkdev_issue_flush - queue a flush
2490 * @bdev: blockdev to issue flush for
2491 * @error_sector: error sector
2494 * Issue a flush for the block device in question. Caller can supply
2495 * room for storing the error offset in case of a flush error, if they
2496 * wish to. Caller must run wait_for_completion() on its own.
2498 int blkdev_issue_flush(struct block_device
*bdev
, sector_t
*error_sector
)
2502 if (bdev
->bd_disk
== NULL
)
2505 q
= bdev_get_queue(bdev
);
2508 if (!q
->issue_flush_fn
)
2511 return q
->issue_flush_fn(q
, bdev
->bd_disk
, error_sector
);
2514 EXPORT_SYMBOL(blkdev_issue_flush
);
2516 static void drive_stat_acct(struct request
*rq
, int nr_sectors
, int new_io
)
2518 int rw
= rq_data_dir(rq
);
2520 if (!blk_fs_request(rq
) || !rq
->rq_disk
)
2524 __disk_stat_inc(rq
->rq_disk
, merges
[rw
]);
2526 disk_round_stats(rq
->rq_disk
);
2527 rq
->rq_disk
->in_flight
++;
2532 * add-request adds a request to the linked list.
2533 * queue lock is held and interrupts disabled, as we muck with the
2534 * request queue list.
2536 static inline void add_request(request_queue_t
* q
, struct request
* req
)
2538 drive_stat_acct(req
, req
->nr_sectors
, 1);
2541 q
->activity_fn(q
->activity_data
, rq_data_dir(req
));
2544 * elevator indicated where it wants this request to be
2545 * inserted at elevator_merge time
2547 __elv_add_request(q
, req
, ELEVATOR_INSERT_SORT
, 0);
2551 * disk_round_stats() - Round off the performance stats on a struct
2554 * The average IO queue length and utilisation statistics are maintained
2555 * by observing the current state of the queue length and the amount of
2556 * time it has been in this state for.
2558 * Normally, that accounting is done on IO completion, but that can result
2559 * in more than a second's worth of IO being accounted for within any one
2560 * second, leading to >100% utilisation. To deal with that, we call this
2561 * function to do a round-off before returning the results when reading
2562 * /proc/diskstats. This accounts immediately for all queue usage up to
2563 * the current jiffies and restarts the counters again.
2565 void disk_round_stats(struct gendisk
*disk
)
2567 unsigned long now
= jiffies
;
2569 if (now
== disk
->stamp
)
2572 if (disk
->in_flight
) {
2573 __disk_stat_add(disk
, time_in_queue
,
2574 disk
->in_flight
* (now
- disk
->stamp
));
2575 __disk_stat_add(disk
, io_ticks
, (now
- disk
->stamp
));
2581 * queue lock must be held
2583 void __blk_put_request(request_queue_t
*q
, struct request
*req
)
2585 struct request_list
*rl
= req
->rl
;
2589 if (unlikely(--req
->ref_count
))
2592 elv_completed_request(q
, req
);
2594 req
->rq_status
= RQ_INACTIVE
;
2598 * Request may not have originated from ll_rw_blk. if not,
2599 * it didn't come out of our reserved rq pools
2602 int rw
= rq_data_dir(req
);
2603 int priv
= req
->flags
& REQ_ELVPRIV
;
2605 BUG_ON(!list_empty(&req
->queuelist
));
2607 blk_free_request(q
, req
);
2608 freed_request(q
, rw
, priv
);
2612 EXPORT_SYMBOL_GPL(__blk_put_request
);
2614 void blk_put_request(struct request
*req
)
2616 unsigned long flags
;
2617 request_queue_t
*q
= req
->q
;
2620 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2621 * following if (q) test.
2624 spin_lock_irqsave(q
->queue_lock
, flags
);
2625 __blk_put_request(q
, req
);
2626 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2630 EXPORT_SYMBOL(blk_put_request
);
2633 * blk_end_sync_rq - executes a completion event on a request
2634 * @rq: request to complete
2636 void blk_end_sync_rq(struct request
*rq
, int error
)
2638 struct completion
*waiting
= rq
->waiting
;
2641 __blk_put_request(rq
->q
, rq
);
2644 * complete last, if this is a stack request the process (and thus
2645 * the rq pointer) could be invalid right after this complete()
2649 EXPORT_SYMBOL(blk_end_sync_rq
);
2652 * blk_congestion_wait - wait for a queue to become uncongested
2653 * @rw: READ or WRITE
2654 * @timeout: timeout in jiffies
2656 * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
2657 * If no queues are congested then just wait for the next request to be
2660 long blk_congestion_wait(int rw
, long timeout
)
2664 wait_queue_head_t
*wqh
= &congestion_wqh
[rw
];
2666 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
2667 ret
= io_schedule_timeout(timeout
);
2668 finish_wait(wqh
, &wait
);
2672 EXPORT_SYMBOL(blk_congestion_wait
);
2675 * Has to be called with the request spinlock acquired
2677 static int attempt_merge(request_queue_t
*q
, struct request
*req
,
2678 struct request
*next
)
2680 if (!rq_mergeable(req
) || !rq_mergeable(next
))
2686 if (req
->sector
+ req
->nr_sectors
!= next
->sector
)
2689 if (rq_data_dir(req
) != rq_data_dir(next
)
2690 || req
->rq_disk
!= next
->rq_disk
2691 || next
->waiting
|| next
->special
)
2695 * If we are allowed to merge, then append bio list
2696 * from next to rq and release next. merge_requests_fn
2697 * will have updated segment counts, update sector
2700 if (!q
->merge_requests_fn(q
, req
, next
))
2704 * At this point we have either done a back merge
2705 * or front merge. We need the smaller start_time of
2706 * the merged requests to be the current request
2707 * for accounting purposes.
2709 if (time_after(req
->start_time
, next
->start_time
))
2710 req
->start_time
= next
->start_time
;
2712 req
->biotail
->bi_next
= next
->bio
;
2713 req
->biotail
= next
->biotail
;
2715 req
->nr_sectors
= req
->hard_nr_sectors
+= next
->hard_nr_sectors
;
2717 elv_merge_requests(q
, req
, next
);
2720 disk_round_stats(req
->rq_disk
);
2721 req
->rq_disk
->in_flight
--;
2724 req
->ioprio
= ioprio_best(req
->ioprio
, next
->ioprio
);
2726 __blk_put_request(q
, next
);
2730 static inline int attempt_back_merge(request_queue_t
*q
, struct request
*rq
)
2732 struct request
*next
= elv_latter_request(q
, rq
);
2735 return attempt_merge(q
, rq
, next
);
2740 static inline int attempt_front_merge(request_queue_t
*q
, struct request
*rq
)
2742 struct request
*prev
= elv_former_request(q
, rq
);
2745 return attempt_merge(q
, prev
, rq
);
2750 static void init_request_from_bio(struct request
*req
, struct bio
*bio
)
2752 req
->flags
|= REQ_CMD
;
2755 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2757 if (bio_rw_ahead(bio
) || bio_failfast(bio
))
2758 req
->flags
|= REQ_FAILFAST
;
2761 * REQ_BARRIER implies no merging, but lets make it explicit
2763 if (unlikely(bio_barrier(bio
)))
2764 req
->flags
|= (REQ_HARDBARRIER
| REQ_NOMERGE
);
2767 req
->hard_sector
= req
->sector
= bio
->bi_sector
;
2768 req
->hard_nr_sectors
= req
->nr_sectors
= bio_sectors(bio
);
2769 req
->current_nr_sectors
= req
->hard_cur_sectors
= bio_cur_sectors(bio
);
2770 req
->nr_phys_segments
= bio_phys_segments(req
->q
, bio
);
2771 req
->nr_hw_segments
= bio_hw_segments(req
->q
, bio
);
2772 req
->buffer
= bio_data(bio
); /* see ->buffer comment above */
2773 req
->waiting
= NULL
;
2774 req
->bio
= req
->biotail
= bio
;
2775 req
->ioprio
= bio_prio(bio
);
2776 req
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2777 req
->start_time
= jiffies
;
2780 static int __make_request(request_queue_t
*q
, struct bio
*bio
)
2782 struct request
*req
;
2783 int el_ret
, rw
, nr_sectors
, cur_nr_sectors
, barrier
, err
, sync
;
2784 unsigned short prio
;
2787 sector
= bio
->bi_sector
;
2788 nr_sectors
= bio_sectors(bio
);
2789 cur_nr_sectors
= bio_cur_sectors(bio
);
2790 prio
= bio_prio(bio
);
2792 rw
= bio_data_dir(bio
);
2793 sync
= bio_sync(bio
);
2796 * low level driver can indicate that it wants pages above a
2797 * certain limit bounced to low memory (ie for highmem, or even
2798 * ISA dma in theory)
2800 blk_queue_bounce(q
, &bio
);
2802 spin_lock_prefetch(q
->queue_lock
);
2804 barrier
= bio_barrier(bio
);
2805 if (unlikely(barrier
) && (q
->next_ordered
== QUEUE_ORDERED_NONE
)) {
2810 spin_lock_irq(q
->queue_lock
);
2812 if (unlikely(barrier
) || elv_queue_empty(q
))
2815 el_ret
= elv_merge(q
, &req
, bio
);
2817 case ELEVATOR_BACK_MERGE
:
2818 BUG_ON(!rq_mergeable(req
));
2820 if (!q
->back_merge_fn(q
, req
, bio
))
2823 req
->biotail
->bi_next
= bio
;
2825 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2826 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2827 drive_stat_acct(req
, nr_sectors
, 0);
2828 if (!attempt_back_merge(q
, req
))
2829 elv_merged_request(q
, req
);
2832 case ELEVATOR_FRONT_MERGE
:
2833 BUG_ON(!rq_mergeable(req
));
2835 if (!q
->front_merge_fn(q
, req
, bio
))
2838 bio
->bi_next
= req
->bio
;
2842 * may not be valid. if the low level driver said
2843 * it didn't need a bounce buffer then it better
2844 * not touch req->buffer either...
2846 req
->buffer
= bio_data(bio
);
2847 req
->current_nr_sectors
= cur_nr_sectors
;
2848 req
->hard_cur_sectors
= cur_nr_sectors
;
2849 req
->sector
= req
->hard_sector
= sector
;
2850 req
->nr_sectors
= req
->hard_nr_sectors
+= nr_sectors
;
2851 req
->ioprio
= ioprio_best(req
->ioprio
, prio
);
2852 drive_stat_acct(req
, nr_sectors
, 0);
2853 if (!attempt_front_merge(q
, req
))
2854 elv_merged_request(q
, req
);
2857 /* ELV_NO_MERGE: elevator says don't/can't merge. */
2864 * Grab a free request. This is might sleep but can not fail.
2865 * Returns with the queue unlocked.
2867 req
= get_request_wait(q
, rw
, bio
);
2870 * After dropping the lock and possibly sleeping here, our request
2871 * may now be mergeable after it had proven unmergeable (above).
2872 * We don't worry about that case for efficiency. It won't happen
2873 * often, and the elevators are able to handle it.
2875 init_request_from_bio(req
, bio
);
2877 spin_lock_irq(q
->queue_lock
);
2878 if (elv_queue_empty(q
))
2880 add_request(q
, req
);
2883 __generic_unplug_device(q
);
2885 spin_unlock_irq(q
->queue_lock
);
2889 bio_endio(bio
, nr_sectors
<< 9, err
);
2894 * If bio->bi_dev is a partition, remap the location
2896 static inline void blk_partition_remap(struct bio
*bio
)
2898 struct block_device
*bdev
= bio
->bi_bdev
;
2900 if (bdev
!= bdev
->bd_contains
) {
2901 struct hd_struct
*p
= bdev
->bd_part
;
2902 const int rw
= bio_data_dir(bio
);
2904 p
->sectors
[rw
] += bio_sectors(bio
);
2907 bio
->bi_sector
+= p
->start_sect
;
2908 bio
->bi_bdev
= bdev
->bd_contains
;
2912 static void handle_bad_sector(struct bio
*bio
)
2914 char b
[BDEVNAME_SIZE
];
2916 printk(KERN_INFO
"attempt to access beyond end of device\n");
2917 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
2918 bdevname(bio
->bi_bdev
, b
),
2920 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
2921 (long long)(bio
->bi_bdev
->bd_inode
->i_size
>> 9));
2923 set_bit(BIO_EOF
, &bio
->bi_flags
);
2927 * generic_make_request: hand a buffer to its device driver for I/O
2928 * @bio: The bio describing the location in memory and on the device.
2930 * generic_make_request() is used to make I/O requests of block
2931 * devices. It is passed a &struct bio, which describes the I/O that needs
2934 * generic_make_request() does not return any status. The
2935 * success/failure status of the request, along with notification of
2936 * completion, is delivered asynchronously through the bio->bi_end_io
2937 * function described (one day) else where.
2939 * The caller of generic_make_request must make sure that bi_io_vec
2940 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2941 * set to describe the device address, and the
2942 * bi_end_io and optionally bi_private are set to describe how
2943 * completion notification should be signaled.
2945 * generic_make_request and the drivers it calls may use bi_next if this
2946 * bio happens to be merged with someone else, and may change bi_dev and
2947 * bi_sector for remaps as it sees fit. So the values of these fields
2948 * should NOT be depended on after the call to generic_make_request.
2950 void generic_make_request(struct bio
*bio
)
2954 int ret
, nr_sectors
= bio_sectors(bio
);
2957 /* Test device or partition size, when known. */
2958 maxsector
= bio
->bi_bdev
->bd_inode
->i_size
>> 9;
2960 sector_t sector
= bio
->bi_sector
;
2962 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
2964 * This may well happen - the kernel calls bread()
2965 * without checking the size of the device, e.g., when
2966 * mounting a device.
2968 handle_bad_sector(bio
);
2974 * Resolve the mapping until finished. (drivers are
2975 * still free to implement/resolve their own stacking
2976 * by explicitly returning 0)
2978 * NOTE: we don't repeat the blk_size check for each new device.
2979 * Stacking drivers are expected to know what they are doing.
2982 char b
[BDEVNAME_SIZE
];
2984 q
= bdev_get_queue(bio
->bi_bdev
);
2987 "generic_make_request: Trying to access "
2988 "nonexistent block-device %s (%Lu)\n",
2989 bdevname(bio
->bi_bdev
, b
),
2990 (long long) bio
->bi_sector
);
2992 bio_endio(bio
, bio
->bi_size
, -EIO
);
2996 if (unlikely(bio_sectors(bio
) > q
->max_hw_sectors
)) {
2997 printk("bio too big device %s (%u > %u)\n",
2998 bdevname(bio
->bi_bdev
, b
),
3004 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
3008 * If this device has partitions, remap block n
3009 * of partition p to block n+start(p) of the disk.
3011 blk_partition_remap(bio
);
3013 ret
= q
->make_request_fn(q
, bio
);
3017 EXPORT_SYMBOL(generic_make_request
);
3020 * submit_bio: submit a bio to the block device layer for I/O
3021 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3022 * @bio: The &struct bio which describes the I/O
3024 * submit_bio() is very similar in purpose to generic_make_request(), and
3025 * uses that function to do most of the work. Both are fairly rough
3026 * interfaces, @bio must be presetup and ready for I/O.
3029 void submit_bio(int rw
, struct bio
*bio
)
3031 int count
= bio_sectors(bio
);
3033 BIO_BUG_ON(!bio
->bi_size
);
3034 BIO_BUG_ON(!bio
->bi_io_vec
);
3037 mod_page_state(pgpgout
, count
);
3039 mod_page_state(pgpgin
, count
);
3041 if (unlikely(block_dump
)) {
3042 char b
[BDEVNAME_SIZE
];
3043 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s\n",
3044 current
->comm
, current
->pid
,
3045 (rw
& WRITE
) ? "WRITE" : "READ",
3046 (unsigned long long)bio
->bi_sector
,
3047 bdevname(bio
->bi_bdev
,b
));
3050 generic_make_request(bio
);
3053 EXPORT_SYMBOL(submit_bio
);
3055 static void blk_recalc_rq_segments(struct request
*rq
)
3057 struct bio
*bio
, *prevbio
= NULL
;
3058 int nr_phys_segs
, nr_hw_segs
;
3059 unsigned int phys_size
, hw_size
;
3060 request_queue_t
*q
= rq
->q
;
3065 phys_size
= hw_size
= nr_phys_segs
= nr_hw_segs
= 0;
3066 rq_for_each_bio(bio
, rq
) {
3067 /* Force bio hw/phys segs to be recalculated. */
3068 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3070 nr_phys_segs
+= bio_phys_segments(q
, bio
);
3071 nr_hw_segs
+= bio_hw_segments(q
, bio
);
3073 int pseg
= phys_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3074 int hseg
= hw_size
+ prevbio
->bi_size
+ bio
->bi_size
;
3076 if (blk_phys_contig_segment(q
, prevbio
, bio
) &&
3077 pseg
<= q
->max_segment_size
) {
3079 phys_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3083 if (blk_hw_contig_segment(q
, prevbio
, bio
) &&
3084 hseg
<= q
->max_segment_size
) {
3086 hw_size
+= prevbio
->bi_size
+ bio
->bi_size
;
3093 rq
->nr_phys_segments
= nr_phys_segs
;
3094 rq
->nr_hw_segments
= nr_hw_segs
;
3097 static void blk_recalc_rq_sectors(struct request
*rq
, int nsect
)
3099 if (blk_fs_request(rq
)) {
3100 rq
->hard_sector
+= nsect
;
3101 rq
->hard_nr_sectors
-= nsect
;
3104 * Move the I/O submission pointers ahead if required.
3106 if ((rq
->nr_sectors
>= rq
->hard_nr_sectors
) &&
3107 (rq
->sector
<= rq
->hard_sector
)) {
3108 rq
->sector
= rq
->hard_sector
;
3109 rq
->nr_sectors
= rq
->hard_nr_sectors
;
3110 rq
->hard_cur_sectors
= bio_cur_sectors(rq
->bio
);
3111 rq
->current_nr_sectors
= rq
->hard_cur_sectors
;
3112 rq
->buffer
= bio_data(rq
->bio
);
3116 * if total number of sectors is less than the first segment
3117 * size, something has gone terribly wrong
3119 if (rq
->nr_sectors
< rq
->current_nr_sectors
) {
3120 printk("blk: request botched\n");
3121 rq
->nr_sectors
= rq
->current_nr_sectors
;
3126 static int __end_that_request_first(struct request
*req
, int uptodate
,
3129 int total_bytes
, bio_nbytes
, error
, next_idx
= 0;
3133 * extend uptodate bool to allow < 0 value to be direct io error
3136 if (end_io_error(uptodate
))
3137 error
= !uptodate
? -EIO
: uptodate
;
3140 * for a REQ_BLOCK_PC request, we want to carry any eventual
3141 * sense key with us all the way through
3143 if (!blk_pc_request(req
))
3147 if (blk_fs_request(req
) && !(req
->flags
& REQ_QUIET
))
3148 printk("end_request: I/O error, dev %s, sector %llu\n",
3149 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
3150 (unsigned long long)req
->sector
);
3153 if (blk_fs_request(req
) && req
->rq_disk
) {
3154 const int rw
= rq_data_dir(req
);
3156 __disk_stat_add(req
->rq_disk
, sectors
[rw
], nr_bytes
>> 9);
3159 total_bytes
= bio_nbytes
= 0;
3160 while ((bio
= req
->bio
) != NULL
) {
3163 if (nr_bytes
>= bio
->bi_size
) {
3164 req
->bio
= bio
->bi_next
;
3165 nbytes
= bio
->bi_size
;
3166 if (!ordered_bio_endio(req
, bio
, nbytes
, error
))
3167 bio_endio(bio
, nbytes
, error
);
3171 int idx
= bio
->bi_idx
+ next_idx
;
3173 if (unlikely(bio
->bi_idx
>= bio
->bi_vcnt
)) {
3174 blk_dump_rq_flags(req
, "__end_that");
3175 printk("%s: bio idx %d >= vcnt %d\n",
3177 bio
->bi_idx
, bio
->bi_vcnt
);
3181 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
3182 BIO_BUG_ON(nbytes
> bio
->bi_size
);
3185 * not a complete bvec done
3187 if (unlikely(nbytes
> nr_bytes
)) {
3188 bio_nbytes
+= nr_bytes
;
3189 total_bytes
+= nr_bytes
;
3194 * advance to the next vector
3197 bio_nbytes
+= nbytes
;
3200 total_bytes
+= nbytes
;
3203 if ((bio
= req
->bio
)) {
3205 * end more in this run, or just return 'not-done'
3207 if (unlikely(nr_bytes
<= 0))
3219 * if the request wasn't completed, update state
3222 if (!ordered_bio_endio(req
, bio
, bio_nbytes
, error
))
3223 bio_endio(bio
, bio_nbytes
, error
);
3224 bio
->bi_idx
+= next_idx
;
3225 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
3226 bio_iovec(bio
)->bv_len
-= nr_bytes
;
3229 blk_recalc_rq_sectors(req
, total_bytes
>> 9);
3230 blk_recalc_rq_segments(req
);
3235 * end_that_request_first - end I/O on a request
3236 * @req: the request being processed
3237 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3238 * @nr_sectors: number of sectors to end I/O on
3241 * Ends I/O on a number of sectors attached to @req, and sets it up
3242 * for the next range of segments (if any) in the cluster.
3245 * 0 - we are done with this request, call end_that_request_last()
3246 * 1 - still buffers pending for this request
3248 int end_that_request_first(struct request
*req
, int uptodate
, int nr_sectors
)
3250 return __end_that_request_first(req
, uptodate
, nr_sectors
<< 9);
3253 EXPORT_SYMBOL(end_that_request_first
);
3256 * end_that_request_chunk - end I/O on a request
3257 * @req: the request being processed
3258 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3259 * @nr_bytes: number of bytes to complete
3262 * Ends I/O on a number of bytes attached to @req, and sets it up
3263 * for the next range of segments (if any). Like end_that_request_first(),
3264 * but deals with bytes instead of sectors.
3267 * 0 - we are done with this request, call end_that_request_last()
3268 * 1 - still buffers pending for this request
3270 int end_that_request_chunk(struct request
*req
, int uptodate
, int nr_bytes
)
3272 return __end_that_request_first(req
, uptodate
, nr_bytes
);
3275 EXPORT_SYMBOL(end_that_request_chunk
);
3278 * splice the completion data to a local structure and hand off to
3279 * process_completion_queue() to complete the requests
3281 static void blk_done_softirq(struct softirq_action
*h
)
3283 struct list_head
*cpu_list
;
3284 LIST_HEAD(local_list
);
3286 local_irq_disable();
3287 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3288 list_splice_init(cpu_list
, &local_list
);
3291 while (!list_empty(&local_list
)) {
3292 struct request
*rq
= list_entry(local_list
.next
, struct request
, donelist
);
3294 list_del_init(&rq
->donelist
);
3295 rq
->q
->softirq_done_fn(rq
);
3299 #ifdef CONFIG_HOTPLUG_CPU
3301 static int blk_cpu_notify(struct notifier_block
*self
, unsigned long action
,
3305 * If a CPU goes away, splice its entries to the current CPU
3306 * and trigger a run of the softirq
3308 if (action
== CPU_DEAD
) {
3309 int cpu
= (unsigned long) hcpu
;
3311 local_irq_disable();
3312 list_splice_init(&per_cpu(blk_cpu_done
, cpu
),
3313 &__get_cpu_var(blk_cpu_done
));
3314 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3322 static struct notifier_block __devinitdata blk_cpu_notifier
= {
3323 .notifier_call
= blk_cpu_notify
,
3326 #endif /* CONFIG_HOTPLUG_CPU */
3329 * blk_complete_request - end I/O on a request
3330 * @req: the request being processed
3333 * Ends all I/O on a request. It does not handle partial completions,
3334 * unless the driver actually implements this in its completionc callback
3335 * through requeueing. Theh actual completion happens out-of-order,
3336 * through a softirq handler. The user must have registered a completion
3337 * callback through blk_queue_softirq_done().
3340 void blk_complete_request(struct request
*req
)
3342 struct list_head
*cpu_list
;
3343 unsigned long flags
;
3345 BUG_ON(!req
->q
->softirq_done_fn
);
3347 local_irq_save(flags
);
3349 cpu_list
= &__get_cpu_var(blk_cpu_done
);
3350 list_add_tail(&req
->donelist
, cpu_list
);
3351 raise_softirq_irqoff(BLOCK_SOFTIRQ
);
3353 local_irq_restore(flags
);
3356 EXPORT_SYMBOL(blk_complete_request
);
3359 * queue lock must be held
3361 void end_that_request_last(struct request
*req
, int uptodate
)
3363 struct gendisk
*disk
= req
->rq_disk
;
3367 * extend uptodate bool to allow < 0 value to be direct io error
3370 if (end_io_error(uptodate
))
3371 error
= !uptodate
? -EIO
: uptodate
;
3373 if (unlikely(laptop_mode
) && blk_fs_request(req
))
3374 laptop_io_completion();
3376 if (disk
&& blk_fs_request(req
)) {
3377 unsigned long duration
= jiffies
- req
->start_time
;
3378 const int rw
= rq_data_dir(req
);
3380 __disk_stat_inc(disk
, ios
[rw
]);
3381 __disk_stat_add(disk
, ticks
[rw
], duration
);
3382 disk_round_stats(disk
);
3386 req
->end_io(req
, error
);
3388 __blk_put_request(req
->q
, req
);
3391 EXPORT_SYMBOL(end_that_request_last
);
3393 void end_request(struct request
*req
, int uptodate
)
3395 if (!end_that_request_first(req
, uptodate
, req
->hard_cur_sectors
)) {
3396 add_disk_randomness(req
->rq_disk
);
3397 blkdev_dequeue_request(req
);
3398 end_that_request_last(req
, uptodate
);
3402 EXPORT_SYMBOL(end_request
);
3404 void blk_rq_bio_prep(request_queue_t
*q
, struct request
*rq
, struct bio
*bio
)
3406 /* first three bits are identical in rq->flags and bio->bi_rw */
3407 rq
->flags
|= (bio
->bi_rw
& 7);
3409 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3410 rq
->nr_hw_segments
= bio_hw_segments(q
, bio
);
3411 rq
->current_nr_sectors
= bio_cur_sectors(bio
);
3412 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
3413 rq
->hard_nr_sectors
= rq
->nr_sectors
= bio_sectors(bio
);
3414 rq
->buffer
= bio_data(bio
);
3416 rq
->bio
= rq
->biotail
= bio
;
3419 EXPORT_SYMBOL(blk_rq_bio_prep
);
3421 int kblockd_schedule_work(struct work_struct
*work
)
3423 return queue_work(kblockd_workqueue
, work
);
3426 EXPORT_SYMBOL(kblockd_schedule_work
);
3428 void kblockd_flush(void)
3430 flush_workqueue(kblockd_workqueue
);
3432 EXPORT_SYMBOL(kblockd_flush
);
3434 int __init
blk_dev_init(void)
3438 kblockd_workqueue
= create_workqueue("kblockd");
3439 if (!kblockd_workqueue
)
3440 panic("Failed to create kblockd\n");
3442 request_cachep
= kmem_cache_create("blkdev_requests",
3443 sizeof(struct request
), 0, SLAB_PANIC
, NULL
, NULL
);
3445 requestq_cachep
= kmem_cache_create("blkdev_queue",
3446 sizeof(request_queue_t
), 0, SLAB_PANIC
, NULL
, NULL
);
3448 iocontext_cachep
= kmem_cache_create("blkdev_ioc",
3449 sizeof(struct io_context
), 0, SLAB_PANIC
, NULL
, NULL
);
3451 for (i
= 0; i
< NR_CPUS
; i
++)
3452 INIT_LIST_HEAD(&per_cpu(blk_cpu_done
, i
));
3454 open_softirq(BLOCK_SOFTIRQ
, blk_done_softirq
, NULL
);
3455 #ifdef CONFIG_HOTPLUG_CPU
3456 register_cpu_notifier(&blk_cpu_notifier
);
3459 blk_max_low_pfn
= max_low_pfn
;
3460 blk_max_pfn
= max_pfn
;
3466 * IO Context helper functions
3468 void put_io_context(struct io_context
*ioc
)
3473 BUG_ON(atomic_read(&ioc
->refcount
) == 0);
3475 if (atomic_dec_and_test(&ioc
->refcount
)) {
3476 if (ioc
->aic
&& ioc
->aic
->dtor
)
3477 ioc
->aic
->dtor(ioc
->aic
);
3478 if (ioc
->cic
&& ioc
->cic
->dtor
)
3479 ioc
->cic
->dtor(ioc
->cic
);
3481 kmem_cache_free(iocontext_cachep
, ioc
);
3484 EXPORT_SYMBOL(put_io_context
);
3486 /* Called by the exitting task */
3487 void exit_io_context(void)
3489 unsigned long flags
;
3490 struct io_context
*ioc
;
3492 local_irq_save(flags
);
3494 ioc
= current
->io_context
;
3495 current
->io_context
= NULL
;
3497 task_unlock(current
);
3498 local_irq_restore(flags
);
3500 if (ioc
->aic
&& ioc
->aic
->exit
)
3501 ioc
->aic
->exit(ioc
->aic
);
3502 if (ioc
->cic
&& ioc
->cic
->exit
)
3503 ioc
->cic
->exit(ioc
->cic
);
3505 put_io_context(ioc
);
3509 * If the current task has no IO context then create one and initialise it.
3510 * Otherwise, return its existing IO context.
3512 * This returned IO context doesn't have a specifically elevated refcount,
3513 * but since the current task itself holds a reference, the context can be
3514 * used in general code, so long as it stays within `current` context.
3516 struct io_context
*current_io_context(gfp_t gfp_flags
)
3518 struct task_struct
*tsk
= current
;
3519 struct io_context
*ret
;
3521 ret
= tsk
->io_context
;
3525 ret
= kmem_cache_alloc(iocontext_cachep
, gfp_flags
);
3527 atomic_set(&ret
->refcount
, 1);
3528 ret
->task
= current
;
3529 ret
->set_ioprio
= NULL
;
3530 ret
->last_waited
= jiffies
; /* doesn't matter... */
3531 ret
->nr_batch_requests
= 0; /* because this is 0 */
3534 tsk
->io_context
= ret
;
3539 EXPORT_SYMBOL(current_io_context
);
3542 * If the current task has no IO context then create one and initialise it.
3543 * If it does have a context, take a ref on it.
3545 * This is always called in the context of the task which submitted the I/O.
3547 struct io_context
*get_io_context(gfp_t gfp_flags
)
3549 struct io_context
*ret
;
3550 ret
= current_io_context(gfp_flags
);
3552 atomic_inc(&ret
->refcount
);
3555 EXPORT_SYMBOL(get_io_context
);
3557 void copy_io_context(struct io_context
**pdst
, struct io_context
**psrc
)
3559 struct io_context
*src
= *psrc
;
3560 struct io_context
*dst
= *pdst
;
3563 BUG_ON(atomic_read(&src
->refcount
) == 0);
3564 atomic_inc(&src
->refcount
);
3565 put_io_context(dst
);
3569 EXPORT_SYMBOL(copy_io_context
);
3571 void swap_io_context(struct io_context
**ioc1
, struct io_context
**ioc2
)
3573 struct io_context
*temp
;
3578 EXPORT_SYMBOL(swap_io_context
);
3583 struct queue_sysfs_entry
{
3584 struct attribute attr
;
3585 ssize_t (*show
)(struct request_queue
*, char *);
3586 ssize_t (*store
)(struct request_queue
*, const char *, size_t);
3590 queue_var_show(unsigned int var
, char *page
)
3592 return sprintf(page
, "%d\n", var
);
3596 queue_var_store(unsigned long *var
, const char *page
, size_t count
)
3598 char *p
= (char *) page
;
3600 *var
= simple_strtoul(p
, &p
, 10);
3604 static ssize_t
queue_requests_show(struct request_queue
*q
, char *page
)
3606 return queue_var_show(q
->nr_requests
, (page
));
3610 queue_requests_store(struct request_queue
*q
, const char *page
, size_t count
)
3612 struct request_list
*rl
= &q
->rq
;
3614 int ret
= queue_var_store(&q
->nr_requests
, page
, count
);
3615 if (q
->nr_requests
< BLKDEV_MIN_RQ
)
3616 q
->nr_requests
= BLKDEV_MIN_RQ
;
3617 blk_queue_congestion_threshold(q
);
3619 if (rl
->count
[READ
] >= queue_congestion_on_threshold(q
))
3620 set_queue_congested(q
, READ
);
3621 else if (rl
->count
[READ
] < queue_congestion_off_threshold(q
))
3622 clear_queue_congested(q
, READ
);
3624 if (rl
->count
[WRITE
] >= queue_congestion_on_threshold(q
))
3625 set_queue_congested(q
, WRITE
);
3626 else if (rl
->count
[WRITE
] < queue_congestion_off_threshold(q
))
3627 clear_queue_congested(q
, WRITE
);
3629 if (rl
->count
[READ
] >= q
->nr_requests
) {
3630 blk_set_queue_full(q
, READ
);
3631 } else if (rl
->count
[READ
]+1 <= q
->nr_requests
) {
3632 blk_clear_queue_full(q
, READ
);
3633 wake_up(&rl
->wait
[READ
]);
3636 if (rl
->count
[WRITE
] >= q
->nr_requests
) {
3637 blk_set_queue_full(q
, WRITE
);
3638 } else if (rl
->count
[WRITE
]+1 <= q
->nr_requests
) {
3639 blk_clear_queue_full(q
, WRITE
);
3640 wake_up(&rl
->wait
[WRITE
]);
3645 static ssize_t
queue_ra_show(struct request_queue
*q
, char *page
)
3647 int ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3649 return queue_var_show(ra_kb
, (page
));
3653 queue_ra_store(struct request_queue
*q
, const char *page
, size_t count
)
3655 unsigned long ra_kb
;
3656 ssize_t ret
= queue_var_store(&ra_kb
, page
, count
);
3658 spin_lock_irq(q
->queue_lock
);
3659 if (ra_kb
> (q
->max_sectors
>> 1))
3660 ra_kb
= (q
->max_sectors
>> 1);
3662 q
->backing_dev_info
.ra_pages
= ra_kb
>> (PAGE_CACHE_SHIFT
- 10);
3663 spin_unlock_irq(q
->queue_lock
);
3668 static ssize_t
queue_max_sectors_show(struct request_queue
*q
, char *page
)
3670 int max_sectors_kb
= q
->max_sectors
>> 1;
3672 return queue_var_show(max_sectors_kb
, (page
));
3676 queue_max_sectors_store(struct request_queue
*q
, const char *page
, size_t count
)
3678 unsigned long max_sectors_kb
,
3679 max_hw_sectors_kb
= q
->max_hw_sectors
>> 1,
3680 page_kb
= 1 << (PAGE_CACHE_SHIFT
- 10);
3681 ssize_t ret
= queue_var_store(&max_sectors_kb
, page
, count
);
3684 if (max_sectors_kb
> max_hw_sectors_kb
|| max_sectors_kb
< page_kb
)
3687 * Take the queue lock to update the readahead and max_sectors
3688 * values synchronously:
3690 spin_lock_irq(q
->queue_lock
);
3692 * Trim readahead window as well, if necessary:
3694 ra_kb
= q
->backing_dev_info
.ra_pages
<< (PAGE_CACHE_SHIFT
- 10);
3695 if (ra_kb
> max_sectors_kb
)
3696 q
->backing_dev_info
.ra_pages
=
3697 max_sectors_kb
>> (PAGE_CACHE_SHIFT
- 10);
3699 q
->max_sectors
= max_sectors_kb
<< 1;
3700 spin_unlock_irq(q
->queue_lock
);
3705 static ssize_t
queue_max_hw_sectors_show(struct request_queue
*q
, char *page
)
3707 int max_hw_sectors_kb
= q
->max_hw_sectors
>> 1;
3709 return queue_var_show(max_hw_sectors_kb
, (page
));
3713 static struct queue_sysfs_entry queue_requests_entry
= {
3714 .attr
= {.name
= "nr_requests", .mode
= S_IRUGO
| S_IWUSR
},
3715 .show
= queue_requests_show
,
3716 .store
= queue_requests_store
,
3719 static struct queue_sysfs_entry queue_ra_entry
= {
3720 .attr
= {.name
= "read_ahead_kb", .mode
= S_IRUGO
| S_IWUSR
},
3721 .show
= queue_ra_show
,
3722 .store
= queue_ra_store
,
3725 static struct queue_sysfs_entry queue_max_sectors_entry
= {
3726 .attr
= {.name
= "max_sectors_kb", .mode
= S_IRUGO
| S_IWUSR
},
3727 .show
= queue_max_sectors_show
,
3728 .store
= queue_max_sectors_store
,
3731 static struct queue_sysfs_entry queue_max_hw_sectors_entry
= {
3732 .attr
= {.name
= "max_hw_sectors_kb", .mode
= S_IRUGO
},
3733 .show
= queue_max_hw_sectors_show
,
3736 static struct queue_sysfs_entry queue_iosched_entry
= {
3737 .attr
= {.name
= "scheduler", .mode
= S_IRUGO
| S_IWUSR
},
3738 .show
= elv_iosched_show
,
3739 .store
= elv_iosched_store
,
3742 static struct attribute
*default_attrs
[] = {
3743 &queue_requests_entry
.attr
,
3744 &queue_ra_entry
.attr
,
3745 &queue_max_hw_sectors_entry
.attr
,
3746 &queue_max_sectors_entry
.attr
,
3747 &queue_iosched_entry
.attr
,
3751 #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
3754 queue_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
3756 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3757 struct request_queue
*q
;
3759 q
= container_of(kobj
, struct request_queue
, kobj
);
3763 return entry
->show(q
, page
);
3767 queue_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
3768 const char *page
, size_t length
)
3770 struct queue_sysfs_entry
*entry
= to_queue(attr
);
3771 struct request_queue
*q
;
3773 q
= container_of(kobj
, struct request_queue
, kobj
);
3777 return entry
->store(q
, page
, length
);
3780 static struct sysfs_ops queue_sysfs_ops
= {
3781 .show
= queue_attr_show
,
3782 .store
= queue_attr_store
,
3785 static struct kobj_type queue_ktype
= {
3786 .sysfs_ops
= &queue_sysfs_ops
,
3787 .default_attrs
= default_attrs
,
3790 int blk_register_queue(struct gendisk
*disk
)
3794 request_queue_t
*q
= disk
->queue
;
3796 if (!q
|| !q
->request_fn
)
3799 q
->kobj
.parent
= kobject_get(&disk
->kobj
);
3800 if (!q
->kobj
.parent
)
3803 snprintf(q
->kobj
.name
, KOBJ_NAME_LEN
, "%s", "queue");
3804 q
->kobj
.ktype
= &queue_ktype
;
3806 ret
= kobject_register(&q
->kobj
);
3810 ret
= elv_register_queue(q
);
3812 kobject_unregister(&q
->kobj
);
3819 void blk_unregister_queue(struct gendisk
*disk
)
3821 request_queue_t
*q
= disk
->queue
;
3823 if (q
&& q
->request_fn
) {
3824 elv_unregister_queue(q
);
3826 kobject_unregister(&q
->kobj
);
3827 kobject_put(&disk
->kobj
);