Linux 2.6.22.5
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blob5fb38f1c1c37967162901fbea203d5ae1d286f80
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
22 #include "internal.h"
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 unsigned long max_huge_pages;
27 static struct list_head hugepage_freelists[MAX_NUMNODES];
28 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
29 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
33 static DEFINE_SPINLOCK(hugetlb_lock);
35 static void clear_huge_page(struct page *page, unsigned long addr)
37 int i;
39 might_sleep();
40 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
41 cond_resched();
42 clear_user_highpage(page + i, addr);
46 static void copy_huge_page(struct page *dst, struct page *src,
47 unsigned long addr, struct vm_area_struct *vma)
49 int i;
51 might_sleep();
52 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
53 cond_resched();
54 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
58 static void enqueue_huge_page(struct page *page)
60 int nid = page_to_nid(page);
61 list_add(&page->lru, &hugepage_freelists[nid]);
62 free_huge_pages++;
63 free_huge_pages_node[nid]++;
66 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
67 unsigned long address)
69 int nid = numa_node_id();
70 struct page *page = NULL;
71 struct zonelist *zonelist = huge_zonelist(vma, address);
72 struct zone **z;
74 for (z = zonelist->zones; *z; z++) {
75 nid = zone_to_nid(*z);
76 if (cpuset_zone_allowed_softwall(*z, GFP_HIGHUSER) &&
77 !list_empty(&hugepage_freelists[nid]))
78 break;
81 if (*z) {
82 page = list_entry(hugepage_freelists[nid].next,
83 struct page, lru);
84 list_del(&page->lru);
85 free_huge_pages--;
86 free_huge_pages_node[nid]--;
88 return page;
91 static void free_huge_page(struct page *page)
93 BUG_ON(page_count(page));
95 INIT_LIST_HEAD(&page->lru);
97 spin_lock(&hugetlb_lock);
98 enqueue_huge_page(page);
99 spin_unlock(&hugetlb_lock);
102 static int alloc_fresh_huge_page(void)
104 static int prev_nid;
105 struct page *page;
106 static DEFINE_SPINLOCK(nid_lock);
107 int nid;
109 spin_lock(&nid_lock);
110 nid = next_node(prev_nid, node_online_map);
111 if (nid == MAX_NUMNODES)
112 nid = first_node(node_online_map);
113 prev_nid = nid;
114 spin_unlock(&nid_lock);
116 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
117 HUGETLB_PAGE_ORDER);
118 if (page) {
119 set_compound_page_dtor(page, free_huge_page);
120 spin_lock(&hugetlb_lock);
121 nr_huge_pages++;
122 nr_huge_pages_node[page_to_nid(page)]++;
123 spin_unlock(&hugetlb_lock);
124 put_page(page); /* free it into the hugepage allocator */
125 return 1;
127 return 0;
130 static struct page *alloc_huge_page(struct vm_area_struct *vma,
131 unsigned long addr)
133 struct page *page;
135 spin_lock(&hugetlb_lock);
136 if (vma->vm_flags & VM_MAYSHARE)
137 resv_huge_pages--;
138 else if (free_huge_pages <= resv_huge_pages)
139 goto fail;
141 page = dequeue_huge_page(vma, addr);
142 if (!page)
143 goto fail;
145 spin_unlock(&hugetlb_lock);
146 set_page_refcounted(page);
147 return page;
149 fail:
150 if (vma->vm_flags & VM_MAYSHARE)
151 resv_huge_pages++;
152 spin_unlock(&hugetlb_lock);
153 return NULL;
156 static int __init hugetlb_init(void)
158 unsigned long i;
160 if (HPAGE_SHIFT == 0)
161 return 0;
163 for (i = 0; i < MAX_NUMNODES; ++i)
164 INIT_LIST_HEAD(&hugepage_freelists[i]);
166 for (i = 0; i < max_huge_pages; ++i) {
167 if (!alloc_fresh_huge_page())
168 break;
170 max_huge_pages = free_huge_pages = nr_huge_pages = i;
171 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
172 return 0;
174 module_init(hugetlb_init);
176 static int __init hugetlb_setup(char *s)
178 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
179 max_huge_pages = 0;
180 return 1;
182 __setup("hugepages=", hugetlb_setup);
184 static unsigned int cpuset_mems_nr(unsigned int *array)
186 int node;
187 unsigned int nr = 0;
189 for_each_node_mask(node, cpuset_current_mems_allowed)
190 nr += array[node];
192 return nr;
195 #ifdef CONFIG_SYSCTL
196 static void update_and_free_page(struct page *page)
198 int i;
199 nr_huge_pages--;
200 nr_huge_pages_node[page_to_nid(page)]--;
201 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
202 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
203 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
204 1 << PG_private | 1<< PG_writeback);
206 page[1].lru.next = NULL;
207 set_page_refcounted(page);
208 __free_pages(page, HUGETLB_PAGE_ORDER);
211 #ifdef CONFIG_HIGHMEM
212 static void try_to_free_low(unsigned long count)
214 int i;
216 for (i = 0; i < MAX_NUMNODES; ++i) {
217 struct page *page, *next;
218 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
219 if (PageHighMem(page))
220 continue;
221 list_del(&page->lru);
222 update_and_free_page(page);
223 free_huge_pages--;
224 free_huge_pages_node[page_to_nid(page)]--;
225 if (count >= nr_huge_pages)
226 return;
230 #else
231 static inline void try_to_free_low(unsigned long count)
234 #endif
236 static unsigned long set_max_huge_pages(unsigned long count)
238 while (count > nr_huge_pages) {
239 if (!alloc_fresh_huge_page())
240 return nr_huge_pages;
242 if (count >= nr_huge_pages)
243 return nr_huge_pages;
245 spin_lock(&hugetlb_lock);
246 count = max(count, resv_huge_pages);
247 try_to_free_low(count);
248 while (count < nr_huge_pages) {
249 struct page *page = dequeue_huge_page(NULL, 0);
250 if (!page)
251 break;
252 update_and_free_page(page);
254 spin_unlock(&hugetlb_lock);
255 return nr_huge_pages;
258 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
259 struct file *file, void __user *buffer,
260 size_t *length, loff_t *ppos)
262 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
263 max_huge_pages = set_max_huge_pages(max_huge_pages);
264 return 0;
266 #endif /* CONFIG_SYSCTL */
268 int hugetlb_report_meminfo(char *buf)
270 return sprintf(buf,
271 "HugePages_Total: %5lu\n"
272 "HugePages_Free: %5lu\n"
273 "HugePages_Rsvd: %5lu\n"
274 "Hugepagesize: %5lu kB\n",
275 nr_huge_pages,
276 free_huge_pages,
277 resv_huge_pages,
278 HPAGE_SIZE/1024);
281 int hugetlb_report_node_meminfo(int nid, char *buf)
283 return sprintf(buf,
284 "Node %d HugePages_Total: %5u\n"
285 "Node %d HugePages_Free: %5u\n",
286 nid, nr_huge_pages_node[nid],
287 nid, free_huge_pages_node[nid]);
290 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
291 unsigned long hugetlb_total_pages(void)
293 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
297 * We cannot handle pagefaults against hugetlb pages at all. They cause
298 * handle_mm_fault() to try to instantiate regular-sized pages in the
299 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
300 * this far.
302 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
303 unsigned long address, int *unused)
305 BUG();
306 return NULL;
309 struct vm_operations_struct hugetlb_vm_ops = {
310 .nopage = hugetlb_nopage,
313 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
314 int writable)
316 pte_t entry;
318 if (writable) {
319 entry =
320 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
321 } else {
322 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
324 entry = pte_mkyoung(entry);
325 entry = pte_mkhuge(entry);
327 return entry;
330 static void set_huge_ptep_writable(struct vm_area_struct *vma,
331 unsigned long address, pte_t *ptep)
333 pte_t entry;
335 entry = pte_mkwrite(pte_mkdirty(*ptep));
336 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
337 update_mmu_cache(vma, address, entry);
338 lazy_mmu_prot_update(entry);
343 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
344 struct vm_area_struct *vma)
346 pte_t *src_pte, *dst_pte, entry;
347 struct page *ptepage;
348 unsigned long addr;
349 int cow;
351 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
353 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
354 src_pte = huge_pte_offset(src, addr);
355 if (!src_pte)
356 continue;
357 dst_pte = huge_pte_alloc(dst, addr);
358 if (!dst_pte)
359 goto nomem;
360 spin_lock(&dst->page_table_lock);
361 spin_lock(&src->page_table_lock);
362 if (!pte_none(*src_pte)) {
363 if (cow)
364 ptep_set_wrprotect(src, addr, src_pte);
365 entry = *src_pte;
366 ptepage = pte_page(entry);
367 get_page(ptepage);
368 set_huge_pte_at(dst, addr, dst_pte, entry);
370 spin_unlock(&src->page_table_lock);
371 spin_unlock(&dst->page_table_lock);
373 return 0;
375 nomem:
376 return -ENOMEM;
379 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
380 unsigned long end)
382 struct mm_struct *mm = vma->vm_mm;
383 unsigned long address;
384 pte_t *ptep;
385 pte_t pte;
386 struct page *page;
387 struct page *tmp;
389 * A page gathering list, protected by per file i_mmap_lock. The
390 * lock is used to avoid list corruption from multiple unmapping
391 * of the same page since we are using page->lru.
393 LIST_HEAD(page_list);
395 WARN_ON(!is_vm_hugetlb_page(vma));
396 BUG_ON(start & ~HPAGE_MASK);
397 BUG_ON(end & ~HPAGE_MASK);
399 spin_lock(&mm->page_table_lock);
400 for (address = start; address < end; address += HPAGE_SIZE) {
401 ptep = huge_pte_offset(mm, address);
402 if (!ptep)
403 continue;
405 if (huge_pmd_unshare(mm, &address, ptep))
406 continue;
408 pte = huge_ptep_get_and_clear(mm, address, ptep);
409 if (pte_none(pte))
410 continue;
412 page = pte_page(pte);
413 if (pte_dirty(pte))
414 set_page_dirty(page);
415 list_add(&page->lru, &page_list);
417 spin_unlock(&mm->page_table_lock);
418 flush_tlb_range(vma, start, end);
419 list_for_each_entry_safe(page, tmp, &page_list, lru) {
420 list_del(&page->lru);
421 put_page(page);
425 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
426 unsigned long end)
429 * It is undesirable to test vma->vm_file as it should be non-null
430 * for valid hugetlb area. However, vm_file will be NULL in the error
431 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
432 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
433 * to clean up. Since no pte has actually been setup, it is safe to
434 * do nothing in this case.
436 if (vma->vm_file) {
437 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
438 __unmap_hugepage_range(vma, start, end);
439 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
443 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
444 unsigned long address, pte_t *ptep, pte_t pte)
446 struct page *old_page, *new_page;
447 int avoidcopy;
449 old_page = pte_page(pte);
451 /* If no-one else is actually using this page, avoid the copy
452 * and just make the page writable */
453 avoidcopy = (page_count(old_page) == 1);
454 if (avoidcopy) {
455 set_huge_ptep_writable(vma, address, ptep);
456 return VM_FAULT_MINOR;
459 page_cache_get(old_page);
460 new_page = alloc_huge_page(vma, address);
462 if (!new_page) {
463 page_cache_release(old_page);
464 return VM_FAULT_OOM;
467 spin_unlock(&mm->page_table_lock);
468 copy_huge_page(new_page, old_page, address, vma);
469 spin_lock(&mm->page_table_lock);
471 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
472 if (likely(pte_same(*ptep, pte))) {
473 /* Break COW */
474 set_huge_pte_at(mm, address, ptep,
475 make_huge_pte(vma, new_page, 1));
476 /* Make the old page be freed below */
477 new_page = old_page;
479 page_cache_release(new_page);
480 page_cache_release(old_page);
481 return VM_FAULT_MINOR;
484 int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
485 unsigned long address, pte_t *ptep, int write_access)
487 int ret = VM_FAULT_SIGBUS;
488 unsigned long idx;
489 unsigned long size;
490 struct page *page;
491 struct address_space *mapping;
492 pte_t new_pte;
494 mapping = vma->vm_file->f_mapping;
495 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
496 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
499 * Use page lock to guard against racing truncation
500 * before we get page_table_lock.
502 retry:
503 page = find_lock_page(mapping, idx);
504 if (!page) {
505 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
506 if (idx >= size)
507 goto out;
508 if (hugetlb_get_quota(mapping))
509 goto out;
510 page = alloc_huge_page(vma, address);
511 if (!page) {
512 hugetlb_put_quota(mapping);
513 ret = VM_FAULT_OOM;
514 goto out;
516 clear_huge_page(page, address);
518 if (vma->vm_flags & VM_SHARED) {
519 int err;
521 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
522 if (err) {
523 put_page(page);
524 hugetlb_put_quota(mapping);
525 if (err == -EEXIST)
526 goto retry;
527 goto out;
529 } else
530 lock_page(page);
533 spin_lock(&mm->page_table_lock);
534 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
535 if (idx >= size)
536 goto backout;
538 ret = VM_FAULT_MINOR;
539 if (!pte_none(*ptep))
540 goto backout;
542 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
543 && (vma->vm_flags & VM_SHARED)));
544 set_huge_pte_at(mm, address, ptep, new_pte);
546 if (write_access && !(vma->vm_flags & VM_SHARED)) {
547 /* Optimization, do the COW without a second fault */
548 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
551 spin_unlock(&mm->page_table_lock);
552 unlock_page(page);
553 out:
554 return ret;
556 backout:
557 spin_unlock(&mm->page_table_lock);
558 hugetlb_put_quota(mapping);
559 unlock_page(page);
560 put_page(page);
561 goto out;
564 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
565 unsigned long address, int write_access)
567 pte_t *ptep;
568 pte_t entry;
569 int ret;
570 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
572 ptep = huge_pte_alloc(mm, address);
573 if (!ptep)
574 return VM_FAULT_OOM;
577 * Serialize hugepage allocation and instantiation, so that we don't
578 * get spurious allocation failures if two CPUs race to instantiate
579 * the same page in the page cache.
581 mutex_lock(&hugetlb_instantiation_mutex);
582 entry = *ptep;
583 if (pte_none(entry)) {
584 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
585 mutex_unlock(&hugetlb_instantiation_mutex);
586 return ret;
589 ret = VM_FAULT_MINOR;
591 spin_lock(&mm->page_table_lock);
592 /* Check for a racing update before calling hugetlb_cow */
593 if (likely(pte_same(entry, *ptep)))
594 if (write_access && !pte_write(entry))
595 ret = hugetlb_cow(mm, vma, address, ptep, entry);
596 spin_unlock(&mm->page_table_lock);
597 mutex_unlock(&hugetlb_instantiation_mutex);
599 return ret;
602 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
603 struct page **pages, struct vm_area_struct **vmas,
604 unsigned long *position, int *length, int i)
606 unsigned long pfn_offset;
607 unsigned long vaddr = *position;
608 int remainder = *length;
610 spin_lock(&mm->page_table_lock);
611 while (vaddr < vma->vm_end && remainder) {
612 pte_t *pte;
613 struct page *page;
616 * Some archs (sparc64, sh*) have multiple pte_ts to
617 * each hugepage. We have to make * sure we get the
618 * first, for the page indexing below to work.
620 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
622 if (!pte || pte_none(*pte)) {
623 int ret;
625 spin_unlock(&mm->page_table_lock);
626 ret = hugetlb_fault(mm, vma, vaddr, 0);
627 spin_lock(&mm->page_table_lock);
628 if (ret == VM_FAULT_MINOR)
629 continue;
631 remainder = 0;
632 if (!i)
633 i = -EFAULT;
634 break;
637 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
638 page = pte_page(*pte);
639 same_page:
640 if (pages) {
641 get_page(page);
642 pages[i] = page + pfn_offset;
645 if (vmas)
646 vmas[i] = vma;
648 vaddr += PAGE_SIZE;
649 ++pfn_offset;
650 --remainder;
651 ++i;
652 if (vaddr < vma->vm_end && remainder &&
653 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
655 * We use pfn_offset to avoid touching the pageframes
656 * of this compound page.
658 goto same_page;
661 spin_unlock(&mm->page_table_lock);
662 *length = remainder;
663 *position = vaddr;
665 return i;
668 void hugetlb_change_protection(struct vm_area_struct *vma,
669 unsigned long address, unsigned long end, pgprot_t newprot)
671 struct mm_struct *mm = vma->vm_mm;
672 unsigned long start = address;
673 pte_t *ptep;
674 pte_t pte;
676 BUG_ON(address >= end);
677 flush_cache_range(vma, address, end);
679 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
680 spin_lock(&mm->page_table_lock);
681 for (; address < end; address += HPAGE_SIZE) {
682 ptep = huge_pte_offset(mm, address);
683 if (!ptep)
684 continue;
685 if (huge_pmd_unshare(mm, &address, ptep))
686 continue;
687 if (!pte_none(*ptep)) {
688 pte = huge_ptep_get_and_clear(mm, address, ptep);
689 pte = pte_mkhuge(pte_modify(pte, newprot));
690 set_huge_pte_at(mm, address, ptep, pte);
691 lazy_mmu_prot_update(pte);
694 spin_unlock(&mm->page_table_lock);
695 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
697 flush_tlb_range(vma, start, end);
700 struct file_region {
701 struct list_head link;
702 long from;
703 long to;
706 static long region_add(struct list_head *head, long f, long t)
708 struct file_region *rg, *nrg, *trg;
710 /* Locate the region we are either in or before. */
711 list_for_each_entry(rg, head, link)
712 if (f <= rg->to)
713 break;
715 /* Round our left edge to the current segment if it encloses us. */
716 if (f > rg->from)
717 f = rg->from;
719 /* Check for and consume any regions we now overlap with. */
720 nrg = rg;
721 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
722 if (&rg->link == head)
723 break;
724 if (rg->from > t)
725 break;
727 /* If this area reaches higher then extend our area to
728 * include it completely. If this is not the first area
729 * which we intend to reuse, free it. */
730 if (rg->to > t)
731 t = rg->to;
732 if (rg != nrg) {
733 list_del(&rg->link);
734 kfree(rg);
737 nrg->from = f;
738 nrg->to = t;
739 return 0;
742 static long region_chg(struct list_head *head, long f, long t)
744 struct file_region *rg, *nrg;
745 long chg = 0;
747 /* Locate the region we are before or in. */
748 list_for_each_entry(rg, head, link)
749 if (f <= rg->to)
750 break;
752 /* If we are below the current region then a new region is required.
753 * Subtle, allocate a new region at the position but make it zero
754 * size such that we can guarentee to record the reservation. */
755 if (&rg->link == head || t < rg->from) {
756 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
757 if (nrg == 0)
758 return -ENOMEM;
759 nrg->from = f;
760 nrg->to = f;
761 INIT_LIST_HEAD(&nrg->link);
762 list_add(&nrg->link, rg->link.prev);
764 return t - f;
767 /* Round our left edge to the current segment if it encloses us. */
768 if (f > rg->from)
769 f = rg->from;
770 chg = t - f;
772 /* Check for and consume any regions we now overlap with. */
773 list_for_each_entry(rg, rg->link.prev, link) {
774 if (&rg->link == head)
775 break;
776 if (rg->from > t)
777 return chg;
779 /* We overlap with this area, if it extends futher than
780 * us then we must extend ourselves. Account for its
781 * existing reservation. */
782 if (rg->to > t) {
783 chg += rg->to - t;
784 t = rg->to;
786 chg -= rg->to - rg->from;
788 return chg;
791 static long region_truncate(struct list_head *head, long end)
793 struct file_region *rg, *trg;
794 long chg = 0;
796 /* Locate the region we are either in or before. */
797 list_for_each_entry(rg, head, link)
798 if (end <= rg->to)
799 break;
800 if (&rg->link == head)
801 return 0;
803 /* If we are in the middle of a region then adjust it. */
804 if (end > rg->from) {
805 chg = rg->to - end;
806 rg->to = end;
807 rg = list_entry(rg->link.next, typeof(*rg), link);
810 /* Drop any remaining regions. */
811 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
812 if (&rg->link == head)
813 break;
814 chg += rg->to - rg->from;
815 list_del(&rg->link);
816 kfree(rg);
818 return chg;
821 static int hugetlb_acct_memory(long delta)
823 int ret = -ENOMEM;
825 spin_lock(&hugetlb_lock);
826 if ((delta + resv_huge_pages) <= free_huge_pages) {
827 resv_huge_pages += delta;
828 ret = 0;
830 spin_unlock(&hugetlb_lock);
831 return ret;
834 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
836 long ret, chg;
838 chg = region_chg(&inode->i_mapping->private_list, from, to);
839 if (chg < 0)
840 return chg;
842 * When cpuset is configured, it breaks the strict hugetlb page
843 * reservation as the accounting is done on a global variable. Such
844 * reservation is completely rubbish in the presence of cpuset because
845 * the reservation is not checked against page availability for the
846 * current cpuset. Application can still potentially OOM'ed by kernel
847 * with lack of free htlb page in cpuset that the task is in.
848 * Attempt to enforce strict accounting with cpuset is almost
849 * impossible (or too ugly) because cpuset is too fluid that
850 * task or memory node can be dynamically moved between cpusets.
852 * The change of semantics for shared hugetlb mapping with cpuset is
853 * undesirable. However, in order to preserve some of the semantics,
854 * we fall back to check against current free page availability as
855 * a best attempt and hopefully to minimize the impact of changing
856 * semantics that cpuset has.
858 if (chg > cpuset_mems_nr(free_huge_pages_node))
859 return -ENOMEM;
861 ret = hugetlb_acct_memory(chg);
862 if (ret < 0)
863 return ret;
864 region_add(&inode->i_mapping->private_list, from, to);
865 return 0;
868 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
870 long chg = region_truncate(&inode->i_mapping->private_list, offset);
871 hugetlb_acct_memory(freed - chg);