UBIFS: remove Kconfig debugging option
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ubifs / orphan.c
blob97ad042e4715a488e974e05e323298f975c38d9c
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Author: Adrian Hunter
22 #include "ubifs.h"
25 * An orphan is an inode number whose inode node has been committed to the index
26 * with a link count of zero. That happens when an open file is deleted
27 * (unlinked) and then a commit is run. In the normal course of events the inode
28 * would be deleted when the file is closed. However in the case of an unclean
29 * unmount, orphans need to be accounted for. After an unclean unmount, the
30 * orphans' inodes must be deleted which means either scanning the entire index
31 * looking for them, or keeping a list on flash somewhere. This unit implements
32 * the latter approach.
34 * The orphan area is a fixed number of LEBs situated between the LPT area and
35 * the main area. The number of orphan area LEBs is specified when the file
36 * system is created. The minimum number is 1. The size of the orphan area
37 * should be so that it can hold the maximum number of orphans that are expected
38 * to ever exist at one time.
40 * The number of orphans that can fit in a LEB is:
42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
47 * zero, the inode number is added to the rb-tree. It is removed from the tree
48 * when the inode is deleted. Any new orphans that are in the orphan tree when
49 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
50 * If the orphan area is full, it is consolidated to make space. There is
51 * always enough space because validation prevents the user from creating more
52 * than the maximum number of orphans allowed.
55 static int dbg_check_orphans(struct ubifs_info *c);
57 /**
58 * ubifs_add_orphan - add an orphan.
59 * @c: UBIFS file-system description object
60 * @inum: orphan inode number
62 * Add an orphan. This function is called when an inodes link count drops to
63 * zero.
65 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
67 struct ubifs_orphan *orphan, *o;
68 struct rb_node **p, *parent = NULL;
70 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
71 if (!orphan)
72 return -ENOMEM;
73 orphan->inum = inum;
74 orphan->new = 1;
76 spin_lock(&c->orphan_lock);
77 if (c->tot_orphans >= c->max_orphans) {
78 spin_unlock(&c->orphan_lock);
79 kfree(orphan);
80 return -ENFILE;
82 p = &c->orph_tree.rb_node;
83 while (*p) {
84 parent = *p;
85 o = rb_entry(parent, struct ubifs_orphan, rb);
86 if (inum < o->inum)
87 p = &(*p)->rb_left;
88 else if (inum > o->inum)
89 p = &(*p)->rb_right;
90 else {
91 dbg_err("orphaned twice");
92 spin_unlock(&c->orphan_lock);
93 kfree(orphan);
94 return 0;
97 c->tot_orphans += 1;
98 c->new_orphans += 1;
99 rb_link_node(&orphan->rb, parent, p);
100 rb_insert_color(&orphan->rb, &c->orph_tree);
101 list_add_tail(&orphan->list, &c->orph_list);
102 list_add_tail(&orphan->new_list, &c->orph_new);
103 spin_unlock(&c->orphan_lock);
104 dbg_gen("ino %lu", (unsigned long)inum);
105 return 0;
109 * ubifs_delete_orphan - delete an orphan.
110 * @c: UBIFS file-system description object
111 * @inum: orphan inode number
113 * Delete an orphan. This function is called when an inode is deleted.
115 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
117 struct ubifs_orphan *o;
118 struct rb_node *p;
120 spin_lock(&c->orphan_lock);
121 p = c->orph_tree.rb_node;
122 while (p) {
123 o = rb_entry(p, struct ubifs_orphan, rb);
124 if (inum < o->inum)
125 p = p->rb_left;
126 else if (inum > o->inum)
127 p = p->rb_right;
128 else {
129 if (o->dnext) {
130 spin_unlock(&c->orphan_lock);
131 dbg_gen("deleted twice ino %lu",
132 (unsigned long)inum);
133 return;
135 if (o->cnext) {
136 o->dnext = c->orph_dnext;
137 c->orph_dnext = o;
138 spin_unlock(&c->orphan_lock);
139 dbg_gen("delete later ino %lu",
140 (unsigned long)inum);
141 return;
143 rb_erase(p, &c->orph_tree);
144 list_del(&o->list);
145 c->tot_orphans -= 1;
146 if (o->new) {
147 list_del(&o->new_list);
148 c->new_orphans -= 1;
150 spin_unlock(&c->orphan_lock);
151 kfree(o);
152 dbg_gen("inum %lu", (unsigned long)inum);
153 return;
156 spin_unlock(&c->orphan_lock);
157 dbg_err("missing orphan ino %lu", (unsigned long)inum);
158 dump_stack();
162 * ubifs_orphan_start_commit - start commit of orphans.
163 * @c: UBIFS file-system description object
165 * Start commit of orphans.
167 int ubifs_orphan_start_commit(struct ubifs_info *c)
169 struct ubifs_orphan *orphan, **last;
171 spin_lock(&c->orphan_lock);
172 last = &c->orph_cnext;
173 list_for_each_entry(orphan, &c->orph_new, new_list) {
174 ubifs_assert(orphan->new);
175 orphan->new = 0;
176 *last = orphan;
177 last = &orphan->cnext;
179 *last = orphan->cnext;
180 c->cmt_orphans = c->new_orphans;
181 c->new_orphans = 0;
182 dbg_cmt("%d orphans to commit", c->cmt_orphans);
183 INIT_LIST_HEAD(&c->orph_new);
184 if (c->tot_orphans == 0)
185 c->no_orphs = 1;
186 else
187 c->no_orphs = 0;
188 spin_unlock(&c->orphan_lock);
189 return 0;
193 * avail_orphs - calculate available space.
194 * @c: UBIFS file-system description object
196 * This function returns the number of orphans that can be written in the
197 * available space.
199 static int avail_orphs(struct ubifs_info *c)
201 int avail_lebs, avail, gap;
203 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
204 avail = avail_lebs *
205 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
206 gap = c->leb_size - c->ohead_offs;
207 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
208 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
209 return avail;
213 * tot_avail_orphs - calculate total space.
214 * @c: UBIFS file-system description object
216 * This function returns the number of orphans that can be written in half
217 * the total space. That leaves half the space for adding new orphans.
219 static int tot_avail_orphs(struct ubifs_info *c)
221 int avail_lebs, avail;
223 avail_lebs = c->orph_lebs;
224 avail = avail_lebs *
225 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
226 return avail / 2;
230 * do_write_orph_node - write a node to the orphan head.
231 * @c: UBIFS file-system description object
232 * @len: length of node
233 * @atomic: write atomically
235 * This function writes a node to the orphan head from the orphan buffer. If
236 * %atomic is not zero, then the write is done atomically. On success, %0 is
237 * returned, otherwise a negative error code is returned.
239 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
241 int err = 0;
243 if (atomic) {
244 ubifs_assert(c->ohead_offs == 0);
245 ubifs_prepare_node(c, c->orph_buf, len, 1);
246 len = ALIGN(len, c->min_io_size);
247 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len,
248 UBI_SHORTTERM);
249 } else {
250 if (c->ohead_offs == 0) {
251 /* Ensure LEB has been unmapped */
252 err = ubifs_leb_unmap(c, c->ohead_lnum);
253 if (err)
254 return err;
256 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
257 c->ohead_offs, UBI_SHORTTERM);
259 return err;
263 * write_orph_node - write an orphan node.
264 * @c: UBIFS file-system description object
265 * @atomic: write atomically
267 * This function builds an orphan node from the cnext list and writes it to the
268 * orphan head. On success, %0 is returned, otherwise a negative error code
269 * is returned.
271 static int write_orph_node(struct ubifs_info *c, int atomic)
273 struct ubifs_orphan *orphan, *cnext;
274 struct ubifs_orph_node *orph;
275 int gap, err, len, cnt, i;
277 ubifs_assert(c->cmt_orphans > 0);
278 gap = c->leb_size - c->ohead_offs;
279 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
280 c->ohead_lnum += 1;
281 c->ohead_offs = 0;
282 gap = c->leb_size;
283 if (c->ohead_lnum > c->orph_last) {
285 * We limit the number of orphans so that this should
286 * never happen.
288 ubifs_err("out of space in orphan area");
289 return -EINVAL;
292 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
293 if (cnt > c->cmt_orphans)
294 cnt = c->cmt_orphans;
295 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
296 ubifs_assert(c->orph_buf);
297 orph = c->orph_buf;
298 orph->ch.node_type = UBIFS_ORPH_NODE;
299 spin_lock(&c->orphan_lock);
300 cnext = c->orph_cnext;
301 for (i = 0; i < cnt; i++) {
302 orphan = cnext;
303 orph->inos[i] = cpu_to_le64(orphan->inum);
304 cnext = orphan->cnext;
305 orphan->cnext = NULL;
307 c->orph_cnext = cnext;
308 c->cmt_orphans -= cnt;
309 spin_unlock(&c->orphan_lock);
310 if (c->cmt_orphans)
311 orph->cmt_no = cpu_to_le64(c->cmt_no);
312 else
313 /* Mark the last node of the commit */
314 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
315 ubifs_assert(c->ohead_offs + len <= c->leb_size);
316 ubifs_assert(c->ohead_lnum >= c->orph_first);
317 ubifs_assert(c->ohead_lnum <= c->orph_last);
318 err = do_write_orph_node(c, len, atomic);
319 c->ohead_offs += ALIGN(len, c->min_io_size);
320 c->ohead_offs = ALIGN(c->ohead_offs, 8);
321 return err;
325 * write_orph_nodes - write orphan nodes until there are no more to commit.
326 * @c: UBIFS file-system description object
327 * @atomic: write atomically
329 * This function writes orphan nodes for all the orphans to commit. On success,
330 * %0 is returned, otherwise a negative error code is returned.
332 static int write_orph_nodes(struct ubifs_info *c, int atomic)
334 int err;
336 while (c->cmt_orphans > 0) {
337 err = write_orph_node(c, atomic);
338 if (err)
339 return err;
341 if (atomic) {
342 int lnum;
344 /* Unmap any unused LEBs after consolidation */
345 lnum = c->ohead_lnum + 1;
346 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
347 err = ubifs_leb_unmap(c, lnum);
348 if (err)
349 return err;
352 return 0;
356 * consolidate - consolidate the orphan area.
357 * @c: UBIFS file-system description object
359 * This function enables consolidation by putting all the orphans into the list
360 * to commit. The list is in the order that the orphans were added, and the
361 * LEBs are written atomically in order, so at no time can orphans be lost by
362 * an unclean unmount.
364 * This function returns %0 on success and a negative error code on failure.
366 static int consolidate(struct ubifs_info *c)
368 int tot_avail = tot_avail_orphs(c), err = 0;
370 spin_lock(&c->orphan_lock);
371 dbg_cmt("there is space for %d orphans and there are %d",
372 tot_avail, c->tot_orphans);
373 if (c->tot_orphans - c->new_orphans <= tot_avail) {
374 struct ubifs_orphan *orphan, **last;
375 int cnt = 0;
377 /* Change the cnext list to include all non-new orphans */
378 last = &c->orph_cnext;
379 list_for_each_entry(orphan, &c->orph_list, list) {
380 if (orphan->new)
381 continue;
382 *last = orphan;
383 last = &orphan->cnext;
384 cnt += 1;
386 *last = orphan->cnext;
387 ubifs_assert(cnt == c->tot_orphans - c->new_orphans);
388 c->cmt_orphans = cnt;
389 c->ohead_lnum = c->orph_first;
390 c->ohead_offs = 0;
391 } else {
393 * We limit the number of orphans so that this should
394 * never happen.
396 ubifs_err("out of space in orphan area");
397 err = -EINVAL;
399 spin_unlock(&c->orphan_lock);
400 return err;
404 * commit_orphans - commit orphans.
405 * @c: UBIFS file-system description object
407 * This function commits orphans to flash. On success, %0 is returned,
408 * otherwise a negative error code is returned.
410 static int commit_orphans(struct ubifs_info *c)
412 int avail, atomic = 0, err;
414 ubifs_assert(c->cmt_orphans > 0);
415 avail = avail_orphs(c);
416 if (avail < c->cmt_orphans) {
417 /* Not enough space to write new orphans, so consolidate */
418 err = consolidate(c);
419 if (err)
420 return err;
421 atomic = 1;
423 err = write_orph_nodes(c, atomic);
424 return err;
428 * erase_deleted - erase the orphans marked for deletion.
429 * @c: UBIFS file-system description object
431 * During commit, the orphans being committed cannot be deleted, so they are
432 * marked for deletion and deleted by this function. Also, the recovery
433 * adds killed orphans to the deletion list, and therefore they are deleted
434 * here too.
436 static void erase_deleted(struct ubifs_info *c)
438 struct ubifs_orphan *orphan, *dnext;
440 spin_lock(&c->orphan_lock);
441 dnext = c->orph_dnext;
442 while (dnext) {
443 orphan = dnext;
444 dnext = orphan->dnext;
445 ubifs_assert(!orphan->new);
446 rb_erase(&orphan->rb, &c->orph_tree);
447 list_del(&orphan->list);
448 c->tot_orphans -= 1;
449 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
450 kfree(orphan);
452 c->orph_dnext = NULL;
453 spin_unlock(&c->orphan_lock);
457 * ubifs_orphan_end_commit - end commit of orphans.
458 * @c: UBIFS file-system description object
460 * End commit of orphans.
462 int ubifs_orphan_end_commit(struct ubifs_info *c)
464 int err;
466 if (c->cmt_orphans != 0) {
467 err = commit_orphans(c);
468 if (err)
469 return err;
471 erase_deleted(c);
472 err = dbg_check_orphans(c);
473 return err;
477 * ubifs_clear_orphans - erase all LEBs used for orphans.
478 * @c: UBIFS file-system description object
480 * If recovery is not required, then the orphans from the previous session
481 * are not needed. This function locates the LEBs used to record
482 * orphans, and un-maps them.
484 int ubifs_clear_orphans(struct ubifs_info *c)
486 int lnum, err;
488 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
489 err = ubifs_leb_unmap(c, lnum);
490 if (err)
491 return err;
493 c->ohead_lnum = c->orph_first;
494 c->ohead_offs = 0;
495 return 0;
499 * insert_dead_orphan - insert an orphan.
500 * @c: UBIFS file-system description object
501 * @inum: orphan inode number
503 * This function is a helper to the 'do_kill_orphans()' function. The orphan
504 * must be kept until the next commit, so it is added to the rb-tree and the
505 * deletion list.
507 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
509 struct ubifs_orphan *orphan, *o;
510 struct rb_node **p, *parent = NULL;
512 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
513 if (!orphan)
514 return -ENOMEM;
515 orphan->inum = inum;
517 p = &c->orph_tree.rb_node;
518 while (*p) {
519 parent = *p;
520 o = rb_entry(parent, struct ubifs_orphan, rb);
521 if (inum < o->inum)
522 p = &(*p)->rb_left;
523 else if (inum > o->inum)
524 p = &(*p)->rb_right;
525 else {
526 /* Already added - no problem */
527 kfree(orphan);
528 return 0;
531 c->tot_orphans += 1;
532 rb_link_node(&orphan->rb, parent, p);
533 rb_insert_color(&orphan->rb, &c->orph_tree);
534 list_add_tail(&orphan->list, &c->orph_list);
535 orphan->dnext = c->orph_dnext;
536 c->orph_dnext = orphan;
537 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
538 c->new_orphans, c->tot_orphans);
539 return 0;
543 * do_kill_orphans - remove orphan inodes from the index.
544 * @c: UBIFS file-system description object
545 * @sleb: scanned LEB
546 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
547 * @outofdate: whether the LEB is out of date is returned here
548 * @last_flagged: whether the end orphan node is encountered
550 * This function is a helper to the 'kill_orphans()' function. It goes through
551 * every orphan node in a LEB and for every inode number recorded, removes
552 * all keys for that inode from the TNC.
554 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
555 unsigned long long *last_cmt_no, int *outofdate,
556 int *last_flagged)
558 struct ubifs_scan_node *snod;
559 struct ubifs_orph_node *orph;
560 unsigned long long cmt_no;
561 ino_t inum;
562 int i, n, err, first = 1;
564 list_for_each_entry(snod, &sleb->nodes, list) {
565 if (snod->type != UBIFS_ORPH_NODE) {
566 ubifs_err("invalid node type %d in orphan area at "
567 "%d:%d", snod->type, sleb->lnum, snod->offs);
568 ubifs_dump_node(c, snod->node);
569 return -EINVAL;
572 orph = snod->node;
574 /* Check commit number */
575 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
577 * The commit number on the master node may be less, because
578 * of a failed commit. If there are several failed commits in a
579 * row, the commit number written on orphan nodes will continue
580 * to increase (because the commit number is adjusted here) even
581 * though the commit number on the master node stays the same
582 * because the master node has not been re-written.
584 if (cmt_no > c->cmt_no)
585 c->cmt_no = cmt_no;
586 if (cmt_no < *last_cmt_no && *last_flagged) {
588 * The last orphan node had a higher commit number and
589 * was flagged as the last written for that commit
590 * number. That makes this orphan node, out of date.
592 if (!first) {
593 ubifs_err("out of order commit number %llu in "
594 "orphan node at %d:%d",
595 cmt_no, sleb->lnum, snod->offs);
596 ubifs_dump_node(c, snod->node);
597 return -EINVAL;
599 dbg_rcvry("out of date LEB %d", sleb->lnum);
600 *outofdate = 1;
601 return 0;
604 if (first)
605 first = 0;
607 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
608 for (i = 0; i < n; i++) {
609 inum = le64_to_cpu(orph->inos[i]);
610 dbg_rcvry("deleting orphaned inode %lu",
611 (unsigned long)inum);
612 err = ubifs_tnc_remove_ino(c, inum);
613 if (err)
614 return err;
615 err = insert_dead_orphan(c, inum);
616 if (err)
617 return err;
620 *last_cmt_no = cmt_no;
621 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
622 dbg_rcvry("last orph node for commit %llu at %d:%d",
623 cmt_no, sleb->lnum, snod->offs);
624 *last_flagged = 1;
625 } else
626 *last_flagged = 0;
629 return 0;
633 * kill_orphans - remove all orphan inodes from the index.
634 * @c: UBIFS file-system description object
636 * If recovery is required, then orphan inodes recorded during the previous
637 * session (which ended with an unclean unmount) must be deleted from the index.
638 * This is done by updating the TNC, but since the index is not updated until
639 * the next commit, the LEBs where the orphan information is recorded are not
640 * erased until the next commit.
642 static int kill_orphans(struct ubifs_info *c)
644 unsigned long long last_cmt_no = 0;
645 int lnum, err = 0, outofdate = 0, last_flagged = 0;
647 c->ohead_lnum = c->orph_first;
648 c->ohead_offs = 0;
649 /* Check no-orphans flag and skip this if no orphans */
650 if (c->no_orphs) {
651 dbg_rcvry("no orphans");
652 return 0;
655 * Orph nodes always start at c->orph_first and are written to each
656 * successive LEB in turn. Generally unused LEBs will have been unmapped
657 * but may contain out of date orphan nodes if the unmap didn't go
658 * through. In addition, the last orphan node written for each commit is
659 * marked (top bit of orph->cmt_no is set to 1). It is possible that
660 * there are orphan nodes from the next commit (i.e. the commit did not
661 * complete successfully). In that case, no orphans will have been lost
662 * due to the way that orphans are written, and any orphans added will
663 * be valid orphans anyway and so can be deleted.
665 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
666 struct ubifs_scan_leb *sleb;
668 dbg_rcvry("LEB %d", lnum);
669 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
670 if (IS_ERR(sleb)) {
671 if (PTR_ERR(sleb) == -EUCLEAN)
672 sleb = ubifs_recover_leb(c, lnum, 0,
673 c->sbuf, -1);
674 if (IS_ERR(sleb)) {
675 err = PTR_ERR(sleb);
676 break;
679 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
680 &last_flagged);
681 if (err || outofdate) {
682 ubifs_scan_destroy(sleb);
683 break;
685 if (sleb->endpt) {
686 c->ohead_lnum = lnum;
687 c->ohead_offs = sleb->endpt;
689 ubifs_scan_destroy(sleb);
691 return err;
695 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
696 * @c: UBIFS file-system description object
697 * @unclean: indicates recovery from unclean unmount
698 * @read_only: indicates read only mount
700 * This function is called when mounting to erase orphans from the previous
701 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
702 * orphans are deleted.
704 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
706 int err = 0;
708 c->max_orphans = tot_avail_orphs(c);
710 if (!read_only) {
711 c->orph_buf = vmalloc(c->leb_size);
712 if (!c->orph_buf)
713 return -ENOMEM;
716 if (unclean)
717 err = kill_orphans(c);
718 else if (!read_only)
719 err = ubifs_clear_orphans(c);
721 return err;
725 * Everything below is related to debugging.
728 struct check_orphan {
729 struct rb_node rb;
730 ino_t inum;
733 struct check_info {
734 unsigned long last_ino;
735 unsigned long tot_inos;
736 unsigned long missing;
737 unsigned long long leaf_cnt;
738 struct ubifs_ino_node *node;
739 struct rb_root root;
742 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum)
744 struct ubifs_orphan *o;
745 struct rb_node *p;
747 spin_lock(&c->orphan_lock);
748 p = c->orph_tree.rb_node;
749 while (p) {
750 o = rb_entry(p, struct ubifs_orphan, rb);
751 if (inum < o->inum)
752 p = p->rb_left;
753 else if (inum > o->inum)
754 p = p->rb_right;
755 else {
756 spin_unlock(&c->orphan_lock);
757 return 1;
760 spin_unlock(&c->orphan_lock);
761 return 0;
764 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
766 struct check_orphan *orphan, *o;
767 struct rb_node **p, *parent = NULL;
769 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
770 if (!orphan)
771 return -ENOMEM;
772 orphan->inum = inum;
774 p = &root->rb_node;
775 while (*p) {
776 parent = *p;
777 o = rb_entry(parent, struct check_orphan, rb);
778 if (inum < o->inum)
779 p = &(*p)->rb_left;
780 else if (inum > o->inum)
781 p = &(*p)->rb_right;
782 else {
783 kfree(orphan);
784 return 0;
787 rb_link_node(&orphan->rb, parent, p);
788 rb_insert_color(&orphan->rb, root);
789 return 0;
792 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
794 struct check_orphan *o;
795 struct rb_node *p;
797 p = root->rb_node;
798 while (p) {
799 o = rb_entry(p, struct check_orphan, rb);
800 if (inum < o->inum)
801 p = p->rb_left;
802 else if (inum > o->inum)
803 p = p->rb_right;
804 else
805 return 1;
807 return 0;
810 static void dbg_free_check_tree(struct rb_root *root)
812 struct rb_node *this = root->rb_node;
813 struct check_orphan *o;
815 while (this) {
816 if (this->rb_left) {
817 this = this->rb_left;
818 continue;
819 } else if (this->rb_right) {
820 this = this->rb_right;
821 continue;
823 o = rb_entry(this, struct check_orphan, rb);
824 this = rb_parent(this);
825 if (this) {
826 if (this->rb_left == &o->rb)
827 this->rb_left = NULL;
828 else
829 this->rb_right = NULL;
831 kfree(o);
835 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
836 void *priv)
838 struct check_info *ci = priv;
839 ino_t inum;
840 int err;
842 inum = key_inum(c, &zbr->key);
843 if (inum != ci->last_ino) {
844 /* Lowest node type is the inode node, so it comes first */
845 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
846 ubifs_err("found orphan node ino %lu, type %d",
847 (unsigned long)inum, key_type(c, &zbr->key));
848 ci->last_ino = inum;
849 ci->tot_inos += 1;
850 err = ubifs_tnc_read_node(c, zbr, ci->node);
851 if (err) {
852 ubifs_err("node read failed, error %d", err);
853 return err;
855 if (ci->node->nlink == 0)
856 /* Must be recorded as an orphan */
857 if (!dbg_find_check_orphan(&ci->root, inum) &&
858 !dbg_find_orphan(c, inum)) {
859 ubifs_err("missing orphan, ino %lu",
860 (unsigned long)inum);
861 ci->missing += 1;
864 ci->leaf_cnt += 1;
865 return 0;
868 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
870 struct ubifs_scan_node *snod;
871 struct ubifs_orph_node *orph;
872 ino_t inum;
873 int i, n, err;
875 list_for_each_entry(snod, &sleb->nodes, list) {
876 cond_resched();
877 if (snod->type != UBIFS_ORPH_NODE)
878 continue;
879 orph = snod->node;
880 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
881 for (i = 0; i < n; i++) {
882 inum = le64_to_cpu(orph->inos[i]);
883 err = dbg_ins_check_orphan(&ci->root, inum);
884 if (err)
885 return err;
888 return 0;
891 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
893 int lnum, err = 0;
894 void *buf;
896 /* Check no-orphans flag and skip this if no orphans */
897 if (c->no_orphs)
898 return 0;
900 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
901 if (!buf) {
902 ubifs_err("cannot allocate memory to check orphans");
903 return 0;
906 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
907 struct ubifs_scan_leb *sleb;
909 sleb = ubifs_scan(c, lnum, 0, buf, 0);
910 if (IS_ERR(sleb)) {
911 err = PTR_ERR(sleb);
912 break;
915 err = dbg_read_orphans(ci, sleb);
916 ubifs_scan_destroy(sleb);
917 if (err)
918 break;
921 vfree(buf);
922 return err;
925 static int dbg_check_orphans(struct ubifs_info *c)
927 struct check_info ci;
928 int err;
930 if (!dbg_is_chk_orph(c))
931 return 0;
933 ci.last_ino = 0;
934 ci.tot_inos = 0;
935 ci.missing = 0;
936 ci.leaf_cnt = 0;
937 ci.root = RB_ROOT;
938 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
939 if (!ci.node) {
940 ubifs_err("out of memory");
941 return -ENOMEM;
944 err = dbg_scan_orphans(c, &ci);
945 if (err)
946 goto out;
948 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
949 if (err) {
950 ubifs_err("cannot scan TNC, error %d", err);
951 goto out;
954 if (ci.missing) {
955 ubifs_err("%lu missing orphan(s)", ci.missing);
956 err = -EINVAL;
957 goto out;
960 dbg_cmt("last inode number is %lu", ci.last_ino);
961 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
962 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
964 out:
965 dbg_free_check_tree(&ci.root);
966 kfree(ci.node);
967 return err;