4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
78 #include <asm/irq_regs.h>
80 #include "sched_cpupri.h"
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101 * Helpers for converting nanosecond timing to jiffy resolution
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109 * These are the 'tuning knobs' of the scheduler:
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
114 #define DEF_TIMESLICE (100 * HZ / 1000)
117 * single value that denotes runtime == period, ie unlimited time.
119 #define RUNTIME_INF ((u64)~0ULL)
121 DEFINE_TRACE(sched_wait_task
);
122 DEFINE_TRACE(sched_wakeup
);
123 DEFINE_TRACE(sched_wakeup_new
);
124 DEFINE_TRACE(sched_switch
);
125 DEFINE_TRACE(sched_migrate_task
);
129 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
137 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
144 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
146 sg
->__cpu_power
+= val
;
147 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
151 static inline int rt_policy(int policy
)
153 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
158 static inline int task_has_rt_policy(struct task_struct
*p
)
160 return rt_policy(p
->policy
);
164 * This is the priority-queue data structure of the RT scheduling class:
166 struct rt_prio_array
{
167 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
168 struct list_head queue
[MAX_RT_PRIO
];
171 struct rt_bandwidth
{
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock
;
176 struct hrtimer rt_period_timer
;
179 static struct rt_bandwidth def_rt_bandwidth
;
181 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
183 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
185 struct rt_bandwidth
*rt_b
=
186 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
192 now
= hrtimer_cb_get_time(timer
);
193 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
198 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
201 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
205 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
207 rt_b
->rt_period
= ns_to_ktime(period
);
208 rt_b
->rt_runtime
= runtime
;
210 spin_lock_init(&rt_b
->rt_runtime_lock
);
212 hrtimer_init(&rt_b
->rt_period_timer
,
213 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
214 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
217 static inline int rt_bandwidth_enabled(void)
219 return sysctl_sched_rt_runtime
>= 0;
222 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
229 if (hrtimer_active(&rt_b
->rt_period_timer
))
232 spin_lock(&rt_b
->rt_runtime_lock
);
237 if (hrtimer_active(&rt_b
->rt_period_timer
))
240 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
241 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
243 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
244 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
245 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
246 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
247 HRTIMER_MODE_ABS
, 0);
249 spin_unlock(&rt_b
->rt_runtime_lock
);
252 #ifdef CONFIG_RT_GROUP_SCHED
253 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
255 hrtimer_cancel(&rt_b
->rt_period_timer
);
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
263 static DEFINE_MUTEX(sched_domains_mutex
);
265 #ifdef CONFIG_GROUP_SCHED
267 #include <linux/cgroup.h>
271 static LIST_HEAD(task_groups
);
273 /* task group related information */
275 #ifdef CONFIG_CGROUP_SCHED
276 struct cgroup_subsys_state css
;
279 #ifdef CONFIG_USER_SCHED
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity
**se
;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq
**cfs_rq
;
288 unsigned long shares
;
291 #ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity
**rt_se
;
293 struct rt_rq
**rt_rq
;
295 struct rt_bandwidth rt_bandwidth
;
299 struct list_head list
;
301 struct task_group
*parent
;
302 struct list_head siblings
;
303 struct list_head children
;
306 #ifdef CONFIG_USER_SCHED
308 /* Helper function to pass uid information to create_sched_user() */
309 void set_tg_uid(struct user_struct
*user
)
311 user
->tg
->uid
= user
->uid
;
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
319 struct task_group root_task_group
;
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 /* Default task group's sched entity on each cpu */
323 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
324 /* Default task group's cfs_rq on each cpu */
325 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
326 #endif /* CONFIG_FAIR_GROUP_SCHED */
328 #ifdef CONFIG_RT_GROUP_SCHED
329 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
330 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
331 #endif /* CONFIG_RT_GROUP_SCHED */
332 #else /* !CONFIG_USER_SCHED */
333 #define root_task_group init_task_group
334 #endif /* CONFIG_USER_SCHED */
336 /* task_group_lock serializes add/remove of task groups and also changes to
337 * a task group's cpu shares.
339 static DEFINE_SPINLOCK(task_group_lock
);
341 #ifdef CONFIG_FAIR_GROUP_SCHED
342 #ifdef CONFIG_USER_SCHED
343 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
344 #else /* !CONFIG_USER_SCHED */
345 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
346 #endif /* CONFIG_USER_SCHED */
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
357 #define MAX_SHARES (1UL << 18)
359 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
362 /* Default task group.
363 * Every task in system belong to this group at bootup.
365 struct task_group init_task_group
;
367 /* return group to which a task belongs */
368 static inline struct task_group
*task_group(struct task_struct
*p
)
370 struct task_group
*tg
;
372 #ifdef CONFIG_USER_SCHED
374 tg
= __task_cred(p
)->user
->tg
;
376 #elif defined(CONFIG_CGROUP_SCHED)
377 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
378 struct task_group
, css
);
380 tg
= &init_task_group
;
385 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
386 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
388 #ifdef CONFIG_FAIR_GROUP_SCHED
389 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
390 p
->se
.parent
= task_group(p
)->se
[cpu
];
393 #ifdef CONFIG_RT_GROUP_SCHED
394 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
395 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
401 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
402 static inline struct task_group
*task_group(struct task_struct
*p
)
407 #endif /* CONFIG_GROUP_SCHED */
409 /* CFS-related fields in a runqueue */
411 struct load_weight load
;
412 unsigned long nr_running
;
417 struct rb_root tasks_timeline
;
418 struct rb_node
*rb_leftmost
;
420 struct list_head tasks
;
421 struct list_head
*balance_iterator
;
424 * 'curr' points to currently running entity on this cfs_rq.
425 * It is set to NULL otherwise (i.e when none are currently running).
427 struct sched_entity
*curr
, *next
, *last
;
429 unsigned int nr_spread_over
;
431 #ifdef CONFIG_FAIR_GROUP_SCHED
432 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
435 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
436 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
437 * (like users, containers etc.)
439 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
440 * list is used during load balance.
442 struct list_head leaf_cfs_rq_list
;
443 struct task_group
*tg
; /* group that "owns" this runqueue */
447 * the part of load.weight contributed by tasks
449 unsigned long task_weight
;
452 * h_load = weight * f(tg)
454 * Where f(tg) is the recursive weight fraction assigned to
457 unsigned long h_load
;
460 * this cpu's part of tg->shares
462 unsigned long shares
;
465 * load.weight at the time we set shares
467 unsigned long rq_weight
;
472 /* Real-Time classes' related field in a runqueue: */
474 struct rt_prio_array active
;
475 unsigned long rt_nr_running
;
476 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
477 int highest_prio
; /* highest queued rt task prio */
480 unsigned long rt_nr_migratory
;
486 /* Nests inside the rq lock: */
487 spinlock_t rt_runtime_lock
;
489 #ifdef CONFIG_RT_GROUP_SCHED
490 unsigned long rt_nr_boosted
;
493 struct list_head leaf_rt_rq_list
;
494 struct task_group
*tg
;
495 struct sched_rt_entity
*rt_se
;
502 * We add the notion of a root-domain which will be used to define per-domain
503 * variables. Each exclusive cpuset essentially defines an island domain by
504 * fully partitioning the member cpus from any other cpuset. Whenever a new
505 * exclusive cpuset is created, we also create and attach a new root-domain
512 cpumask_var_t online
;
515 * The "RT overload" flag: it gets set if a CPU has more than
516 * one runnable RT task.
518 cpumask_var_t rto_mask
;
521 struct cpupri cpupri
;
523 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
525 * Preferred wake up cpu nominated by sched_mc balance that will be
526 * used when most cpus are idle in the system indicating overall very
527 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
529 unsigned int sched_mc_preferred_wakeup_cpu
;
534 * By default the system creates a single root-domain with all cpus as
535 * members (mimicking the global state we have today).
537 static struct root_domain def_root_domain
;
542 * This is the main, per-CPU runqueue data structure.
544 * Locking rule: those places that want to lock multiple runqueues
545 * (such as the load balancing or the thread migration code), lock
546 * acquire operations must be ordered by ascending &runqueue.
553 * nr_running and cpu_load should be in the same cacheline because
554 * remote CPUs use both these fields when doing load calculation.
556 unsigned long nr_running
;
557 #define CPU_LOAD_IDX_MAX 5
558 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
559 unsigned char idle_at_tick
;
561 unsigned long last_tick_seen
;
562 unsigned char in_nohz_recently
;
564 /* capture load from *all* tasks on this cpu: */
565 struct load_weight load
;
566 unsigned long nr_load_updates
;
572 #ifdef CONFIG_FAIR_GROUP_SCHED
573 /* list of leaf cfs_rq on this cpu: */
574 struct list_head leaf_cfs_rq_list
;
576 #ifdef CONFIG_RT_GROUP_SCHED
577 struct list_head leaf_rt_rq_list
;
581 * This is part of a global counter where only the total sum
582 * over all CPUs matters. A task can increase this counter on
583 * one CPU and if it got migrated afterwards it may decrease
584 * it on another CPU. Always updated under the runqueue lock:
586 unsigned long nr_uninterruptible
;
588 struct task_struct
*curr
, *idle
;
589 unsigned long next_balance
;
590 struct mm_struct
*prev_mm
;
597 struct root_domain
*rd
;
598 struct sched_domain
*sd
;
600 /* For active balancing */
603 /* cpu of this runqueue: */
607 unsigned long avg_load_per_task
;
609 struct task_struct
*migration_thread
;
610 struct list_head migration_queue
;
613 #ifdef CONFIG_SCHED_HRTICK
615 int hrtick_csd_pending
;
616 struct call_single_data hrtick_csd
;
618 struct hrtimer hrtick_timer
;
621 #ifdef CONFIG_SCHEDSTATS
623 struct sched_info rq_sched_info
;
624 unsigned long long rq_cpu_time
;
625 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
627 /* sys_sched_yield() stats */
628 unsigned int yld_exp_empty
;
629 unsigned int yld_act_empty
;
630 unsigned int yld_both_empty
;
631 unsigned int yld_count
;
633 /* schedule() stats */
634 unsigned int sched_switch
;
635 unsigned int sched_count
;
636 unsigned int sched_goidle
;
638 /* try_to_wake_up() stats */
639 unsigned int ttwu_count
;
640 unsigned int ttwu_local
;
643 unsigned int bkl_count
;
647 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
649 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int sync
)
651 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, sync
);
654 static inline int cpu_of(struct rq
*rq
)
664 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
665 * See detach_destroy_domains: synchronize_sched for details.
667 * The domain tree of any CPU may only be accessed from within
668 * preempt-disabled sections.
670 #define for_each_domain(cpu, __sd) \
671 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
673 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
674 #define this_rq() (&__get_cpu_var(runqueues))
675 #define task_rq(p) cpu_rq(task_cpu(p))
676 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
678 static inline void update_rq_clock(struct rq
*rq
)
680 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
684 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
686 #ifdef CONFIG_SCHED_DEBUG
687 # define const_debug __read_mostly
689 # define const_debug static const
695 * Returns true if the current cpu runqueue is locked.
696 * This interface allows printk to be called with the runqueue lock
697 * held and know whether or not it is OK to wake up the klogd.
699 int runqueue_is_locked(void)
702 struct rq
*rq
= cpu_rq(cpu
);
705 ret
= spin_is_locked(&rq
->lock
);
711 * Debugging: various feature bits
714 #define SCHED_FEAT(name, enabled) \
715 __SCHED_FEAT_##name ,
718 #include "sched_features.h"
723 #define SCHED_FEAT(name, enabled) \
724 (1UL << __SCHED_FEAT_##name) * enabled |
726 const_debug
unsigned int sysctl_sched_features
=
727 #include "sched_features.h"
732 #ifdef CONFIG_SCHED_DEBUG
733 #define SCHED_FEAT(name, enabled) \
736 static __read_mostly
char *sched_feat_names
[] = {
737 #include "sched_features.h"
743 static int sched_feat_show(struct seq_file
*m
, void *v
)
747 for (i
= 0; sched_feat_names
[i
]; i
++) {
748 if (!(sysctl_sched_features
& (1UL << i
)))
750 seq_printf(m
, "%s ", sched_feat_names
[i
]);
758 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
759 size_t cnt
, loff_t
*ppos
)
769 if (copy_from_user(&buf
, ubuf
, cnt
))
774 if (strncmp(buf
, "NO_", 3) == 0) {
779 for (i
= 0; sched_feat_names
[i
]; i
++) {
780 int len
= strlen(sched_feat_names
[i
]);
782 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
784 sysctl_sched_features
&= ~(1UL << i
);
786 sysctl_sched_features
|= (1UL << i
);
791 if (!sched_feat_names
[i
])
799 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
801 return single_open(filp
, sched_feat_show
, NULL
);
804 static struct file_operations sched_feat_fops
= {
805 .open
= sched_feat_open
,
806 .write
= sched_feat_write
,
809 .release
= single_release
,
812 static __init
int sched_init_debug(void)
814 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
819 late_initcall(sched_init_debug
);
823 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
826 * Number of tasks to iterate in a single balance run.
827 * Limited because this is done with IRQs disabled.
829 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
832 * ratelimit for updating the group shares.
835 unsigned int sysctl_sched_shares_ratelimit
= 250000;
838 * Inject some fuzzyness into changing the per-cpu group shares
839 * this avoids remote rq-locks at the expense of fairness.
842 unsigned int sysctl_sched_shares_thresh
= 4;
845 * period over which we measure -rt task cpu usage in us.
848 unsigned int sysctl_sched_rt_period
= 1000000;
850 static __read_mostly
int scheduler_running
;
853 * part of the period that we allow rt tasks to run in us.
856 int sysctl_sched_rt_runtime
= 950000;
858 static inline u64
global_rt_period(void)
860 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
863 static inline u64
global_rt_runtime(void)
865 if (sysctl_sched_rt_runtime
< 0)
868 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
871 #ifndef prepare_arch_switch
872 # define prepare_arch_switch(next) do { } while (0)
874 #ifndef finish_arch_switch
875 # define finish_arch_switch(prev) do { } while (0)
878 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
880 return rq
->curr
== p
;
883 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
884 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
886 return task_current(rq
, p
);
889 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
893 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
895 #ifdef CONFIG_DEBUG_SPINLOCK
896 /* this is a valid case when another task releases the spinlock */
897 rq
->lock
.owner
= current
;
900 * If we are tracking spinlock dependencies then we have to
901 * fix up the runqueue lock - which gets 'carried over' from
904 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
906 spin_unlock_irq(&rq
->lock
);
909 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
910 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
915 return task_current(rq
, p
);
919 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
923 * We can optimise this out completely for !SMP, because the
924 * SMP rebalancing from interrupt is the only thing that cares
929 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
930 spin_unlock_irq(&rq
->lock
);
932 spin_unlock(&rq
->lock
);
936 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
940 * After ->oncpu is cleared, the task can be moved to a different CPU.
941 * We must ensure this doesn't happen until the switch is completely
947 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
954 * __task_rq_lock - lock the runqueue a given task resides on.
955 * Must be called interrupts disabled.
957 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
961 struct rq
*rq
= task_rq(p
);
962 spin_lock(&rq
->lock
);
963 if (likely(rq
== task_rq(p
)))
965 spin_unlock(&rq
->lock
);
970 * task_rq_lock - lock the runqueue a given task resides on and disable
971 * interrupts. Note the ordering: we can safely lookup the task_rq without
972 * explicitly disabling preemption.
974 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
980 local_irq_save(*flags
);
982 spin_lock(&rq
->lock
);
983 if (likely(rq
== task_rq(p
)))
985 spin_unlock_irqrestore(&rq
->lock
, *flags
);
989 void task_rq_unlock_wait(struct task_struct
*p
)
991 struct rq
*rq
= task_rq(p
);
993 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
994 spin_unlock_wait(&rq
->lock
);
997 static void __task_rq_unlock(struct rq
*rq
)
1000 spin_unlock(&rq
->lock
);
1003 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
1004 __releases(rq
->lock
)
1006 spin_unlock_irqrestore(&rq
->lock
, *flags
);
1010 * this_rq_lock - lock this runqueue and disable interrupts.
1012 static struct rq
*this_rq_lock(void)
1013 __acquires(rq
->lock
)
1017 local_irq_disable();
1019 spin_lock(&rq
->lock
);
1024 #ifdef CONFIG_SCHED_HRTICK
1026 * Use HR-timers to deliver accurate preemption points.
1028 * Its all a bit involved since we cannot program an hrt while holding the
1029 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1032 * When we get rescheduled we reprogram the hrtick_timer outside of the
1038 * - enabled by features
1039 * - hrtimer is actually high res
1041 static inline int hrtick_enabled(struct rq
*rq
)
1043 if (!sched_feat(HRTICK
))
1045 if (!cpu_active(cpu_of(rq
)))
1047 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1050 static void hrtick_clear(struct rq
*rq
)
1052 if (hrtimer_active(&rq
->hrtick_timer
))
1053 hrtimer_cancel(&rq
->hrtick_timer
);
1057 * High-resolution timer tick.
1058 * Runs from hardirq context with interrupts disabled.
1060 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1062 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1064 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1066 spin_lock(&rq
->lock
);
1067 update_rq_clock(rq
);
1068 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1069 spin_unlock(&rq
->lock
);
1071 return HRTIMER_NORESTART
;
1076 * called from hardirq (IPI) context
1078 static void __hrtick_start(void *arg
)
1080 struct rq
*rq
= arg
;
1082 spin_lock(&rq
->lock
);
1083 hrtimer_restart(&rq
->hrtick_timer
);
1084 rq
->hrtick_csd_pending
= 0;
1085 spin_unlock(&rq
->lock
);
1089 * Called to set the hrtick timer state.
1091 * called with rq->lock held and irqs disabled
1093 static void hrtick_start(struct rq
*rq
, u64 delay
)
1095 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1096 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1098 hrtimer_set_expires(timer
, time
);
1100 if (rq
== this_rq()) {
1101 hrtimer_restart(timer
);
1102 } else if (!rq
->hrtick_csd_pending
) {
1103 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
);
1104 rq
->hrtick_csd_pending
= 1;
1109 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1111 int cpu
= (int)(long)hcpu
;
1114 case CPU_UP_CANCELED
:
1115 case CPU_UP_CANCELED_FROZEN
:
1116 case CPU_DOWN_PREPARE
:
1117 case CPU_DOWN_PREPARE_FROZEN
:
1119 case CPU_DEAD_FROZEN
:
1120 hrtick_clear(cpu_rq(cpu
));
1127 static __init
void init_hrtick(void)
1129 hotcpu_notifier(hotplug_hrtick
, 0);
1133 * Called to set the hrtick timer state.
1135 * called with rq->lock held and irqs disabled
1137 static void hrtick_start(struct rq
*rq
, u64 delay
)
1139 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1140 HRTIMER_MODE_REL
, 0);
1143 static inline void init_hrtick(void)
1146 #endif /* CONFIG_SMP */
1148 static void init_rq_hrtick(struct rq
*rq
)
1151 rq
->hrtick_csd_pending
= 0;
1153 rq
->hrtick_csd
.flags
= 0;
1154 rq
->hrtick_csd
.func
= __hrtick_start
;
1155 rq
->hrtick_csd
.info
= rq
;
1158 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1159 rq
->hrtick_timer
.function
= hrtick
;
1161 #else /* CONFIG_SCHED_HRTICK */
1162 static inline void hrtick_clear(struct rq
*rq
)
1166 static inline void init_rq_hrtick(struct rq
*rq
)
1170 static inline void init_hrtick(void)
1173 #endif /* CONFIG_SCHED_HRTICK */
1176 * resched_task - mark a task 'to be rescheduled now'.
1178 * On UP this means the setting of the need_resched flag, on SMP it
1179 * might also involve a cross-CPU call to trigger the scheduler on
1184 #ifndef tsk_is_polling
1185 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1188 static void resched_task(struct task_struct
*p
)
1192 assert_spin_locked(&task_rq(p
)->lock
);
1194 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1197 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1200 if (cpu
== smp_processor_id())
1203 /* NEED_RESCHED must be visible before we test polling */
1205 if (!tsk_is_polling(p
))
1206 smp_send_reschedule(cpu
);
1209 static void resched_cpu(int cpu
)
1211 struct rq
*rq
= cpu_rq(cpu
);
1212 unsigned long flags
;
1214 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1216 resched_task(cpu_curr(cpu
));
1217 spin_unlock_irqrestore(&rq
->lock
, flags
);
1222 * When add_timer_on() enqueues a timer into the timer wheel of an
1223 * idle CPU then this timer might expire before the next timer event
1224 * which is scheduled to wake up that CPU. In case of a completely
1225 * idle system the next event might even be infinite time into the
1226 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1227 * leaves the inner idle loop so the newly added timer is taken into
1228 * account when the CPU goes back to idle and evaluates the timer
1229 * wheel for the next timer event.
1231 void wake_up_idle_cpu(int cpu
)
1233 struct rq
*rq
= cpu_rq(cpu
);
1235 if (cpu
== smp_processor_id())
1239 * This is safe, as this function is called with the timer
1240 * wheel base lock of (cpu) held. When the CPU is on the way
1241 * to idle and has not yet set rq->curr to idle then it will
1242 * be serialized on the timer wheel base lock and take the new
1243 * timer into account automatically.
1245 if (rq
->curr
!= rq
->idle
)
1249 * We can set TIF_RESCHED on the idle task of the other CPU
1250 * lockless. The worst case is that the other CPU runs the
1251 * idle task through an additional NOOP schedule()
1253 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1255 /* NEED_RESCHED must be visible before we test polling */
1257 if (!tsk_is_polling(rq
->idle
))
1258 smp_send_reschedule(cpu
);
1260 #endif /* CONFIG_NO_HZ */
1262 #else /* !CONFIG_SMP */
1263 static void resched_task(struct task_struct
*p
)
1265 assert_spin_locked(&task_rq(p
)->lock
);
1266 set_tsk_need_resched(p
);
1268 #endif /* CONFIG_SMP */
1270 #if BITS_PER_LONG == 32
1271 # define WMULT_CONST (~0UL)
1273 # define WMULT_CONST (1UL << 32)
1276 #define WMULT_SHIFT 32
1279 * Shift right and round:
1281 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1284 * delta *= weight / lw
1286 static unsigned long
1287 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1288 struct load_weight
*lw
)
1292 if (!lw
->inv_weight
) {
1293 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1296 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1300 tmp
= (u64
)delta_exec
* weight
;
1302 * Check whether we'd overflow the 64-bit multiplication:
1304 if (unlikely(tmp
> WMULT_CONST
))
1305 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1308 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1310 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1313 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1319 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1326 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1327 * of tasks with abnormal "nice" values across CPUs the contribution that
1328 * each task makes to its run queue's load is weighted according to its
1329 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1330 * scaled version of the new time slice allocation that they receive on time
1334 #define WEIGHT_IDLEPRIO 3
1335 #define WMULT_IDLEPRIO 1431655765
1338 * Nice levels are multiplicative, with a gentle 10% change for every
1339 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1340 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1341 * that remained on nice 0.
1343 * The "10% effect" is relative and cumulative: from _any_ nice level,
1344 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1345 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1346 * If a task goes up by ~10% and another task goes down by ~10% then
1347 * the relative distance between them is ~25%.)
1349 static const int prio_to_weight
[40] = {
1350 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1351 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1352 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1353 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1354 /* 0 */ 1024, 820, 655, 526, 423,
1355 /* 5 */ 335, 272, 215, 172, 137,
1356 /* 10 */ 110, 87, 70, 56, 45,
1357 /* 15 */ 36, 29, 23, 18, 15,
1361 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1363 * In cases where the weight does not change often, we can use the
1364 * precalculated inverse to speed up arithmetics by turning divisions
1365 * into multiplications:
1367 static const u32 prio_to_wmult
[40] = {
1368 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1369 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1370 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1371 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1372 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1373 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1374 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1375 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1378 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1381 * runqueue iterator, to support SMP load-balancing between different
1382 * scheduling classes, without having to expose their internal data
1383 * structures to the load-balancing proper:
1385 struct rq_iterator
{
1387 struct task_struct
*(*start
)(void *);
1388 struct task_struct
*(*next
)(void *);
1392 static unsigned long
1393 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1394 unsigned long max_load_move
, struct sched_domain
*sd
,
1395 enum cpu_idle_type idle
, int *all_pinned
,
1396 int *this_best_prio
, struct rq_iterator
*iterator
);
1399 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1400 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1401 struct rq_iterator
*iterator
);
1404 #ifdef CONFIG_CGROUP_CPUACCT
1405 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1407 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1410 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1412 update_load_add(&rq
->load
, load
);
1415 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1417 update_load_sub(&rq
->load
, load
);
1420 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1421 typedef int (*tg_visitor
)(struct task_group
*, void *);
1424 * Iterate the full tree, calling @down when first entering a node and @up when
1425 * leaving it for the final time.
1427 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1429 struct task_group
*parent
, *child
;
1433 parent
= &root_task_group
;
1435 ret
= (*down
)(parent
, data
);
1438 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1445 ret
= (*up
)(parent
, data
);
1450 parent
= parent
->parent
;
1459 static int tg_nop(struct task_group
*tg
, void *data
)
1466 static unsigned long source_load(int cpu
, int type
);
1467 static unsigned long target_load(int cpu
, int type
);
1468 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1470 static unsigned long cpu_avg_load_per_task(int cpu
)
1472 struct rq
*rq
= cpu_rq(cpu
);
1473 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1476 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1478 rq
->avg_load_per_task
= 0;
1480 return rq
->avg_load_per_task
;
1483 #ifdef CONFIG_FAIR_GROUP_SCHED
1485 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1488 * Calculate and set the cpu's group shares.
1491 update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1492 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1494 unsigned long shares
;
1495 unsigned long rq_weight
;
1500 rq_weight
= tg
->cfs_rq
[cpu
]->rq_weight
;
1503 * \Sum shares * rq_weight
1504 * shares = -----------------------
1508 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1509 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1511 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1512 sysctl_sched_shares_thresh
) {
1513 struct rq
*rq
= cpu_rq(cpu
);
1514 unsigned long flags
;
1516 spin_lock_irqsave(&rq
->lock
, flags
);
1517 tg
->cfs_rq
[cpu
]->shares
= shares
;
1519 __set_se_shares(tg
->se
[cpu
], shares
);
1520 spin_unlock_irqrestore(&rq
->lock
, flags
);
1525 * Re-compute the task group their per cpu shares over the given domain.
1526 * This needs to be done in a bottom-up fashion because the rq weight of a
1527 * parent group depends on the shares of its child groups.
1529 static int tg_shares_up(struct task_group
*tg
, void *data
)
1531 unsigned long weight
, rq_weight
= 0;
1532 unsigned long shares
= 0;
1533 struct sched_domain
*sd
= data
;
1536 for_each_cpu(i
, sched_domain_span(sd
)) {
1538 * If there are currently no tasks on the cpu pretend there
1539 * is one of average load so that when a new task gets to
1540 * run here it will not get delayed by group starvation.
1542 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1544 weight
= NICE_0_LOAD
;
1546 tg
->cfs_rq
[i
]->rq_weight
= weight
;
1547 rq_weight
+= weight
;
1548 shares
+= tg
->cfs_rq
[i
]->shares
;
1551 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1552 shares
= tg
->shares
;
1554 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1555 shares
= tg
->shares
;
1557 for_each_cpu(i
, sched_domain_span(sd
))
1558 update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1564 * Compute the cpu's hierarchical load factor for each task group.
1565 * This needs to be done in a top-down fashion because the load of a child
1566 * group is a fraction of its parents load.
1568 static int tg_load_down(struct task_group
*tg
, void *data
)
1571 long cpu
= (long)data
;
1574 load
= cpu_rq(cpu
)->load
.weight
;
1576 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1577 load
*= tg
->cfs_rq
[cpu
]->shares
;
1578 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1581 tg
->cfs_rq
[cpu
]->h_load
= load
;
1586 static void update_shares(struct sched_domain
*sd
)
1588 u64 now
= cpu_clock(raw_smp_processor_id());
1589 s64 elapsed
= now
- sd
->last_update
;
1591 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1592 sd
->last_update
= now
;
1593 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1597 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1599 spin_unlock(&rq
->lock
);
1601 spin_lock(&rq
->lock
);
1604 static void update_h_load(long cpu
)
1606 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1611 static inline void update_shares(struct sched_domain
*sd
)
1615 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1622 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1624 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1625 __releases(this_rq
->lock
)
1626 __acquires(busiest
->lock
)
1627 __acquires(this_rq
->lock
)
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
1633 spin_unlock(&this_rq
->lock
);
1636 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1637 if (busiest
< this_rq
) {
1638 spin_unlock(&this_rq
->lock
);
1639 spin_lock(&busiest
->lock
);
1640 spin_lock_nested(&this_rq
->lock
, SINGLE_DEPTH_NESTING
);
1643 spin_lock_nested(&busiest
->lock
, SINGLE_DEPTH_NESTING
);
1648 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1649 __releases(busiest
->lock
)
1651 spin_unlock(&busiest
->lock
);
1652 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1656 #ifdef CONFIG_FAIR_GROUP_SCHED
1657 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1660 cfs_rq
->shares
= shares
;
1665 #include "sched_stats.h"
1666 #include "sched_idletask.c"
1667 #include "sched_fair.c"
1668 #include "sched_rt.c"
1669 #ifdef CONFIG_SCHED_DEBUG
1670 # include "sched_debug.c"
1673 #define sched_class_highest (&rt_sched_class)
1674 #define for_each_class(class) \
1675 for (class = sched_class_highest; class; class = class->next)
1677 static void inc_nr_running(struct rq
*rq
)
1682 static void dec_nr_running(struct rq
*rq
)
1687 static void set_load_weight(struct task_struct
*p
)
1689 if (task_has_rt_policy(p
)) {
1690 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1691 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1696 * SCHED_IDLE tasks get minimal weight:
1698 if (p
->policy
== SCHED_IDLE
) {
1699 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1700 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1704 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1705 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1708 static void update_avg(u64
*avg
, u64 sample
)
1710 s64 diff
= sample
- *avg
;
1714 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1716 sched_info_queued(p
);
1717 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1721 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1723 if (sleep
&& p
->se
.last_wakeup
) {
1724 update_avg(&p
->se
.avg_overlap
,
1725 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1726 p
->se
.last_wakeup
= 0;
1729 sched_info_dequeued(p
);
1730 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1735 * __normal_prio - return the priority that is based on the static prio
1737 static inline int __normal_prio(struct task_struct
*p
)
1739 return p
->static_prio
;
1743 * Calculate the expected normal priority: i.e. priority
1744 * without taking RT-inheritance into account. Might be
1745 * boosted by interactivity modifiers. Changes upon fork,
1746 * setprio syscalls, and whenever the interactivity
1747 * estimator recalculates.
1749 static inline int normal_prio(struct task_struct
*p
)
1753 if (task_has_rt_policy(p
))
1754 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1756 prio
= __normal_prio(p
);
1761 * Calculate the current priority, i.e. the priority
1762 * taken into account by the scheduler. This value might
1763 * be boosted by RT tasks, or might be boosted by
1764 * interactivity modifiers. Will be RT if the task got
1765 * RT-boosted. If not then it returns p->normal_prio.
1767 static int effective_prio(struct task_struct
*p
)
1769 p
->normal_prio
= normal_prio(p
);
1771 * If we are RT tasks or we were boosted to RT priority,
1772 * keep the priority unchanged. Otherwise, update priority
1773 * to the normal priority:
1775 if (!rt_prio(p
->prio
))
1776 return p
->normal_prio
;
1781 * activate_task - move a task to the runqueue.
1783 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1785 if (task_contributes_to_load(p
))
1786 rq
->nr_uninterruptible
--;
1788 enqueue_task(rq
, p
, wakeup
);
1793 * deactivate_task - remove a task from the runqueue.
1795 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1797 if (task_contributes_to_load(p
))
1798 rq
->nr_uninterruptible
++;
1800 dequeue_task(rq
, p
, sleep
);
1805 * task_curr - is this task currently executing on a CPU?
1806 * @p: the task in question.
1808 inline int task_curr(const struct task_struct
*p
)
1810 return cpu_curr(task_cpu(p
)) == p
;
1813 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1815 set_task_rq(p
, cpu
);
1818 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1819 * successfuly executed on another CPU. We must ensure that updates of
1820 * per-task data have been completed by this moment.
1823 task_thread_info(p
)->cpu
= cpu
;
1827 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1828 const struct sched_class
*prev_class
,
1829 int oldprio
, int running
)
1831 if (prev_class
!= p
->sched_class
) {
1832 if (prev_class
->switched_from
)
1833 prev_class
->switched_from(rq
, p
, running
);
1834 p
->sched_class
->switched_to(rq
, p
, running
);
1836 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1841 /* Used instead of source_load when we know the type == 0 */
1842 static unsigned long weighted_cpuload(const int cpu
)
1844 return cpu_rq(cpu
)->load
.weight
;
1848 * Is this task likely cache-hot:
1851 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1856 * Buddy candidates are cache hot:
1858 if (sched_feat(CACHE_HOT_BUDDY
) &&
1859 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
1860 &p
->se
== cfs_rq_of(&p
->se
)->last
))
1863 if (p
->sched_class
!= &fair_sched_class
)
1866 if (sysctl_sched_migration_cost
== -1)
1868 if (sysctl_sched_migration_cost
== 0)
1871 delta
= now
- p
->se
.exec_start
;
1873 return delta
< (s64
)sysctl_sched_migration_cost
;
1877 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1879 int old_cpu
= task_cpu(p
);
1880 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1881 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1882 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1885 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1887 trace_sched_migrate_task(p
, task_cpu(p
), new_cpu
);
1889 #ifdef CONFIG_SCHEDSTATS
1890 if (p
->se
.wait_start
)
1891 p
->se
.wait_start
-= clock_offset
;
1892 if (p
->se
.sleep_start
)
1893 p
->se
.sleep_start
-= clock_offset
;
1894 if (p
->se
.block_start
)
1895 p
->se
.block_start
-= clock_offset
;
1896 if (old_cpu
!= new_cpu
) {
1897 schedstat_inc(p
, se
.nr_migrations
);
1898 if (task_hot(p
, old_rq
->clock
, NULL
))
1899 schedstat_inc(p
, se
.nr_forced2_migrations
);
1902 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1903 new_cfsrq
->min_vruntime
;
1905 __set_task_cpu(p
, new_cpu
);
1908 struct migration_req
{
1909 struct list_head list
;
1911 struct task_struct
*task
;
1914 struct completion done
;
1918 * The task's runqueue lock must be held.
1919 * Returns true if you have to wait for migration thread.
1922 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1924 struct rq
*rq
= task_rq(p
);
1927 * If the task is not on a runqueue (and not running), then
1928 * it is sufficient to simply update the task's cpu field.
1930 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1931 set_task_cpu(p
, dest_cpu
);
1935 init_completion(&req
->done
);
1937 req
->dest_cpu
= dest_cpu
;
1938 list_add(&req
->list
, &rq
->migration_queue
);
1944 * wait_task_inactive - wait for a thread to unschedule.
1946 * If @match_state is nonzero, it's the @p->state value just checked and
1947 * not expected to change. If it changes, i.e. @p might have woken up,
1948 * then return zero. When we succeed in waiting for @p to be off its CPU,
1949 * we return a positive number (its total switch count). If a second call
1950 * a short while later returns the same number, the caller can be sure that
1951 * @p has remained unscheduled the whole time.
1953 * The caller must ensure that the task *will* unschedule sometime soon,
1954 * else this function might spin for a *long* time. This function can't
1955 * be called with interrupts off, or it may introduce deadlock with
1956 * smp_call_function() if an IPI is sent by the same process we are
1957 * waiting to become inactive.
1959 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1961 unsigned long flags
;
1968 * We do the initial early heuristics without holding
1969 * any task-queue locks at all. We'll only try to get
1970 * the runqueue lock when things look like they will
1976 * If the task is actively running on another CPU
1977 * still, just relax and busy-wait without holding
1980 * NOTE! Since we don't hold any locks, it's not
1981 * even sure that "rq" stays as the right runqueue!
1982 * But we don't care, since "task_running()" will
1983 * return false if the runqueue has changed and p
1984 * is actually now running somewhere else!
1986 while (task_running(rq
, p
)) {
1987 if (match_state
&& unlikely(p
->state
!= match_state
))
1993 * Ok, time to look more closely! We need the rq
1994 * lock now, to be *sure*. If we're wrong, we'll
1995 * just go back and repeat.
1997 rq
= task_rq_lock(p
, &flags
);
1998 trace_sched_wait_task(rq
, p
);
1999 running
= task_running(rq
, p
);
2000 on_rq
= p
->se
.on_rq
;
2002 if (!match_state
|| p
->state
== match_state
)
2003 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2004 task_rq_unlock(rq
, &flags
);
2007 * If it changed from the expected state, bail out now.
2009 if (unlikely(!ncsw
))
2013 * Was it really running after all now that we
2014 * checked with the proper locks actually held?
2016 * Oops. Go back and try again..
2018 if (unlikely(running
)) {
2024 * It's not enough that it's not actively running,
2025 * it must be off the runqueue _entirely_, and not
2028 * So if it wa still runnable (but just not actively
2029 * running right now), it's preempted, and we should
2030 * yield - it could be a while.
2032 if (unlikely(on_rq
)) {
2033 schedule_timeout_uninterruptible(1);
2038 * Ahh, all good. It wasn't running, and it wasn't
2039 * runnable, which means that it will never become
2040 * running in the future either. We're all done!
2049 * kick_process - kick a running thread to enter/exit the kernel
2050 * @p: the to-be-kicked thread
2052 * Cause a process which is running on another CPU to enter
2053 * kernel-mode, without any delay. (to get signals handled.)
2055 * NOTE: this function doesnt have to take the runqueue lock,
2056 * because all it wants to ensure is that the remote task enters
2057 * the kernel. If the IPI races and the task has been migrated
2058 * to another CPU then no harm is done and the purpose has been
2061 void kick_process(struct task_struct
*p
)
2067 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2068 smp_send_reschedule(cpu
);
2073 * Return a low guess at the load of a migration-source cpu weighted
2074 * according to the scheduling class and "nice" value.
2076 * We want to under-estimate the load of migration sources, to
2077 * balance conservatively.
2079 static unsigned long source_load(int cpu
, int type
)
2081 struct rq
*rq
= cpu_rq(cpu
);
2082 unsigned long total
= weighted_cpuload(cpu
);
2084 if (type
== 0 || !sched_feat(LB_BIAS
))
2087 return min(rq
->cpu_load
[type
-1], total
);
2091 * Return a high guess at the load of a migration-target cpu weighted
2092 * according to the scheduling class and "nice" value.
2094 static unsigned long target_load(int cpu
, int type
)
2096 struct rq
*rq
= cpu_rq(cpu
);
2097 unsigned long total
= weighted_cpuload(cpu
);
2099 if (type
== 0 || !sched_feat(LB_BIAS
))
2102 return max(rq
->cpu_load
[type
-1], total
);
2106 * find_idlest_group finds and returns the least busy CPU group within the
2109 static struct sched_group
*
2110 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2112 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2113 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2114 int load_idx
= sd
->forkexec_idx
;
2115 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2118 unsigned long load
, avg_load
;
2122 /* Skip over this group if it has no CPUs allowed */
2123 if (!cpumask_intersects(sched_group_cpus(group
),
2127 local_group
= cpumask_test_cpu(this_cpu
,
2128 sched_group_cpus(group
));
2130 /* Tally up the load of all CPUs in the group */
2133 for_each_cpu(i
, sched_group_cpus(group
)) {
2134 /* Bias balancing toward cpus of our domain */
2136 load
= source_load(i
, load_idx
);
2138 load
= target_load(i
, load_idx
);
2143 /* Adjust by relative CPU power of the group */
2144 avg_load
= sg_div_cpu_power(group
,
2145 avg_load
* SCHED_LOAD_SCALE
);
2148 this_load
= avg_load
;
2150 } else if (avg_load
< min_load
) {
2151 min_load
= avg_load
;
2154 } while (group
= group
->next
, group
!= sd
->groups
);
2156 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2162 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2165 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
2167 unsigned long load
, min_load
= ULONG_MAX
;
2171 /* Traverse only the allowed CPUs */
2172 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
2173 load
= weighted_cpuload(i
);
2175 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2185 * sched_balance_self: balance the current task (running on cpu) in domains
2186 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2189 * Balance, ie. select the least loaded group.
2191 * Returns the target CPU number, or the same CPU if no balancing is needed.
2193 * preempt must be disabled.
2195 static int sched_balance_self(int cpu
, int flag
)
2197 struct task_struct
*t
= current
;
2198 struct sched_domain
*tmp
, *sd
= NULL
;
2200 for_each_domain(cpu
, tmp
) {
2202 * If power savings logic is enabled for a domain, stop there.
2204 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2206 if (tmp
->flags
& flag
)
2214 struct sched_group
*group
;
2215 int new_cpu
, weight
;
2217 if (!(sd
->flags
& flag
)) {
2222 group
= find_idlest_group(sd
, t
, cpu
);
2228 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
2229 if (new_cpu
== -1 || new_cpu
== cpu
) {
2230 /* Now try balancing at a lower domain level of cpu */
2235 /* Now try balancing at a lower domain level of new_cpu */
2237 weight
= cpumask_weight(sched_domain_span(sd
));
2239 for_each_domain(cpu
, tmp
) {
2240 if (weight
<= cpumask_weight(sched_domain_span(tmp
)))
2242 if (tmp
->flags
& flag
)
2245 /* while loop will break here if sd == NULL */
2251 #endif /* CONFIG_SMP */
2254 * try_to_wake_up - wake up a thread
2255 * @p: the to-be-woken-up thread
2256 * @state: the mask of task states that can be woken
2257 * @sync: do a synchronous wakeup?
2259 * Put it on the run-queue if it's not already there. The "current"
2260 * thread is always on the run-queue (except when the actual
2261 * re-schedule is in progress), and as such you're allowed to do
2262 * the simpler "current->state = TASK_RUNNING" to mark yourself
2263 * runnable without the overhead of this.
2265 * returns failure only if the task is already active.
2267 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2269 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2270 unsigned long flags
;
2274 if (!sched_feat(SYNC_WAKEUPS
))
2278 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2279 struct sched_domain
*sd
;
2281 this_cpu
= raw_smp_processor_id();
2284 for_each_domain(this_cpu
, sd
) {
2285 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2294 rq
= task_rq_lock(p
, &flags
);
2295 update_rq_clock(rq
);
2296 old_state
= p
->state
;
2297 if (!(old_state
& state
))
2305 this_cpu
= smp_processor_id();
2308 if (unlikely(task_running(rq
, p
)))
2311 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2312 if (cpu
!= orig_cpu
) {
2313 set_task_cpu(p
, cpu
);
2314 task_rq_unlock(rq
, &flags
);
2315 /* might preempt at this point */
2316 rq
= task_rq_lock(p
, &flags
);
2317 old_state
= p
->state
;
2318 if (!(old_state
& state
))
2323 this_cpu
= smp_processor_id();
2327 #ifdef CONFIG_SCHEDSTATS
2328 schedstat_inc(rq
, ttwu_count
);
2329 if (cpu
== this_cpu
)
2330 schedstat_inc(rq
, ttwu_local
);
2332 struct sched_domain
*sd
;
2333 for_each_domain(this_cpu
, sd
) {
2334 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2335 schedstat_inc(sd
, ttwu_wake_remote
);
2340 #endif /* CONFIG_SCHEDSTATS */
2343 #endif /* CONFIG_SMP */
2344 schedstat_inc(p
, se
.nr_wakeups
);
2346 schedstat_inc(p
, se
.nr_wakeups_sync
);
2347 if (orig_cpu
!= cpu
)
2348 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2349 if (cpu
== this_cpu
)
2350 schedstat_inc(p
, se
.nr_wakeups_local
);
2352 schedstat_inc(p
, se
.nr_wakeups_remote
);
2353 activate_task(rq
, p
, 1);
2357 trace_sched_wakeup(rq
, p
, success
);
2358 check_preempt_curr(rq
, p
, sync
);
2360 p
->state
= TASK_RUNNING
;
2362 if (p
->sched_class
->task_wake_up
)
2363 p
->sched_class
->task_wake_up(rq
, p
);
2366 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2368 task_rq_unlock(rq
, &flags
);
2373 int wake_up_process(struct task_struct
*p
)
2375 return try_to_wake_up(p
, TASK_ALL
, 0);
2377 EXPORT_SYMBOL(wake_up_process
);
2379 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2381 return try_to_wake_up(p
, state
, 0);
2385 * Perform scheduler related setup for a newly forked process p.
2386 * p is forked by current.
2388 * __sched_fork() is basic setup used by init_idle() too:
2390 static void __sched_fork(struct task_struct
*p
)
2392 p
->se
.exec_start
= 0;
2393 p
->se
.sum_exec_runtime
= 0;
2394 p
->se
.prev_sum_exec_runtime
= 0;
2395 p
->se
.last_wakeup
= 0;
2396 p
->se
.avg_overlap
= 0;
2398 #ifdef CONFIG_SCHEDSTATS
2399 p
->se
.wait_start
= 0;
2400 p
->se
.sum_sleep_runtime
= 0;
2401 p
->se
.sleep_start
= 0;
2402 p
->se
.block_start
= 0;
2403 p
->se
.sleep_max
= 0;
2404 p
->se
.block_max
= 0;
2406 p
->se
.slice_max
= 0;
2410 INIT_LIST_HEAD(&p
->rt
.run_list
);
2412 INIT_LIST_HEAD(&p
->se
.group_node
);
2414 #ifdef CONFIG_PREEMPT_NOTIFIERS
2415 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2419 * We mark the process as running here, but have not actually
2420 * inserted it onto the runqueue yet. This guarantees that
2421 * nobody will actually run it, and a signal or other external
2422 * event cannot wake it up and insert it on the runqueue either.
2424 p
->state
= TASK_RUNNING
;
2428 * fork()/clone()-time setup:
2430 void sched_fork(struct task_struct
*p
, int clone_flags
)
2432 int cpu
= get_cpu();
2437 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2439 set_task_cpu(p
, cpu
);
2442 * Make sure we do not leak PI boosting priority to the child:
2444 p
->prio
= current
->normal_prio
;
2445 if (!rt_prio(p
->prio
))
2446 p
->sched_class
= &fair_sched_class
;
2448 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2449 if (likely(sched_info_on()))
2450 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2452 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2455 #ifdef CONFIG_PREEMPT
2456 /* Want to start with kernel preemption disabled. */
2457 task_thread_info(p
)->preempt_count
= 1;
2463 * wake_up_new_task - wake up a newly created task for the first time.
2465 * This function will do some initial scheduler statistics housekeeping
2466 * that must be done for every newly created context, then puts the task
2467 * on the runqueue and wakes it.
2469 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2471 unsigned long flags
;
2474 rq
= task_rq_lock(p
, &flags
);
2475 BUG_ON(p
->state
!= TASK_RUNNING
);
2476 update_rq_clock(rq
);
2478 p
->prio
= effective_prio(p
);
2480 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2481 activate_task(rq
, p
, 0);
2484 * Let the scheduling class do new task startup
2485 * management (if any):
2487 p
->sched_class
->task_new(rq
, p
);
2490 trace_sched_wakeup_new(rq
, p
, 1);
2491 check_preempt_curr(rq
, p
, 0);
2493 if (p
->sched_class
->task_wake_up
)
2494 p
->sched_class
->task_wake_up(rq
, p
);
2496 task_rq_unlock(rq
, &flags
);
2499 #ifdef CONFIG_PREEMPT_NOTIFIERS
2502 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2503 * @notifier: notifier struct to register
2505 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2507 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2509 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2512 * preempt_notifier_unregister - no longer interested in preemption notifications
2513 * @notifier: notifier struct to unregister
2515 * This is safe to call from within a preemption notifier.
2517 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2519 hlist_del(¬ifier
->link
);
2521 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2523 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2525 struct preempt_notifier
*notifier
;
2526 struct hlist_node
*node
;
2528 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2529 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2533 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2534 struct task_struct
*next
)
2536 struct preempt_notifier
*notifier
;
2537 struct hlist_node
*node
;
2539 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2540 notifier
->ops
->sched_out(notifier
, next
);
2543 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2545 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2550 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2551 struct task_struct
*next
)
2555 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2558 * prepare_task_switch - prepare to switch tasks
2559 * @rq: the runqueue preparing to switch
2560 * @prev: the current task that is being switched out
2561 * @next: the task we are going to switch to.
2563 * This is called with the rq lock held and interrupts off. It must
2564 * be paired with a subsequent finish_task_switch after the context
2567 * prepare_task_switch sets up locking and calls architecture specific
2571 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2572 struct task_struct
*next
)
2574 fire_sched_out_preempt_notifiers(prev
, next
);
2575 prepare_lock_switch(rq
, next
);
2576 prepare_arch_switch(next
);
2580 * finish_task_switch - clean up after a task-switch
2581 * @rq: runqueue associated with task-switch
2582 * @prev: the thread we just switched away from.
2584 * finish_task_switch must be called after the context switch, paired
2585 * with a prepare_task_switch call before the context switch.
2586 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2587 * and do any other architecture-specific cleanup actions.
2589 * Note that we may have delayed dropping an mm in context_switch(). If
2590 * so, we finish that here outside of the runqueue lock. (Doing it
2591 * with the lock held can cause deadlocks; see schedule() for
2594 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2595 __releases(rq
->lock
)
2597 struct mm_struct
*mm
= rq
->prev_mm
;
2603 * A task struct has one reference for the use as "current".
2604 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2605 * schedule one last time. The schedule call will never return, and
2606 * the scheduled task must drop that reference.
2607 * The test for TASK_DEAD must occur while the runqueue locks are
2608 * still held, otherwise prev could be scheduled on another cpu, die
2609 * there before we look at prev->state, and then the reference would
2611 * Manfred Spraul <manfred@colorfullife.com>
2613 prev_state
= prev
->state
;
2614 finish_arch_switch(prev
);
2615 finish_lock_switch(rq
, prev
);
2617 if (current
->sched_class
->post_schedule
)
2618 current
->sched_class
->post_schedule(rq
);
2621 fire_sched_in_preempt_notifiers(current
);
2624 if (unlikely(prev_state
== TASK_DEAD
)) {
2626 * Remove function-return probe instances associated with this
2627 * task and put them back on the free list.
2629 kprobe_flush_task(prev
);
2630 put_task_struct(prev
);
2635 * schedule_tail - first thing a freshly forked thread must call.
2636 * @prev: the thread we just switched away from.
2638 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2639 __releases(rq
->lock
)
2641 struct rq
*rq
= this_rq();
2643 finish_task_switch(rq
, prev
);
2644 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2645 /* In this case, finish_task_switch does not reenable preemption */
2648 if (current
->set_child_tid
)
2649 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2653 * context_switch - switch to the new MM and the new
2654 * thread's register state.
2657 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2658 struct task_struct
*next
)
2660 struct mm_struct
*mm
, *oldmm
;
2662 prepare_task_switch(rq
, prev
, next
);
2663 trace_sched_switch(rq
, prev
, next
);
2665 oldmm
= prev
->active_mm
;
2667 * For paravirt, this is coupled with an exit in switch_to to
2668 * combine the page table reload and the switch backend into
2671 arch_enter_lazy_cpu_mode();
2673 if (unlikely(!mm
)) {
2674 next
->active_mm
= oldmm
;
2675 atomic_inc(&oldmm
->mm_count
);
2676 enter_lazy_tlb(oldmm
, next
);
2678 switch_mm(oldmm
, mm
, next
);
2680 if (unlikely(!prev
->mm
)) {
2681 prev
->active_mm
= NULL
;
2682 rq
->prev_mm
= oldmm
;
2685 * Since the runqueue lock will be released by the next
2686 * task (which is an invalid locking op but in the case
2687 * of the scheduler it's an obvious special-case), so we
2688 * do an early lockdep release here:
2690 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2691 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2694 /* Here we just switch the register state and the stack. */
2695 switch_to(prev
, next
, prev
);
2699 * this_rq must be evaluated again because prev may have moved
2700 * CPUs since it called schedule(), thus the 'rq' on its stack
2701 * frame will be invalid.
2703 finish_task_switch(this_rq(), prev
);
2707 * nr_running, nr_uninterruptible and nr_context_switches:
2709 * externally visible scheduler statistics: current number of runnable
2710 * threads, current number of uninterruptible-sleeping threads, total
2711 * number of context switches performed since bootup.
2713 unsigned long nr_running(void)
2715 unsigned long i
, sum
= 0;
2717 for_each_online_cpu(i
)
2718 sum
+= cpu_rq(i
)->nr_running
;
2723 unsigned long nr_uninterruptible(void)
2725 unsigned long i
, sum
= 0;
2727 for_each_possible_cpu(i
)
2728 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2731 * Since we read the counters lockless, it might be slightly
2732 * inaccurate. Do not allow it to go below zero though:
2734 if (unlikely((long)sum
< 0))
2740 unsigned long long nr_context_switches(void)
2743 unsigned long long sum
= 0;
2745 for_each_possible_cpu(i
)
2746 sum
+= cpu_rq(i
)->nr_switches
;
2751 unsigned long nr_iowait(void)
2753 unsigned long i
, sum
= 0;
2755 for_each_possible_cpu(i
)
2756 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2761 unsigned long nr_active(void)
2763 unsigned long i
, running
= 0, uninterruptible
= 0;
2765 for_each_online_cpu(i
) {
2766 running
+= cpu_rq(i
)->nr_running
;
2767 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2770 if (unlikely((long)uninterruptible
< 0))
2771 uninterruptible
= 0;
2773 return running
+ uninterruptible
;
2777 * Update rq->cpu_load[] statistics. This function is usually called every
2778 * scheduler tick (TICK_NSEC).
2780 static void update_cpu_load(struct rq
*this_rq
)
2782 unsigned long this_load
= this_rq
->load
.weight
;
2785 this_rq
->nr_load_updates
++;
2787 /* Update our load: */
2788 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2789 unsigned long old_load
, new_load
;
2791 /* scale is effectively 1 << i now, and >> i divides by scale */
2793 old_load
= this_rq
->cpu_load
[i
];
2794 new_load
= this_load
;
2796 * Round up the averaging division if load is increasing. This
2797 * prevents us from getting stuck on 9 if the load is 10, for
2800 if (new_load
> old_load
)
2801 new_load
+= scale
-1;
2802 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2809 * double_rq_lock - safely lock two runqueues
2811 * Note this does not disable interrupts like task_rq_lock,
2812 * you need to do so manually before calling.
2814 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2815 __acquires(rq1
->lock
)
2816 __acquires(rq2
->lock
)
2818 BUG_ON(!irqs_disabled());
2820 spin_lock(&rq1
->lock
);
2821 __acquire(rq2
->lock
); /* Fake it out ;) */
2824 spin_lock(&rq1
->lock
);
2825 spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
2827 spin_lock(&rq2
->lock
);
2828 spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
2831 update_rq_clock(rq1
);
2832 update_rq_clock(rq2
);
2836 * double_rq_unlock - safely unlock two runqueues
2838 * Note this does not restore interrupts like task_rq_unlock,
2839 * you need to do so manually after calling.
2841 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2842 __releases(rq1
->lock
)
2843 __releases(rq2
->lock
)
2845 spin_unlock(&rq1
->lock
);
2847 spin_unlock(&rq2
->lock
);
2849 __release(rq2
->lock
);
2853 * If dest_cpu is allowed for this process, migrate the task to it.
2854 * This is accomplished by forcing the cpu_allowed mask to only
2855 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2856 * the cpu_allowed mask is restored.
2858 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2860 struct migration_req req
;
2861 unsigned long flags
;
2864 rq
= task_rq_lock(p
, &flags
);
2865 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
)
2866 || unlikely(!cpu_active(dest_cpu
)))
2869 /* force the process onto the specified CPU */
2870 if (migrate_task(p
, dest_cpu
, &req
)) {
2871 /* Need to wait for migration thread (might exit: take ref). */
2872 struct task_struct
*mt
= rq
->migration_thread
;
2874 get_task_struct(mt
);
2875 task_rq_unlock(rq
, &flags
);
2876 wake_up_process(mt
);
2877 put_task_struct(mt
);
2878 wait_for_completion(&req
.done
);
2883 task_rq_unlock(rq
, &flags
);
2887 * sched_exec - execve() is a valuable balancing opportunity, because at
2888 * this point the task has the smallest effective memory and cache footprint.
2890 void sched_exec(void)
2892 int new_cpu
, this_cpu
= get_cpu();
2893 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2895 if (new_cpu
!= this_cpu
)
2896 sched_migrate_task(current
, new_cpu
);
2900 * pull_task - move a task from a remote runqueue to the local runqueue.
2901 * Both runqueues must be locked.
2903 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2904 struct rq
*this_rq
, int this_cpu
)
2906 deactivate_task(src_rq
, p
, 0);
2907 set_task_cpu(p
, this_cpu
);
2908 activate_task(this_rq
, p
, 0);
2910 * Note that idle threads have a prio of MAX_PRIO, for this test
2911 * to be always true for them.
2913 check_preempt_curr(this_rq
, p
, 0);
2917 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2920 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2921 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2925 * We do not migrate tasks that are:
2926 * 1) running (obviously), or
2927 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2928 * 3) are cache-hot on their current CPU.
2930 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
2931 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2936 if (task_running(rq
, p
)) {
2937 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2942 * Aggressive migration if:
2943 * 1) task is cache cold, or
2944 * 2) too many balance attempts have failed.
2947 if (!task_hot(p
, rq
->clock
, sd
) ||
2948 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2949 #ifdef CONFIG_SCHEDSTATS
2950 if (task_hot(p
, rq
->clock
, sd
)) {
2951 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2952 schedstat_inc(p
, se
.nr_forced_migrations
);
2958 if (task_hot(p
, rq
->clock
, sd
)) {
2959 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2965 static unsigned long
2966 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2967 unsigned long max_load_move
, struct sched_domain
*sd
,
2968 enum cpu_idle_type idle
, int *all_pinned
,
2969 int *this_best_prio
, struct rq_iterator
*iterator
)
2971 int loops
= 0, pulled
= 0, pinned
= 0;
2972 struct task_struct
*p
;
2973 long rem_load_move
= max_load_move
;
2975 if (max_load_move
== 0)
2981 * Start the load-balancing iterator:
2983 p
= iterator
->start(iterator
->arg
);
2985 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
2988 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2989 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2990 p
= iterator
->next(iterator
->arg
);
2994 pull_task(busiest
, p
, this_rq
, this_cpu
);
2996 rem_load_move
-= p
->se
.load
.weight
;
2999 * We only want to steal up to the prescribed amount of weighted load.
3001 if (rem_load_move
> 0) {
3002 if (p
->prio
< *this_best_prio
)
3003 *this_best_prio
= p
->prio
;
3004 p
= iterator
->next(iterator
->arg
);
3009 * Right now, this is one of only two places pull_task() is called,
3010 * so we can safely collect pull_task() stats here rather than
3011 * inside pull_task().
3013 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3016 *all_pinned
= pinned
;
3018 return max_load_move
- rem_load_move
;
3022 * move_tasks tries to move up to max_load_move weighted load from busiest to
3023 * this_rq, as part of a balancing operation within domain "sd".
3024 * Returns 1 if successful and 0 otherwise.
3026 * Called with both runqueues locked.
3028 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3029 unsigned long max_load_move
,
3030 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3033 const struct sched_class
*class = sched_class_highest
;
3034 unsigned long total_load_moved
= 0;
3035 int this_best_prio
= this_rq
->curr
->prio
;
3039 class->load_balance(this_rq
, this_cpu
, busiest
,
3040 max_load_move
- total_load_moved
,
3041 sd
, idle
, all_pinned
, &this_best_prio
);
3042 class = class->next
;
3044 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3047 } while (class && max_load_move
> total_load_moved
);
3049 return total_load_moved
> 0;
3053 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3054 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3055 struct rq_iterator
*iterator
)
3057 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3061 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3062 pull_task(busiest
, p
, this_rq
, this_cpu
);
3064 * Right now, this is only the second place pull_task()
3065 * is called, so we can safely collect pull_task()
3066 * stats here rather than inside pull_task().
3068 schedstat_inc(sd
, lb_gained
[idle
]);
3072 p
= iterator
->next(iterator
->arg
);
3079 * move_one_task tries to move exactly one task from busiest to this_rq, as
3080 * part of active balancing operations within "domain".
3081 * Returns 1 if successful and 0 otherwise.
3083 * Called with both runqueues locked.
3085 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3086 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3088 const struct sched_class
*class;
3090 for (class = sched_class_highest
; class; class = class->next
)
3091 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3098 * find_busiest_group finds and returns the busiest CPU group within the
3099 * domain. It calculates and returns the amount of weighted load which
3100 * should be moved to restore balance via the imbalance parameter.
3102 static struct sched_group
*
3103 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3104 unsigned long *imbalance
, enum cpu_idle_type idle
,
3105 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
3107 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3108 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3109 unsigned long max_pull
;
3110 unsigned long busiest_load_per_task
, busiest_nr_running
;
3111 unsigned long this_load_per_task
, this_nr_running
;
3112 int load_idx
, group_imb
= 0;
3113 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3114 int power_savings_balance
= 1;
3115 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3116 unsigned long min_nr_running
= ULONG_MAX
;
3117 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3120 max_load
= this_load
= total_load
= total_pwr
= 0;
3121 busiest_load_per_task
= busiest_nr_running
= 0;
3122 this_load_per_task
= this_nr_running
= 0;
3124 if (idle
== CPU_NOT_IDLE
)
3125 load_idx
= sd
->busy_idx
;
3126 else if (idle
== CPU_NEWLY_IDLE
)
3127 load_idx
= sd
->newidle_idx
;
3129 load_idx
= sd
->idle_idx
;
3132 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3135 int __group_imb
= 0;
3136 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3137 unsigned long sum_nr_running
, sum_weighted_load
;
3138 unsigned long sum_avg_load_per_task
;
3139 unsigned long avg_load_per_task
;
3141 local_group
= cpumask_test_cpu(this_cpu
,
3142 sched_group_cpus(group
));
3145 balance_cpu
= cpumask_first(sched_group_cpus(group
));
3147 /* Tally up the load of all CPUs in the group */
3148 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3149 sum_avg_load_per_task
= avg_load_per_task
= 0;
3152 min_cpu_load
= ~0UL;
3154 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
3155 struct rq
*rq
= cpu_rq(i
);
3157 if (*sd_idle
&& rq
->nr_running
)
3160 /* Bias balancing toward cpus of our domain */
3162 if (idle_cpu(i
) && !first_idle_cpu
) {
3167 load
= target_load(i
, load_idx
);
3169 load
= source_load(i
, load_idx
);
3170 if (load
> max_cpu_load
)
3171 max_cpu_load
= load
;
3172 if (min_cpu_load
> load
)
3173 min_cpu_load
= load
;
3177 sum_nr_running
+= rq
->nr_running
;
3178 sum_weighted_load
+= weighted_cpuload(i
);
3180 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3184 * First idle cpu or the first cpu(busiest) in this sched group
3185 * is eligible for doing load balancing at this and above
3186 * domains. In the newly idle case, we will allow all the cpu's
3187 * to do the newly idle load balance.
3189 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3190 balance_cpu
!= this_cpu
&& balance
) {
3195 total_load
+= avg_load
;
3196 total_pwr
+= group
->__cpu_power
;
3198 /* Adjust by relative CPU power of the group */
3199 avg_load
= sg_div_cpu_power(group
,
3200 avg_load
* SCHED_LOAD_SCALE
);
3204 * Consider the group unbalanced when the imbalance is larger
3205 * than the average weight of two tasks.
3207 * APZ: with cgroup the avg task weight can vary wildly and
3208 * might not be a suitable number - should we keep a
3209 * normalized nr_running number somewhere that negates
3212 avg_load_per_task
= sg_div_cpu_power(group
,
3213 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3215 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3218 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3221 this_load
= avg_load
;
3223 this_nr_running
= sum_nr_running
;
3224 this_load_per_task
= sum_weighted_load
;
3225 } else if (avg_load
> max_load
&&
3226 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3227 max_load
= avg_load
;
3229 busiest_nr_running
= sum_nr_running
;
3230 busiest_load_per_task
= sum_weighted_load
;
3231 group_imb
= __group_imb
;
3234 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3236 * Busy processors will not participate in power savings
3239 if (idle
== CPU_NOT_IDLE
||
3240 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3244 * If the local group is idle or completely loaded
3245 * no need to do power savings balance at this domain
3247 if (local_group
&& (this_nr_running
>= group_capacity
||
3249 power_savings_balance
= 0;
3252 * If a group is already running at full capacity or idle,
3253 * don't include that group in power savings calculations
3255 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3260 * Calculate the group which has the least non-idle load.
3261 * This is the group from where we need to pick up the load
3264 if ((sum_nr_running
< min_nr_running
) ||
3265 (sum_nr_running
== min_nr_running
&&
3266 cpumask_first(sched_group_cpus(group
)) >
3267 cpumask_first(sched_group_cpus(group_min
)))) {
3269 min_nr_running
= sum_nr_running
;
3270 min_load_per_task
= sum_weighted_load
/
3275 * Calculate the group which is almost near its
3276 * capacity but still has some space to pick up some load
3277 * from other group and save more power
3279 if (sum_nr_running
<= group_capacity
- 1) {
3280 if (sum_nr_running
> leader_nr_running
||
3281 (sum_nr_running
== leader_nr_running
&&
3282 cpumask_first(sched_group_cpus(group
)) <
3283 cpumask_first(sched_group_cpus(group_leader
)))) {
3284 group_leader
= group
;
3285 leader_nr_running
= sum_nr_running
;
3290 group
= group
->next
;
3291 } while (group
!= sd
->groups
);
3293 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3296 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3298 if (this_load
>= avg_load
||
3299 100*max_load
<= sd
->imbalance_pct
*this_load
)
3302 busiest_load_per_task
/= busiest_nr_running
;
3304 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3307 * We're trying to get all the cpus to the average_load, so we don't
3308 * want to push ourselves above the average load, nor do we wish to
3309 * reduce the max loaded cpu below the average load, as either of these
3310 * actions would just result in more rebalancing later, and ping-pong
3311 * tasks around. Thus we look for the minimum possible imbalance.
3312 * Negative imbalances (*we* are more loaded than anyone else) will
3313 * be counted as no imbalance for these purposes -- we can't fix that
3314 * by pulling tasks to us. Be careful of negative numbers as they'll
3315 * appear as very large values with unsigned longs.
3317 if (max_load
<= busiest_load_per_task
)
3321 * In the presence of smp nice balancing, certain scenarios can have
3322 * max load less than avg load(as we skip the groups at or below
3323 * its cpu_power, while calculating max_load..)
3325 if (max_load
< avg_load
) {
3327 goto small_imbalance
;
3330 /* Don't want to pull so many tasks that a group would go idle */
3331 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3333 /* How much load to actually move to equalise the imbalance */
3334 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3335 (avg_load
- this_load
) * this->__cpu_power
)
3339 * if *imbalance is less than the average load per runnable task
3340 * there is no gaurantee that any tasks will be moved so we'll have
3341 * a think about bumping its value to force at least one task to be
3344 if (*imbalance
< busiest_load_per_task
) {
3345 unsigned long tmp
, pwr_now
, pwr_move
;
3349 pwr_move
= pwr_now
= 0;
3351 if (this_nr_running
) {
3352 this_load_per_task
/= this_nr_running
;
3353 if (busiest_load_per_task
> this_load_per_task
)
3356 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3358 if (max_load
- this_load
+ busiest_load_per_task
>=
3359 busiest_load_per_task
* imbn
) {
3360 *imbalance
= busiest_load_per_task
;
3365 * OK, we don't have enough imbalance to justify moving tasks,
3366 * however we may be able to increase total CPU power used by
3370 pwr_now
+= busiest
->__cpu_power
*
3371 min(busiest_load_per_task
, max_load
);
3372 pwr_now
+= this->__cpu_power
*
3373 min(this_load_per_task
, this_load
);
3374 pwr_now
/= SCHED_LOAD_SCALE
;
3376 /* Amount of load we'd subtract */
3377 tmp
= sg_div_cpu_power(busiest
,
3378 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3380 pwr_move
+= busiest
->__cpu_power
*
3381 min(busiest_load_per_task
, max_load
- tmp
);
3383 /* Amount of load we'd add */
3384 if (max_load
* busiest
->__cpu_power
<
3385 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3386 tmp
= sg_div_cpu_power(this,
3387 max_load
* busiest
->__cpu_power
);
3389 tmp
= sg_div_cpu_power(this,
3390 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3391 pwr_move
+= this->__cpu_power
*
3392 min(this_load_per_task
, this_load
+ tmp
);
3393 pwr_move
/= SCHED_LOAD_SCALE
;
3395 /* Move if we gain throughput */
3396 if (pwr_move
> pwr_now
)
3397 *imbalance
= busiest_load_per_task
;
3403 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3404 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3407 if (this == group_leader
&& group_leader
!= group_min
) {
3408 *imbalance
= min_load_per_task
;
3409 if (sched_mc_power_savings
>= POWERSAVINGS_BALANCE_WAKEUP
) {
3410 cpu_rq(this_cpu
)->rd
->sched_mc_preferred_wakeup_cpu
=
3411 cpumask_first(sched_group_cpus(group_leader
));
3422 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3425 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3426 unsigned long imbalance
, const struct cpumask
*cpus
)
3428 struct rq
*busiest
= NULL
, *rq
;
3429 unsigned long max_load
= 0;
3432 for_each_cpu(i
, sched_group_cpus(group
)) {
3435 if (!cpumask_test_cpu(i
, cpus
))
3439 wl
= weighted_cpuload(i
);
3441 if (rq
->nr_running
== 1 && wl
> imbalance
)
3444 if (wl
> max_load
) {
3454 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3455 * so long as it is large enough.
3457 #define MAX_PINNED_INTERVAL 512
3460 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3461 * tasks if there is an imbalance.
3463 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3464 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3465 int *balance
, struct cpumask
*cpus
)
3467 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3468 struct sched_group
*group
;
3469 unsigned long imbalance
;
3471 unsigned long flags
;
3473 cpumask_setall(cpus
);
3476 * When power savings policy is enabled for the parent domain, idle
3477 * sibling can pick up load irrespective of busy siblings. In this case,
3478 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3479 * portraying it as CPU_NOT_IDLE.
3481 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3482 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3485 schedstat_inc(sd
, lb_count
[idle
]);
3489 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3496 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3500 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3502 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3506 BUG_ON(busiest
== this_rq
);
3508 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3511 if (busiest
->nr_running
> 1) {
3513 * Attempt to move tasks. If find_busiest_group has found
3514 * an imbalance but busiest->nr_running <= 1, the group is
3515 * still unbalanced. ld_moved simply stays zero, so it is
3516 * correctly treated as an imbalance.
3518 local_irq_save(flags
);
3519 double_rq_lock(this_rq
, busiest
);
3520 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3521 imbalance
, sd
, idle
, &all_pinned
);
3522 double_rq_unlock(this_rq
, busiest
);
3523 local_irq_restore(flags
);
3526 * some other cpu did the load balance for us.
3528 if (ld_moved
&& this_cpu
!= smp_processor_id())
3529 resched_cpu(this_cpu
);
3531 /* All tasks on this runqueue were pinned by CPU affinity */
3532 if (unlikely(all_pinned
)) {
3533 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3534 if (!cpumask_empty(cpus
))
3541 schedstat_inc(sd
, lb_failed
[idle
]);
3542 sd
->nr_balance_failed
++;
3544 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3546 spin_lock_irqsave(&busiest
->lock
, flags
);
3548 /* don't kick the migration_thread, if the curr
3549 * task on busiest cpu can't be moved to this_cpu
3551 if (!cpumask_test_cpu(this_cpu
,
3552 &busiest
->curr
->cpus_allowed
)) {
3553 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3555 goto out_one_pinned
;
3558 if (!busiest
->active_balance
) {
3559 busiest
->active_balance
= 1;
3560 busiest
->push_cpu
= this_cpu
;
3563 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3565 wake_up_process(busiest
->migration_thread
);
3568 * We've kicked active balancing, reset the failure
3571 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3574 sd
->nr_balance_failed
= 0;
3576 if (likely(!active_balance
)) {
3577 /* We were unbalanced, so reset the balancing interval */
3578 sd
->balance_interval
= sd
->min_interval
;
3581 * If we've begun active balancing, start to back off. This
3582 * case may not be covered by the all_pinned logic if there
3583 * is only 1 task on the busy runqueue (because we don't call
3586 if (sd
->balance_interval
< sd
->max_interval
)
3587 sd
->balance_interval
*= 2;
3590 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3591 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3597 schedstat_inc(sd
, lb_balanced
[idle
]);
3599 sd
->nr_balance_failed
= 0;
3602 /* tune up the balancing interval */
3603 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3604 (sd
->balance_interval
< sd
->max_interval
))
3605 sd
->balance_interval
*= 2;
3607 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3608 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3619 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3620 * tasks if there is an imbalance.
3622 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3623 * this_rq is locked.
3626 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3627 struct cpumask
*cpus
)
3629 struct sched_group
*group
;
3630 struct rq
*busiest
= NULL
;
3631 unsigned long imbalance
;
3636 cpumask_setall(cpus
);
3639 * When power savings policy is enabled for the parent domain, idle
3640 * sibling can pick up load irrespective of busy siblings. In this case,
3641 * let the state of idle sibling percolate up as IDLE, instead of
3642 * portraying it as CPU_NOT_IDLE.
3644 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3645 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3648 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3650 update_shares_locked(this_rq
, sd
);
3651 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3652 &sd_idle
, cpus
, NULL
);
3654 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3658 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3660 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3664 BUG_ON(busiest
== this_rq
);
3666 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3669 if (busiest
->nr_running
> 1) {
3670 /* Attempt to move tasks */
3671 double_lock_balance(this_rq
, busiest
);
3672 /* this_rq->clock is already updated */
3673 update_rq_clock(busiest
);
3674 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3675 imbalance
, sd
, CPU_NEWLY_IDLE
,
3677 double_unlock_balance(this_rq
, busiest
);
3679 if (unlikely(all_pinned
)) {
3680 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3681 if (!cpumask_empty(cpus
))
3687 int active_balance
= 0;
3689 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3690 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3691 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3694 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3697 if (sd
->nr_balance_failed
++ < 2)
3701 * The only task running in a non-idle cpu can be moved to this
3702 * cpu in an attempt to completely freeup the other CPU
3703 * package. The same method used to move task in load_balance()
3704 * have been extended for load_balance_newidle() to speedup
3705 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3707 * The package power saving logic comes from
3708 * find_busiest_group(). If there are no imbalance, then
3709 * f_b_g() will return NULL. However when sched_mc={1,2} then
3710 * f_b_g() will select a group from which a running task may be
3711 * pulled to this cpu in order to make the other package idle.
3712 * If there is no opportunity to make a package idle and if
3713 * there are no imbalance, then f_b_g() will return NULL and no
3714 * action will be taken in load_balance_newidle().
3716 * Under normal task pull operation due to imbalance, there
3717 * will be more than one task in the source run queue and
3718 * move_tasks() will succeed. ld_moved will be true and this
3719 * active balance code will not be triggered.
3722 /* Lock busiest in correct order while this_rq is held */
3723 double_lock_balance(this_rq
, busiest
);
3726 * don't kick the migration_thread, if the curr
3727 * task on busiest cpu can't be moved to this_cpu
3729 if (!cpumask_test_cpu(this_cpu
, &busiest
->curr
->cpus_allowed
)) {
3730 double_unlock_balance(this_rq
, busiest
);
3735 if (!busiest
->active_balance
) {
3736 busiest
->active_balance
= 1;
3737 busiest
->push_cpu
= this_cpu
;
3741 double_unlock_balance(this_rq
, busiest
);
3743 * Should not call ttwu while holding a rq->lock
3745 spin_unlock(&this_rq
->lock
);
3747 wake_up_process(busiest
->migration_thread
);
3748 spin_lock(&this_rq
->lock
);
3751 sd
->nr_balance_failed
= 0;
3753 update_shares_locked(this_rq
, sd
);
3757 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3758 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3759 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3761 sd
->nr_balance_failed
= 0;
3767 * idle_balance is called by schedule() if this_cpu is about to become
3768 * idle. Attempts to pull tasks from other CPUs.
3770 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3772 struct sched_domain
*sd
;
3773 int pulled_task
= 0;
3774 unsigned long next_balance
= jiffies
+ HZ
;
3775 cpumask_var_t tmpmask
;
3777 if (!alloc_cpumask_var(&tmpmask
, GFP_ATOMIC
))
3780 for_each_domain(this_cpu
, sd
) {
3781 unsigned long interval
;
3783 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3786 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3787 /* If we've pulled tasks over stop searching: */
3788 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3791 interval
= msecs_to_jiffies(sd
->balance_interval
);
3792 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3793 next_balance
= sd
->last_balance
+ interval
;
3797 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3799 * We are going idle. next_balance may be set based on
3800 * a busy processor. So reset next_balance.
3802 this_rq
->next_balance
= next_balance
;
3804 free_cpumask_var(tmpmask
);
3808 * active_load_balance is run by migration threads. It pushes running tasks
3809 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3810 * running on each physical CPU where possible, and avoids physical /
3811 * logical imbalances.
3813 * Called with busiest_rq locked.
3815 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3817 int target_cpu
= busiest_rq
->push_cpu
;
3818 struct sched_domain
*sd
;
3819 struct rq
*target_rq
;
3821 /* Is there any task to move? */
3822 if (busiest_rq
->nr_running
<= 1)
3825 target_rq
= cpu_rq(target_cpu
);
3828 * This condition is "impossible", if it occurs
3829 * we need to fix it. Originally reported by
3830 * Bjorn Helgaas on a 128-cpu setup.
3832 BUG_ON(busiest_rq
== target_rq
);
3834 /* move a task from busiest_rq to target_rq */
3835 double_lock_balance(busiest_rq
, target_rq
);
3836 update_rq_clock(busiest_rq
);
3837 update_rq_clock(target_rq
);
3839 /* Search for an sd spanning us and the target CPU. */
3840 for_each_domain(target_cpu
, sd
) {
3841 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3842 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3847 schedstat_inc(sd
, alb_count
);
3849 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3851 schedstat_inc(sd
, alb_pushed
);
3853 schedstat_inc(sd
, alb_failed
);
3855 double_unlock_balance(busiest_rq
, target_rq
);
3860 atomic_t load_balancer
;
3861 cpumask_var_t cpu_mask
;
3862 } nohz ____cacheline_aligned
= {
3863 .load_balancer
= ATOMIC_INIT(-1),
3867 * This routine will try to nominate the ilb (idle load balancing)
3868 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3869 * load balancing on behalf of all those cpus. If all the cpus in the system
3870 * go into this tickless mode, then there will be no ilb owner (as there is
3871 * no need for one) and all the cpus will sleep till the next wakeup event
3874 * For the ilb owner, tick is not stopped. And this tick will be used
3875 * for idle load balancing. ilb owner will still be part of
3878 * While stopping the tick, this cpu will become the ilb owner if there
3879 * is no other owner. And will be the owner till that cpu becomes busy
3880 * or if all cpus in the system stop their ticks at which point
3881 * there is no need for ilb owner.
3883 * When the ilb owner becomes busy, it nominates another owner, during the
3884 * next busy scheduler_tick()
3886 int select_nohz_load_balancer(int stop_tick
)
3888 int cpu
= smp_processor_id();
3891 cpu_rq(cpu
)->in_nohz_recently
= 1;
3893 if (!cpu_active(cpu
)) {
3894 if (atomic_read(&nohz
.load_balancer
) != cpu
)
3898 * If we are going offline and still the leader,
3901 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3907 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
3909 /* time for ilb owner also to sleep */
3910 if (cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3911 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3912 atomic_set(&nohz
.load_balancer
, -1);
3916 if (atomic_read(&nohz
.load_balancer
) == -1) {
3917 /* make me the ilb owner */
3918 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3920 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3923 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
3926 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
3928 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3929 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3936 static DEFINE_SPINLOCK(balancing
);
3939 * It checks each scheduling domain to see if it is due to be balanced,
3940 * and initiates a balancing operation if so.
3942 * Balancing parameters are set up in arch_init_sched_domains.
3944 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3947 struct rq
*rq
= cpu_rq(cpu
);
3948 unsigned long interval
;
3949 struct sched_domain
*sd
;
3950 /* Earliest time when we have to do rebalance again */
3951 unsigned long next_balance
= jiffies
+ 60*HZ
;
3952 int update_next_balance
= 0;
3956 /* Fails alloc? Rebalancing probably not a priority right now. */
3957 if (!alloc_cpumask_var(&tmp
, GFP_ATOMIC
))
3960 for_each_domain(cpu
, sd
) {
3961 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3964 interval
= sd
->balance_interval
;
3965 if (idle
!= CPU_IDLE
)
3966 interval
*= sd
->busy_factor
;
3968 /* scale ms to jiffies */
3969 interval
= msecs_to_jiffies(interval
);
3970 if (unlikely(!interval
))
3972 if (interval
> HZ
*NR_CPUS
/10)
3973 interval
= HZ
*NR_CPUS
/10;
3975 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3977 if (need_serialize
) {
3978 if (!spin_trylock(&balancing
))
3982 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3983 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, tmp
)) {
3985 * We've pulled tasks over so either we're no
3986 * longer idle, or one of our SMT siblings is
3989 idle
= CPU_NOT_IDLE
;
3991 sd
->last_balance
= jiffies
;
3994 spin_unlock(&balancing
);
3996 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3997 next_balance
= sd
->last_balance
+ interval
;
3998 update_next_balance
= 1;
4002 * Stop the load balance at this level. There is another
4003 * CPU in our sched group which is doing load balancing more
4011 * next_balance will be updated only when there is a need.
4012 * When the cpu is attached to null domain for ex, it will not be
4015 if (likely(update_next_balance
))
4016 rq
->next_balance
= next_balance
;
4018 free_cpumask_var(tmp
);
4022 * run_rebalance_domains is triggered when needed from the scheduler tick.
4023 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4024 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4026 static void run_rebalance_domains(struct softirq_action
*h
)
4028 int this_cpu
= smp_processor_id();
4029 struct rq
*this_rq
= cpu_rq(this_cpu
);
4030 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4031 CPU_IDLE
: CPU_NOT_IDLE
;
4033 rebalance_domains(this_cpu
, idle
);
4037 * If this cpu is the owner for idle load balancing, then do the
4038 * balancing on behalf of the other idle cpus whose ticks are
4041 if (this_rq
->idle_at_tick
&&
4042 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
4046 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
4047 if (balance_cpu
== this_cpu
)
4051 * If this cpu gets work to do, stop the load balancing
4052 * work being done for other cpus. Next load
4053 * balancing owner will pick it up.
4058 rebalance_domains(balance_cpu
, CPU_IDLE
);
4060 rq
= cpu_rq(balance_cpu
);
4061 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4062 this_rq
->next_balance
= rq
->next_balance
;
4069 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4071 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4072 * idle load balancing owner or decide to stop the periodic load balancing,
4073 * if the whole system is idle.
4075 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4079 * If we were in the nohz mode recently and busy at the current
4080 * scheduler tick, then check if we need to nominate new idle
4083 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4084 rq
->in_nohz_recently
= 0;
4086 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4087 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
4088 atomic_set(&nohz
.load_balancer
, -1);
4091 if (atomic_read(&nohz
.load_balancer
) == -1) {
4093 * simple selection for now: Nominate the
4094 * first cpu in the nohz list to be the next
4097 * TBD: Traverse the sched domains and nominate
4098 * the nearest cpu in the nohz.cpu_mask.
4100 int ilb
= cpumask_first(nohz
.cpu_mask
);
4102 if (ilb
< nr_cpu_ids
)
4108 * If this cpu is idle and doing idle load balancing for all the
4109 * cpus with ticks stopped, is it time for that to stop?
4111 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4112 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4118 * If this cpu is idle and the idle load balancing is done by
4119 * someone else, then no need raise the SCHED_SOFTIRQ
4121 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4122 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
4125 if (time_after_eq(jiffies
, rq
->next_balance
))
4126 raise_softirq(SCHED_SOFTIRQ
);
4129 #else /* CONFIG_SMP */
4132 * on UP we do not need to balance between CPUs:
4134 static inline void idle_balance(int cpu
, struct rq
*rq
)
4140 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4142 EXPORT_PER_CPU_SYMBOL(kstat
);
4145 * Return any ns on the sched_clock that have not yet been accounted in
4146 * @p in case that task is currently running.
4148 * Called with task_rq_lock() held on @rq.
4150 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
4154 if (task_current(rq
, p
)) {
4155 update_rq_clock(rq
);
4156 ns
= rq
->clock
- p
->se
.exec_start
;
4164 unsigned long long task_delta_exec(struct task_struct
*p
)
4166 unsigned long flags
;
4170 rq
= task_rq_lock(p
, &flags
);
4171 ns
= do_task_delta_exec(p
, rq
);
4172 task_rq_unlock(rq
, &flags
);
4178 * Return accounted runtime for the task.
4179 * In case the task is currently running, return the runtime plus current's
4180 * pending runtime that have not been accounted yet.
4182 unsigned long long task_sched_runtime(struct task_struct
*p
)
4184 unsigned long flags
;
4188 rq
= task_rq_lock(p
, &flags
);
4189 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4190 task_rq_unlock(rq
, &flags
);
4196 * Return sum_exec_runtime for the thread group.
4197 * In case the task is currently running, return the sum plus current's
4198 * pending runtime that have not been accounted yet.
4200 * Note that the thread group might have other running tasks as well,
4201 * so the return value not includes other pending runtime that other
4202 * running tasks might have.
4204 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
4206 struct task_cputime totals
;
4207 unsigned long flags
;
4211 rq
= task_rq_lock(p
, &flags
);
4212 thread_group_cputime(p
, &totals
);
4213 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
4214 task_rq_unlock(rq
, &flags
);
4220 * Account user cpu time to a process.
4221 * @p: the process that the cpu time gets accounted to
4222 * @cputime: the cpu time spent in user space since the last update
4223 * @cputime_scaled: cputime scaled by cpu frequency
4225 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
4226 cputime_t cputime_scaled
)
4228 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4231 /* Add user time to process. */
4232 p
->utime
= cputime_add(p
->utime
, cputime
);
4233 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4234 account_group_user_time(p
, cputime
);
4236 /* Add user time to cpustat. */
4237 tmp
= cputime_to_cputime64(cputime
);
4238 if (TASK_NICE(p
) > 0)
4239 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4241 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4242 /* Account for user time used */
4243 acct_update_integrals(p
);
4247 * Account guest cpu time to a process.
4248 * @p: the process that the cpu time gets accounted to
4249 * @cputime: the cpu time spent in virtual machine since the last update
4250 * @cputime_scaled: cputime scaled by cpu frequency
4252 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
4253 cputime_t cputime_scaled
)
4256 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4258 tmp
= cputime_to_cputime64(cputime
);
4260 /* Add guest time to process. */
4261 p
->utime
= cputime_add(p
->utime
, cputime
);
4262 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
4263 account_group_user_time(p
, cputime
);
4264 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4266 /* Add guest time to cpustat. */
4267 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4268 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4272 * Account system cpu time to a process.
4273 * @p: the process that the cpu time gets accounted to
4274 * @hardirq_offset: the offset to subtract from hardirq_count()
4275 * @cputime: the cpu time spent in kernel space since the last update
4276 * @cputime_scaled: cputime scaled by cpu frequency
4278 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4279 cputime_t cputime
, cputime_t cputime_scaled
)
4281 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4284 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4285 account_guest_time(p
, cputime
, cputime_scaled
);
4289 /* Add system time to process. */
4290 p
->stime
= cputime_add(p
->stime
, cputime
);
4291 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
4292 account_group_system_time(p
, cputime
);
4294 /* Add system time to cpustat. */
4295 tmp
= cputime_to_cputime64(cputime
);
4296 if (hardirq_count() - hardirq_offset
)
4297 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4298 else if (softirq_count())
4299 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4301 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4303 /* Account for system time used */
4304 acct_update_integrals(p
);
4308 * Account for involuntary wait time.
4309 * @steal: the cpu time spent in involuntary wait
4311 void account_steal_time(cputime_t cputime
)
4313 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4314 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4316 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
4320 * Account for idle time.
4321 * @cputime: the cpu time spent in idle wait
4323 void account_idle_time(cputime_t cputime
)
4325 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4326 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
4327 struct rq
*rq
= this_rq();
4329 if (atomic_read(&rq
->nr_iowait
) > 0)
4330 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
4332 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
4335 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4338 * Account a single tick of cpu time.
4339 * @p: the process that the cpu time gets accounted to
4340 * @user_tick: indicates if the tick is a user or a system tick
4342 void account_process_tick(struct task_struct
*p
, int user_tick
)
4344 cputime_t one_jiffy
= jiffies_to_cputime(1);
4345 cputime_t one_jiffy_scaled
= cputime_to_scaled(one_jiffy
);
4346 struct rq
*rq
= this_rq();
4349 account_user_time(p
, one_jiffy
, one_jiffy_scaled
);
4350 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
4351 account_system_time(p
, HARDIRQ_OFFSET
, one_jiffy
,
4354 account_idle_time(one_jiffy
);
4358 * Account multiple ticks of steal time.
4359 * @p: the process from which the cpu time has been stolen
4360 * @ticks: number of stolen ticks
4362 void account_steal_ticks(unsigned long ticks
)
4364 account_steal_time(jiffies_to_cputime(ticks
));
4368 * Account multiple ticks of idle time.
4369 * @ticks: number of stolen ticks
4371 void account_idle_ticks(unsigned long ticks
)
4373 account_idle_time(jiffies_to_cputime(ticks
));
4379 * Use precise platform statistics if available:
4381 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4382 cputime_t
task_utime(struct task_struct
*p
)
4387 cputime_t
task_stime(struct task_struct
*p
)
4392 cputime_t
task_utime(struct task_struct
*p
)
4394 clock_t utime
= cputime_to_clock_t(p
->utime
),
4395 total
= utime
+ cputime_to_clock_t(p
->stime
);
4399 * Use CFS's precise accounting:
4401 temp
= (u64
)nsec_to_clock_t(p
->se
.sum_exec_runtime
);
4405 do_div(temp
, total
);
4407 utime
= (clock_t)temp
;
4409 p
->prev_utime
= max(p
->prev_utime
, clock_t_to_cputime(utime
));
4410 return p
->prev_utime
;
4413 cputime_t
task_stime(struct task_struct
*p
)
4418 * Use CFS's precise accounting. (we subtract utime from
4419 * the total, to make sure the total observed by userspace
4420 * grows monotonically - apps rely on that):
4422 stime
= nsec_to_clock_t(p
->se
.sum_exec_runtime
) -
4423 cputime_to_clock_t(task_utime(p
));
4426 p
->prev_stime
= max(p
->prev_stime
, clock_t_to_cputime(stime
));
4428 return p
->prev_stime
;
4432 inline cputime_t
task_gtime(struct task_struct
*p
)
4438 * This function gets called by the timer code, with HZ frequency.
4439 * We call it with interrupts disabled.
4441 * It also gets called by the fork code, when changing the parent's
4444 void scheduler_tick(void)
4446 int cpu
= smp_processor_id();
4447 struct rq
*rq
= cpu_rq(cpu
);
4448 struct task_struct
*curr
= rq
->curr
;
4452 spin_lock(&rq
->lock
);
4453 update_rq_clock(rq
);
4454 update_cpu_load(rq
);
4455 curr
->sched_class
->task_tick(rq
, curr
, 0);
4456 spin_unlock(&rq
->lock
);
4459 rq
->idle_at_tick
= idle_cpu(cpu
);
4460 trigger_load_balance(rq
, cpu
);
4464 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4465 defined(CONFIG_PREEMPT_TRACER))
4467 static inline unsigned long get_parent_ip(unsigned long addr
)
4469 if (in_lock_functions(addr
)) {
4470 addr
= CALLER_ADDR2
;
4471 if (in_lock_functions(addr
))
4472 addr
= CALLER_ADDR3
;
4477 void __kprobes
add_preempt_count(int val
)
4479 #ifdef CONFIG_DEBUG_PREEMPT
4483 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4486 preempt_count() += val
;
4487 #ifdef CONFIG_DEBUG_PREEMPT
4489 * Spinlock count overflowing soon?
4491 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4494 if (preempt_count() == val
)
4495 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4497 EXPORT_SYMBOL(add_preempt_count
);
4499 void __kprobes
sub_preempt_count(int val
)
4501 #ifdef CONFIG_DEBUG_PREEMPT
4505 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4508 * Is the spinlock portion underflowing?
4510 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4511 !(preempt_count() & PREEMPT_MASK
)))
4515 if (preempt_count() == val
)
4516 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4517 preempt_count() -= val
;
4519 EXPORT_SYMBOL(sub_preempt_count
);
4524 * Print scheduling while atomic bug:
4526 static noinline
void __schedule_bug(struct task_struct
*prev
)
4528 struct pt_regs
*regs
= get_irq_regs();
4530 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4531 prev
->comm
, prev
->pid
, preempt_count());
4533 debug_show_held_locks(prev
);
4535 if (irqs_disabled())
4536 print_irqtrace_events(prev
);
4545 * Various schedule()-time debugging checks and statistics:
4547 static inline void schedule_debug(struct task_struct
*prev
)
4550 * Test if we are atomic. Since do_exit() needs to call into
4551 * schedule() atomically, we ignore that path for now.
4552 * Otherwise, whine if we are scheduling when we should not be.
4554 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4555 __schedule_bug(prev
);
4557 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4559 schedstat_inc(this_rq(), sched_count
);
4560 #ifdef CONFIG_SCHEDSTATS
4561 if (unlikely(prev
->lock_depth
>= 0)) {
4562 schedstat_inc(this_rq(), bkl_count
);
4563 schedstat_inc(prev
, sched_info
.bkl_count
);
4569 * Pick up the highest-prio task:
4571 static inline struct task_struct
*
4572 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4574 const struct sched_class
*class;
4575 struct task_struct
*p
;
4578 * Optimization: we know that if all tasks are in
4579 * the fair class we can call that function directly:
4581 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4582 p
= fair_sched_class
.pick_next_task(rq
);
4587 class = sched_class_highest
;
4589 p
= class->pick_next_task(rq
);
4593 * Will never be NULL as the idle class always
4594 * returns a non-NULL p:
4596 class = class->next
;
4601 * schedule() is the main scheduler function.
4603 asmlinkage
void __sched
schedule(void)
4605 struct task_struct
*prev
, *next
;
4606 unsigned long *switch_count
;
4612 cpu
= smp_processor_id();
4616 switch_count
= &prev
->nivcsw
;
4618 release_kernel_lock(prev
);
4619 need_resched_nonpreemptible
:
4621 schedule_debug(prev
);
4623 if (sched_feat(HRTICK
))
4626 spin_lock_irq(&rq
->lock
);
4627 update_rq_clock(rq
);
4628 clear_tsk_need_resched(prev
);
4630 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4631 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4632 prev
->state
= TASK_RUNNING
;
4634 deactivate_task(rq
, prev
, 1);
4635 switch_count
= &prev
->nvcsw
;
4639 if (prev
->sched_class
->pre_schedule
)
4640 prev
->sched_class
->pre_schedule(rq
, prev
);
4643 if (unlikely(!rq
->nr_running
))
4644 idle_balance(cpu
, rq
);
4646 prev
->sched_class
->put_prev_task(rq
, prev
);
4647 next
= pick_next_task(rq
, prev
);
4649 if (likely(prev
!= next
)) {
4650 sched_info_switch(prev
, next
);
4656 context_switch(rq
, prev
, next
); /* unlocks the rq */
4658 * the context switch might have flipped the stack from under
4659 * us, hence refresh the local variables.
4661 cpu
= smp_processor_id();
4664 spin_unlock_irq(&rq
->lock
);
4666 if (unlikely(reacquire_kernel_lock(current
) < 0))
4667 goto need_resched_nonpreemptible
;
4669 preempt_enable_no_resched();
4670 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4673 EXPORT_SYMBOL(schedule
);
4675 #ifdef CONFIG_PREEMPT
4677 * this is the entry point to schedule() from in-kernel preemption
4678 * off of preempt_enable. Kernel preemptions off return from interrupt
4679 * occur there and call schedule directly.
4681 asmlinkage
void __sched
preempt_schedule(void)
4683 struct thread_info
*ti
= current_thread_info();
4686 * If there is a non-zero preempt_count or interrupts are disabled,
4687 * we do not want to preempt the current task. Just return..
4689 if (likely(ti
->preempt_count
|| irqs_disabled()))
4693 add_preempt_count(PREEMPT_ACTIVE
);
4695 sub_preempt_count(PREEMPT_ACTIVE
);
4698 * Check again in case we missed a preemption opportunity
4699 * between schedule and now.
4702 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4704 EXPORT_SYMBOL(preempt_schedule
);
4707 * this is the entry point to schedule() from kernel preemption
4708 * off of irq context.
4709 * Note, that this is called and return with irqs disabled. This will
4710 * protect us against recursive calling from irq.
4712 asmlinkage
void __sched
preempt_schedule_irq(void)
4714 struct thread_info
*ti
= current_thread_info();
4716 /* Catch callers which need to be fixed */
4717 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4720 add_preempt_count(PREEMPT_ACTIVE
);
4723 local_irq_disable();
4724 sub_preempt_count(PREEMPT_ACTIVE
);
4727 * Check again in case we missed a preemption opportunity
4728 * between schedule and now.
4731 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4734 #endif /* CONFIG_PREEMPT */
4736 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4739 return try_to_wake_up(curr
->private, mode
, sync
);
4741 EXPORT_SYMBOL(default_wake_function
);
4744 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4745 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4746 * number) then we wake all the non-exclusive tasks and one exclusive task.
4748 * There are circumstances in which we can try to wake a task which has already
4749 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4750 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4752 void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4753 int nr_exclusive
, int sync
, void *key
)
4755 wait_queue_t
*curr
, *next
;
4757 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4758 unsigned flags
= curr
->flags
;
4760 if (curr
->func(curr
, mode
, sync
, key
) &&
4761 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4767 * __wake_up - wake up threads blocked on a waitqueue.
4769 * @mode: which threads
4770 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4771 * @key: is directly passed to the wakeup function
4773 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4774 int nr_exclusive
, void *key
)
4776 unsigned long flags
;
4778 spin_lock_irqsave(&q
->lock
, flags
);
4779 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4780 spin_unlock_irqrestore(&q
->lock
, flags
);
4782 EXPORT_SYMBOL(__wake_up
);
4785 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4787 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4789 __wake_up_common(q
, mode
, 1, 0, NULL
);
4793 * __wake_up_sync - wake up threads blocked on a waitqueue.
4795 * @mode: which threads
4796 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4798 * The sync wakeup differs that the waker knows that it will schedule
4799 * away soon, so while the target thread will be woken up, it will not
4800 * be migrated to another CPU - ie. the two threads are 'synchronized'
4801 * with each other. This can prevent needless bouncing between CPUs.
4803 * On UP it can prevent extra preemption.
4806 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4808 unsigned long flags
;
4814 if (unlikely(!nr_exclusive
))
4817 spin_lock_irqsave(&q
->lock
, flags
);
4818 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4819 spin_unlock_irqrestore(&q
->lock
, flags
);
4821 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4824 * complete: - signals a single thread waiting on this completion
4825 * @x: holds the state of this particular completion
4827 * This will wake up a single thread waiting on this completion. Threads will be
4828 * awakened in the same order in which they were queued.
4830 * See also complete_all(), wait_for_completion() and related routines.
4832 void complete(struct completion
*x
)
4834 unsigned long flags
;
4836 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4838 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4839 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4841 EXPORT_SYMBOL(complete
);
4844 * complete_all: - signals all threads waiting on this completion
4845 * @x: holds the state of this particular completion
4847 * This will wake up all threads waiting on this particular completion event.
4849 void complete_all(struct completion
*x
)
4851 unsigned long flags
;
4853 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4854 x
->done
+= UINT_MAX
/2;
4855 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4856 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4858 EXPORT_SYMBOL(complete_all
);
4860 static inline long __sched
4861 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4864 DECLARE_WAITQUEUE(wait
, current
);
4866 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4867 __add_wait_queue_tail(&x
->wait
, &wait
);
4869 if (signal_pending_state(state
, current
)) {
4870 timeout
= -ERESTARTSYS
;
4873 __set_current_state(state
);
4874 spin_unlock_irq(&x
->wait
.lock
);
4875 timeout
= schedule_timeout(timeout
);
4876 spin_lock_irq(&x
->wait
.lock
);
4877 } while (!x
->done
&& timeout
);
4878 __remove_wait_queue(&x
->wait
, &wait
);
4883 return timeout
?: 1;
4887 wait_for_common(struct completion
*x
, long timeout
, int state
)
4891 spin_lock_irq(&x
->wait
.lock
);
4892 timeout
= do_wait_for_common(x
, timeout
, state
);
4893 spin_unlock_irq(&x
->wait
.lock
);
4898 * wait_for_completion: - waits for completion of a task
4899 * @x: holds the state of this particular completion
4901 * This waits to be signaled for completion of a specific task. It is NOT
4902 * interruptible and there is no timeout.
4904 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4905 * and interrupt capability. Also see complete().
4907 void __sched
wait_for_completion(struct completion
*x
)
4909 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4911 EXPORT_SYMBOL(wait_for_completion
);
4914 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4915 * @x: holds the state of this particular completion
4916 * @timeout: timeout value in jiffies
4918 * This waits for either a completion of a specific task to be signaled or for a
4919 * specified timeout to expire. The timeout is in jiffies. It is not
4922 unsigned long __sched
4923 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4925 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4927 EXPORT_SYMBOL(wait_for_completion_timeout
);
4930 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4931 * @x: holds the state of this particular completion
4933 * This waits for completion of a specific task to be signaled. It is
4936 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4938 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4939 if (t
== -ERESTARTSYS
)
4943 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4946 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4947 * @x: holds the state of this particular completion
4948 * @timeout: timeout value in jiffies
4950 * This waits for either a completion of a specific task to be signaled or for a
4951 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4953 unsigned long __sched
4954 wait_for_completion_interruptible_timeout(struct completion
*x
,
4955 unsigned long timeout
)
4957 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4959 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4962 * wait_for_completion_killable: - waits for completion of a task (killable)
4963 * @x: holds the state of this particular completion
4965 * This waits to be signaled for completion of a specific task. It can be
4966 * interrupted by a kill signal.
4968 int __sched
wait_for_completion_killable(struct completion
*x
)
4970 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4971 if (t
== -ERESTARTSYS
)
4975 EXPORT_SYMBOL(wait_for_completion_killable
);
4978 * try_wait_for_completion - try to decrement a completion without blocking
4979 * @x: completion structure
4981 * Returns: 0 if a decrement cannot be done without blocking
4982 * 1 if a decrement succeeded.
4984 * If a completion is being used as a counting completion,
4985 * attempt to decrement the counter without blocking. This
4986 * enables us to avoid waiting if the resource the completion
4987 * is protecting is not available.
4989 bool try_wait_for_completion(struct completion
*x
)
4993 spin_lock_irq(&x
->wait
.lock
);
4998 spin_unlock_irq(&x
->wait
.lock
);
5001 EXPORT_SYMBOL(try_wait_for_completion
);
5004 * completion_done - Test to see if a completion has any waiters
5005 * @x: completion structure
5007 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5008 * 1 if there are no waiters.
5011 bool completion_done(struct completion
*x
)
5015 spin_lock_irq(&x
->wait
.lock
);
5018 spin_unlock_irq(&x
->wait
.lock
);
5021 EXPORT_SYMBOL(completion_done
);
5024 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
5026 unsigned long flags
;
5029 init_waitqueue_entry(&wait
, current
);
5031 __set_current_state(state
);
5033 spin_lock_irqsave(&q
->lock
, flags
);
5034 __add_wait_queue(q
, &wait
);
5035 spin_unlock(&q
->lock
);
5036 timeout
= schedule_timeout(timeout
);
5037 spin_lock_irq(&q
->lock
);
5038 __remove_wait_queue(q
, &wait
);
5039 spin_unlock_irqrestore(&q
->lock
, flags
);
5044 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
5046 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5048 EXPORT_SYMBOL(interruptible_sleep_on
);
5051 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5053 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
5055 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
5057 void __sched
sleep_on(wait_queue_head_t
*q
)
5059 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
5061 EXPORT_SYMBOL(sleep_on
);
5063 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
5065 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
5067 EXPORT_SYMBOL(sleep_on_timeout
);
5069 #ifdef CONFIG_RT_MUTEXES
5072 * rt_mutex_setprio - set the current priority of a task
5074 * @prio: prio value (kernel-internal form)
5076 * This function changes the 'effective' priority of a task. It does
5077 * not touch ->normal_prio like __setscheduler().
5079 * Used by the rt_mutex code to implement priority inheritance logic.
5081 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
5083 unsigned long flags
;
5084 int oldprio
, on_rq
, running
;
5086 const struct sched_class
*prev_class
= p
->sched_class
;
5088 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
5090 rq
= task_rq_lock(p
, &flags
);
5091 update_rq_clock(rq
);
5094 on_rq
= p
->se
.on_rq
;
5095 running
= task_current(rq
, p
);
5097 dequeue_task(rq
, p
, 0);
5099 p
->sched_class
->put_prev_task(rq
, p
);
5102 p
->sched_class
= &rt_sched_class
;
5104 p
->sched_class
= &fair_sched_class
;
5109 p
->sched_class
->set_curr_task(rq
);
5111 enqueue_task(rq
, p
, 0);
5113 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5115 task_rq_unlock(rq
, &flags
);
5120 void set_user_nice(struct task_struct
*p
, long nice
)
5122 int old_prio
, delta
, on_rq
;
5123 unsigned long flags
;
5126 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
5129 * We have to be careful, if called from sys_setpriority(),
5130 * the task might be in the middle of scheduling on another CPU.
5132 rq
= task_rq_lock(p
, &flags
);
5133 update_rq_clock(rq
);
5135 * The RT priorities are set via sched_setscheduler(), but we still
5136 * allow the 'normal' nice value to be set - but as expected
5137 * it wont have any effect on scheduling until the task is
5138 * SCHED_FIFO/SCHED_RR:
5140 if (task_has_rt_policy(p
)) {
5141 p
->static_prio
= NICE_TO_PRIO(nice
);
5144 on_rq
= p
->se
.on_rq
;
5146 dequeue_task(rq
, p
, 0);
5148 p
->static_prio
= NICE_TO_PRIO(nice
);
5151 p
->prio
= effective_prio(p
);
5152 delta
= p
->prio
- old_prio
;
5155 enqueue_task(rq
, p
, 0);
5157 * If the task increased its priority or is running and
5158 * lowered its priority, then reschedule its CPU:
5160 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
5161 resched_task(rq
->curr
);
5164 task_rq_unlock(rq
, &flags
);
5166 EXPORT_SYMBOL(set_user_nice
);
5169 * can_nice - check if a task can reduce its nice value
5173 int can_nice(const struct task_struct
*p
, const int nice
)
5175 /* convert nice value [19,-20] to rlimit style value [1,40] */
5176 int nice_rlim
= 20 - nice
;
5178 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
5179 capable(CAP_SYS_NICE
));
5182 #ifdef __ARCH_WANT_SYS_NICE
5185 * sys_nice - change the priority of the current process.
5186 * @increment: priority increment
5188 * sys_setpriority is a more generic, but much slower function that
5189 * does similar things.
5191 SYSCALL_DEFINE1(nice
, int, increment
)
5196 * Setpriority might change our priority at the same moment.
5197 * We don't have to worry. Conceptually one call occurs first
5198 * and we have a single winner.
5200 if (increment
< -40)
5205 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
5211 if (increment
< 0 && !can_nice(current
, nice
))
5214 retval
= security_task_setnice(current
, nice
);
5218 set_user_nice(current
, nice
);
5225 * task_prio - return the priority value of a given task.
5226 * @p: the task in question.
5228 * This is the priority value as seen by users in /proc.
5229 * RT tasks are offset by -200. Normal tasks are centered
5230 * around 0, value goes from -16 to +15.
5232 int task_prio(const struct task_struct
*p
)
5234 return p
->prio
- MAX_RT_PRIO
;
5238 * task_nice - return the nice value of a given task.
5239 * @p: the task in question.
5241 int task_nice(const struct task_struct
*p
)
5243 return TASK_NICE(p
);
5245 EXPORT_SYMBOL(task_nice
);
5248 * idle_cpu - is a given cpu idle currently?
5249 * @cpu: the processor in question.
5251 int idle_cpu(int cpu
)
5253 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5257 * idle_task - return the idle task for a given cpu.
5258 * @cpu: the processor in question.
5260 struct task_struct
*idle_task(int cpu
)
5262 return cpu_rq(cpu
)->idle
;
5266 * find_process_by_pid - find a process with a matching PID value.
5267 * @pid: the pid in question.
5269 static struct task_struct
*find_process_by_pid(pid_t pid
)
5271 return pid
? find_task_by_vpid(pid
) : current
;
5274 /* Actually do priority change: must hold rq lock. */
5276 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5278 BUG_ON(p
->se
.on_rq
);
5281 switch (p
->policy
) {
5285 p
->sched_class
= &fair_sched_class
;
5289 p
->sched_class
= &rt_sched_class
;
5293 p
->rt_priority
= prio
;
5294 p
->normal_prio
= normal_prio(p
);
5295 /* we are holding p->pi_lock already */
5296 p
->prio
= rt_mutex_getprio(p
);
5301 * check the target process has a UID that matches the current process's
5303 static bool check_same_owner(struct task_struct
*p
)
5305 const struct cred
*cred
= current_cred(), *pcred
;
5309 pcred
= __task_cred(p
);
5310 match
= (cred
->euid
== pcred
->euid
||
5311 cred
->euid
== pcred
->uid
);
5316 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5317 struct sched_param
*param
, bool user
)
5319 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5320 unsigned long flags
;
5321 const struct sched_class
*prev_class
= p
->sched_class
;
5324 /* may grab non-irq protected spin_locks */
5325 BUG_ON(in_interrupt());
5327 /* double check policy once rq lock held */
5329 policy
= oldpolicy
= p
->policy
;
5330 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5331 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5332 policy
!= SCHED_IDLE
)
5335 * Valid priorities for SCHED_FIFO and SCHED_RR are
5336 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5337 * SCHED_BATCH and SCHED_IDLE is 0.
5339 if (param
->sched_priority
< 0 ||
5340 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5341 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5343 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5347 * Allow unprivileged RT tasks to decrease priority:
5349 if (user
&& !capable(CAP_SYS_NICE
)) {
5350 if (rt_policy(policy
)) {
5351 unsigned long rlim_rtprio
;
5353 if (!lock_task_sighand(p
, &flags
))
5355 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5356 unlock_task_sighand(p
, &flags
);
5358 /* can't set/change the rt policy */
5359 if (policy
!= p
->policy
&& !rlim_rtprio
)
5362 /* can't increase priority */
5363 if (param
->sched_priority
> p
->rt_priority
&&
5364 param
->sched_priority
> rlim_rtprio
)
5368 * Like positive nice levels, dont allow tasks to
5369 * move out of SCHED_IDLE either:
5371 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5374 /* can't change other user's priorities */
5375 if (!check_same_owner(p
))
5380 #ifdef CONFIG_RT_GROUP_SCHED
5382 * Do not allow realtime tasks into groups that have no runtime
5385 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5386 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5390 retval
= security_task_setscheduler(p
, policy
, param
);
5396 * make sure no PI-waiters arrive (or leave) while we are
5397 * changing the priority of the task:
5399 spin_lock_irqsave(&p
->pi_lock
, flags
);
5401 * To be able to change p->policy safely, the apropriate
5402 * runqueue lock must be held.
5404 rq
= __task_rq_lock(p
);
5405 /* recheck policy now with rq lock held */
5406 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5407 policy
= oldpolicy
= -1;
5408 __task_rq_unlock(rq
);
5409 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5412 update_rq_clock(rq
);
5413 on_rq
= p
->se
.on_rq
;
5414 running
= task_current(rq
, p
);
5416 deactivate_task(rq
, p
, 0);
5418 p
->sched_class
->put_prev_task(rq
, p
);
5421 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5424 p
->sched_class
->set_curr_task(rq
);
5426 activate_task(rq
, p
, 0);
5428 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5430 __task_rq_unlock(rq
);
5431 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5433 rt_mutex_adjust_pi(p
);
5439 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5440 * @p: the task in question.
5441 * @policy: new policy.
5442 * @param: structure containing the new RT priority.
5444 * NOTE that the task may be already dead.
5446 int sched_setscheduler(struct task_struct
*p
, int policy
,
5447 struct sched_param
*param
)
5449 return __sched_setscheduler(p
, policy
, param
, true);
5451 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5454 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5455 * @p: the task in question.
5456 * @policy: new policy.
5457 * @param: structure containing the new RT priority.
5459 * Just like sched_setscheduler, only don't bother checking if the
5460 * current context has permission. For example, this is needed in
5461 * stop_machine(): we create temporary high priority worker threads,
5462 * but our caller might not have that capability.
5464 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5465 struct sched_param
*param
)
5467 return __sched_setscheduler(p
, policy
, param
, false);
5471 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5473 struct sched_param lparam
;
5474 struct task_struct
*p
;
5477 if (!param
|| pid
< 0)
5479 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5484 p
= find_process_by_pid(pid
);
5486 retval
= sched_setscheduler(p
, policy
, &lparam
);
5493 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5494 * @pid: the pid in question.
5495 * @policy: new policy.
5496 * @param: structure containing the new RT priority.
5498 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5499 struct sched_param __user
*, param
)
5501 /* negative values for policy are not valid */
5505 return do_sched_setscheduler(pid
, policy
, param
);
5509 * sys_sched_setparam - set/change the RT priority of a thread
5510 * @pid: the pid in question.
5511 * @param: structure containing the new RT priority.
5513 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5515 return do_sched_setscheduler(pid
, -1, param
);
5519 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5520 * @pid: the pid in question.
5522 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5524 struct task_struct
*p
;
5531 read_lock(&tasklist_lock
);
5532 p
= find_process_by_pid(pid
);
5534 retval
= security_task_getscheduler(p
);
5538 read_unlock(&tasklist_lock
);
5543 * sys_sched_getscheduler - get the RT priority of a thread
5544 * @pid: the pid in question.
5545 * @param: structure containing the RT priority.
5547 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5549 struct sched_param lp
;
5550 struct task_struct
*p
;
5553 if (!param
|| pid
< 0)
5556 read_lock(&tasklist_lock
);
5557 p
= find_process_by_pid(pid
);
5562 retval
= security_task_getscheduler(p
);
5566 lp
.sched_priority
= p
->rt_priority
;
5567 read_unlock(&tasklist_lock
);
5570 * This one might sleep, we cannot do it with a spinlock held ...
5572 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5577 read_unlock(&tasklist_lock
);
5581 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5583 cpumask_var_t cpus_allowed
, new_mask
;
5584 struct task_struct
*p
;
5588 read_lock(&tasklist_lock
);
5590 p
= find_process_by_pid(pid
);
5592 read_unlock(&tasklist_lock
);
5598 * It is not safe to call set_cpus_allowed with the
5599 * tasklist_lock held. We will bump the task_struct's
5600 * usage count and then drop tasklist_lock.
5603 read_unlock(&tasklist_lock
);
5605 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5609 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5611 goto out_free_cpus_allowed
;
5614 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
5617 retval
= security_task_setscheduler(p
, 0, NULL
);
5621 cpuset_cpus_allowed(p
, cpus_allowed
);
5622 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5624 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5627 cpuset_cpus_allowed(p
, cpus_allowed
);
5628 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5630 * We must have raced with a concurrent cpuset
5631 * update. Just reset the cpus_allowed to the
5632 * cpuset's cpus_allowed
5634 cpumask_copy(new_mask
, cpus_allowed
);
5639 free_cpumask_var(new_mask
);
5640 out_free_cpus_allowed
:
5641 free_cpumask_var(cpus_allowed
);
5648 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5649 struct cpumask
*new_mask
)
5651 if (len
< cpumask_size())
5652 cpumask_clear(new_mask
);
5653 else if (len
> cpumask_size())
5654 len
= cpumask_size();
5656 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5660 * sys_sched_setaffinity - set the cpu affinity of a process
5661 * @pid: pid of the process
5662 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5663 * @user_mask_ptr: user-space pointer to the new cpu mask
5665 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5666 unsigned long __user
*, user_mask_ptr
)
5668 cpumask_var_t new_mask
;
5671 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5674 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5676 retval
= sched_setaffinity(pid
, new_mask
);
5677 free_cpumask_var(new_mask
);
5681 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5683 struct task_struct
*p
;
5687 read_lock(&tasklist_lock
);
5690 p
= find_process_by_pid(pid
);
5694 retval
= security_task_getscheduler(p
);
5698 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5701 read_unlock(&tasklist_lock
);
5708 * sys_sched_getaffinity - get the cpu affinity of a process
5709 * @pid: pid of the process
5710 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5711 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5713 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5714 unsigned long __user
*, user_mask_ptr
)
5719 if (len
< cpumask_size())
5722 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5725 ret
= sched_getaffinity(pid
, mask
);
5727 if (copy_to_user(user_mask_ptr
, mask
, cpumask_size()))
5730 ret
= cpumask_size();
5732 free_cpumask_var(mask
);
5738 * sys_sched_yield - yield the current processor to other threads.
5740 * This function yields the current CPU to other tasks. If there are no
5741 * other threads running on this CPU then this function will return.
5743 SYSCALL_DEFINE0(sched_yield
)
5745 struct rq
*rq
= this_rq_lock();
5747 schedstat_inc(rq
, yld_count
);
5748 current
->sched_class
->yield_task(rq
);
5751 * Since we are going to call schedule() anyway, there's
5752 * no need to preempt or enable interrupts:
5754 __release(rq
->lock
);
5755 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5756 _raw_spin_unlock(&rq
->lock
);
5757 preempt_enable_no_resched();
5764 static void __cond_resched(void)
5766 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5767 __might_sleep(__FILE__
, __LINE__
);
5770 * The BKS might be reacquired before we have dropped
5771 * PREEMPT_ACTIVE, which could trigger a second
5772 * cond_resched() call.
5775 add_preempt_count(PREEMPT_ACTIVE
);
5777 sub_preempt_count(PREEMPT_ACTIVE
);
5778 } while (need_resched());
5781 int __sched
_cond_resched(void)
5783 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5784 system_state
== SYSTEM_RUNNING
) {
5790 EXPORT_SYMBOL(_cond_resched
);
5793 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5794 * call schedule, and on return reacquire the lock.
5796 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5797 * operations here to prevent schedule() from being called twice (once via
5798 * spin_unlock(), once by hand).
5800 int cond_resched_lock(spinlock_t
*lock
)
5802 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5805 if (spin_needbreak(lock
) || resched
) {
5807 if (resched
&& need_resched())
5816 EXPORT_SYMBOL(cond_resched_lock
);
5818 int __sched
cond_resched_softirq(void)
5820 BUG_ON(!in_softirq());
5822 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5830 EXPORT_SYMBOL(cond_resched_softirq
);
5833 * yield - yield the current processor to other threads.
5835 * This is a shortcut for kernel-space yielding - it marks the
5836 * thread runnable and calls sys_sched_yield().
5838 void __sched
yield(void)
5840 set_current_state(TASK_RUNNING
);
5843 EXPORT_SYMBOL(yield
);
5846 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5847 * that process accounting knows that this is a task in IO wait state.
5849 * But don't do that if it is a deliberate, throttling IO wait (this task
5850 * has set its backing_dev_info: the queue against which it should throttle)
5852 void __sched
io_schedule(void)
5854 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5856 delayacct_blkio_start();
5857 atomic_inc(&rq
->nr_iowait
);
5859 atomic_dec(&rq
->nr_iowait
);
5860 delayacct_blkio_end();
5862 EXPORT_SYMBOL(io_schedule
);
5864 long __sched
io_schedule_timeout(long timeout
)
5866 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5869 delayacct_blkio_start();
5870 atomic_inc(&rq
->nr_iowait
);
5871 ret
= schedule_timeout(timeout
);
5872 atomic_dec(&rq
->nr_iowait
);
5873 delayacct_blkio_end();
5878 * sys_sched_get_priority_max - return maximum RT priority.
5879 * @policy: scheduling class.
5881 * this syscall returns the maximum rt_priority that can be used
5882 * by a given scheduling class.
5884 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5891 ret
= MAX_USER_RT_PRIO
-1;
5903 * sys_sched_get_priority_min - return minimum RT priority.
5904 * @policy: scheduling class.
5906 * this syscall returns the minimum rt_priority that can be used
5907 * by a given scheduling class.
5909 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5927 * sys_sched_rr_get_interval - return the default timeslice of a process.
5928 * @pid: pid of the process.
5929 * @interval: userspace pointer to the timeslice value.
5931 * this syscall writes the default timeslice value of a given process
5932 * into the user-space timespec buffer. A value of '0' means infinity.
5934 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5935 struct timespec __user
*, interval
)
5937 struct task_struct
*p
;
5938 unsigned int time_slice
;
5946 read_lock(&tasklist_lock
);
5947 p
= find_process_by_pid(pid
);
5951 retval
= security_task_getscheduler(p
);
5956 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5957 * tasks that are on an otherwise idle runqueue:
5960 if (p
->policy
== SCHED_RR
) {
5961 time_slice
= DEF_TIMESLICE
;
5962 } else if (p
->policy
!= SCHED_FIFO
) {
5963 struct sched_entity
*se
= &p
->se
;
5964 unsigned long flags
;
5967 rq
= task_rq_lock(p
, &flags
);
5968 if (rq
->cfs
.load
.weight
)
5969 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5970 task_rq_unlock(rq
, &flags
);
5972 read_unlock(&tasklist_lock
);
5973 jiffies_to_timespec(time_slice
, &t
);
5974 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5978 read_unlock(&tasklist_lock
);
5982 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5984 void sched_show_task(struct task_struct
*p
)
5986 unsigned long free
= 0;
5989 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5990 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5991 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5992 #if BITS_PER_LONG == 32
5993 if (state
== TASK_RUNNING
)
5994 printk(KERN_CONT
" running ");
5996 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5998 if (state
== TASK_RUNNING
)
5999 printk(KERN_CONT
" running task ");
6001 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
6003 #ifdef CONFIG_DEBUG_STACK_USAGE
6005 unsigned long *n
= end_of_stack(p
);
6008 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
6011 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
6012 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
6014 show_stack(p
, NULL
);
6017 void show_state_filter(unsigned long state_filter
)
6019 struct task_struct
*g
, *p
;
6021 #if BITS_PER_LONG == 32
6023 " task PC stack pid father\n");
6026 " task PC stack pid father\n");
6028 read_lock(&tasklist_lock
);
6029 do_each_thread(g
, p
) {
6031 * reset the NMI-timeout, listing all files on a slow
6032 * console might take alot of time:
6034 touch_nmi_watchdog();
6035 if (!state_filter
|| (p
->state
& state_filter
))
6037 } while_each_thread(g
, p
);
6039 touch_all_softlockup_watchdogs();
6041 #ifdef CONFIG_SCHED_DEBUG
6042 sysrq_sched_debug_show();
6044 read_unlock(&tasklist_lock
);
6046 * Only show locks if all tasks are dumped:
6048 if (state_filter
== -1)
6049 debug_show_all_locks();
6052 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
6054 idle
->sched_class
= &idle_sched_class
;
6058 * init_idle - set up an idle thread for a given CPU
6059 * @idle: task in question
6060 * @cpu: cpu the idle task belongs to
6062 * NOTE: this function does not set the idle thread's NEED_RESCHED
6063 * flag, to make booting more robust.
6065 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
6067 struct rq
*rq
= cpu_rq(cpu
);
6068 unsigned long flags
;
6070 spin_lock_irqsave(&rq
->lock
, flags
);
6073 idle
->se
.exec_start
= sched_clock();
6075 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
6076 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
6077 __set_task_cpu(idle
, cpu
);
6079 rq
->curr
= rq
->idle
= idle
;
6080 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6083 spin_unlock_irqrestore(&rq
->lock
, flags
);
6085 /* Set the preempt count _outside_ the spinlocks! */
6086 #if defined(CONFIG_PREEMPT)
6087 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
6089 task_thread_info(idle
)->preempt_count
= 0;
6092 * The idle tasks have their own, simple scheduling class:
6094 idle
->sched_class
= &idle_sched_class
;
6095 ftrace_graph_init_task(idle
);
6099 * In a system that switches off the HZ timer nohz_cpu_mask
6100 * indicates which cpus entered this state. This is used
6101 * in the rcu update to wait only for active cpus. For system
6102 * which do not switch off the HZ timer nohz_cpu_mask should
6103 * always be CPU_BITS_NONE.
6105 cpumask_var_t nohz_cpu_mask
;
6108 * Increase the granularity value when there are more CPUs,
6109 * because with more CPUs the 'effective latency' as visible
6110 * to users decreases. But the relationship is not linear,
6111 * so pick a second-best guess by going with the log2 of the
6114 * This idea comes from the SD scheduler of Con Kolivas:
6116 static inline void sched_init_granularity(void)
6118 unsigned int factor
= 1 + ilog2(num_online_cpus());
6119 const unsigned long limit
= 200000000;
6121 sysctl_sched_min_granularity
*= factor
;
6122 if (sysctl_sched_min_granularity
> limit
)
6123 sysctl_sched_min_granularity
= limit
;
6125 sysctl_sched_latency
*= factor
;
6126 if (sysctl_sched_latency
> limit
)
6127 sysctl_sched_latency
= limit
;
6129 sysctl_sched_wakeup_granularity
*= factor
;
6131 sysctl_sched_shares_ratelimit
*= factor
;
6136 * This is how migration works:
6138 * 1) we queue a struct migration_req structure in the source CPU's
6139 * runqueue and wake up that CPU's migration thread.
6140 * 2) we down() the locked semaphore => thread blocks.
6141 * 3) migration thread wakes up (implicitly it forces the migrated
6142 * thread off the CPU)
6143 * 4) it gets the migration request and checks whether the migrated
6144 * task is still in the wrong runqueue.
6145 * 5) if it's in the wrong runqueue then the migration thread removes
6146 * it and puts it into the right queue.
6147 * 6) migration thread up()s the semaphore.
6148 * 7) we wake up and the migration is done.
6152 * Change a given task's CPU affinity. Migrate the thread to a
6153 * proper CPU and schedule it away if the CPU it's executing on
6154 * is removed from the allowed bitmask.
6156 * NOTE: the caller must have a valid reference to the task, the
6157 * task must not exit() & deallocate itself prematurely. The
6158 * call is not atomic; no spinlocks may be held.
6160 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6162 struct migration_req req
;
6163 unsigned long flags
;
6167 rq
= task_rq_lock(p
, &flags
);
6168 if (!cpumask_intersects(new_mask
, cpu_online_mask
)) {
6173 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
6174 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
6179 if (p
->sched_class
->set_cpus_allowed
)
6180 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6182 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6183 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6186 /* Can the task run on the task's current CPU? If so, we're done */
6187 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6190 if (migrate_task(p
, cpumask_any_and(cpu_online_mask
, new_mask
), &req
)) {
6191 /* Need help from migration thread: drop lock and wait. */
6192 task_rq_unlock(rq
, &flags
);
6193 wake_up_process(rq
->migration_thread
);
6194 wait_for_completion(&req
.done
);
6195 tlb_migrate_finish(p
->mm
);
6199 task_rq_unlock(rq
, &flags
);
6203 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6206 * Move (not current) task off this cpu, onto dest cpu. We're doing
6207 * this because either it can't run here any more (set_cpus_allowed()
6208 * away from this CPU, or CPU going down), or because we're
6209 * attempting to rebalance this task on exec (sched_exec).
6211 * So we race with normal scheduler movements, but that's OK, as long
6212 * as the task is no longer on this CPU.
6214 * Returns non-zero if task was successfully migrated.
6216 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6218 struct rq
*rq_dest
, *rq_src
;
6221 if (unlikely(!cpu_active(dest_cpu
)))
6224 rq_src
= cpu_rq(src_cpu
);
6225 rq_dest
= cpu_rq(dest_cpu
);
6227 double_rq_lock(rq_src
, rq_dest
);
6228 /* Already moved. */
6229 if (task_cpu(p
) != src_cpu
)
6231 /* Affinity changed (again). */
6232 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6235 on_rq
= p
->se
.on_rq
;
6237 deactivate_task(rq_src
, p
, 0);
6239 set_task_cpu(p
, dest_cpu
);
6241 activate_task(rq_dest
, p
, 0);
6242 check_preempt_curr(rq_dest
, p
, 0);
6247 double_rq_unlock(rq_src
, rq_dest
);
6252 * migration_thread - this is a highprio system thread that performs
6253 * thread migration by bumping thread off CPU then 'pushing' onto
6256 static int migration_thread(void *data
)
6258 int cpu
= (long)data
;
6262 BUG_ON(rq
->migration_thread
!= current
);
6264 set_current_state(TASK_INTERRUPTIBLE
);
6265 while (!kthread_should_stop()) {
6266 struct migration_req
*req
;
6267 struct list_head
*head
;
6269 spin_lock_irq(&rq
->lock
);
6271 if (cpu_is_offline(cpu
)) {
6272 spin_unlock_irq(&rq
->lock
);
6276 if (rq
->active_balance
) {
6277 active_load_balance(rq
, cpu
);
6278 rq
->active_balance
= 0;
6281 head
= &rq
->migration_queue
;
6283 if (list_empty(head
)) {
6284 spin_unlock_irq(&rq
->lock
);
6286 set_current_state(TASK_INTERRUPTIBLE
);
6289 req
= list_entry(head
->next
, struct migration_req
, list
);
6290 list_del_init(head
->next
);
6292 spin_unlock(&rq
->lock
);
6293 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
6296 complete(&req
->done
);
6298 __set_current_state(TASK_RUNNING
);
6302 /* Wait for kthread_stop */
6303 set_current_state(TASK_INTERRUPTIBLE
);
6304 while (!kthread_should_stop()) {
6306 set_current_state(TASK_INTERRUPTIBLE
);
6308 __set_current_state(TASK_RUNNING
);
6312 #ifdef CONFIG_HOTPLUG_CPU
6314 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6318 local_irq_disable();
6319 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
6325 * Figure out where task on dead CPU should go, use force if necessary.
6327 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
6330 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(dead_cpu
));
6333 /* Look for allowed, online CPU in same node. */
6334 for_each_cpu_and(dest_cpu
, nodemask
, cpu_online_mask
)
6335 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6338 /* Any allowed, online CPU? */
6339 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_online_mask
);
6340 if (dest_cpu
< nr_cpu_ids
)
6343 /* No more Mr. Nice Guy. */
6344 if (dest_cpu
>= nr_cpu_ids
) {
6345 cpuset_cpus_allowed_locked(p
, &p
->cpus_allowed
);
6346 dest_cpu
= cpumask_any_and(cpu_online_mask
, &p
->cpus_allowed
);
6349 * Don't tell them about moving exiting tasks or
6350 * kernel threads (both mm NULL), since they never
6353 if (p
->mm
&& printk_ratelimit()) {
6354 printk(KERN_INFO
"process %d (%s) no "
6355 "longer affine to cpu%d\n",
6356 task_pid_nr(p
), p
->comm
, dead_cpu
);
6361 /* It can have affinity changed while we were choosing. */
6362 if (unlikely(!__migrate_task_irq(p
, dead_cpu
, dest_cpu
)))
6367 * While a dead CPU has no uninterruptible tasks queued at this point,
6368 * it might still have a nonzero ->nr_uninterruptible counter, because
6369 * for performance reasons the counter is not stricly tracking tasks to
6370 * their home CPUs. So we just add the counter to another CPU's counter,
6371 * to keep the global sum constant after CPU-down:
6373 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6375 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_online_mask
));
6376 unsigned long flags
;
6378 local_irq_save(flags
);
6379 double_rq_lock(rq_src
, rq_dest
);
6380 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6381 rq_src
->nr_uninterruptible
= 0;
6382 double_rq_unlock(rq_src
, rq_dest
);
6383 local_irq_restore(flags
);
6386 /* Run through task list and migrate tasks from the dead cpu. */
6387 static void migrate_live_tasks(int src_cpu
)
6389 struct task_struct
*p
, *t
;
6391 read_lock(&tasklist_lock
);
6393 do_each_thread(t
, p
) {
6397 if (task_cpu(p
) == src_cpu
)
6398 move_task_off_dead_cpu(src_cpu
, p
);
6399 } while_each_thread(t
, p
);
6401 read_unlock(&tasklist_lock
);
6405 * Schedules idle task to be the next runnable task on current CPU.
6406 * It does so by boosting its priority to highest possible.
6407 * Used by CPU offline code.
6409 void sched_idle_next(void)
6411 int this_cpu
= smp_processor_id();
6412 struct rq
*rq
= cpu_rq(this_cpu
);
6413 struct task_struct
*p
= rq
->idle
;
6414 unsigned long flags
;
6416 /* cpu has to be offline */
6417 BUG_ON(cpu_online(this_cpu
));
6420 * Strictly not necessary since rest of the CPUs are stopped by now
6421 * and interrupts disabled on the current cpu.
6423 spin_lock_irqsave(&rq
->lock
, flags
);
6425 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6427 update_rq_clock(rq
);
6428 activate_task(rq
, p
, 0);
6430 spin_unlock_irqrestore(&rq
->lock
, flags
);
6434 * Ensures that the idle task is using init_mm right before its cpu goes
6437 void idle_task_exit(void)
6439 struct mm_struct
*mm
= current
->active_mm
;
6441 BUG_ON(cpu_online(smp_processor_id()));
6444 switch_mm(mm
, &init_mm
, current
);
6448 /* called under rq->lock with disabled interrupts */
6449 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6451 struct rq
*rq
= cpu_rq(dead_cpu
);
6453 /* Must be exiting, otherwise would be on tasklist. */
6454 BUG_ON(!p
->exit_state
);
6456 /* Cannot have done final schedule yet: would have vanished. */
6457 BUG_ON(p
->state
== TASK_DEAD
);
6462 * Drop lock around migration; if someone else moves it,
6463 * that's OK. No task can be added to this CPU, so iteration is
6466 spin_unlock_irq(&rq
->lock
);
6467 move_task_off_dead_cpu(dead_cpu
, p
);
6468 spin_lock_irq(&rq
->lock
);
6473 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6474 static void migrate_dead_tasks(unsigned int dead_cpu
)
6476 struct rq
*rq
= cpu_rq(dead_cpu
);
6477 struct task_struct
*next
;
6480 if (!rq
->nr_running
)
6482 update_rq_clock(rq
);
6483 next
= pick_next_task(rq
, rq
->curr
);
6486 next
->sched_class
->put_prev_task(rq
, next
);
6487 migrate_dead(dead_cpu
, next
);
6491 #endif /* CONFIG_HOTPLUG_CPU */
6493 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6495 static struct ctl_table sd_ctl_dir
[] = {
6497 .procname
= "sched_domain",
6503 static struct ctl_table sd_ctl_root
[] = {
6505 .ctl_name
= CTL_KERN
,
6506 .procname
= "kernel",
6508 .child
= sd_ctl_dir
,
6513 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6515 struct ctl_table
*entry
=
6516 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6521 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6523 struct ctl_table
*entry
;
6526 * In the intermediate directories, both the child directory and
6527 * procname are dynamically allocated and could fail but the mode
6528 * will always be set. In the lowest directory the names are
6529 * static strings and all have proc handlers.
6531 for (entry
= *tablep
; entry
->mode
; entry
++) {
6533 sd_free_ctl_entry(&entry
->child
);
6534 if (entry
->proc_handler
== NULL
)
6535 kfree(entry
->procname
);
6543 set_table_entry(struct ctl_table
*entry
,
6544 const char *procname
, void *data
, int maxlen
,
6545 mode_t mode
, proc_handler
*proc_handler
)
6547 entry
->procname
= procname
;
6549 entry
->maxlen
= maxlen
;
6551 entry
->proc_handler
= proc_handler
;
6554 static struct ctl_table
*
6555 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6557 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6562 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6563 sizeof(long), 0644, proc_doulongvec_minmax
);
6564 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6565 sizeof(long), 0644, proc_doulongvec_minmax
);
6566 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6567 sizeof(int), 0644, proc_dointvec_minmax
);
6568 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6569 sizeof(int), 0644, proc_dointvec_minmax
);
6570 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6571 sizeof(int), 0644, proc_dointvec_minmax
);
6572 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6573 sizeof(int), 0644, proc_dointvec_minmax
);
6574 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6575 sizeof(int), 0644, proc_dointvec_minmax
);
6576 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6577 sizeof(int), 0644, proc_dointvec_minmax
);
6578 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6579 sizeof(int), 0644, proc_dointvec_minmax
);
6580 set_table_entry(&table
[9], "cache_nice_tries",
6581 &sd
->cache_nice_tries
,
6582 sizeof(int), 0644, proc_dointvec_minmax
);
6583 set_table_entry(&table
[10], "flags", &sd
->flags
,
6584 sizeof(int), 0644, proc_dointvec_minmax
);
6585 set_table_entry(&table
[11], "name", sd
->name
,
6586 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6587 /* &table[12] is terminator */
6592 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6594 struct ctl_table
*entry
, *table
;
6595 struct sched_domain
*sd
;
6596 int domain_num
= 0, i
;
6599 for_each_domain(cpu
, sd
)
6601 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6606 for_each_domain(cpu
, sd
) {
6607 snprintf(buf
, 32, "domain%d", i
);
6608 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6610 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6617 static struct ctl_table_header
*sd_sysctl_header
;
6618 static void register_sched_domain_sysctl(void)
6620 int i
, cpu_num
= num_online_cpus();
6621 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6624 WARN_ON(sd_ctl_dir
[0].child
);
6625 sd_ctl_dir
[0].child
= entry
;
6630 for_each_online_cpu(i
) {
6631 snprintf(buf
, 32, "cpu%d", i
);
6632 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6634 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6638 WARN_ON(sd_sysctl_header
);
6639 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6642 /* may be called multiple times per register */
6643 static void unregister_sched_domain_sysctl(void)
6645 if (sd_sysctl_header
)
6646 unregister_sysctl_table(sd_sysctl_header
);
6647 sd_sysctl_header
= NULL
;
6648 if (sd_ctl_dir
[0].child
)
6649 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6652 static void register_sched_domain_sysctl(void)
6655 static void unregister_sched_domain_sysctl(void)
6660 static void set_rq_online(struct rq
*rq
)
6663 const struct sched_class
*class;
6665 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6668 for_each_class(class) {
6669 if (class->rq_online
)
6670 class->rq_online(rq
);
6675 static void set_rq_offline(struct rq
*rq
)
6678 const struct sched_class
*class;
6680 for_each_class(class) {
6681 if (class->rq_offline
)
6682 class->rq_offline(rq
);
6685 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6691 * migration_call - callback that gets triggered when a CPU is added.
6692 * Here we can start up the necessary migration thread for the new CPU.
6694 static int __cpuinit
6695 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6697 struct task_struct
*p
;
6698 int cpu
= (long)hcpu
;
6699 unsigned long flags
;
6704 case CPU_UP_PREPARE
:
6705 case CPU_UP_PREPARE_FROZEN
:
6706 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6709 kthread_bind(p
, cpu
);
6710 /* Must be high prio: stop_machine expects to yield to it. */
6711 rq
= task_rq_lock(p
, &flags
);
6712 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6713 task_rq_unlock(rq
, &flags
);
6714 cpu_rq(cpu
)->migration_thread
= p
;
6718 case CPU_ONLINE_FROZEN
:
6719 /* Strictly unnecessary, as first user will wake it. */
6720 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6722 /* Update our root-domain */
6724 spin_lock_irqsave(&rq
->lock
, flags
);
6726 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6730 spin_unlock_irqrestore(&rq
->lock
, flags
);
6733 #ifdef CONFIG_HOTPLUG_CPU
6734 case CPU_UP_CANCELED
:
6735 case CPU_UP_CANCELED_FROZEN
:
6736 if (!cpu_rq(cpu
)->migration_thread
)
6738 /* Unbind it from offline cpu so it can run. Fall thru. */
6739 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6740 cpumask_any(cpu_online_mask
));
6741 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6742 cpu_rq(cpu
)->migration_thread
= NULL
;
6746 case CPU_DEAD_FROZEN
:
6747 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6748 migrate_live_tasks(cpu
);
6750 kthread_stop(rq
->migration_thread
);
6751 rq
->migration_thread
= NULL
;
6752 /* Idle task back to normal (off runqueue, low prio) */
6753 spin_lock_irq(&rq
->lock
);
6754 update_rq_clock(rq
);
6755 deactivate_task(rq
, rq
->idle
, 0);
6756 rq
->idle
->static_prio
= MAX_PRIO
;
6757 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6758 rq
->idle
->sched_class
= &idle_sched_class
;
6759 migrate_dead_tasks(cpu
);
6760 spin_unlock_irq(&rq
->lock
);
6762 migrate_nr_uninterruptible(rq
);
6763 BUG_ON(rq
->nr_running
!= 0);
6766 * No need to migrate the tasks: it was best-effort if
6767 * they didn't take sched_hotcpu_mutex. Just wake up
6770 spin_lock_irq(&rq
->lock
);
6771 while (!list_empty(&rq
->migration_queue
)) {
6772 struct migration_req
*req
;
6774 req
= list_entry(rq
->migration_queue
.next
,
6775 struct migration_req
, list
);
6776 list_del_init(&req
->list
);
6777 spin_unlock_irq(&rq
->lock
);
6778 complete(&req
->done
);
6779 spin_lock_irq(&rq
->lock
);
6781 spin_unlock_irq(&rq
->lock
);
6785 case CPU_DYING_FROZEN
:
6786 /* Update our root-domain */
6788 spin_lock_irqsave(&rq
->lock
, flags
);
6790 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6793 spin_unlock_irqrestore(&rq
->lock
, flags
);
6800 /* Register at highest priority so that task migration (migrate_all_tasks)
6801 * happens before everything else.
6803 static struct notifier_block __cpuinitdata migration_notifier
= {
6804 .notifier_call
= migration_call
,
6808 static int __init
migration_init(void)
6810 void *cpu
= (void *)(long)smp_processor_id();
6813 /* Start one for the boot CPU: */
6814 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6815 BUG_ON(err
== NOTIFY_BAD
);
6816 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6817 register_cpu_notifier(&migration_notifier
);
6821 early_initcall(migration_init
);
6826 #ifdef CONFIG_SCHED_DEBUG
6828 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6829 struct cpumask
*groupmask
)
6831 struct sched_group
*group
= sd
->groups
;
6834 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6835 cpumask_clear(groupmask
);
6837 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6839 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6840 printk("does not load-balance\n");
6842 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6847 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6849 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6850 printk(KERN_ERR
"ERROR: domain->span does not contain "
6853 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6854 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6858 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6862 printk(KERN_ERR
"ERROR: group is NULL\n");
6866 if (!group
->__cpu_power
) {
6867 printk(KERN_CONT
"\n");
6868 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6873 if (!cpumask_weight(sched_group_cpus(group
))) {
6874 printk(KERN_CONT
"\n");
6875 printk(KERN_ERR
"ERROR: empty group\n");
6879 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6880 printk(KERN_CONT
"\n");
6881 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6885 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6887 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6888 printk(KERN_CONT
" %s", str
);
6890 group
= group
->next
;
6891 } while (group
!= sd
->groups
);
6892 printk(KERN_CONT
"\n");
6894 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6895 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6898 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6899 printk(KERN_ERR
"ERROR: parent span is not a superset "
6900 "of domain->span\n");
6904 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6906 cpumask_var_t groupmask
;
6910 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6914 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6916 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6917 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6922 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6929 free_cpumask_var(groupmask
);
6931 #else /* !CONFIG_SCHED_DEBUG */
6932 # define sched_domain_debug(sd, cpu) do { } while (0)
6933 #endif /* CONFIG_SCHED_DEBUG */
6935 static int sd_degenerate(struct sched_domain
*sd
)
6937 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6940 /* Following flags need at least 2 groups */
6941 if (sd
->flags
& (SD_LOAD_BALANCE
|
6942 SD_BALANCE_NEWIDLE
|
6946 SD_SHARE_PKG_RESOURCES
)) {
6947 if (sd
->groups
!= sd
->groups
->next
)
6951 /* Following flags don't use groups */
6952 if (sd
->flags
& (SD_WAKE_IDLE
|
6961 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6963 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6965 if (sd_degenerate(parent
))
6968 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6971 /* Does parent contain flags not in child? */
6972 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6973 if (cflags
& SD_WAKE_AFFINE
)
6974 pflags
&= ~SD_WAKE_BALANCE
;
6975 /* Flags needing groups don't count if only 1 group in parent */
6976 if (parent
->groups
== parent
->groups
->next
) {
6977 pflags
&= ~(SD_LOAD_BALANCE
|
6978 SD_BALANCE_NEWIDLE
|
6982 SD_SHARE_PKG_RESOURCES
);
6983 if (nr_node_ids
== 1)
6984 pflags
&= ~SD_SERIALIZE
;
6986 if (~cflags
& pflags
)
6992 static void free_rootdomain(struct root_domain
*rd
)
6994 cpupri_cleanup(&rd
->cpupri
);
6996 free_cpumask_var(rd
->rto_mask
);
6997 free_cpumask_var(rd
->online
);
6998 free_cpumask_var(rd
->span
);
7002 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
7004 struct root_domain
*old_rd
= NULL
;
7005 unsigned long flags
;
7007 spin_lock_irqsave(&rq
->lock
, flags
);
7012 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
7015 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
7018 * If we dont want to free the old_rt yet then
7019 * set old_rd to NULL to skip the freeing later
7022 if (!atomic_dec_and_test(&old_rd
->refcount
))
7026 atomic_inc(&rd
->refcount
);
7029 cpumask_set_cpu(rq
->cpu
, rd
->span
);
7030 if (cpumask_test_cpu(rq
->cpu
, cpu_online_mask
))
7033 spin_unlock_irqrestore(&rq
->lock
, flags
);
7036 free_rootdomain(old_rd
);
7039 static int __init_refok
init_rootdomain(struct root_domain
*rd
, bool bootmem
)
7041 memset(rd
, 0, sizeof(*rd
));
7044 alloc_bootmem_cpumask_var(&def_root_domain
.span
);
7045 alloc_bootmem_cpumask_var(&def_root_domain
.online
);
7046 alloc_bootmem_cpumask_var(&def_root_domain
.rto_mask
);
7047 cpupri_init(&rd
->cpupri
, true);
7051 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
7053 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
7055 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
7058 if (cpupri_init(&rd
->cpupri
, false) != 0)
7063 free_cpumask_var(rd
->rto_mask
);
7065 free_cpumask_var(rd
->online
);
7067 free_cpumask_var(rd
->span
);
7072 static void init_defrootdomain(void)
7074 init_rootdomain(&def_root_domain
, true);
7076 atomic_set(&def_root_domain
.refcount
, 1);
7079 static struct root_domain
*alloc_rootdomain(void)
7081 struct root_domain
*rd
;
7083 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
7087 if (init_rootdomain(rd
, false) != 0) {
7096 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7097 * hold the hotplug lock.
7100 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
7102 struct rq
*rq
= cpu_rq(cpu
);
7103 struct sched_domain
*tmp
;
7105 /* Remove the sched domains which do not contribute to scheduling. */
7106 for (tmp
= sd
; tmp
; ) {
7107 struct sched_domain
*parent
= tmp
->parent
;
7111 if (sd_parent_degenerate(tmp
, parent
)) {
7112 tmp
->parent
= parent
->parent
;
7114 parent
->parent
->child
= tmp
;
7119 if (sd
&& sd_degenerate(sd
)) {
7125 sched_domain_debug(sd
, cpu
);
7127 rq_attach_root(rq
, rd
);
7128 rcu_assign_pointer(rq
->sd
, sd
);
7131 /* cpus with isolated domains */
7132 static cpumask_var_t cpu_isolated_map
;
7134 /* Setup the mask of cpus configured for isolated domains */
7135 static int __init
isolated_cpu_setup(char *str
)
7137 cpulist_parse(str
, cpu_isolated_map
);
7141 __setup("isolcpus=", isolated_cpu_setup
);
7144 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7145 * to a function which identifies what group(along with sched group) a CPU
7146 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7147 * (due to the fact that we keep track of groups covered with a struct cpumask).
7149 * init_sched_build_groups will build a circular linked list of the groups
7150 * covered by the given span, and will set each group's ->cpumask correctly,
7151 * and ->cpu_power to 0.
7154 init_sched_build_groups(const struct cpumask
*span
,
7155 const struct cpumask
*cpu_map
,
7156 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
7157 struct sched_group
**sg
,
7158 struct cpumask
*tmpmask
),
7159 struct cpumask
*covered
, struct cpumask
*tmpmask
)
7161 struct sched_group
*first
= NULL
, *last
= NULL
;
7164 cpumask_clear(covered
);
7166 for_each_cpu(i
, span
) {
7167 struct sched_group
*sg
;
7168 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
7171 if (cpumask_test_cpu(i
, covered
))
7174 cpumask_clear(sched_group_cpus(sg
));
7175 sg
->__cpu_power
= 0;
7177 for_each_cpu(j
, span
) {
7178 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
7181 cpumask_set_cpu(j
, covered
);
7182 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7193 #define SD_NODES_PER_DOMAIN 16
7198 * find_next_best_node - find the next node to include in a sched_domain
7199 * @node: node whose sched_domain we're building
7200 * @used_nodes: nodes already in the sched_domain
7202 * Find the next node to include in a given scheduling domain. Simply
7203 * finds the closest node not already in the @used_nodes map.
7205 * Should use nodemask_t.
7207 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
7209 int i
, n
, val
, min_val
, best_node
= 0;
7213 for (i
= 0; i
< nr_node_ids
; i
++) {
7214 /* Start at @node */
7215 n
= (node
+ i
) % nr_node_ids
;
7217 if (!nr_cpus_node(n
))
7220 /* Skip already used nodes */
7221 if (node_isset(n
, *used_nodes
))
7224 /* Simple min distance search */
7225 val
= node_distance(node
, n
);
7227 if (val
< min_val
) {
7233 node_set(best_node
, *used_nodes
);
7238 * sched_domain_node_span - get a cpumask for a node's sched_domain
7239 * @node: node whose cpumask we're constructing
7240 * @span: resulting cpumask
7242 * Given a node, construct a good cpumask for its sched_domain to span. It
7243 * should be one that prevents unnecessary balancing, but also spreads tasks
7246 static void sched_domain_node_span(int node
, struct cpumask
*span
)
7248 nodemask_t used_nodes
;
7251 cpumask_clear(span
);
7252 nodes_clear(used_nodes
);
7254 cpumask_or(span
, span
, cpumask_of_node(node
));
7255 node_set(node
, used_nodes
);
7257 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7258 int next_node
= find_next_best_node(node
, &used_nodes
);
7260 cpumask_or(span
, span
, cpumask_of_node(next_node
));
7263 #endif /* CONFIG_NUMA */
7265 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7268 * The cpus mask in sched_group and sched_domain hangs off the end.
7269 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7270 * for nr_cpu_ids < CONFIG_NR_CPUS.
7272 struct static_sched_group
{
7273 struct sched_group sg
;
7274 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
7277 struct static_sched_domain
{
7278 struct sched_domain sd
;
7279 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
7283 * SMT sched-domains:
7285 #ifdef CONFIG_SCHED_SMT
7286 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
7287 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_cpus
);
7290 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
7291 struct sched_group
**sg
, struct cpumask
*unused
)
7294 *sg
= &per_cpu(sched_group_cpus
, cpu
).sg
;
7297 #endif /* CONFIG_SCHED_SMT */
7300 * multi-core sched-domains:
7302 #ifdef CONFIG_SCHED_MC
7303 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
7304 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
7305 #endif /* CONFIG_SCHED_MC */
7307 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7309 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7310 struct sched_group
**sg
, struct cpumask
*mask
)
7314 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7315 group
= cpumask_first(mask
);
7317 *sg
= &per_cpu(sched_group_core
, group
).sg
;
7320 #elif defined(CONFIG_SCHED_MC)
7322 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
7323 struct sched_group
**sg
, struct cpumask
*unused
)
7326 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
7331 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
7332 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
7335 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
7336 struct sched_group
**sg
, struct cpumask
*mask
)
7339 #ifdef CONFIG_SCHED_MC
7340 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
7341 group
= cpumask_first(mask
);
7342 #elif defined(CONFIG_SCHED_SMT)
7343 cpumask_and(mask
, &per_cpu(cpu_sibling_map
, cpu
), cpu_map
);
7344 group
= cpumask_first(mask
);
7349 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
7355 * The init_sched_build_groups can't handle what we want to do with node
7356 * groups, so roll our own. Now each node has its own list of groups which
7357 * gets dynamically allocated.
7359 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
7360 static struct sched_group
***sched_group_nodes_bycpu
;
7362 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
7363 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
7365 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
7366 struct sched_group
**sg
,
7367 struct cpumask
*nodemask
)
7371 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
7372 group
= cpumask_first(nodemask
);
7375 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
7379 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7381 struct sched_group
*sg
= group_head
;
7387 for_each_cpu(j
, sched_group_cpus(sg
)) {
7388 struct sched_domain
*sd
;
7390 sd
= &per_cpu(phys_domains
, j
).sd
;
7391 if (j
!= cpumask_first(sched_group_cpus(sd
->groups
))) {
7393 * Only add "power" once for each
7399 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7402 } while (sg
!= group_head
);
7404 #endif /* CONFIG_NUMA */
7407 /* Free memory allocated for various sched_group structures */
7408 static void free_sched_groups(const struct cpumask
*cpu_map
,
7409 struct cpumask
*nodemask
)
7413 for_each_cpu(cpu
, cpu_map
) {
7414 struct sched_group
**sched_group_nodes
7415 = sched_group_nodes_bycpu
[cpu
];
7417 if (!sched_group_nodes
)
7420 for (i
= 0; i
< nr_node_ids
; i
++) {
7421 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7423 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7424 if (cpumask_empty(nodemask
))
7434 if (oldsg
!= sched_group_nodes
[i
])
7437 kfree(sched_group_nodes
);
7438 sched_group_nodes_bycpu
[cpu
] = NULL
;
7441 #else /* !CONFIG_NUMA */
7442 static void free_sched_groups(const struct cpumask
*cpu_map
,
7443 struct cpumask
*nodemask
)
7446 #endif /* CONFIG_NUMA */
7449 * Initialize sched groups cpu_power.
7451 * cpu_power indicates the capacity of sched group, which is used while
7452 * distributing the load between different sched groups in a sched domain.
7453 * Typically cpu_power for all the groups in a sched domain will be same unless
7454 * there are asymmetries in the topology. If there are asymmetries, group
7455 * having more cpu_power will pickup more load compared to the group having
7458 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7459 * the maximum number of tasks a group can handle in the presence of other idle
7460 * or lightly loaded groups in the same sched domain.
7462 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7464 struct sched_domain
*child
;
7465 struct sched_group
*group
;
7467 WARN_ON(!sd
|| !sd
->groups
);
7469 if (cpu
!= cpumask_first(sched_group_cpus(sd
->groups
)))
7474 sd
->groups
->__cpu_power
= 0;
7477 * For perf policy, if the groups in child domain share resources
7478 * (for example cores sharing some portions of the cache hierarchy
7479 * or SMT), then set this domain groups cpu_power such that each group
7480 * can handle only one task, when there are other idle groups in the
7481 * same sched domain.
7483 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7485 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7486 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7491 * add cpu_power of each child group to this groups cpu_power
7493 group
= child
->groups
;
7495 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7496 group
= group
->next
;
7497 } while (group
!= child
->groups
);
7501 * Initializers for schedule domains
7502 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7505 #ifdef CONFIG_SCHED_DEBUG
7506 # define SD_INIT_NAME(sd, type) sd->name = #type
7508 # define SD_INIT_NAME(sd, type) do { } while (0)
7511 #define SD_INIT(sd, type) sd_init_##type(sd)
7513 #define SD_INIT_FUNC(type) \
7514 static noinline void sd_init_##type(struct sched_domain *sd) \
7516 memset(sd, 0, sizeof(*sd)); \
7517 *sd = SD_##type##_INIT; \
7518 sd->level = SD_LV_##type; \
7519 SD_INIT_NAME(sd, type); \
7524 SD_INIT_FUNC(ALLNODES
)
7527 #ifdef CONFIG_SCHED_SMT
7528 SD_INIT_FUNC(SIBLING
)
7530 #ifdef CONFIG_SCHED_MC
7534 static int default_relax_domain_level
= -1;
7536 static int __init
setup_relax_domain_level(char *str
)
7540 val
= simple_strtoul(str
, NULL
, 0);
7541 if (val
< SD_LV_MAX
)
7542 default_relax_domain_level
= val
;
7546 __setup("relax_domain_level=", setup_relax_domain_level
);
7548 static void set_domain_attribute(struct sched_domain
*sd
,
7549 struct sched_domain_attr
*attr
)
7553 if (!attr
|| attr
->relax_domain_level
< 0) {
7554 if (default_relax_domain_level
< 0)
7557 request
= default_relax_domain_level
;
7559 request
= attr
->relax_domain_level
;
7560 if (request
< sd
->level
) {
7561 /* turn off idle balance on this domain */
7562 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7564 /* turn on idle balance on this domain */
7565 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7570 * Build sched domains for a given set of cpus and attach the sched domains
7571 * to the individual cpus
7573 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7574 struct sched_domain_attr
*attr
)
7576 int i
, err
= -ENOMEM
;
7577 struct root_domain
*rd
;
7578 cpumask_var_t nodemask
, this_sibling_map
, this_core_map
, send_covered
,
7581 cpumask_var_t domainspan
, covered
, notcovered
;
7582 struct sched_group
**sched_group_nodes
= NULL
;
7583 int sd_allnodes
= 0;
7585 if (!alloc_cpumask_var(&domainspan
, GFP_KERNEL
))
7587 if (!alloc_cpumask_var(&covered
, GFP_KERNEL
))
7588 goto free_domainspan
;
7589 if (!alloc_cpumask_var(¬covered
, GFP_KERNEL
))
7593 if (!alloc_cpumask_var(&nodemask
, GFP_KERNEL
))
7594 goto free_notcovered
;
7595 if (!alloc_cpumask_var(&this_sibling_map
, GFP_KERNEL
))
7597 if (!alloc_cpumask_var(&this_core_map
, GFP_KERNEL
))
7598 goto free_this_sibling_map
;
7599 if (!alloc_cpumask_var(&send_covered
, GFP_KERNEL
))
7600 goto free_this_core_map
;
7601 if (!alloc_cpumask_var(&tmpmask
, GFP_KERNEL
))
7602 goto free_send_covered
;
7606 * Allocate the per-node list of sched groups
7608 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7610 if (!sched_group_nodes
) {
7611 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7616 rd
= alloc_rootdomain();
7618 printk(KERN_WARNING
"Cannot alloc root domain\n");
7619 goto free_sched_groups
;
7623 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = sched_group_nodes
;
7627 * Set up domains for cpus specified by the cpu_map.
7629 for_each_cpu(i
, cpu_map
) {
7630 struct sched_domain
*sd
= NULL
, *p
;
7632 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(i
)), cpu_map
);
7635 if (cpumask_weight(cpu_map
) >
7636 SD_NODES_PER_DOMAIN
*cpumask_weight(nodemask
)) {
7637 sd
= &per_cpu(allnodes_domains
, i
).sd
;
7638 SD_INIT(sd
, ALLNODES
);
7639 set_domain_attribute(sd
, attr
);
7640 cpumask_copy(sched_domain_span(sd
), cpu_map
);
7641 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7647 sd
= &per_cpu(node_domains
, i
).sd
;
7649 set_domain_attribute(sd
, attr
);
7650 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
7654 cpumask_and(sched_domain_span(sd
),
7655 sched_domain_span(sd
), cpu_map
);
7659 sd
= &per_cpu(phys_domains
, i
).sd
;
7661 set_domain_attribute(sd
, attr
);
7662 cpumask_copy(sched_domain_span(sd
), nodemask
);
7666 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7668 #ifdef CONFIG_SCHED_MC
7670 sd
= &per_cpu(core_domains
, i
).sd
;
7672 set_domain_attribute(sd
, attr
);
7673 cpumask_and(sched_domain_span(sd
), cpu_map
,
7674 cpu_coregroup_mask(i
));
7677 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7680 #ifdef CONFIG_SCHED_SMT
7682 sd
= &per_cpu(cpu_domains
, i
).sd
;
7683 SD_INIT(sd
, SIBLING
);
7684 set_domain_attribute(sd
, attr
);
7685 cpumask_and(sched_domain_span(sd
),
7686 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7689 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7693 #ifdef CONFIG_SCHED_SMT
7694 /* Set up CPU (sibling) groups */
7695 for_each_cpu(i
, cpu_map
) {
7696 cpumask_and(this_sibling_map
,
7697 &per_cpu(cpu_sibling_map
, i
), cpu_map
);
7698 if (i
!= cpumask_first(this_sibling_map
))
7701 init_sched_build_groups(this_sibling_map
, cpu_map
,
7703 send_covered
, tmpmask
);
7707 #ifdef CONFIG_SCHED_MC
7708 /* Set up multi-core groups */
7709 for_each_cpu(i
, cpu_map
) {
7710 cpumask_and(this_core_map
, cpu_coregroup_mask(i
), cpu_map
);
7711 if (i
!= cpumask_first(this_core_map
))
7714 init_sched_build_groups(this_core_map
, cpu_map
,
7716 send_covered
, tmpmask
);
7720 /* Set up physical groups */
7721 for (i
= 0; i
< nr_node_ids
; i
++) {
7722 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7723 if (cpumask_empty(nodemask
))
7726 init_sched_build_groups(nodemask
, cpu_map
,
7728 send_covered
, tmpmask
);
7732 /* Set up node groups */
7734 init_sched_build_groups(cpu_map
, cpu_map
,
7735 &cpu_to_allnodes_group
,
7736 send_covered
, tmpmask
);
7739 for (i
= 0; i
< nr_node_ids
; i
++) {
7740 /* Set up node groups */
7741 struct sched_group
*sg
, *prev
;
7744 cpumask_clear(covered
);
7745 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
7746 if (cpumask_empty(nodemask
)) {
7747 sched_group_nodes
[i
] = NULL
;
7751 sched_domain_node_span(i
, domainspan
);
7752 cpumask_and(domainspan
, domainspan
, cpu_map
);
7754 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7757 printk(KERN_WARNING
"Can not alloc domain group for "
7761 sched_group_nodes
[i
] = sg
;
7762 for_each_cpu(j
, nodemask
) {
7763 struct sched_domain
*sd
;
7765 sd
= &per_cpu(node_domains
, j
).sd
;
7768 sg
->__cpu_power
= 0;
7769 cpumask_copy(sched_group_cpus(sg
), nodemask
);
7771 cpumask_or(covered
, covered
, nodemask
);
7774 for (j
= 0; j
< nr_node_ids
; j
++) {
7775 int n
= (i
+ j
) % nr_node_ids
;
7777 cpumask_complement(notcovered
, covered
);
7778 cpumask_and(tmpmask
, notcovered
, cpu_map
);
7779 cpumask_and(tmpmask
, tmpmask
, domainspan
);
7780 if (cpumask_empty(tmpmask
))
7783 cpumask_and(tmpmask
, tmpmask
, cpumask_of_node(n
));
7784 if (cpumask_empty(tmpmask
))
7787 sg
= kmalloc_node(sizeof(struct sched_group
) +
7792 "Can not alloc domain group for node %d\n", j
);
7795 sg
->__cpu_power
= 0;
7796 cpumask_copy(sched_group_cpus(sg
), tmpmask
);
7797 sg
->next
= prev
->next
;
7798 cpumask_or(covered
, covered
, tmpmask
);
7805 /* Calculate CPU power for physical packages and nodes */
7806 #ifdef CONFIG_SCHED_SMT
7807 for_each_cpu(i
, cpu_map
) {
7808 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
).sd
;
7810 init_sched_groups_power(i
, sd
);
7813 #ifdef CONFIG_SCHED_MC
7814 for_each_cpu(i
, cpu_map
) {
7815 struct sched_domain
*sd
= &per_cpu(core_domains
, i
).sd
;
7817 init_sched_groups_power(i
, sd
);
7821 for_each_cpu(i
, cpu_map
) {
7822 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
).sd
;
7824 init_sched_groups_power(i
, sd
);
7828 for (i
= 0; i
< nr_node_ids
; i
++)
7829 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7832 struct sched_group
*sg
;
7834 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7836 init_numa_sched_groups_power(sg
);
7840 /* Attach the domains */
7841 for_each_cpu(i
, cpu_map
) {
7842 struct sched_domain
*sd
;
7843 #ifdef CONFIG_SCHED_SMT
7844 sd
= &per_cpu(cpu_domains
, i
).sd
;
7845 #elif defined(CONFIG_SCHED_MC)
7846 sd
= &per_cpu(core_domains
, i
).sd
;
7848 sd
= &per_cpu(phys_domains
, i
).sd
;
7850 cpu_attach_domain(sd
, rd
, i
);
7856 free_cpumask_var(tmpmask
);
7858 free_cpumask_var(send_covered
);
7860 free_cpumask_var(this_core_map
);
7861 free_this_sibling_map
:
7862 free_cpumask_var(this_sibling_map
);
7864 free_cpumask_var(nodemask
);
7867 free_cpumask_var(notcovered
);
7869 free_cpumask_var(covered
);
7871 free_cpumask_var(domainspan
);
7878 kfree(sched_group_nodes
);
7884 free_sched_groups(cpu_map
, tmpmask
);
7885 free_rootdomain(rd
);
7890 static int build_sched_domains(const struct cpumask
*cpu_map
)
7892 return __build_sched_domains(cpu_map
, NULL
);
7895 static struct cpumask
*doms_cur
; /* current sched domains */
7896 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7897 static struct sched_domain_attr
*dattr_cur
;
7898 /* attribues of custom domains in 'doms_cur' */
7901 * Special case: If a kmalloc of a doms_cur partition (array of
7902 * cpumask) fails, then fallback to a single sched domain,
7903 * as determined by the single cpumask fallback_doms.
7905 static cpumask_var_t fallback_doms
;
7908 * arch_update_cpu_topology lets virtualized architectures update the
7909 * cpu core maps. It is supposed to return 1 if the topology changed
7910 * or 0 if it stayed the same.
7912 int __attribute__((weak
)) arch_update_cpu_topology(void)
7918 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7919 * For now this just excludes isolated cpus, but could be used to
7920 * exclude other special cases in the future.
7922 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7926 arch_update_cpu_topology();
7928 doms_cur
= kmalloc(cpumask_size(), GFP_KERNEL
);
7930 doms_cur
= fallback_doms
;
7931 cpumask_andnot(doms_cur
, cpu_map
, cpu_isolated_map
);
7933 err
= build_sched_domains(doms_cur
);
7934 register_sched_domain_sysctl();
7939 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7940 struct cpumask
*tmpmask
)
7942 free_sched_groups(cpu_map
, tmpmask
);
7946 * Detach sched domains from a group of cpus specified in cpu_map
7947 * These cpus will now be attached to the NULL domain
7949 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7951 /* Save because hotplug lock held. */
7952 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7955 for_each_cpu(i
, cpu_map
)
7956 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7957 synchronize_sched();
7958 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7961 /* handle null as "default" */
7962 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7963 struct sched_domain_attr
*new, int idx_new
)
7965 struct sched_domain_attr tmp
;
7972 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7973 new ? (new + idx_new
) : &tmp
,
7974 sizeof(struct sched_domain_attr
));
7978 * Partition sched domains as specified by the 'ndoms_new'
7979 * cpumasks in the array doms_new[] of cpumasks. This compares
7980 * doms_new[] to the current sched domain partitioning, doms_cur[].
7981 * It destroys each deleted domain and builds each new domain.
7983 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
7984 * The masks don't intersect (don't overlap.) We should setup one
7985 * sched domain for each mask. CPUs not in any of the cpumasks will
7986 * not be load balanced. If the same cpumask appears both in the
7987 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7990 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7991 * ownership of it and will kfree it when done with it. If the caller
7992 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7993 * ndoms_new == 1, and partition_sched_domains() will fallback to
7994 * the single partition 'fallback_doms', it also forces the domains
7997 * If doms_new == NULL it will be replaced with cpu_online_mask.
7998 * ndoms_new == 0 is a special case for destroying existing domains,
7999 * and it will not create the default domain.
8001 * Call with hotplug lock held
8003 /* FIXME: Change to struct cpumask *doms_new[] */
8004 void partition_sched_domains(int ndoms_new
, struct cpumask
*doms_new
,
8005 struct sched_domain_attr
*dattr_new
)
8010 mutex_lock(&sched_domains_mutex
);
8012 /* always unregister in case we don't destroy any domains */
8013 unregister_sched_domain_sysctl();
8015 /* Let architecture update cpu core mappings. */
8016 new_topology
= arch_update_cpu_topology();
8018 n
= doms_new
? ndoms_new
: 0;
8020 /* Destroy deleted domains */
8021 for (i
= 0; i
< ndoms_cur
; i
++) {
8022 for (j
= 0; j
< n
&& !new_topology
; j
++) {
8023 if (cpumask_equal(&doms_cur
[i
], &doms_new
[j
])
8024 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
8027 /* no match - a current sched domain not in new doms_new[] */
8028 detach_destroy_domains(doms_cur
+ i
);
8033 if (doms_new
== NULL
) {
8035 doms_new
= fallback_doms
;
8036 cpumask_andnot(&doms_new
[0], cpu_online_mask
, cpu_isolated_map
);
8037 WARN_ON_ONCE(dattr_new
);
8040 /* Build new domains */
8041 for (i
= 0; i
< ndoms_new
; i
++) {
8042 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
8043 if (cpumask_equal(&doms_new
[i
], &doms_cur
[j
])
8044 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
8047 /* no match - add a new doms_new */
8048 __build_sched_domains(doms_new
+ i
,
8049 dattr_new
? dattr_new
+ i
: NULL
);
8054 /* Remember the new sched domains */
8055 if (doms_cur
!= fallback_doms
)
8057 kfree(dattr_cur
); /* kfree(NULL) is safe */
8058 doms_cur
= doms_new
;
8059 dattr_cur
= dattr_new
;
8060 ndoms_cur
= ndoms_new
;
8062 register_sched_domain_sysctl();
8064 mutex_unlock(&sched_domains_mutex
);
8067 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8068 static void arch_reinit_sched_domains(void)
8072 /* Destroy domains first to force the rebuild */
8073 partition_sched_domains(0, NULL
, NULL
);
8075 rebuild_sched_domains();
8079 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
8081 unsigned int level
= 0;
8083 if (sscanf(buf
, "%u", &level
) != 1)
8087 * level is always be positive so don't check for
8088 * level < POWERSAVINGS_BALANCE_NONE which is 0
8089 * What happens on 0 or 1 byte write,
8090 * need to check for count as well?
8093 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
8097 sched_smt_power_savings
= level
;
8099 sched_mc_power_savings
= level
;
8101 arch_reinit_sched_domains();
8106 #ifdef CONFIG_SCHED_MC
8107 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
8110 return sprintf(page
, "%u\n", sched_mc_power_savings
);
8112 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
8113 const char *buf
, size_t count
)
8115 return sched_power_savings_store(buf
, count
, 0);
8117 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
8118 sched_mc_power_savings_show
,
8119 sched_mc_power_savings_store
);
8122 #ifdef CONFIG_SCHED_SMT
8123 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
8126 return sprintf(page
, "%u\n", sched_smt_power_savings
);
8128 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
8129 const char *buf
, size_t count
)
8131 return sched_power_savings_store(buf
, count
, 1);
8133 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
8134 sched_smt_power_savings_show
,
8135 sched_smt_power_savings_store
);
8138 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
8142 #ifdef CONFIG_SCHED_SMT
8144 err
= sysfs_create_file(&cls
->kset
.kobj
,
8145 &attr_sched_smt_power_savings
.attr
);
8147 #ifdef CONFIG_SCHED_MC
8148 if (!err
&& mc_capable())
8149 err
= sysfs_create_file(&cls
->kset
.kobj
,
8150 &attr_sched_mc_power_savings
.attr
);
8154 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8156 #ifndef CONFIG_CPUSETS
8158 * Add online and remove offline CPUs from the scheduler domains.
8159 * When cpusets are enabled they take over this function.
8161 static int update_sched_domains(struct notifier_block
*nfb
,
8162 unsigned long action
, void *hcpu
)
8166 case CPU_ONLINE_FROZEN
:
8168 case CPU_DEAD_FROZEN
:
8169 partition_sched_domains(1, NULL
, NULL
);
8178 static int update_runtime(struct notifier_block
*nfb
,
8179 unsigned long action
, void *hcpu
)
8181 int cpu
= (int)(long)hcpu
;
8184 case CPU_DOWN_PREPARE
:
8185 case CPU_DOWN_PREPARE_FROZEN
:
8186 disable_runtime(cpu_rq(cpu
));
8189 case CPU_DOWN_FAILED
:
8190 case CPU_DOWN_FAILED_FROZEN
:
8192 case CPU_ONLINE_FROZEN
:
8193 enable_runtime(cpu_rq(cpu
));
8201 void __init
sched_init_smp(void)
8203 cpumask_var_t non_isolated_cpus
;
8205 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
8207 #if defined(CONFIG_NUMA)
8208 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
8210 BUG_ON(sched_group_nodes_bycpu
== NULL
);
8213 mutex_lock(&sched_domains_mutex
);
8214 arch_init_sched_domains(cpu_online_mask
);
8215 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
8216 if (cpumask_empty(non_isolated_cpus
))
8217 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
8218 mutex_unlock(&sched_domains_mutex
);
8221 #ifndef CONFIG_CPUSETS
8222 /* XXX: Theoretical race here - CPU may be hotplugged now */
8223 hotcpu_notifier(update_sched_domains
, 0);
8226 /* RT runtime code needs to handle some hotplug events */
8227 hotcpu_notifier(update_runtime
, 0);
8231 /* Move init over to a non-isolated CPU */
8232 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
8234 sched_init_granularity();
8235 free_cpumask_var(non_isolated_cpus
);
8237 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
8238 init_sched_rt_class();
8241 void __init
sched_init_smp(void)
8243 sched_init_granularity();
8245 #endif /* CONFIG_SMP */
8247 int in_sched_functions(unsigned long addr
)
8249 return in_lock_functions(addr
) ||
8250 (addr
>= (unsigned long)__sched_text_start
8251 && addr
< (unsigned long)__sched_text_end
);
8254 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
8256 cfs_rq
->tasks_timeline
= RB_ROOT
;
8257 INIT_LIST_HEAD(&cfs_rq
->tasks
);
8258 #ifdef CONFIG_FAIR_GROUP_SCHED
8261 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
8264 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
8266 struct rt_prio_array
*array
;
8269 array
= &rt_rq
->active
;
8270 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
8271 INIT_LIST_HEAD(array
->queue
+ i
);
8272 __clear_bit(i
, array
->bitmap
);
8274 /* delimiter for bitsearch: */
8275 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
8277 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8278 rt_rq
->highest_prio
= MAX_RT_PRIO
;
8281 rt_rq
->rt_nr_migratory
= 0;
8282 rt_rq
->overloaded
= 0;
8286 rt_rq
->rt_throttled
= 0;
8287 rt_rq
->rt_runtime
= 0;
8288 spin_lock_init(&rt_rq
->rt_runtime_lock
);
8290 #ifdef CONFIG_RT_GROUP_SCHED
8291 rt_rq
->rt_nr_boosted
= 0;
8296 #ifdef CONFIG_FAIR_GROUP_SCHED
8297 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8298 struct sched_entity
*se
, int cpu
, int add
,
8299 struct sched_entity
*parent
)
8301 struct rq
*rq
= cpu_rq(cpu
);
8302 tg
->cfs_rq
[cpu
] = cfs_rq
;
8303 init_cfs_rq(cfs_rq
, rq
);
8306 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
8309 /* se could be NULL for init_task_group */
8314 se
->cfs_rq
= &rq
->cfs
;
8316 se
->cfs_rq
= parent
->my_q
;
8319 se
->load
.weight
= tg
->shares
;
8320 se
->load
.inv_weight
= 0;
8321 se
->parent
= parent
;
8325 #ifdef CONFIG_RT_GROUP_SCHED
8326 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8327 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
8328 struct sched_rt_entity
*parent
)
8330 struct rq
*rq
= cpu_rq(cpu
);
8332 tg
->rt_rq
[cpu
] = rt_rq
;
8333 init_rt_rq(rt_rq
, rq
);
8335 rt_rq
->rt_se
= rt_se
;
8336 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8338 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
8340 tg
->rt_se
[cpu
] = rt_se
;
8345 rt_se
->rt_rq
= &rq
->rt
;
8347 rt_se
->rt_rq
= parent
->my_q
;
8349 rt_se
->my_q
= rt_rq
;
8350 rt_se
->parent
= parent
;
8351 INIT_LIST_HEAD(&rt_se
->run_list
);
8355 void __init
sched_init(void)
8358 unsigned long alloc_size
= 0, ptr
;
8360 #ifdef CONFIG_FAIR_GROUP_SCHED
8361 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8363 #ifdef CONFIG_RT_GROUP_SCHED
8364 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8366 #ifdef CONFIG_USER_SCHED
8370 * As sched_init() is called before page_alloc is setup,
8371 * we use alloc_bootmem().
8374 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8376 #ifdef CONFIG_FAIR_GROUP_SCHED
8377 init_task_group
.se
= (struct sched_entity
**)ptr
;
8378 ptr
+= nr_cpu_ids
* sizeof(void **);
8380 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8381 ptr
+= nr_cpu_ids
* sizeof(void **);
8383 #ifdef CONFIG_USER_SCHED
8384 root_task_group
.se
= (struct sched_entity
**)ptr
;
8385 ptr
+= nr_cpu_ids
* sizeof(void **);
8387 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8388 ptr
+= nr_cpu_ids
* sizeof(void **);
8389 #endif /* CONFIG_USER_SCHED */
8390 #endif /* CONFIG_FAIR_GROUP_SCHED */
8391 #ifdef CONFIG_RT_GROUP_SCHED
8392 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8393 ptr
+= nr_cpu_ids
* sizeof(void **);
8395 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8396 ptr
+= nr_cpu_ids
* sizeof(void **);
8398 #ifdef CONFIG_USER_SCHED
8399 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8400 ptr
+= nr_cpu_ids
* sizeof(void **);
8402 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8403 ptr
+= nr_cpu_ids
* sizeof(void **);
8404 #endif /* CONFIG_USER_SCHED */
8405 #endif /* CONFIG_RT_GROUP_SCHED */
8409 init_defrootdomain();
8412 init_rt_bandwidth(&def_rt_bandwidth
,
8413 global_rt_period(), global_rt_runtime());
8415 #ifdef CONFIG_RT_GROUP_SCHED
8416 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8417 global_rt_period(), global_rt_runtime());
8418 #ifdef CONFIG_USER_SCHED
8419 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8420 global_rt_period(), RUNTIME_INF
);
8421 #endif /* CONFIG_USER_SCHED */
8422 #endif /* CONFIG_RT_GROUP_SCHED */
8424 #ifdef CONFIG_GROUP_SCHED
8425 list_add(&init_task_group
.list
, &task_groups
);
8426 INIT_LIST_HEAD(&init_task_group
.children
);
8428 #ifdef CONFIG_USER_SCHED
8429 INIT_LIST_HEAD(&root_task_group
.children
);
8430 init_task_group
.parent
= &root_task_group
;
8431 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8432 #endif /* CONFIG_USER_SCHED */
8433 #endif /* CONFIG_GROUP_SCHED */
8435 for_each_possible_cpu(i
) {
8439 spin_lock_init(&rq
->lock
);
8441 init_cfs_rq(&rq
->cfs
, rq
);
8442 init_rt_rq(&rq
->rt
, rq
);
8443 #ifdef CONFIG_FAIR_GROUP_SCHED
8444 init_task_group
.shares
= init_task_group_load
;
8445 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8446 #ifdef CONFIG_CGROUP_SCHED
8448 * How much cpu bandwidth does init_task_group get?
8450 * In case of task-groups formed thr' the cgroup filesystem, it
8451 * gets 100% of the cpu resources in the system. This overall
8452 * system cpu resource is divided among the tasks of
8453 * init_task_group and its child task-groups in a fair manner,
8454 * based on each entity's (task or task-group's) weight
8455 * (se->load.weight).
8457 * In other words, if init_task_group has 10 tasks of weight
8458 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8459 * then A0's share of the cpu resource is:
8461 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8463 * We achieve this by letting init_task_group's tasks sit
8464 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8466 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8467 #elif defined CONFIG_USER_SCHED
8468 root_task_group
.shares
= NICE_0_LOAD
;
8469 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8471 * In case of task-groups formed thr' the user id of tasks,
8472 * init_task_group represents tasks belonging to root user.
8473 * Hence it forms a sibling of all subsequent groups formed.
8474 * In this case, init_task_group gets only a fraction of overall
8475 * system cpu resource, based on the weight assigned to root
8476 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8477 * by letting tasks of init_task_group sit in a separate cfs_rq
8478 * (init_cfs_rq) and having one entity represent this group of
8479 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8481 init_tg_cfs_entry(&init_task_group
,
8482 &per_cpu(init_cfs_rq
, i
),
8483 &per_cpu(init_sched_entity
, i
), i
, 1,
8484 root_task_group
.se
[i
]);
8487 #endif /* CONFIG_FAIR_GROUP_SCHED */
8489 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8490 #ifdef CONFIG_RT_GROUP_SCHED
8491 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8492 #ifdef CONFIG_CGROUP_SCHED
8493 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8494 #elif defined CONFIG_USER_SCHED
8495 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8496 init_tg_rt_entry(&init_task_group
,
8497 &per_cpu(init_rt_rq
, i
),
8498 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8499 root_task_group
.rt_se
[i
]);
8503 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8504 rq
->cpu_load
[j
] = 0;
8508 rq
->active_balance
= 0;
8509 rq
->next_balance
= jiffies
;
8513 rq
->migration_thread
= NULL
;
8514 INIT_LIST_HEAD(&rq
->migration_queue
);
8515 rq_attach_root(rq
, &def_root_domain
);
8518 atomic_set(&rq
->nr_iowait
, 0);
8521 set_load_weight(&init_task
);
8523 #ifdef CONFIG_PREEMPT_NOTIFIERS
8524 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8528 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8531 #ifdef CONFIG_RT_MUTEXES
8532 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8536 * The boot idle thread does lazy MMU switching as well:
8538 atomic_inc(&init_mm
.mm_count
);
8539 enter_lazy_tlb(&init_mm
, current
);
8542 * Make us the idle thread. Technically, schedule() should not be
8543 * called from this thread, however somewhere below it might be,
8544 * but because we are the idle thread, we just pick up running again
8545 * when this runqueue becomes "idle".
8547 init_idle(current
, smp_processor_id());
8549 * During early bootup we pretend to be a normal task:
8551 current
->sched_class
= &fair_sched_class
;
8553 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8554 alloc_bootmem_cpumask_var(&nohz_cpu_mask
);
8557 alloc_bootmem_cpumask_var(&nohz
.cpu_mask
);
8559 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
8562 scheduler_running
= 1;
8565 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8566 void __might_sleep(char *file
, int line
)
8569 static unsigned long prev_jiffy
; /* ratelimiting */
8571 if ((!in_atomic() && !irqs_disabled()) ||
8572 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
8574 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8576 prev_jiffy
= jiffies
;
8579 "BUG: sleeping function called from invalid context at %s:%d\n",
8582 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8583 in_atomic(), irqs_disabled(),
8584 current
->pid
, current
->comm
);
8586 debug_show_held_locks(current
);
8587 if (irqs_disabled())
8588 print_irqtrace_events(current
);
8592 EXPORT_SYMBOL(__might_sleep
);
8595 #ifdef CONFIG_MAGIC_SYSRQ
8596 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8600 update_rq_clock(rq
);
8601 on_rq
= p
->se
.on_rq
;
8603 deactivate_task(rq
, p
, 0);
8604 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8606 activate_task(rq
, p
, 0);
8607 resched_task(rq
->curr
);
8611 void normalize_rt_tasks(void)
8613 struct task_struct
*g
, *p
;
8614 unsigned long flags
;
8617 read_lock_irqsave(&tasklist_lock
, flags
);
8618 do_each_thread(g
, p
) {
8620 * Only normalize user tasks:
8625 p
->se
.exec_start
= 0;
8626 #ifdef CONFIG_SCHEDSTATS
8627 p
->se
.wait_start
= 0;
8628 p
->se
.sleep_start
= 0;
8629 p
->se
.block_start
= 0;
8634 * Renice negative nice level userspace
8637 if (TASK_NICE(p
) < 0 && p
->mm
)
8638 set_user_nice(p
, 0);
8642 spin_lock(&p
->pi_lock
);
8643 rq
= __task_rq_lock(p
);
8645 normalize_task(rq
, p
);
8647 __task_rq_unlock(rq
);
8648 spin_unlock(&p
->pi_lock
);
8649 } while_each_thread(g
, p
);
8651 read_unlock_irqrestore(&tasklist_lock
, flags
);
8654 #endif /* CONFIG_MAGIC_SYSRQ */
8658 * These functions are only useful for the IA64 MCA handling.
8660 * They can only be called when the whole system has been
8661 * stopped - every CPU needs to be quiescent, and no scheduling
8662 * activity can take place. Using them for anything else would
8663 * be a serious bug, and as a result, they aren't even visible
8664 * under any other configuration.
8668 * curr_task - return the current task for a given cpu.
8669 * @cpu: the processor in question.
8671 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8673 struct task_struct
*curr_task(int cpu
)
8675 return cpu_curr(cpu
);
8679 * set_curr_task - set the current task for a given cpu.
8680 * @cpu: the processor in question.
8681 * @p: the task pointer to set.
8683 * Description: This function must only be used when non-maskable interrupts
8684 * are serviced on a separate stack. It allows the architecture to switch the
8685 * notion of the current task on a cpu in a non-blocking manner. This function
8686 * must be called with all CPU's synchronized, and interrupts disabled, the
8687 * and caller must save the original value of the current task (see
8688 * curr_task() above) and restore that value before reenabling interrupts and
8689 * re-starting the system.
8691 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8693 void set_curr_task(int cpu
, struct task_struct
*p
)
8700 #ifdef CONFIG_FAIR_GROUP_SCHED
8701 static void free_fair_sched_group(struct task_group
*tg
)
8705 for_each_possible_cpu(i
) {
8707 kfree(tg
->cfs_rq
[i
]);
8717 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8719 struct cfs_rq
*cfs_rq
;
8720 struct sched_entity
*se
;
8724 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8727 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8731 tg
->shares
= NICE_0_LOAD
;
8733 for_each_possible_cpu(i
) {
8736 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8737 GFP_KERNEL
, cpu_to_node(i
));
8741 se
= kzalloc_node(sizeof(struct sched_entity
),
8742 GFP_KERNEL
, cpu_to_node(i
));
8746 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8755 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8757 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8758 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8761 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8763 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8765 #else /* !CONFG_FAIR_GROUP_SCHED */
8766 static inline void free_fair_sched_group(struct task_group
*tg
)
8771 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8776 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8780 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8783 #endif /* CONFIG_FAIR_GROUP_SCHED */
8785 #ifdef CONFIG_RT_GROUP_SCHED
8786 static void free_rt_sched_group(struct task_group
*tg
)
8790 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8792 for_each_possible_cpu(i
) {
8794 kfree(tg
->rt_rq
[i
]);
8796 kfree(tg
->rt_se
[i
]);
8804 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8806 struct rt_rq
*rt_rq
;
8807 struct sched_rt_entity
*rt_se
;
8811 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8814 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8818 init_rt_bandwidth(&tg
->rt_bandwidth
,
8819 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8821 for_each_possible_cpu(i
) {
8824 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8825 GFP_KERNEL
, cpu_to_node(i
));
8829 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8830 GFP_KERNEL
, cpu_to_node(i
));
8834 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8843 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8845 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8846 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8849 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8851 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8853 #else /* !CONFIG_RT_GROUP_SCHED */
8854 static inline void free_rt_sched_group(struct task_group
*tg
)
8859 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8864 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8868 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8871 #endif /* CONFIG_RT_GROUP_SCHED */
8873 #ifdef CONFIG_GROUP_SCHED
8874 static void free_sched_group(struct task_group
*tg
)
8876 free_fair_sched_group(tg
);
8877 free_rt_sched_group(tg
);
8881 /* allocate runqueue etc for a new task group */
8882 struct task_group
*sched_create_group(struct task_group
*parent
)
8884 struct task_group
*tg
;
8885 unsigned long flags
;
8888 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8890 return ERR_PTR(-ENOMEM
);
8892 if (!alloc_fair_sched_group(tg
, parent
))
8895 if (!alloc_rt_sched_group(tg
, parent
))
8898 spin_lock_irqsave(&task_group_lock
, flags
);
8899 for_each_possible_cpu(i
) {
8900 register_fair_sched_group(tg
, i
);
8901 register_rt_sched_group(tg
, i
);
8903 list_add_rcu(&tg
->list
, &task_groups
);
8905 WARN_ON(!parent
); /* root should already exist */
8907 tg
->parent
= parent
;
8908 INIT_LIST_HEAD(&tg
->children
);
8909 list_add_rcu(&tg
->siblings
, &parent
->children
);
8910 spin_unlock_irqrestore(&task_group_lock
, flags
);
8915 free_sched_group(tg
);
8916 return ERR_PTR(-ENOMEM
);
8919 /* rcu callback to free various structures associated with a task group */
8920 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8922 /* now it should be safe to free those cfs_rqs */
8923 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8926 /* Destroy runqueue etc associated with a task group */
8927 void sched_destroy_group(struct task_group
*tg
)
8929 unsigned long flags
;
8932 spin_lock_irqsave(&task_group_lock
, flags
);
8933 for_each_possible_cpu(i
) {
8934 unregister_fair_sched_group(tg
, i
);
8935 unregister_rt_sched_group(tg
, i
);
8937 list_del_rcu(&tg
->list
);
8938 list_del_rcu(&tg
->siblings
);
8939 spin_unlock_irqrestore(&task_group_lock
, flags
);
8941 /* wait for possible concurrent references to cfs_rqs complete */
8942 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8945 /* change task's runqueue when it moves between groups.
8946 * The caller of this function should have put the task in its new group
8947 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8948 * reflect its new group.
8950 void sched_move_task(struct task_struct
*tsk
)
8953 unsigned long flags
;
8956 rq
= task_rq_lock(tsk
, &flags
);
8958 update_rq_clock(rq
);
8960 running
= task_current(rq
, tsk
);
8961 on_rq
= tsk
->se
.on_rq
;
8964 dequeue_task(rq
, tsk
, 0);
8965 if (unlikely(running
))
8966 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8968 set_task_rq(tsk
, task_cpu(tsk
));
8970 #ifdef CONFIG_FAIR_GROUP_SCHED
8971 if (tsk
->sched_class
->moved_group
)
8972 tsk
->sched_class
->moved_group(tsk
);
8975 if (unlikely(running
))
8976 tsk
->sched_class
->set_curr_task(rq
);
8978 enqueue_task(rq
, tsk
, 0);
8980 task_rq_unlock(rq
, &flags
);
8982 #endif /* CONFIG_GROUP_SCHED */
8984 #ifdef CONFIG_FAIR_GROUP_SCHED
8985 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8987 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8992 dequeue_entity(cfs_rq
, se
, 0);
8994 se
->load
.weight
= shares
;
8995 se
->load
.inv_weight
= 0;
8998 enqueue_entity(cfs_rq
, se
, 0);
9001 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
9003 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
9004 struct rq
*rq
= cfs_rq
->rq
;
9005 unsigned long flags
;
9007 spin_lock_irqsave(&rq
->lock
, flags
);
9008 __set_se_shares(se
, shares
);
9009 spin_unlock_irqrestore(&rq
->lock
, flags
);
9012 static DEFINE_MUTEX(shares_mutex
);
9014 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
9017 unsigned long flags
;
9020 * We can't change the weight of the root cgroup.
9025 if (shares
< MIN_SHARES
)
9026 shares
= MIN_SHARES
;
9027 else if (shares
> MAX_SHARES
)
9028 shares
= MAX_SHARES
;
9030 mutex_lock(&shares_mutex
);
9031 if (tg
->shares
== shares
)
9034 spin_lock_irqsave(&task_group_lock
, flags
);
9035 for_each_possible_cpu(i
)
9036 unregister_fair_sched_group(tg
, i
);
9037 list_del_rcu(&tg
->siblings
);
9038 spin_unlock_irqrestore(&task_group_lock
, flags
);
9040 /* wait for any ongoing reference to this group to finish */
9041 synchronize_sched();
9044 * Now we are free to modify the group's share on each cpu
9045 * w/o tripping rebalance_share or load_balance_fair.
9047 tg
->shares
= shares
;
9048 for_each_possible_cpu(i
) {
9052 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
9053 set_se_shares(tg
->se
[i
], shares
);
9057 * Enable load balance activity on this group, by inserting it back on
9058 * each cpu's rq->leaf_cfs_rq_list.
9060 spin_lock_irqsave(&task_group_lock
, flags
);
9061 for_each_possible_cpu(i
)
9062 register_fair_sched_group(tg
, i
);
9063 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
9064 spin_unlock_irqrestore(&task_group_lock
, flags
);
9066 mutex_unlock(&shares_mutex
);
9070 unsigned long sched_group_shares(struct task_group
*tg
)
9076 #ifdef CONFIG_RT_GROUP_SCHED
9078 * Ensure that the real time constraints are schedulable.
9080 static DEFINE_MUTEX(rt_constraints_mutex
);
9082 static unsigned long to_ratio(u64 period
, u64 runtime
)
9084 if (runtime
== RUNTIME_INF
)
9087 return div64_u64(runtime
<< 20, period
);
9090 /* Must be called with tasklist_lock held */
9091 static inline int tg_has_rt_tasks(struct task_group
*tg
)
9093 struct task_struct
*g
, *p
;
9095 do_each_thread(g
, p
) {
9096 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
9098 } while_each_thread(g
, p
);
9103 struct rt_schedulable_data
{
9104 struct task_group
*tg
;
9109 static int tg_schedulable(struct task_group
*tg
, void *data
)
9111 struct rt_schedulable_data
*d
= data
;
9112 struct task_group
*child
;
9113 unsigned long total
, sum
= 0;
9114 u64 period
, runtime
;
9116 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9117 runtime
= tg
->rt_bandwidth
.rt_runtime
;
9120 period
= d
->rt_period
;
9121 runtime
= d
->rt_runtime
;
9124 #ifdef CONFIG_USER_SCHED
9125 if (tg
== &root_task_group
) {
9126 period
= global_rt_period();
9127 runtime
= global_rt_runtime();
9132 * Cannot have more runtime than the period.
9134 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9138 * Ensure we don't starve existing RT tasks.
9140 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
9143 total
= to_ratio(period
, runtime
);
9146 * Nobody can have more than the global setting allows.
9148 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
9152 * The sum of our children's runtime should not exceed our own.
9154 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
9155 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
9156 runtime
= child
->rt_bandwidth
.rt_runtime
;
9158 if (child
== d
->tg
) {
9159 period
= d
->rt_period
;
9160 runtime
= d
->rt_runtime
;
9163 sum
+= to_ratio(period
, runtime
);
9172 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
9174 struct rt_schedulable_data data
= {
9176 .rt_period
= period
,
9177 .rt_runtime
= runtime
,
9180 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
9183 static int tg_set_bandwidth(struct task_group
*tg
,
9184 u64 rt_period
, u64 rt_runtime
)
9188 mutex_lock(&rt_constraints_mutex
);
9189 read_lock(&tasklist_lock
);
9190 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
9194 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9195 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
9196 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
9198 for_each_possible_cpu(i
) {
9199 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
9201 spin_lock(&rt_rq
->rt_runtime_lock
);
9202 rt_rq
->rt_runtime
= rt_runtime
;
9203 spin_unlock(&rt_rq
->rt_runtime_lock
);
9205 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
9207 read_unlock(&tasklist_lock
);
9208 mutex_unlock(&rt_constraints_mutex
);
9213 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
9215 u64 rt_runtime
, rt_period
;
9217 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9218 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
9219 if (rt_runtime_us
< 0)
9220 rt_runtime
= RUNTIME_INF
;
9222 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9225 long sched_group_rt_runtime(struct task_group
*tg
)
9229 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
9232 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
9233 do_div(rt_runtime_us
, NSEC_PER_USEC
);
9234 return rt_runtime_us
;
9237 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
9239 u64 rt_runtime
, rt_period
;
9241 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
9242 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
9247 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
9250 long sched_group_rt_period(struct task_group
*tg
)
9254 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
9255 do_div(rt_period_us
, NSEC_PER_USEC
);
9256 return rt_period_us
;
9259 static int sched_rt_global_constraints(void)
9261 u64 runtime
, period
;
9264 if (sysctl_sched_rt_period
<= 0)
9267 runtime
= global_rt_runtime();
9268 period
= global_rt_period();
9271 * Sanity check on the sysctl variables.
9273 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
9276 mutex_lock(&rt_constraints_mutex
);
9277 read_lock(&tasklist_lock
);
9278 ret
= __rt_schedulable(NULL
, 0, 0);
9279 read_unlock(&tasklist_lock
);
9280 mutex_unlock(&rt_constraints_mutex
);
9285 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
9287 /* Don't accept realtime tasks when there is no way for them to run */
9288 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
9294 #else /* !CONFIG_RT_GROUP_SCHED */
9295 static int sched_rt_global_constraints(void)
9297 unsigned long flags
;
9300 if (sysctl_sched_rt_period
<= 0)
9303 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9304 for_each_possible_cpu(i
) {
9305 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
9307 spin_lock(&rt_rq
->rt_runtime_lock
);
9308 rt_rq
->rt_runtime
= global_rt_runtime();
9309 spin_unlock(&rt_rq
->rt_runtime_lock
);
9311 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
9315 #endif /* CONFIG_RT_GROUP_SCHED */
9317 int sched_rt_handler(struct ctl_table
*table
, int write
,
9318 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
9322 int old_period
, old_runtime
;
9323 static DEFINE_MUTEX(mutex
);
9326 old_period
= sysctl_sched_rt_period
;
9327 old_runtime
= sysctl_sched_rt_runtime
;
9329 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
9331 if (!ret
&& write
) {
9332 ret
= sched_rt_global_constraints();
9334 sysctl_sched_rt_period
= old_period
;
9335 sysctl_sched_rt_runtime
= old_runtime
;
9337 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
9338 def_rt_bandwidth
.rt_period
=
9339 ns_to_ktime(global_rt_period());
9342 mutex_unlock(&mutex
);
9347 #ifdef CONFIG_CGROUP_SCHED
9349 /* return corresponding task_group object of a cgroup */
9350 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
9352 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
9353 struct task_group
, css
);
9356 static struct cgroup_subsys_state
*
9357 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9359 struct task_group
*tg
, *parent
;
9361 if (!cgrp
->parent
) {
9362 /* This is early initialization for the top cgroup */
9363 return &init_task_group
.css
;
9366 parent
= cgroup_tg(cgrp
->parent
);
9367 tg
= sched_create_group(parent
);
9369 return ERR_PTR(-ENOMEM
);
9375 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9377 struct task_group
*tg
= cgroup_tg(cgrp
);
9379 sched_destroy_group(tg
);
9383 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9384 struct task_struct
*tsk
)
9386 #ifdef CONFIG_RT_GROUP_SCHED
9387 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
9390 /* We don't support RT-tasks being in separate groups */
9391 if (tsk
->sched_class
!= &fair_sched_class
)
9399 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9400 struct cgroup
*old_cont
, struct task_struct
*tsk
)
9402 sched_move_task(tsk
);
9405 #ifdef CONFIG_FAIR_GROUP_SCHED
9406 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9409 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
9412 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9414 struct task_group
*tg
= cgroup_tg(cgrp
);
9416 return (u64
) tg
->shares
;
9418 #endif /* CONFIG_FAIR_GROUP_SCHED */
9420 #ifdef CONFIG_RT_GROUP_SCHED
9421 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9424 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9427 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9429 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9432 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9435 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9438 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9440 return sched_group_rt_period(cgroup_tg(cgrp
));
9442 #endif /* CONFIG_RT_GROUP_SCHED */
9444 static struct cftype cpu_files
[] = {
9445 #ifdef CONFIG_FAIR_GROUP_SCHED
9448 .read_u64
= cpu_shares_read_u64
,
9449 .write_u64
= cpu_shares_write_u64
,
9452 #ifdef CONFIG_RT_GROUP_SCHED
9454 .name
= "rt_runtime_us",
9455 .read_s64
= cpu_rt_runtime_read
,
9456 .write_s64
= cpu_rt_runtime_write
,
9459 .name
= "rt_period_us",
9460 .read_u64
= cpu_rt_period_read_uint
,
9461 .write_u64
= cpu_rt_period_write_uint
,
9466 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9468 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9471 struct cgroup_subsys cpu_cgroup_subsys
= {
9473 .create
= cpu_cgroup_create
,
9474 .destroy
= cpu_cgroup_destroy
,
9475 .can_attach
= cpu_cgroup_can_attach
,
9476 .attach
= cpu_cgroup_attach
,
9477 .populate
= cpu_cgroup_populate
,
9478 .subsys_id
= cpu_cgroup_subsys_id
,
9482 #endif /* CONFIG_CGROUP_SCHED */
9484 #ifdef CONFIG_CGROUP_CPUACCT
9487 * CPU accounting code for task groups.
9489 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9490 * (balbir@in.ibm.com).
9493 /* track cpu usage of a group of tasks and its child groups */
9495 struct cgroup_subsys_state css
;
9496 /* cpuusage holds pointer to a u64-type object on every cpu */
9498 struct cpuacct
*parent
;
9501 struct cgroup_subsys cpuacct_subsys
;
9503 /* return cpu accounting group corresponding to this container */
9504 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9506 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9507 struct cpuacct
, css
);
9510 /* return cpu accounting group to which this task belongs */
9511 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9513 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9514 struct cpuacct
, css
);
9517 /* create a new cpu accounting group */
9518 static struct cgroup_subsys_state
*cpuacct_create(
9519 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9521 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9524 return ERR_PTR(-ENOMEM
);
9526 ca
->cpuusage
= alloc_percpu(u64
);
9527 if (!ca
->cpuusage
) {
9529 return ERR_PTR(-ENOMEM
);
9533 ca
->parent
= cgroup_ca(cgrp
->parent
);
9538 /* destroy an existing cpu accounting group */
9540 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9542 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9544 free_percpu(ca
->cpuusage
);
9548 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9550 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9553 #ifndef CONFIG_64BIT
9555 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9557 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9559 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9567 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9569 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9571 #ifndef CONFIG_64BIT
9573 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9575 spin_lock_irq(&cpu_rq(cpu
)->lock
);
9577 spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9583 /* return total cpu usage (in nanoseconds) of a group */
9584 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9586 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9587 u64 totalcpuusage
= 0;
9590 for_each_present_cpu(i
)
9591 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9593 return totalcpuusage
;
9596 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9599 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9608 for_each_present_cpu(i
)
9609 cpuacct_cpuusage_write(ca
, i
, 0);
9615 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9618 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9622 for_each_present_cpu(i
) {
9623 percpu
= cpuacct_cpuusage_read(ca
, i
);
9624 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9626 seq_printf(m
, "\n");
9630 static struct cftype files
[] = {
9633 .read_u64
= cpuusage_read
,
9634 .write_u64
= cpuusage_write
,
9637 .name
= "usage_percpu",
9638 .read_seq_string
= cpuacct_percpu_seq_read
,
9643 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9645 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9649 * charge this task's execution time to its accounting group.
9651 * called with rq->lock held.
9653 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9658 if (!cpuacct_subsys
.active
)
9661 cpu
= task_cpu(tsk
);
9664 for (; ca
; ca
= ca
->parent
) {
9665 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, cpu
);
9666 *cpuusage
+= cputime
;
9670 struct cgroup_subsys cpuacct_subsys
= {
9672 .create
= cpuacct_create
,
9673 .destroy
= cpuacct_destroy
,
9674 .populate
= cpuacct_populate
,
9675 .subsys_id
= cpuacct_subsys_id
,
9677 #endif /* CONFIG_CGROUP_CPUACCT */