4 * (C) 1997 Linus Torvalds
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mount.h>
27 #include <linux/async.h>
30 * This is needed for the following functions:
32 * - invalidate_inode_buffers
35 * FIXME: remove all knowledge of the buffer layer from this file
37 #include <linux/buffer_head.h>
40 * New inode.c implementation.
42 * This implementation has the basic premise of trying
43 * to be extremely low-overhead and SMP-safe, yet be
44 * simple enough to be "obviously correct".
49 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
51 /* #define INODE_PARANOIA 1 */
52 /* #define INODE_DEBUG 1 */
55 * Inode lookup is no longer as critical as it used to be:
56 * most of the lookups are going to be through the dcache.
58 #define I_HASHBITS i_hash_shift
59 #define I_HASHMASK i_hash_mask
61 static unsigned int i_hash_mask __read_mostly
;
62 static unsigned int i_hash_shift __read_mostly
;
65 * Each inode can be on two separate lists. One is
66 * the hash list of the inode, used for lookups. The
67 * other linked list is the "type" list:
68 * "in_use" - valid inode, i_count > 0, i_nlink > 0
69 * "dirty" - as "in_use" but also dirty
70 * "unused" - valid inode, i_count = 0
72 * A "dirty" list is maintained for each super block,
73 * allowing for low-overhead inode sync() operations.
76 LIST_HEAD(inode_in_use
);
77 LIST_HEAD(inode_unused
);
78 static struct hlist_head
*inode_hashtable __read_mostly
;
81 * A simple spinlock to protect the list manipulations.
83 * NOTE! You also have to own the lock if you change
84 * the i_state of an inode while it is in use..
86 DEFINE_SPINLOCK(inode_lock
);
89 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
90 * icache shrinking path, and the umount path. Without this exclusion,
91 * by the time prune_icache calls iput for the inode whose pages it has
92 * been invalidating, or by the time it calls clear_inode & destroy_inode
93 * from its final dispose_list, the struct super_block they refer to
94 * (for inode->i_sb->s_op) may already have been freed and reused.
96 static DEFINE_MUTEX(iprune_mutex
);
99 * Statistics gathering..
101 struct inodes_stat_t inodes_stat
;
103 static struct kmem_cache
*inode_cachep __read_mostly
;
105 static void wake_up_inode(struct inode
*inode
)
108 * Prevent speculative execution through spin_unlock(&inode_lock);
111 wake_up_bit(&inode
->i_state
, __I_LOCK
);
115 * inode_init_always - perform inode structure intialisation
116 * @sb: superblock inode belongs to
117 * @inode: inode to initialise
119 * These are initializations that need to be done on every inode
120 * allocation as the fields are not initialised by slab allocation.
122 struct inode
*inode_init_always(struct super_block
*sb
, struct inode
*inode
)
124 static const struct address_space_operations empty_aops
;
125 static struct inode_operations empty_iops
;
126 static const struct file_operations empty_fops
;
128 struct address_space
*const mapping
= &inode
->i_data
;
131 inode
->i_blkbits
= sb
->s_blocksize_bits
;
133 atomic_set(&inode
->i_count
, 1);
134 inode
->i_op
= &empty_iops
;
135 inode
->i_fop
= &empty_fops
;
139 atomic_set(&inode
->i_writecount
, 0);
143 inode
->i_generation
= 0;
145 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
147 inode
->i_pipe
= NULL
;
148 inode
->i_bdev
= NULL
;
149 inode
->i_cdev
= NULL
;
151 inode
->dirtied_when
= 0;
153 if (security_inode_alloc(inode
))
156 /* allocate and initialize an i_integrity */
157 if (ima_inode_alloc(inode
))
158 goto out_free_security
;
160 spin_lock_init(&inode
->i_lock
);
161 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
163 mutex_init(&inode
->i_mutex
);
164 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
166 init_rwsem(&inode
->i_alloc_sem
);
167 lockdep_set_class(&inode
->i_alloc_sem
, &sb
->s_type
->i_alloc_sem_key
);
169 mapping
->a_ops
= &empty_aops
;
170 mapping
->host
= inode
;
172 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
173 mapping
->assoc_mapping
= NULL
;
174 mapping
->backing_dev_info
= &default_backing_dev_info
;
175 mapping
->writeback_index
= 0;
178 * If the block_device provides a backing_dev_info for client
179 * inodes then use that. Otherwise the inode share the bdev's
183 struct backing_dev_info
*bdi
;
185 bdi
= sb
->s_bdev
->bd_inode_backing_dev_info
;
187 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
188 mapping
->backing_dev_info
= bdi
;
190 inode
->i_private
= NULL
;
191 inode
->i_mapping
= mapping
;
193 #ifdef CONFIG_FSNOTIFY
194 inode
->i_fsnotify_mask
= 0;
200 security_inode_free(inode
);
202 if (inode
->i_sb
->s_op
->destroy_inode
)
203 inode
->i_sb
->s_op
->destroy_inode(inode
);
205 kmem_cache_free(inode_cachep
, (inode
));
208 EXPORT_SYMBOL(inode_init_always
);
210 static struct inode
*alloc_inode(struct super_block
*sb
)
214 if (sb
->s_op
->alloc_inode
)
215 inode
= sb
->s_op
->alloc_inode(sb
);
217 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
220 return inode_init_always(sb
, inode
);
224 void destroy_inode(struct inode
*inode
)
226 BUG_ON(inode_has_buffers(inode
));
227 ima_inode_free(inode
);
228 security_inode_free(inode
);
229 fsnotify_inode_delete(inode
);
230 if (inode
->i_sb
->s_op
->destroy_inode
)
231 inode
->i_sb
->s_op
->destroy_inode(inode
);
233 kmem_cache_free(inode_cachep
, (inode
));
235 EXPORT_SYMBOL(destroy_inode
);
239 * These are initializations that only need to be done
240 * once, because the fields are idempotent across use
241 * of the inode, so let the slab aware of that.
243 void inode_init_once(struct inode
*inode
)
245 memset(inode
, 0, sizeof(*inode
));
246 INIT_HLIST_NODE(&inode
->i_hash
);
247 INIT_LIST_HEAD(&inode
->i_dentry
);
248 INIT_LIST_HEAD(&inode
->i_devices
);
249 INIT_RADIX_TREE(&inode
->i_data
.page_tree
, GFP_ATOMIC
);
250 spin_lock_init(&inode
->i_data
.tree_lock
);
251 spin_lock_init(&inode
->i_data
.i_mmap_lock
);
252 INIT_LIST_HEAD(&inode
->i_data
.private_list
);
253 spin_lock_init(&inode
->i_data
.private_lock
);
254 INIT_RAW_PRIO_TREE_ROOT(&inode
->i_data
.i_mmap
);
255 INIT_LIST_HEAD(&inode
->i_data
.i_mmap_nonlinear
);
256 i_size_ordered_init(inode
);
257 #ifdef CONFIG_INOTIFY
258 INIT_LIST_HEAD(&inode
->inotify_watches
);
259 mutex_init(&inode
->inotify_mutex
);
261 #ifdef CONFIG_FSNOTIFY
262 INIT_HLIST_HEAD(&inode
->i_fsnotify_mark_entries
);
265 EXPORT_SYMBOL(inode_init_once
);
267 static void init_once(void *foo
)
269 struct inode
*inode
= (struct inode
*) foo
;
271 inode_init_once(inode
);
275 * inode_lock must be held
277 void __iget(struct inode
*inode
)
279 if (atomic_read(&inode
->i_count
)) {
280 atomic_inc(&inode
->i_count
);
283 atomic_inc(&inode
->i_count
);
284 if (!(inode
->i_state
& (I_DIRTY
|I_SYNC
)))
285 list_move(&inode
->i_list
, &inode_in_use
);
286 inodes_stat
.nr_unused
--;
290 * clear_inode - clear an inode
291 * @inode: inode to clear
293 * This is called by the filesystem to tell us
294 * that the inode is no longer useful. We just
295 * terminate it with extreme prejudice.
297 void clear_inode(struct inode
*inode
)
300 invalidate_inode_buffers(inode
);
302 BUG_ON(inode
->i_data
.nrpages
);
303 BUG_ON(!(inode
->i_state
& I_FREEING
));
304 BUG_ON(inode
->i_state
& I_CLEAR
);
305 inode_sync_wait(inode
);
307 if (inode
->i_sb
->s_op
->clear_inode
)
308 inode
->i_sb
->s_op
->clear_inode(inode
);
309 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
311 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
313 inode
->i_state
= I_CLEAR
;
315 EXPORT_SYMBOL(clear_inode
);
318 * dispose_list - dispose of the contents of a local list
319 * @head: the head of the list to free
321 * Dispose-list gets a local list with local inodes in it, so it doesn't
322 * need to worry about list corruption and SMP locks.
324 static void dispose_list(struct list_head
*head
)
328 while (!list_empty(head
)) {
331 inode
= list_first_entry(head
, struct inode
, i_list
);
332 list_del(&inode
->i_list
);
334 if (inode
->i_data
.nrpages
)
335 truncate_inode_pages(&inode
->i_data
, 0);
338 spin_lock(&inode_lock
);
339 hlist_del_init(&inode
->i_hash
);
340 list_del_init(&inode
->i_sb_list
);
341 spin_unlock(&inode_lock
);
343 wake_up_inode(inode
);
344 destroy_inode(inode
);
347 spin_lock(&inode_lock
);
348 inodes_stat
.nr_inodes
-= nr_disposed
;
349 spin_unlock(&inode_lock
);
353 * Invalidate all inodes for a device.
355 static int invalidate_list(struct list_head
*head
, struct list_head
*dispose
)
357 struct list_head
*next
;
358 int busy
= 0, count
= 0;
362 struct list_head
*tmp
= next
;
366 * We can reschedule here without worrying about the list's
367 * consistency because the per-sb list of inodes must not
368 * change during umount anymore, and because iprune_mutex keeps
369 * shrink_icache_memory() away.
371 cond_resched_lock(&inode_lock
);
376 inode
= list_entry(tmp
, struct inode
, i_sb_list
);
377 if (inode
->i_state
& I_NEW
)
379 invalidate_inode_buffers(inode
);
380 if (!atomic_read(&inode
->i_count
)) {
381 list_move(&inode
->i_list
, dispose
);
382 WARN_ON(inode
->i_state
& I_NEW
);
383 inode
->i_state
|= I_FREEING
;
389 /* only unused inodes may be cached with i_count zero */
390 inodes_stat
.nr_unused
-= count
;
395 * invalidate_inodes - discard the inodes on a device
398 * Discard all of the inodes for a given superblock. If the discard
399 * fails because there are busy inodes then a non zero value is returned.
400 * If the discard is successful all the inodes have been discarded.
402 int invalidate_inodes(struct super_block
*sb
)
405 LIST_HEAD(throw_away
);
407 mutex_lock(&iprune_mutex
);
408 spin_lock(&inode_lock
);
409 inotify_unmount_inodes(&sb
->s_inodes
);
410 fsnotify_unmount_inodes(&sb
->s_inodes
);
411 busy
= invalidate_list(&sb
->s_inodes
, &throw_away
);
412 spin_unlock(&inode_lock
);
414 dispose_list(&throw_away
);
415 mutex_unlock(&iprune_mutex
);
419 EXPORT_SYMBOL(invalidate_inodes
);
421 static int can_unuse(struct inode
*inode
)
425 if (inode_has_buffers(inode
))
427 if (atomic_read(&inode
->i_count
))
429 if (inode
->i_data
.nrpages
)
435 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
436 * a temporary list and then are freed outside inode_lock by dispose_list().
438 * Any inodes which are pinned purely because of attached pagecache have their
439 * pagecache removed. We expect the final iput() on that inode to add it to
440 * the front of the inode_unused list. So look for it there and if the
441 * inode is still freeable, proceed. The right inode is found 99.9% of the
442 * time in testing on a 4-way.
444 * If the inode has metadata buffers attached to mapping->private_list then
445 * try to remove them.
447 static void prune_icache(int nr_to_scan
)
452 unsigned long reap
= 0;
454 mutex_lock(&iprune_mutex
);
455 spin_lock(&inode_lock
);
456 for (nr_scanned
= 0; nr_scanned
< nr_to_scan
; nr_scanned
++) {
459 if (list_empty(&inode_unused
))
462 inode
= list_entry(inode_unused
.prev
, struct inode
, i_list
);
464 if (inode
->i_state
|| atomic_read(&inode
->i_count
)) {
465 list_move(&inode
->i_list
, &inode_unused
);
468 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
470 spin_unlock(&inode_lock
);
471 if (remove_inode_buffers(inode
))
472 reap
+= invalidate_mapping_pages(&inode
->i_data
,
475 spin_lock(&inode_lock
);
477 if (inode
!= list_entry(inode_unused
.next
,
478 struct inode
, i_list
))
479 continue; /* wrong inode or list_empty */
480 if (!can_unuse(inode
))
483 list_move(&inode
->i_list
, &freeable
);
484 WARN_ON(inode
->i_state
& I_NEW
);
485 inode
->i_state
|= I_FREEING
;
488 inodes_stat
.nr_unused
-= nr_pruned
;
489 if (current_is_kswapd())
490 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
492 __count_vm_events(PGINODESTEAL
, reap
);
493 spin_unlock(&inode_lock
);
495 dispose_list(&freeable
);
496 mutex_unlock(&iprune_mutex
);
500 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
501 * "unused" means that no dentries are referring to the inodes: the files are
502 * not open and the dcache references to those inodes have already been
505 * This function is passed the number of inodes to scan, and it returns the
506 * total number of remaining possibly-reclaimable inodes.
508 static int shrink_icache_memory(int nr
, gfp_t gfp_mask
)
512 * Nasty deadlock avoidance. We may hold various FS locks,
513 * and we don't want to recurse into the FS that called us
514 * in clear_inode() and friends..
516 if (!(gfp_mask
& __GFP_FS
))
520 return (inodes_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
523 static struct shrinker icache_shrinker
= {
524 .shrink
= shrink_icache_memory
,
525 .seeks
= DEFAULT_SEEKS
,
528 static void __wait_on_freeing_inode(struct inode
*inode
);
530 * Called with the inode lock held.
531 * NOTE: we are not increasing the inode-refcount, you must call __iget()
532 * by hand after calling find_inode now! This simplifies iunique and won't
533 * add any additional branch in the common code.
535 static struct inode
*find_inode(struct super_block
*sb
,
536 struct hlist_head
*head
,
537 int (*test
)(struct inode
*, void *),
540 struct hlist_node
*node
;
541 struct inode
*inode
= NULL
;
544 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
545 if (inode
->i_sb
!= sb
)
547 if (!test(inode
, data
))
549 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)) {
550 __wait_on_freeing_inode(inode
);
555 return node
? inode
: NULL
;
559 * find_inode_fast is the fast path version of find_inode, see the comment at
560 * iget_locked for details.
562 static struct inode
*find_inode_fast(struct super_block
*sb
,
563 struct hlist_head
*head
, unsigned long ino
)
565 struct hlist_node
*node
;
566 struct inode
*inode
= NULL
;
569 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
570 if (inode
->i_ino
!= ino
)
572 if (inode
->i_sb
!= sb
)
574 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)) {
575 __wait_on_freeing_inode(inode
);
580 return node
? inode
: NULL
;
583 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
587 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
589 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> I_HASHBITS
);
590 return tmp
& I_HASHMASK
;
594 __inode_add_to_lists(struct super_block
*sb
, struct hlist_head
*head
,
597 inodes_stat
.nr_inodes
++;
598 list_add(&inode
->i_list
, &inode_in_use
);
599 list_add(&inode
->i_sb_list
, &sb
->s_inodes
);
601 hlist_add_head(&inode
->i_hash
, head
);
605 * inode_add_to_lists - add a new inode to relevant lists
606 * @sb: superblock inode belongs to
607 * @inode: inode to mark in use
609 * When an inode is allocated it needs to be accounted for, added to the in use
610 * list, the owning superblock and the inode hash. This needs to be done under
611 * the inode_lock, so export a function to do this rather than the inode lock
612 * itself. We calculate the hash list to add to here so it is all internal
613 * which requires the caller to have already set up the inode number in the
616 void inode_add_to_lists(struct super_block
*sb
, struct inode
*inode
)
618 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, inode
->i_ino
);
620 spin_lock(&inode_lock
);
621 __inode_add_to_lists(sb
, head
, inode
);
622 spin_unlock(&inode_lock
);
624 EXPORT_SYMBOL_GPL(inode_add_to_lists
);
627 * new_inode - obtain an inode
630 * Allocates a new inode for given superblock. The default gfp_mask
631 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
632 * If HIGHMEM pages are unsuitable or it is known that pages allocated
633 * for the page cache are not reclaimable or migratable,
634 * mapping_set_gfp_mask() must be called with suitable flags on the
635 * newly created inode's mapping
638 struct inode
*new_inode(struct super_block
*sb
)
641 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
642 * error if st_ino won't fit in target struct field. Use 32bit counter
643 * here to attempt to avoid that.
645 static unsigned int last_ino
;
648 spin_lock_prefetch(&inode_lock
);
650 inode
= alloc_inode(sb
);
652 spin_lock(&inode_lock
);
653 __inode_add_to_lists(sb
, NULL
, inode
);
654 inode
->i_ino
= ++last_ino
;
656 spin_unlock(&inode_lock
);
660 EXPORT_SYMBOL(new_inode
);
662 void unlock_new_inode(struct inode
*inode
)
664 #ifdef CONFIG_DEBUG_LOCK_ALLOC
665 if (inode
->i_mode
& S_IFDIR
) {
666 struct file_system_type
*type
= inode
->i_sb
->s_type
;
669 * ensure nobody is actually holding i_mutex
671 mutex_destroy(&inode
->i_mutex
);
672 mutex_init(&inode
->i_mutex
);
673 lockdep_set_class(&inode
->i_mutex
, &type
->i_mutex_dir_key
);
677 * This is special! We do not need the spinlock
678 * when clearing I_LOCK, because we're guaranteed
679 * that nobody else tries to do anything about the
680 * state of the inode when it is locked, as we
681 * just created it (so there can be no old holders
682 * that haven't tested I_LOCK).
684 WARN_ON((inode
->i_state
& (I_LOCK
|I_NEW
)) != (I_LOCK
|I_NEW
));
685 inode
->i_state
&= ~(I_LOCK
|I_NEW
);
686 wake_up_inode(inode
);
688 EXPORT_SYMBOL(unlock_new_inode
);
691 * This is called without the inode lock held.. Be careful.
693 * We no longer cache the sb_flags in i_flags - see fs.h
694 * -- rmk@arm.uk.linux.org
696 static struct inode
*get_new_inode(struct super_block
*sb
,
697 struct hlist_head
*head
,
698 int (*test
)(struct inode
*, void *),
699 int (*set
)(struct inode
*, void *),
704 inode
= alloc_inode(sb
);
708 spin_lock(&inode_lock
);
709 /* We released the lock, so.. */
710 old
= find_inode(sb
, head
, test
, data
);
712 if (set(inode
, data
))
715 __inode_add_to_lists(sb
, head
, inode
);
716 inode
->i_state
= I_LOCK
|I_NEW
;
717 spin_unlock(&inode_lock
);
719 /* Return the locked inode with I_NEW set, the
720 * caller is responsible for filling in the contents
726 * Uhhuh, somebody else created the same inode under
727 * us. Use the old inode instead of the one we just
731 spin_unlock(&inode_lock
);
732 destroy_inode(inode
);
734 wait_on_inode(inode
);
739 spin_unlock(&inode_lock
);
740 destroy_inode(inode
);
745 * get_new_inode_fast is the fast path version of get_new_inode, see the
746 * comment at iget_locked for details.
748 static struct inode
*get_new_inode_fast(struct super_block
*sb
,
749 struct hlist_head
*head
, unsigned long ino
)
753 inode
= alloc_inode(sb
);
757 spin_lock(&inode_lock
);
758 /* We released the lock, so.. */
759 old
= find_inode_fast(sb
, head
, ino
);
762 __inode_add_to_lists(sb
, head
, inode
);
763 inode
->i_state
= I_LOCK
|I_NEW
;
764 spin_unlock(&inode_lock
);
766 /* Return the locked inode with I_NEW set, the
767 * caller is responsible for filling in the contents
773 * Uhhuh, somebody else created the same inode under
774 * us. Use the old inode instead of the one we just
778 spin_unlock(&inode_lock
);
779 destroy_inode(inode
);
781 wait_on_inode(inode
);
787 * iunique - get a unique inode number
789 * @max_reserved: highest reserved inode number
791 * Obtain an inode number that is unique on the system for a given
792 * superblock. This is used by file systems that have no natural
793 * permanent inode numbering system. An inode number is returned that
794 * is higher than the reserved limit but unique.
797 * With a large number of inodes live on the file system this function
798 * currently becomes quite slow.
800 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
803 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
804 * error if st_ino won't fit in target struct field. Use 32bit counter
805 * here to attempt to avoid that.
807 static unsigned int counter
;
809 struct hlist_head
*head
;
812 spin_lock(&inode_lock
);
814 if (counter
<= max_reserved
)
815 counter
= max_reserved
+ 1;
817 head
= inode_hashtable
+ hash(sb
, res
);
818 inode
= find_inode_fast(sb
, head
, res
);
819 } while (inode
!= NULL
);
820 spin_unlock(&inode_lock
);
824 EXPORT_SYMBOL(iunique
);
826 struct inode
*igrab(struct inode
*inode
)
828 spin_lock(&inode_lock
);
829 if (!(inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
)))
833 * Handle the case where s_op->clear_inode is not been
834 * called yet, and somebody is calling igrab
835 * while the inode is getting freed.
838 spin_unlock(&inode_lock
);
841 EXPORT_SYMBOL(igrab
);
844 * ifind - internal function, you want ilookup5() or iget5().
845 * @sb: super block of file system to search
846 * @head: the head of the list to search
847 * @test: callback used for comparisons between inodes
848 * @data: opaque data pointer to pass to @test
849 * @wait: if true wait for the inode to be unlocked, if false do not
851 * ifind() searches for the inode specified by @data in the inode
852 * cache. This is a generalized version of ifind_fast() for file systems where
853 * the inode number is not sufficient for unique identification of an inode.
855 * If the inode is in the cache, the inode is returned with an incremented
858 * Otherwise NULL is returned.
860 * Note, @test is called with the inode_lock held, so can't sleep.
862 static struct inode
*ifind(struct super_block
*sb
,
863 struct hlist_head
*head
, int (*test
)(struct inode
*, void *),
864 void *data
, const int wait
)
868 spin_lock(&inode_lock
);
869 inode
= find_inode(sb
, head
, test
, data
);
872 spin_unlock(&inode_lock
);
874 wait_on_inode(inode
);
877 spin_unlock(&inode_lock
);
882 * ifind_fast - internal function, you want ilookup() or iget().
883 * @sb: super block of file system to search
884 * @head: head of the list to search
885 * @ino: inode number to search for
887 * ifind_fast() searches for the inode @ino in the inode cache. This is for
888 * file systems where the inode number is sufficient for unique identification
891 * If the inode is in the cache, the inode is returned with an incremented
894 * Otherwise NULL is returned.
896 static struct inode
*ifind_fast(struct super_block
*sb
,
897 struct hlist_head
*head
, unsigned long ino
)
901 spin_lock(&inode_lock
);
902 inode
= find_inode_fast(sb
, head
, ino
);
905 spin_unlock(&inode_lock
);
906 wait_on_inode(inode
);
909 spin_unlock(&inode_lock
);
914 * ilookup5_nowait - search for an inode in the inode cache
915 * @sb: super block of file system to search
916 * @hashval: hash value (usually inode number) to search for
917 * @test: callback used for comparisons between inodes
918 * @data: opaque data pointer to pass to @test
920 * ilookup5() uses ifind() to search for the inode specified by @hashval and
921 * @data in the inode cache. This is a generalized version of ilookup() for
922 * file systems where the inode number is not sufficient for unique
923 * identification of an inode.
925 * If the inode is in the cache, the inode is returned with an incremented
926 * reference count. Note, the inode lock is not waited upon so you have to be
927 * very careful what you do with the returned inode. You probably should be
928 * using ilookup5() instead.
930 * Otherwise NULL is returned.
932 * Note, @test is called with the inode_lock held, so can't sleep.
934 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
935 int (*test
)(struct inode
*, void *), void *data
)
937 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
939 return ifind(sb
, head
, test
, data
, 0);
941 EXPORT_SYMBOL(ilookup5_nowait
);
944 * ilookup5 - search for an inode in the inode cache
945 * @sb: super block of file system to search
946 * @hashval: hash value (usually inode number) to search for
947 * @test: callback used for comparisons between inodes
948 * @data: opaque data pointer to pass to @test
950 * ilookup5() uses ifind() to search for the inode specified by @hashval and
951 * @data in the inode cache. This is a generalized version of ilookup() for
952 * file systems where the inode number is not sufficient for unique
953 * identification of an inode.
955 * If the inode is in the cache, the inode lock is waited upon and the inode is
956 * returned with an incremented reference count.
958 * Otherwise NULL is returned.
960 * Note, @test is called with the inode_lock held, so can't sleep.
962 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
963 int (*test
)(struct inode
*, void *), void *data
)
965 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
967 return ifind(sb
, head
, test
, data
, 1);
969 EXPORT_SYMBOL(ilookup5
);
972 * ilookup - search for an inode in the inode cache
973 * @sb: super block of file system to search
974 * @ino: inode number to search for
976 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
977 * This is for file systems where the inode number is sufficient for unique
978 * identification of an inode.
980 * If the inode is in the cache, the inode is returned with an incremented
983 * Otherwise NULL is returned.
985 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
987 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
989 return ifind_fast(sb
, head
, ino
);
991 EXPORT_SYMBOL(ilookup
);
994 * iget5_locked - obtain an inode from a mounted file system
995 * @sb: super block of file system
996 * @hashval: hash value (usually inode number) to get
997 * @test: callback used for comparisons between inodes
998 * @set: callback used to initialize a new struct inode
999 * @data: opaque data pointer to pass to @test and @set
1001 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1002 * and @data in the inode cache and if present it is returned with an increased
1003 * reference count. This is a generalized version of iget_locked() for file
1004 * systems where the inode number is not sufficient for unique identification
1007 * If the inode is not in cache, get_new_inode() is called to allocate a new
1008 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1009 * file system gets to fill it in before unlocking it via unlock_new_inode().
1011 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1013 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1014 int (*test
)(struct inode
*, void *),
1015 int (*set
)(struct inode
*, void *), void *data
)
1017 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1018 struct inode
*inode
;
1020 inode
= ifind(sb
, head
, test
, data
, 1);
1024 * get_new_inode() will do the right thing, re-trying the search
1025 * in case it had to block at any point.
1027 return get_new_inode(sb
, head
, test
, set
, data
);
1029 EXPORT_SYMBOL(iget5_locked
);
1032 * iget_locked - obtain an inode from a mounted file system
1033 * @sb: super block of file system
1034 * @ino: inode number to get
1036 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1037 * the inode cache and if present it is returned with an increased reference
1038 * count. This is for file systems where the inode number is sufficient for
1039 * unique identification of an inode.
1041 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1042 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1043 * The file system gets to fill it in before unlocking it via
1044 * unlock_new_inode().
1046 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1048 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1049 struct inode
*inode
;
1051 inode
= ifind_fast(sb
, head
, ino
);
1055 * get_new_inode_fast() will do the right thing, re-trying the search
1056 * in case it had to block at any point.
1058 return get_new_inode_fast(sb
, head
, ino
);
1060 EXPORT_SYMBOL(iget_locked
);
1062 int insert_inode_locked(struct inode
*inode
)
1064 struct super_block
*sb
= inode
->i_sb
;
1065 ino_t ino
= inode
->i_ino
;
1066 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1068 inode
->i_state
|= I_LOCK
|I_NEW
;
1070 struct hlist_node
*node
;
1071 struct inode
*old
= NULL
;
1072 spin_lock(&inode_lock
);
1073 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1074 if (old
->i_ino
!= ino
)
1076 if (old
->i_sb
!= sb
)
1078 if (old
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
))
1082 if (likely(!node
)) {
1083 hlist_add_head(&inode
->i_hash
, head
);
1084 spin_unlock(&inode_lock
);
1088 spin_unlock(&inode_lock
);
1090 if (unlikely(!hlist_unhashed(&old
->i_hash
))) {
1097 EXPORT_SYMBOL(insert_inode_locked
);
1099 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1100 int (*test
)(struct inode
*, void *), void *data
)
1102 struct super_block
*sb
= inode
->i_sb
;
1103 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1105 inode
->i_state
|= I_LOCK
|I_NEW
;
1108 struct hlist_node
*node
;
1109 struct inode
*old
= NULL
;
1111 spin_lock(&inode_lock
);
1112 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1113 if (old
->i_sb
!= sb
)
1115 if (!test(old
, data
))
1117 if (old
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
))
1121 if (likely(!node
)) {
1122 hlist_add_head(&inode
->i_hash
, head
);
1123 spin_unlock(&inode_lock
);
1127 spin_unlock(&inode_lock
);
1129 if (unlikely(!hlist_unhashed(&old
->i_hash
))) {
1136 EXPORT_SYMBOL(insert_inode_locked4
);
1139 * __insert_inode_hash - hash an inode
1140 * @inode: unhashed inode
1141 * @hashval: unsigned long value used to locate this object in the
1144 * Add an inode to the inode hash for this superblock.
1146 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
1148 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
1149 spin_lock(&inode_lock
);
1150 hlist_add_head(&inode
->i_hash
, head
);
1151 spin_unlock(&inode_lock
);
1153 EXPORT_SYMBOL(__insert_inode_hash
);
1156 * remove_inode_hash - remove an inode from the hash
1157 * @inode: inode to unhash
1159 * Remove an inode from the superblock.
1161 void remove_inode_hash(struct inode
*inode
)
1163 spin_lock(&inode_lock
);
1164 hlist_del_init(&inode
->i_hash
);
1165 spin_unlock(&inode_lock
);
1167 EXPORT_SYMBOL(remove_inode_hash
);
1170 * Tell the filesystem that this inode is no longer of any interest and should
1171 * be completely destroyed.
1173 * We leave the inode in the inode hash table until *after* the filesystem's
1174 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1175 * instigate) will always find up-to-date information either in the hash or on
1178 * I_FREEING is set so that no-one will take a new reference to the inode while
1179 * it is being deleted.
1181 void generic_delete_inode(struct inode
*inode
)
1183 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1185 list_del_init(&inode
->i_list
);
1186 list_del_init(&inode
->i_sb_list
);
1187 WARN_ON(inode
->i_state
& I_NEW
);
1188 inode
->i_state
|= I_FREEING
;
1189 inodes_stat
.nr_inodes
--;
1190 spin_unlock(&inode_lock
);
1192 security_inode_delete(inode
);
1194 if (op
->delete_inode
) {
1195 void (*delete)(struct inode
*) = op
->delete_inode
;
1196 if (!is_bad_inode(inode
))
1198 /* Filesystems implementing their own
1199 * s_op->delete_inode are required to call
1200 * truncate_inode_pages and clear_inode()
1204 truncate_inode_pages(&inode
->i_data
, 0);
1207 spin_lock(&inode_lock
);
1208 hlist_del_init(&inode
->i_hash
);
1209 spin_unlock(&inode_lock
);
1210 wake_up_inode(inode
);
1211 BUG_ON(inode
->i_state
!= I_CLEAR
);
1212 destroy_inode(inode
);
1214 EXPORT_SYMBOL(generic_delete_inode
);
1216 static void generic_forget_inode(struct inode
*inode
)
1218 struct super_block
*sb
= inode
->i_sb
;
1220 if (!hlist_unhashed(&inode
->i_hash
)) {
1221 if (!(inode
->i_state
& (I_DIRTY
|I_SYNC
)))
1222 list_move(&inode
->i_list
, &inode_unused
);
1223 inodes_stat
.nr_unused
++;
1224 if (sb
->s_flags
& MS_ACTIVE
) {
1225 spin_unlock(&inode_lock
);
1228 WARN_ON(inode
->i_state
& I_NEW
);
1229 inode
->i_state
|= I_WILL_FREE
;
1230 spin_unlock(&inode_lock
);
1231 write_inode_now(inode
, 1);
1232 spin_lock(&inode_lock
);
1233 WARN_ON(inode
->i_state
& I_NEW
);
1234 inode
->i_state
&= ~I_WILL_FREE
;
1235 inodes_stat
.nr_unused
--;
1236 hlist_del_init(&inode
->i_hash
);
1238 list_del_init(&inode
->i_list
);
1239 list_del_init(&inode
->i_sb_list
);
1240 WARN_ON(inode
->i_state
& I_NEW
);
1241 inode
->i_state
|= I_FREEING
;
1242 inodes_stat
.nr_inodes
--;
1243 spin_unlock(&inode_lock
);
1244 if (inode
->i_data
.nrpages
)
1245 truncate_inode_pages(&inode
->i_data
, 0);
1247 wake_up_inode(inode
);
1248 destroy_inode(inode
);
1252 * Normal UNIX filesystem behaviour: delete the
1253 * inode when the usage count drops to zero, and
1256 void generic_drop_inode(struct inode
*inode
)
1258 if (!inode
->i_nlink
)
1259 generic_delete_inode(inode
);
1261 generic_forget_inode(inode
);
1263 EXPORT_SYMBOL_GPL(generic_drop_inode
);
1266 * Called when we're dropping the last reference
1269 * Call the FS "drop()" function, defaulting to
1270 * the legacy UNIX filesystem behaviour..
1272 * NOTE! NOTE! NOTE! We're called with the inode lock
1273 * held, and the drop function is supposed to release
1276 static inline void iput_final(struct inode
*inode
)
1278 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1279 void (*drop
)(struct inode
*) = generic_drop_inode
;
1281 if (op
&& op
->drop_inode
)
1282 drop
= op
->drop_inode
;
1287 * iput - put an inode
1288 * @inode: inode to put
1290 * Puts an inode, dropping its usage count. If the inode use count hits
1291 * zero, the inode is then freed and may also be destroyed.
1293 * Consequently, iput() can sleep.
1295 void iput(struct inode
*inode
)
1298 BUG_ON(inode
->i_state
== I_CLEAR
);
1300 if (atomic_dec_and_lock(&inode
->i_count
, &inode_lock
))
1304 EXPORT_SYMBOL(iput
);
1307 * bmap - find a block number in a file
1308 * @inode: inode of file
1309 * @block: block to find
1311 * Returns the block number on the device holding the inode that
1312 * is the disk block number for the block of the file requested.
1313 * That is, asked for block 4 of inode 1 the function will return the
1314 * disk block relative to the disk start that holds that block of the
1317 sector_t
bmap(struct inode
*inode
, sector_t block
)
1320 if (inode
->i_mapping
->a_ops
->bmap
)
1321 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1324 EXPORT_SYMBOL(bmap
);
1327 * With relative atime, only update atime if the previous atime is
1328 * earlier than either the ctime or mtime or if at least a day has
1329 * passed since the last atime update.
1331 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1332 struct timespec now
)
1335 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1338 * Is mtime younger than atime? If yes, update atime:
1340 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1343 * Is ctime younger than atime? If yes, update atime:
1345 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1349 * Is the previous atime value older than a day? If yes,
1352 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1355 * Good, we can skip the atime update:
1361 * touch_atime - update the access time
1362 * @mnt: mount the inode is accessed on
1363 * @dentry: dentry accessed
1365 * Update the accessed time on an inode and mark it for writeback.
1366 * This function automatically handles read only file systems and media,
1367 * as well as the "noatime" flag and inode specific "noatime" markers.
1369 void touch_atime(struct vfsmount
*mnt
, struct dentry
*dentry
)
1371 struct inode
*inode
= dentry
->d_inode
;
1372 struct timespec now
;
1374 if (mnt_want_write(mnt
))
1376 if (inode
->i_flags
& S_NOATIME
)
1378 if (IS_NOATIME(inode
))
1380 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1383 if (mnt
->mnt_flags
& MNT_NOATIME
)
1385 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1388 now
= current_fs_time(inode
->i_sb
);
1390 if (!relatime_need_update(mnt
, inode
, now
))
1393 if (timespec_equal(&inode
->i_atime
, &now
))
1396 inode
->i_atime
= now
;
1397 mark_inode_dirty_sync(inode
);
1399 mnt_drop_write(mnt
);
1401 EXPORT_SYMBOL(touch_atime
);
1404 * file_update_time - update mtime and ctime time
1405 * @file: file accessed
1407 * Update the mtime and ctime members of an inode and mark the inode
1408 * for writeback. Note that this function is meant exclusively for
1409 * usage in the file write path of filesystems, and filesystems may
1410 * choose to explicitly ignore update via this function with the
1411 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1412 * timestamps are handled by the server.
1415 void file_update_time(struct file
*file
)
1417 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1418 struct timespec now
;
1422 if (IS_NOCMTIME(inode
))
1425 err
= mnt_want_write_file(file
);
1429 now
= current_fs_time(inode
->i_sb
);
1430 if (!timespec_equal(&inode
->i_mtime
, &now
)) {
1431 inode
->i_mtime
= now
;
1435 if (!timespec_equal(&inode
->i_ctime
, &now
)) {
1436 inode
->i_ctime
= now
;
1440 if (IS_I_VERSION(inode
)) {
1441 inode_inc_iversion(inode
);
1446 mark_inode_dirty_sync(inode
);
1447 mnt_drop_write(file
->f_path
.mnt
);
1449 EXPORT_SYMBOL(file_update_time
);
1451 int inode_needs_sync(struct inode
*inode
)
1455 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1459 EXPORT_SYMBOL(inode_needs_sync
);
1461 int inode_wait(void *word
)
1466 EXPORT_SYMBOL(inode_wait
);
1469 * If we try to find an inode in the inode hash while it is being
1470 * deleted, we have to wait until the filesystem completes its
1471 * deletion before reporting that it isn't found. This function waits
1472 * until the deletion _might_ have completed. Callers are responsible
1473 * to recheck inode state.
1475 * It doesn't matter if I_LOCK is not set initially, a call to
1476 * wake_up_inode() after removing from the hash list will DTRT.
1478 * This is called with inode_lock held.
1480 static void __wait_on_freeing_inode(struct inode
*inode
)
1482 wait_queue_head_t
*wq
;
1483 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_LOCK
);
1484 wq
= bit_waitqueue(&inode
->i_state
, __I_LOCK
);
1485 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1486 spin_unlock(&inode_lock
);
1488 finish_wait(wq
, &wait
.wait
);
1489 spin_lock(&inode_lock
);
1492 static __initdata
unsigned long ihash_entries
;
1493 static int __init
set_ihash_entries(char *str
)
1497 ihash_entries
= simple_strtoul(str
, &str
, 0);
1500 __setup("ihash_entries=", set_ihash_entries
);
1503 * Initialize the waitqueues and inode hash table.
1505 void __init
inode_init_early(void)
1509 /* If hashes are distributed across NUMA nodes, defer
1510 * hash allocation until vmalloc space is available.
1516 alloc_large_system_hash("Inode-cache",
1517 sizeof(struct hlist_head
),
1525 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1526 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1529 void __init
inode_init(void)
1533 /* inode slab cache */
1534 inode_cachep
= kmem_cache_create("inode_cache",
1535 sizeof(struct inode
),
1537 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1540 register_shrinker(&icache_shrinker
);
1542 /* Hash may have been set up in inode_init_early */
1547 alloc_large_system_hash("Inode-cache",
1548 sizeof(struct hlist_head
),
1556 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1557 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1560 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1562 inode
->i_mode
= mode
;
1563 if (S_ISCHR(mode
)) {
1564 inode
->i_fop
= &def_chr_fops
;
1565 inode
->i_rdev
= rdev
;
1566 } else if (S_ISBLK(mode
)) {
1567 inode
->i_fop
= &def_blk_fops
;
1568 inode
->i_rdev
= rdev
;
1569 } else if (S_ISFIFO(mode
))
1570 inode
->i_fop
= &def_fifo_fops
;
1571 else if (S_ISSOCK(mode
))
1572 inode
->i_fop
= &bad_sock_fops
;
1574 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o)\n",
1577 EXPORT_SYMBOL(init_special_inode
);