fs/ecryptfs/file.c: introduce missing free
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / tty_io.c
blobd71f0fc34b467c6e7a7c25c0762321f90b7e3fa0
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
110 #undef TTY_DEBUG_HANGUP
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
126 EXPORT_SYMBOL(tty_std_termios);
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146 #ifdef CONFIG_COMPAT
147 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
148 unsigned long arg);
149 #else
150 #define tty_compat_ioctl NULL
151 #endif
152 static int tty_fasync(int fd, struct file *filp, int on);
153 static void release_tty(struct tty_struct *tty, int idx);
154 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
155 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158 * alloc_tty_struct - allocate a tty object
160 * Return a new empty tty structure. The data fields have not
161 * been initialized in any way but has been zeroed
163 * Locking: none
166 struct tty_struct *alloc_tty_struct(void)
168 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
172 * free_tty_struct - free a disused tty
173 * @tty: tty struct to free
175 * Free the write buffers, tty queue and tty memory itself.
177 * Locking: none. Must be called after tty is definitely unused
180 void free_tty_struct(struct tty_struct *tty)
182 kfree(tty->write_buf);
183 tty_buffer_free_all(tty);
184 kfree(tty);
187 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
190 * tty_name - return tty naming
191 * @tty: tty structure
192 * @buf: buffer for output
194 * Convert a tty structure into a name. The name reflects the kernel
195 * naming policy and if udev is in use may not reflect user space
197 * Locking: none
200 char *tty_name(struct tty_struct *tty, char *buf)
202 if (!tty) /* Hmm. NULL pointer. That's fun. */
203 strcpy(buf, "NULL tty");
204 else
205 strcpy(buf, tty->name);
206 return buf;
209 EXPORT_SYMBOL(tty_name);
211 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
212 const char *routine)
214 #ifdef TTY_PARANOIA_CHECK
215 if (!tty) {
216 printk(KERN_WARNING
217 "null TTY for (%d:%d) in %s\n",
218 imajor(inode), iminor(inode), routine);
219 return 1;
221 if (tty->magic != TTY_MAGIC) {
222 printk(KERN_WARNING
223 "bad magic number for tty struct (%d:%d) in %s\n",
224 imajor(inode), iminor(inode), routine);
225 return 1;
227 #endif
228 return 0;
231 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 #ifdef CHECK_TTY_COUNT
234 struct list_head *p;
235 int count = 0;
237 file_list_lock();
238 list_for_each(p, &tty->tty_files) {
239 count++;
241 file_list_unlock();
242 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
243 tty->driver->subtype == PTY_TYPE_SLAVE &&
244 tty->link && tty->link->count)
245 count++;
246 if (tty->count != count) {
247 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
248 "!= #fd's(%d) in %s\n",
249 tty->name, tty->count, count, routine);
250 return count;
252 #endif
253 return 0;
257 * get_tty_driver - find device of a tty
258 * @dev_t: device identifier
259 * @index: returns the index of the tty
261 * This routine returns a tty driver structure, given a device number
262 * and also passes back the index number.
264 * Locking: caller must hold tty_mutex
267 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 struct tty_driver *p;
271 list_for_each_entry(p, &tty_drivers, tty_drivers) {
272 dev_t base = MKDEV(p->major, p->minor_start);
273 if (device < base || device >= base + p->num)
274 continue;
275 *index = device - base;
276 return tty_driver_kref_get(p);
278 return NULL;
281 #ifdef CONFIG_CONSOLE_POLL
284 * tty_find_polling_driver - find device of a polled tty
285 * @name: name string to match
286 * @line: pointer to resulting tty line nr
288 * This routine returns a tty driver structure, given a name
289 * and the condition that the tty driver is capable of polled
290 * operation.
292 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 struct tty_driver *p, *res = NULL;
295 int tty_line = 0;
296 int len;
297 char *str, *stp;
299 for (str = name; *str; str++)
300 if ((*str >= '0' && *str <= '9') || *str == ',')
301 break;
302 if (!*str)
303 return NULL;
305 len = str - name;
306 tty_line = simple_strtoul(str, &str, 10);
308 mutex_lock(&tty_mutex);
309 /* Search through the tty devices to look for a match */
310 list_for_each_entry(p, &tty_drivers, tty_drivers) {
311 if (strncmp(name, p->name, len) != 0)
312 continue;
313 stp = str;
314 if (*stp == ',')
315 stp++;
316 if (*stp == '\0')
317 stp = NULL;
319 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
321 res = tty_driver_kref_get(p);
322 *line = tty_line;
323 break;
326 mutex_unlock(&tty_mutex);
328 return res;
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
334 * tty_check_change - check for POSIX terminal changes
335 * @tty: tty to check
337 * If we try to write to, or set the state of, a terminal and we're
338 * not in the foreground, send a SIGTTOU. If the signal is blocked or
339 * ignored, go ahead and perform the operation. (POSIX 7.2)
341 * Locking: ctrl_lock
344 int tty_check_change(struct tty_struct *tty)
346 unsigned long flags;
347 int ret = 0;
349 if (current->signal->tty != tty)
350 return 0;
352 spin_lock_irqsave(&tty->ctrl_lock, flags);
354 if (!tty->pgrp) {
355 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356 goto out_unlock;
358 if (task_pgrp(current) == tty->pgrp)
359 goto out_unlock;
360 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361 if (is_ignored(SIGTTOU))
362 goto out;
363 if (is_current_pgrp_orphaned()) {
364 ret = -EIO;
365 goto out;
367 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368 set_thread_flag(TIF_SIGPENDING);
369 ret = -ERESTARTSYS;
370 out:
371 return ret;
372 out_unlock:
373 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374 return ret;
377 EXPORT_SYMBOL(tty_check_change);
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380 size_t count, loff_t *ppos)
382 return 0;
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *ppos)
388 return -EIO;
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
394 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398 unsigned long arg)
400 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
403 static long hung_up_tty_compat_ioctl(struct file *file,
404 unsigned int cmd, unsigned long arg)
406 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
409 static const struct file_operations tty_fops = {
410 .llseek = no_llseek,
411 .read = tty_read,
412 .write = tty_write,
413 .poll = tty_poll,
414 .unlocked_ioctl = tty_ioctl,
415 .compat_ioctl = tty_compat_ioctl,
416 .open = tty_open,
417 .release = tty_release,
418 .fasync = tty_fasync,
421 static const struct file_operations console_fops = {
422 .llseek = no_llseek,
423 .read = tty_read,
424 .write = redirected_tty_write,
425 .poll = tty_poll,
426 .unlocked_ioctl = tty_ioctl,
427 .compat_ioctl = tty_compat_ioctl,
428 .open = tty_open,
429 .release = tty_release,
430 .fasync = tty_fasync,
433 static const struct file_operations hung_up_tty_fops = {
434 .llseek = no_llseek,
435 .read = hung_up_tty_read,
436 .write = hung_up_tty_write,
437 .poll = hung_up_tty_poll,
438 .unlocked_ioctl = hung_up_tty_ioctl,
439 .compat_ioctl = hung_up_tty_compat_ioctl,
440 .release = tty_release,
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
447 * tty_wakeup - request more data
448 * @tty: terminal
450 * Internal and external helper for wakeups of tty. This function
451 * informs the line discipline if present that the driver is ready
452 * to receive more output data.
455 void tty_wakeup(struct tty_struct *tty)
457 struct tty_ldisc *ld;
459 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460 ld = tty_ldisc_ref(tty);
461 if (ld) {
462 if (ld->ops->write_wakeup)
463 ld->ops->write_wakeup(tty);
464 tty_ldisc_deref(ld);
467 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
470 EXPORT_SYMBOL_GPL(tty_wakeup);
473 * do_tty_hangup - actual handler for hangup events
474 * @work: tty device
476 * This can be called by the "eventd" kernel thread. That is process
477 * synchronous but doesn't hold any locks, so we need to make sure we
478 * have the appropriate locks for what we're doing.
480 * The hangup event clears any pending redirections onto the hung up
481 * device. It ensures future writes will error and it does the needed
482 * line discipline hangup and signal delivery. The tty object itself
483 * remains intact.
485 * Locking:
486 * BKL
487 * redirect lock for undoing redirection
488 * file list lock for manipulating list of ttys
489 * tty_ldisc_lock from called functions
490 * termios_mutex resetting termios data
491 * tasklist_lock to walk task list for hangup event
492 * ->siglock to protect ->signal/->sighand
494 static void do_tty_hangup(struct work_struct *work)
496 struct tty_struct *tty =
497 container_of(work, struct tty_struct, hangup_work);
498 struct file *cons_filp = NULL;
499 struct file *filp, *f = NULL;
500 struct task_struct *p;
501 int closecount = 0, n;
502 unsigned long flags;
503 int refs = 0;
505 if (!tty)
506 return;
509 spin_lock(&redirect_lock);
510 if (redirect && redirect->private_data == tty) {
511 f = redirect;
512 redirect = NULL;
514 spin_unlock(&redirect_lock);
516 /* inuse_filps is protected by the single kernel lock */
517 lock_kernel();
518 check_tty_count(tty, "do_tty_hangup");
520 file_list_lock();
521 /* This breaks for file handles being sent over AF_UNIX sockets ? */
522 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523 if (filp->f_op->write == redirected_tty_write)
524 cons_filp = filp;
525 if (filp->f_op->write != tty_write)
526 continue;
527 closecount++;
528 tty_fasync(-1, filp, 0); /* can't block */
529 filp->f_op = &hung_up_tty_fops;
531 file_list_unlock();
533 tty_ldisc_hangup(tty);
535 read_lock(&tasklist_lock);
536 if (tty->session) {
537 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538 spin_lock_irq(&p->sighand->siglock);
539 if (p->signal->tty == tty) {
540 p->signal->tty = NULL;
541 /* We defer the dereferences outside fo
542 the tasklist lock */
543 refs++;
545 if (!p->signal->leader) {
546 spin_unlock_irq(&p->sighand->siglock);
547 continue;
549 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551 put_pid(p->signal->tty_old_pgrp); /* A noop */
552 spin_lock_irqsave(&tty->ctrl_lock, flags);
553 if (tty->pgrp)
554 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556 spin_unlock_irq(&p->sighand->siglock);
557 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
559 read_unlock(&tasklist_lock);
561 spin_lock_irqsave(&tty->ctrl_lock, flags);
562 clear_bit(TTY_THROTTLED, &tty->flags);
563 clear_bit(TTY_PUSH, &tty->flags);
564 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565 put_pid(tty->session);
566 put_pid(tty->pgrp);
567 tty->session = NULL;
568 tty->pgrp = NULL;
569 tty->ctrl_status = 0;
570 set_bit(TTY_HUPPED, &tty->flags);
571 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
573 /* Account for the p->signal references we killed */
574 while (refs--)
575 tty_kref_put(tty);
578 * If one of the devices matches a console pointer, we
579 * cannot just call hangup() because that will cause
580 * tty->count and state->count to go out of sync.
581 * So we just call close() the right number of times.
583 if (cons_filp) {
584 if (tty->ops->close)
585 for (n = 0; n < closecount; n++)
586 tty->ops->close(tty, cons_filp);
587 } else if (tty->ops->hangup)
588 (tty->ops->hangup)(tty);
590 * We don't want to have driver/ldisc interactions beyond
591 * the ones we did here. The driver layer expects no
592 * calls after ->hangup() from the ldisc side. However we
593 * can't yet guarantee all that.
595 set_bit(TTY_HUPPED, &tty->flags);
596 tty_ldisc_enable(tty);
597 unlock_kernel();
598 if (f)
599 fput(f);
603 * tty_hangup - trigger a hangup event
604 * @tty: tty to hangup
606 * A carrier loss (virtual or otherwise) has occurred on this like
607 * schedule a hangup sequence to run after this event.
610 void tty_hangup(struct tty_struct *tty)
612 #ifdef TTY_DEBUG_HANGUP
613 char buf[64];
614 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
615 #endif
616 schedule_work(&tty->hangup_work);
619 EXPORT_SYMBOL(tty_hangup);
622 * tty_vhangup - process vhangup
623 * @tty: tty to hangup
625 * The user has asked via system call for the terminal to be hung up.
626 * We do this synchronously so that when the syscall returns the process
627 * is complete. That guarantee is necessary for security reasons.
630 void tty_vhangup(struct tty_struct *tty)
632 #ifdef TTY_DEBUG_HANGUP
633 char buf[64];
635 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
636 #endif
637 do_tty_hangup(&tty->hangup_work);
640 EXPORT_SYMBOL(tty_vhangup);
643 * tty_vhangup_self - process vhangup for own ctty
645 * Perform a vhangup on the current controlling tty
648 void tty_vhangup_self(void)
650 struct tty_struct *tty;
652 tty = get_current_tty();
653 if (tty) {
654 tty_vhangup(tty);
655 tty_kref_put(tty);
660 * tty_hung_up_p - was tty hung up
661 * @filp: file pointer of tty
663 * Return true if the tty has been subject to a vhangup or a carrier
664 * loss
667 int tty_hung_up_p(struct file *filp)
669 return (filp->f_op == &hung_up_tty_fops);
672 EXPORT_SYMBOL(tty_hung_up_p);
674 static void session_clear_tty(struct pid *session)
676 struct task_struct *p;
677 do_each_pid_task(session, PIDTYPE_SID, p) {
678 proc_clear_tty(p);
679 } while_each_pid_task(session, PIDTYPE_SID, p);
683 * disassociate_ctty - disconnect controlling tty
684 * @on_exit: true if exiting so need to "hang up" the session
686 * This function is typically called only by the session leader, when
687 * it wants to disassociate itself from its controlling tty.
689 * It performs the following functions:
690 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
691 * (2) Clears the tty from being controlling the session
692 * (3) Clears the controlling tty for all processes in the
693 * session group.
695 * The argument on_exit is set to 1 if called when a process is
696 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
698 * Locking:
699 * BKL is taken for hysterical raisins
700 * tty_mutex is taken to protect tty
701 * ->siglock is taken to protect ->signal/->sighand
702 * tasklist_lock is taken to walk process list for sessions
703 * ->siglock is taken to protect ->signal/->sighand
706 void disassociate_ctty(int on_exit)
708 struct tty_struct *tty;
709 struct pid *tty_pgrp = NULL;
711 if (!current->signal->leader)
712 return;
714 tty = get_current_tty();
715 if (tty) {
716 tty_pgrp = get_pid(tty->pgrp);
717 lock_kernel();
718 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
719 tty_vhangup(tty);
720 unlock_kernel();
721 tty_kref_put(tty);
722 } else if (on_exit) {
723 struct pid *old_pgrp;
724 spin_lock_irq(&current->sighand->siglock);
725 old_pgrp = current->signal->tty_old_pgrp;
726 current->signal->tty_old_pgrp = NULL;
727 spin_unlock_irq(&current->sighand->siglock);
728 if (old_pgrp) {
729 kill_pgrp(old_pgrp, SIGHUP, on_exit);
730 kill_pgrp(old_pgrp, SIGCONT, on_exit);
731 put_pid(old_pgrp);
733 return;
735 if (tty_pgrp) {
736 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
737 if (!on_exit)
738 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
739 put_pid(tty_pgrp);
742 spin_lock_irq(&current->sighand->siglock);
743 put_pid(current->signal->tty_old_pgrp);
744 current->signal->tty_old_pgrp = NULL;
745 spin_unlock_irq(&current->sighand->siglock);
747 tty = get_current_tty();
748 if (tty) {
749 unsigned long flags;
750 spin_lock_irqsave(&tty->ctrl_lock, flags);
751 put_pid(tty->session);
752 put_pid(tty->pgrp);
753 tty->session = NULL;
754 tty->pgrp = NULL;
755 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
756 tty_kref_put(tty);
757 } else {
758 #ifdef TTY_DEBUG_HANGUP
759 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
760 " = NULL", tty);
761 #endif
764 /* Now clear signal->tty under the lock */
765 read_lock(&tasklist_lock);
766 session_clear_tty(task_session(current));
767 read_unlock(&tasklist_lock);
772 * no_tty - Ensure the current process does not have a controlling tty
774 void no_tty(void)
776 struct task_struct *tsk = current;
777 lock_kernel();
778 disassociate_ctty(0);
779 unlock_kernel();
780 proc_clear_tty(tsk);
785 * stop_tty - propagate flow control
786 * @tty: tty to stop
788 * Perform flow control to the driver. For PTY/TTY pairs we
789 * must also propagate the TIOCKPKT status. May be called
790 * on an already stopped device and will not re-call the driver
791 * method.
793 * This functionality is used by both the line disciplines for
794 * halting incoming flow and by the driver. It may therefore be
795 * called from any context, may be under the tty atomic_write_lock
796 * but not always.
798 * Locking:
799 * Uses the tty control lock internally
802 void stop_tty(struct tty_struct *tty)
804 unsigned long flags;
805 spin_lock_irqsave(&tty->ctrl_lock, flags);
806 if (tty->stopped) {
807 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
808 return;
810 tty->stopped = 1;
811 if (tty->link && tty->link->packet) {
812 tty->ctrl_status &= ~TIOCPKT_START;
813 tty->ctrl_status |= TIOCPKT_STOP;
814 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
816 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
817 if (tty->ops->stop)
818 (tty->ops->stop)(tty);
821 EXPORT_SYMBOL(stop_tty);
824 * start_tty - propagate flow control
825 * @tty: tty to start
827 * Start a tty that has been stopped if at all possible. Perform
828 * any necessary wakeups and propagate the TIOCPKT status. If this
829 * is the tty was previous stopped and is being started then the
830 * driver start method is invoked and the line discipline woken.
832 * Locking:
833 * ctrl_lock
836 void start_tty(struct tty_struct *tty)
838 unsigned long flags;
839 spin_lock_irqsave(&tty->ctrl_lock, flags);
840 if (!tty->stopped || tty->flow_stopped) {
841 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
842 return;
844 tty->stopped = 0;
845 if (tty->link && tty->link->packet) {
846 tty->ctrl_status &= ~TIOCPKT_STOP;
847 tty->ctrl_status |= TIOCPKT_START;
848 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
850 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
851 if (tty->ops->start)
852 (tty->ops->start)(tty);
853 /* If we have a running line discipline it may need kicking */
854 tty_wakeup(tty);
857 EXPORT_SYMBOL(start_tty);
860 * tty_read - read method for tty device files
861 * @file: pointer to tty file
862 * @buf: user buffer
863 * @count: size of user buffer
864 * @ppos: unused
866 * Perform the read system call function on this terminal device. Checks
867 * for hung up devices before calling the line discipline method.
869 * Locking:
870 * Locks the line discipline internally while needed. Multiple
871 * read calls may be outstanding in parallel.
874 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
875 loff_t *ppos)
877 int i;
878 struct tty_struct *tty;
879 struct inode *inode;
880 struct tty_ldisc *ld;
882 tty = (struct tty_struct *)file->private_data;
883 inode = file->f_path.dentry->d_inode;
884 if (tty_paranoia_check(tty, inode, "tty_read"))
885 return -EIO;
886 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
887 return -EIO;
889 /* We want to wait for the line discipline to sort out in this
890 situation */
891 ld = tty_ldisc_ref_wait(tty);
892 if (ld->ops->read)
893 i = (ld->ops->read)(tty, file, buf, count);
894 else
895 i = -EIO;
896 tty_ldisc_deref(ld);
897 if (i > 0)
898 inode->i_atime = current_fs_time(inode->i_sb);
899 return i;
902 void tty_write_unlock(struct tty_struct *tty)
904 mutex_unlock(&tty->atomic_write_lock);
905 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
908 int tty_write_lock(struct tty_struct *tty, int ndelay)
910 if (!mutex_trylock(&tty->atomic_write_lock)) {
911 if (ndelay)
912 return -EAGAIN;
913 if (mutex_lock_interruptible(&tty->atomic_write_lock))
914 return -ERESTARTSYS;
916 return 0;
920 * Split writes up in sane blocksizes to avoid
921 * denial-of-service type attacks
923 static inline ssize_t do_tty_write(
924 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
925 struct tty_struct *tty,
926 struct file *file,
927 const char __user *buf,
928 size_t count)
930 ssize_t ret, written = 0;
931 unsigned int chunk;
933 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
934 if (ret < 0)
935 return ret;
938 * We chunk up writes into a temporary buffer. This
939 * simplifies low-level drivers immensely, since they
940 * don't have locking issues and user mode accesses.
942 * But if TTY_NO_WRITE_SPLIT is set, we should use a
943 * big chunk-size..
945 * The default chunk-size is 2kB, because the NTTY
946 * layer has problems with bigger chunks. It will
947 * claim to be able to handle more characters than
948 * it actually does.
950 * FIXME: This can probably go away now except that 64K chunks
951 * are too likely to fail unless switched to vmalloc...
953 chunk = 2048;
954 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
955 chunk = 65536;
956 if (count < chunk)
957 chunk = count;
959 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
960 if (tty->write_cnt < chunk) {
961 unsigned char *buf_chunk;
963 if (chunk < 1024)
964 chunk = 1024;
966 buf_chunk = kmalloc(chunk, GFP_KERNEL);
967 if (!buf_chunk) {
968 ret = -ENOMEM;
969 goto out;
971 kfree(tty->write_buf);
972 tty->write_cnt = chunk;
973 tty->write_buf = buf_chunk;
976 /* Do the write .. */
977 for (;;) {
978 size_t size = count;
979 if (size > chunk)
980 size = chunk;
981 ret = -EFAULT;
982 if (copy_from_user(tty->write_buf, buf, size))
983 break;
984 ret = write(tty, file, tty->write_buf, size);
985 if (ret <= 0)
986 break;
987 written += ret;
988 buf += ret;
989 count -= ret;
990 if (!count)
991 break;
992 ret = -ERESTARTSYS;
993 if (signal_pending(current))
994 break;
995 cond_resched();
997 if (written) {
998 struct inode *inode = file->f_path.dentry->d_inode;
999 inode->i_mtime = current_fs_time(inode->i_sb);
1000 ret = written;
1002 out:
1003 tty_write_unlock(tty);
1004 return ret;
1008 * tty_write_message - write a message to a certain tty, not just the console.
1009 * @tty: the destination tty_struct
1010 * @msg: the message to write
1012 * This is used for messages that need to be redirected to a specific tty.
1013 * We don't put it into the syslog queue right now maybe in the future if
1014 * really needed.
1016 * We must still hold the BKL and test the CLOSING flag for the moment.
1019 void tty_write_message(struct tty_struct *tty, char *msg)
1021 if (tty) {
1022 mutex_lock(&tty->atomic_write_lock);
1023 lock_kernel();
1024 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1025 unlock_kernel();
1026 tty->ops->write(tty, msg, strlen(msg));
1027 } else
1028 unlock_kernel();
1029 tty_write_unlock(tty);
1031 return;
1036 * tty_write - write method for tty device file
1037 * @file: tty file pointer
1038 * @buf: user data to write
1039 * @count: bytes to write
1040 * @ppos: unused
1042 * Write data to a tty device via the line discipline.
1044 * Locking:
1045 * Locks the line discipline as required
1046 * Writes to the tty driver are serialized by the atomic_write_lock
1047 * and are then processed in chunks to the device. The line discipline
1048 * write method will not be invoked in parallel for each device.
1051 static ssize_t tty_write(struct file *file, const char __user *buf,
1052 size_t count, loff_t *ppos)
1054 struct tty_struct *tty;
1055 struct inode *inode = file->f_path.dentry->d_inode;
1056 ssize_t ret;
1057 struct tty_ldisc *ld;
1059 tty = (struct tty_struct *)file->private_data;
1060 if (tty_paranoia_check(tty, inode, "tty_write"))
1061 return -EIO;
1062 if (!tty || !tty->ops->write ||
1063 (test_bit(TTY_IO_ERROR, &tty->flags)))
1064 return -EIO;
1065 /* Short term debug to catch buggy drivers */
1066 if (tty->ops->write_room == NULL)
1067 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1068 tty->driver->name);
1069 ld = tty_ldisc_ref_wait(tty);
1070 if (!ld->ops->write)
1071 ret = -EIO;
1072 else
1073 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1074 tty_ldisc_deref(ld);
1075 return ret;
1078 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1079 size_t count, loff_t *ppos)
1081 struct file *p = NULL;
1083 spin_lock(&redirect_lock);
1084 if (redirect) {
1085 get_file(redirect);
1086 p = redirect;
1088 spin_unlock(&redirect_lock);
1090 if (p) {
1091 ssize_t res;
1092 res = vfs_write(p, buf, count, &p->f_pos);
1093 fput(p);
1094 return res;
1096 return tty_write(file, buf, count, ppos);
1099 static char ptychar[] = "pqrstuvwxyzabcde";
1102 * pty_line_name - generate name for a pty
1103 * @driver: the tty driver in use
1104 * @index: the minor number
1105 * @p: output buffer of at least 6 bytes
1107 * Generate a name from a driver reference and write it to the output
1108 * buffer.
1110 * Locking: None
1112 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1114 int i = index + driver->name_base;
1115 /* ->name is initialized to "ttyp", but "tty" is expected */
1116 sprintf(p, "%s%c%x",
1117 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118 ptychar[i >> 4 & 0xf], i & 0xf);
1122 * tty_line_name - generate name for a tty
1123 * @driver: the tty driver in use
1124 * @index: the minor number
1125 * @p: output buffer of at least 7 bytes
1127 * Generate a name from a driver reference and write it to the output
1128 * buffer.
1130 * Locking: None
1132 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1134 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1138 * tty_driver_lookup_tty() - find an existing tty, if any
1139 * @driver: the driver for the tty
1140 * @idx: the minor number
1142 * Return the tty, if found or ERR_PTR() otherwise.
1144 * Locking: tty_mutex must be held. If tty is found, the mutex must
1145 * be held until the 'fast-open' is also done. Will change once we
1146 * have refcounting in the driver and per driver locking
1148 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1149 struct inode *inode, int idx)
1151 struct tty_struct *tty;
1153 if (driver->ops->lookup)
1154 return driver->ops->lookup(driver, inode, idx);
1156 tty = driver->ttys[idx];
1157 return tty;
1161 * tty_init_termios - helper for termios setup
1162 * @tty: the tty to set up
1164 * Initialise the termios structures for this tty. Thus runs under
1165 * the tty_mutex currently so we can be relaxed about ordering.
1168 int tty_init_termios(struct tty_struct *tty)
1170 struct ktermios *tp;
1171 int idx = tty->index;
1173 tp = tty->driver->termios[idx];
1174 if (tp == NULL) {
1175 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1176 if (tp == NULL)
1177 return -ENOMEM;
1178 memcpy(tp, &tty->driver->init_termios,
1179 sizeof(struct ktermios));
1180 tty->driver->termios[idx] = tp;
1182 tty->termios = tp;
1183 tty->termios_locked = tp + 1;
1185 /* Compatibility until drivers always set this */
1186 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1187 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1188 return 0;
1190 EXPORT_SYMBOL_GPL(tty_init_termios);
1193 * tty_driver_install_tty() - install a tty entry in the driver
1194 * @driver: the driver for the tty
1195 * @tty: the tty
1197 * Install a tty object into the driver tables. The tty->index field
1198 * will be set by the time this is called. This method is responsible
1199 * for ensuring any need additional structures are allocated and
1200 * configured.
1202 * Locking: tty_mutex for now
1204 static int tty_driver_install_tty(struct tty_driver *driver,
1205 struct tty_struct *tty)
1207 int idx = tty->index;
1208 int ret;
1210 if (driver->ops->install) {
1211 lock_kernel();
1212 ret = driver->ops->install(driver, tty);
1213 unlock_kernel();
1214 return ret;
1217 if (tty_init_termios(tty) == 0) {
1218 lock_kernel();
1219 tty_driver_kref_get(driver);
1220 tty->count++;
1221 driver->ttys[idx] = tty;
1222 unlock_kernel();
1223 return 0;
1225 return -ENOMEM;
1229 * tty_driver_remove_tty() - remove a tty from the driver tables
1230 * @driver: the driver for the tty
1231 * @idx: the minor number
1233 * Remvoe a tty object from the driver tables. The tty->index field
1234 * will be set by the time this is called.
1236 * Locking: tty_mutex for now
1238 static void tty_driver_remove_tty(struct tty_driver *driver,
1239 struct tty_struct *tty)
1241 if (driver->ops->remove)
1242 driver->ops->remove(driver, tty);
1243 else
1244 driver->ttys[tty->index] = NULL;
1248 * tty_reopen() - fast re-open of an open tty
1249 * @tty - the tty to open
1251 * Return 0 on success, -errno on error.
1253 * Locking: tty_mutex must be held from the time the tty was found
1254 * till this open completes.
1256 static int tty_reopen(struct tty_struct *tty)
1258 struct tty_driver *driver = tty->driver;
1260 if (test_bit(TTY_CLOSING, &tty->flags))
1261 return -EIO;
1263 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1264 driver->subtype == PTY_TYPE_MASTER) {
1266 * special case for PTY masters: only one open permitted,
1267 * and the slave side open count is incremented as well.
1269 if (tty->count)
1270 return -EIO;
1272 tty->link->count++;
1274 tty->count++;
1275 tty->driver = driver; /* N.B. why do this every time?? */
1277 mutex_lock(&tty->ldisc_mutex);
1278 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1279 mutex_unlock(&tty->ldisc_mutex);
1281 return 0;
1285 * tty_init_dev - initialise a tty device
1286 * @driver: tty driver we are opening a device on
1287 * @idx: device index
1288 * @ret_tty: returned tty structure
1289 * @first_ok: ok to open a new device (used by ptmx)
1291 * Prepare a tty device. This may not be a "new" clean device but
1292 * could also be an active device. The pty drivers require special
1293 * handling because of this.
1295 * Locking:
1296 * The function is called under the tty_mutex, which
1297 * protects us from the tty struct or driver itself going away.
1299 * On exit the tty device has the line discipline attached and
1300 * a reference count of 1. If a pair was created for pty/tty use
1301 * and the other was a pty master then it too has a reference count of 1.
1303 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1304 * failed open. The new code protects the open with a mutex, so it's
1305 * really quite straightforward. The mutex locking can probably be
1306 * relaxed for the (most common) case of reopening a tty.
1309 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1310 int first_ok)
1312 struct tty_struct *tty;
1313 int retval;
1315 lock_kernel();
1316 /* Check if pty master is being opened multiple times */
1317 if (driver->subtype == PTY_TYPE_MASTER &&
1318 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1319 unlock_kernel();
1320 return ERR_PTR(-EIO);
1322 unlock_kernel();
1325 * First time open is complex, especially for PTY devices.
1326 * This code guarantees that either everything succeeds and the
1327 * TTY is ready for operation, or else the table slots are vacated
1328 * and the allocated memory released. (Except that the termios
1329 * and locked termios may be retained.)
1332 if (!try_module_get(driver->owner))
1333 return ERR_PTR(-ENODEV);
1335 tty = alloc_tty_struct();
1336 if (!tty)
1337 goto fail_no_mem;
1338 initialize_tty_struct(tty, driver, idx);
1340 retval = tty_driver_install_tty(driver, tty);
1341 if (retval < 0) {
1342 free_tty_struct(tty);
1343 module_put(driver->owner);
1344 return ERR_PTR(retval);
1348 * Structures all installed ... call the ldisc open routines.
1349 * If we fail here just call release_tty to clean up. No need
1350 * to decrement the use counts, as release_tty doesn't care.
1352 retval = tty_ldisc_setup(tty, tty->link);
1353 if (retval)
1354 goto release_mem_out;
1355 return tty;
1357 fail_no_mem:
1358 module_put(driver->owner);
1359 return ERR_PTR(-ENOMEM);
1361 /* call the tty release_tty routine to clean out this slot */
1362 release_mem_out:
1363 if (printk_ratelimit())
1364 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1365 "clearing slot %d\n", idx);
1366 lock_kernel();
1367 release_tty(tty, idx);
1368 unlock_kernel();
1369 return ERR_PTR(retval);
1372 void tty_free_termios(struct tty_struct *tty)
1374 struct ktermios *tp;
1375 int idx = tty->index;
1376 /* Kill this flag and push into drivers for locking etc */
1377 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1378 /* FIXME: Locking on ->termios array */
1379 tp = tty->termios;
1380 tty->driver->termios[idx] = NULL;
1381 kfree(tp);
1384 EXPORT_SYMBOL(tty_free_termios);
1386 void tty_shutdown(struct tty_struct *tty)
1388 tty_driver_remove_tty(tty->driver, tty);
1389 tty_free_termios(tty);
1391 EXPORT_SYMBOL(tty_shutdown);
1394 * release_one_tty - release tty structure memory
1395 * @kref: kref of tty we are obliterating
1397 * Releases memory associated with a tty structure, and clears out the
1398 * driver table slots. This function is called when a device is no longer
1399 * in use. It also gets called when setup of a device fails.
1401 * Locking:
1402 * tty_mutex - sometimes only
1403 * takes the file list lock internally when working on the list
1404 * of ttys that the driver keeps.
1406 * This method gets called from a work queue so that the driver private
1407 * cleanup ops can sleep (needed for USB at least)
1409 static void release_one_tty(struct work_struct *work)
1411 struct tty_struct *tty =
1412 container_of(work, struct tty_struct, hangup_work);
1413 struct tty_driver *driver = tty->driver;
1415 if (tty->ops->cleanup)
1416 tty->ops->cleanup(tty);
1418 tty->magic = 0;
1419 tty_driver_kref_put(driver);
1420 module_put(driver->owner);
1422 file_list_lock();
1423 list_del_init(&tty->tty_files);
1424 file_list_unlock();
1426 put_pid(tty->pgrp);
1427 put_pid(tty->session);
1428 free_tty_struct(tty);
1431 static void queue_release_one_tty(struct kref *kref)
1433 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1435 if (tty->ops->shutdown)
1436 tty->ops->shutdown(tty);
1437 else
1438 tty_shutdown(tty);
1440 /* The hangup queue is now free so we can reuse it rather than
1441 waste a chunk of memory for each port */
1442 INIT_WORK(&tty->hangup_work, release_one_tty);
1443 schedule_work(&tty->hangup_work);
1447 * tty_kref_put - release a tty kref
1448 * @tty: tty device
1450 * Release a reference to a tty device and if need be let the kref
1451 * layer destruct the object for us
1454 void tty_kref_put(struct tty_struct *tty)
1456 if (tty)
1457 kref_put(&tty->kref, queue_release_one_tty);
1459 EXPORT_SYMBOL(tty_kref_put);
1462 * release_tty - release tty structure memory
1464 * Release both @tty and a possible linked partner (think pty pair),
1465 * and decrement the refcount of the backing module.
1467 * Locking:
1468 * tty_mutex - sometimes only
1469 * takes the file list lock internally when working on the list
1470 * of ttys that the driver keeps.
1471 * FIXME: should we require tty_mutex is held here ??
1474 static void release_tty(struct tty_struct *tty, int idx)
1476 /* This should always be true but check for the moment */
1477 WARN_ON(tty->index != idx);
1479 if (tty->link)
1480 tty_kref_put(tty->link);
1481 tty_kref_put(tty);
1485 * tty_release - vfs callback for close
1486 * @inode: inode of tty
1487 * @filp: file pointer for handle to tty
1489 * Called the last time each file handle is closed that references
1490 * this tty. There may however be several such references.
1492 * Locking:
1493 * Takes bkl. See tty_release_dev
1495 * Even releasing the tty structures is a tricky business.. We have
1496 * to be very careful that the structures are all released at the
1497 * same time, as interrupts might otherwise get the wrong pointers.
1499 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1500 * lead to double frees or releasing memory still in use.
1503 int tty_release(struct inode *inode, struct file *filp)
1505 struct tty_struct *tty, *o_tty;
1506 int pty_master, tty_closing, o_tty_closing, do_sleep;
1507 int devpts;
1508 int idx;
1509 char buf[64];
1511 tty = (struct tty_struct *)filp->private_data;
1512 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1513 return 0;
1515 lock_kernel();
1516 check_tty_count(tty, "tty_release_dev");
1518 tty_fasync(-1, filp, 0);
1520 idx = tty->index;
1521 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1522 tty->driver->subtype == PTY_TYPE_MASTER);
1523 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1524 o_tty = tty->link;
1526 #ifdef TTY_PARANOIA_CHECK
1527 if (idx < 0 || idx >= tty->driver->num) {
1528 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1529 "free (%s)\n", tty->name);
1530 unlock_kernel();
1531 return 0;
1533 if (!devpts) {
1534 if (tty != tty->driver->ttys[idx]) {
1535 unlock_kernel();
1536 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1537 "for (%s)\n", idx, tty->name);
1538 return 0;
1540 if (tty->termios != tty->driver->termios[idx]) {
1541 unlock_kernel();
1542 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1543 "for (%s)\n",
1544 idx, tty->name);
1545 return 0;
1548 #endif
1550 #ifdef TTY_DEBUG_HANGUP
1551 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1552 tty_name(tty, buf), tty->count);
1553 #endif
1555 #ifdef TTY_PARANOIA_CHECK
1556 if (tty->driver->other &&
1557 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1558 if (o_tty != tty->driver->other->ttys[idx]) {
1559 unlock_kernel();
1560 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1561 "not o_tty for (%s)\n",
1562 idx, tty->name);
1563 return 0 ;
1565 if (o_tty->termios != tty->driver->other->termios[idx]) {
1566 unlock_kernel();
1567 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1568 "not o_termios for (%s)\n",
1569 idx, tty->name);
1570 return 0;
1572 if (o_tty->link != tty) {
1573 unlock_kernel();
1574 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1575 return 0;
1578 #endif
1579 if (tty->ops->close)
1580 tty->ops->close(tty, filp);
1582 unlock_kernel();
1584 * Sanity check: if tty->count is going to zero, there shouldn't be
1585 * any waiters on tty->read_wait or tty->write_wait. We test the
1586 * wait queues and kick everyone out _before_ actually starting to
1587 * close. This ensures that we won't block while releasing the tty
1588 * structure.
1590 * The test for the o_tty closing is necessary, since the master and
1591 * slave sides may close in any order. If the slave side closes out
1592 * first, its count will be one, since the master side holds an open.
1593 * Thus this test wouldn't be triggered at the time the slave closes,
1594 * so we do it now.
1596 * Note that it's possible for the tty to be opened again while we're
1597 * flushing out waiters. By recalculating the closing flags before
1598 * each iteration we avoid any problems.
1600 while (1) {
1601 /* Guard against races with tty->count changes elsewhere and
1602 opens on /dev/tty */
1604 mutex_lock(&tty_mutex);
1605 lock_kernel();
1606 tty_closing = tty->count <= 1;
1607 o_tty_closing = o_tty &&
1608 (o_tty->count <= (pty_master ? 1 : 0));
1609 do_sleep = 0;
1611 if (tty_closing) {
1612 if (waitqueue_active(&tty->read_wait)) {
1613 wake_up_poll(&tty->read_wait, POLLIN);
1614 do_sleep++;
1616 if (waitqueue_active(&tty->write_wait)) {
1617 wake_up_poll(&tty->write_wait, POLLOUT);
1618 do_sleep++;
1621 if (o_tty_closing) {
1622 if (waitqueue_active(&o_tty->read_wait)) {
1623 wake_up_poll(&o_tty->read_wait, POLLIN);
1624 do_sleep++;
1626 if (waitqueue_active(&o_tty->write_wait)) {
1627 wake_up_poll(&o_tty->write_wait, POLLOUT);
1628 do_sleep++;
1631 if (!do_sleep)
1632 break;
1634 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1635 "active!\n", tty_name(tty, buf));
1636 unlock_kernel();
1637 mutex_unlock(&tty_mutex);
1638 schedule();
1642 * The closing flags are now consistent with the open counts on
1643 * both sides, and we've completed the last operation that could
1644 * block, so it's safe to proceed with closing.
1646 if (pty_master) {
1647 if (--o_tty->count < 0) {
1648 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1649 "(%d) for %s\n",
1650 o_tty->count, tty_name(o_tty, buf));
1651 o_tty->count = 0;
1654 if (--tty->count < 0) {
1655 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1656 tty->count, tty_name(tty, buf));
1657 tty->count = 0;
1661 * We've decremented tty->count, so we need to remove this file
1662 * descriptor off the tty->tty_files list; this serves two
1663 * purposes:
1664 * - check_tty_count sees the correct number of file descriptors
1665 * associated with this tty.
1666 * - do_tty_hangup no longer sees this file descriptor as
1667 * something that needs to be handled for hangups.
1669 file_kill(filp);
1670 filp->private_data = NULL;
1673 * Perform some housekeeping before deciding whether to return.
1675 * Set the TTY_CLOSING flag if this was the last open. In the
1676 * case of a pty we may have to wait around for the other side
1677 * to close, and TTY_CLOSING makes sure we can't be reopened.
1679 if (tty_closing)
1680 set_bit(TTY_CLOSING, &tty->flags);
1681 if (o_tty_closing)
1682 set_bit(TTY_CLOSING, &o_tty->flags);
1685 * If _either_ side is closing, make sure there aren't any
1686 * processes that still think tty or o_tty is their controlling
1687 * tty.
1689 if (tty_closing || o_tty_closing) {
1690 read_lock(&tasklist_lock);
1691 session_clear_tty(tty->session);
1692 if (o_tty)
1693 session_clear_tty(o_tty->session);
1694 read_unlock(&tasklist_lock);
1697 mutex_unlock(&tty_mutex);
1699 /* check whether both sides are closing ... */
1700 if (!tty_closing || (o_tty && !o_tty_closing)) {
1701 unlock_kernel();
1702 return 0;
1705 #ifdef TTY_DEBUG_HANGUP
1706 printk(KERN_DEBUG "freeing tty structure...");
1707 #endif
1709 * Ask the line discipline code to release its structures
1711 tty_ldisc_release(tty, o_tty);
1713 * The release_tty function takes care of the details of clearing
1714 * the slots and preserving the termios structure.
1716 release_tty(tty, idx);
1718 /* Make this pty number available for reallocation */
1719 if (devpts)
1720 devpts_kill_index(inode, idx);
1721 unlock_kernel();
1722 return 0;
1726 * tty_open - open a tty device
1727 * @inode: inode of device file
1728 * @filp: file pointer to tty
1730 * tty_open and tty_release keep up the tty count that contains the
1731 * number of opens done on a tty. We cannot use the inode-count, as
1732 * different inodes might point to the same tty.
1734 * Open-counting is needed for pty masters, as well as for keeping
1735 * track of serial lines: DTR is dropped when the last close happens.
1736 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1738 * The termios state of a pty is reset on first open so that
1739 * settings don't persist across reuse.
1741 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1742 * tty->count should protect the rest.
1743 * ->siglock protects ->signal/->sighand
1746 static int tty_open(struct inode *inode, struct file *filp)
1748 struct tty_struct *tty = NULL;
1749 int noctty, retval;
1750 struct tty_driver *driver;
1751 int index;
1752 dev_t device = inode->i_rdev;
1753 unsigned saved_flags = filp->f_flags;
1755 nonseekable_open(inode, filp);
1757 retry_open:
1758 noctty = filp->f_flags & O_NOCTTY;
1759 index = -1;
1760 retval = 0;
1762 mutex_lock(&tty_mutex);
1763 lock_kernel();
1765 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1766 tty = get_current_tty();
1767 if (!tty) {
1768 unlock_kernel();
1769 mutex_unlock(&tty_mutex);
1770 return -ENXIO;
1772 driver = tty_driver_kref_get(tty->driver);
1773 index = tty->index;
1774 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1775 /* noctty = 1; */
1776 /* FIXME: Should we take a driver reference ? */
1777 tty_kref_put(tty);
1778 goto got_driver;
1780 #ifdef CONFIG_VT
1781 if (device == MKDEV(TTY_MAJOR, 0)) {
1782 extern struct tty_driver *console_driver;
1783 driver = tty_driver_kref_get(console_driver);
1784 index = fg_console;
1785 noctty = 1;
1786 goto got_driver;
1788 #endif
1789 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1790 struct tty_driver *console_driver = console_device(&index);
1791 if (console_driver) {
1792 driver = tty_driver_kref_get(console_driver);
1793 if (driver) {
1794 /* Don't let /dev/console block */
1795 filp->f_flags |= O_NONBLOCK;
1796 noctty = 1;
1797 goto got_driver;
1800 unlock_kernel();
1801 mutex_unlock(&tty_mutex);
1802 return -ENODEV;
1805 driver = get_tty_driver(device, &index);
1806 if (!driver) {
1807 unlock_kernel();
1808 mutex_unlock(&tty_mutex);
1809 return -ENODEV;
1811 got_driver:
1812 if (!tty) {
1813 /* check whether we're reopening an existing tty */
1814 tty = tty_driver_lookup_tty(driver, inode, index);
1816 if (IS_ERR(tty)) {
1817 unlock_kernel();
1818 mutex_unlock(&tty_mutex);
1819 return PTR_ERR(tty);
1823 if (tty) {
1824 retval = tty_reopen(tty);
1825 if (retval)
1826 tty = ERR_PTR(retval);
1827 } else
1828 tty = tty_init_dev(driver, index, 0);
1830 mutex_unlock(&tty_mutex);
1831 tty_driver_kref_put(driver);
1832 if (IS_ERR(tty)) {
1833 unlock_kernel();
1834 return PTR_ERR(tty);
1837 filp->private_data = tty;
1838 file_move(filp, &tty->tty_files);
1839 check_tty_count(tty, "tty_open");
1840 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1841 tty->driver->subtype == PTY_TYPE_MASTER)
1842 noctty = 1;
1843 #ifdef TTY_DEBUG_HANGUP
1844 printk(KERN_DEBUG "opening %s...", tty->name);
1845 #endif
1846 if (!retval) {
1847 if (tty->ops->open)
1848 retval = tty->ops->open(tty, filp);
1849 else
1850 retval = -ENODEV;
1852 filp->f_flags = saved_flags;
1854 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1855 !capable(CAP_SYS_ADMIN))
1856 retval = -EBUSY;
1858 if (retval) {
1859 #ifdef TTY_DEBUG_HANGUP
1860 printk(KERN_DEBUG "error %d in opening %s...", retval,
1861 tty->name);
1862 #endif
1863 tty_release(inode, filp);
1864 if (retval != -ERESTARTSYS) {
1865 unlock_kernel();
1866 return retval;
1868 if (signal_pending(current)) {
1869 unlock_kernel();
1870 return retval;
1872 schedule();
1874 * Need to reset f_op in case a hangup happened.
1876 if (filp->f_op == &hung_up_tty_fops)
1877 filp->f_op = &tty_fops;
1878 unlock_kernel();
1879 goto retry_open;
1881 unlock_kernel();
1884 mutex_lock(&tty_mutex);
1885 lock_kernel();
1886 spin_lock_irq(&current->sighand->siglock);
1887 if (!noctty &&
1888 current->signal->leader &&
1889 !current->signal->tty &&
1890 tty->session == NULL)
1891 __proc_set_tty(current, tty);
1892 spin_unlock_irq(&current->sighand->siglock);
1893 unlock_kernel();
1894 mutex_unlock(&tty_mutex);
1895 return 0;
1901 * tty_poll - check tty status
1902 * @filp: file being polled
1903 * @wait: poll wait structures to update
1905 * Call the line discipline polling method to obtain the poll
1906 * status of the device.
1908 * Locking: locks called line discipline but ldisc poll method
1909 * may be re-entered freely by other callers.
1912 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1914 struct tty_struct *tty;
1915 struct tty_ldisc *ld;
1916 int ret = 0;
1918 tty = (struct tty_struct *)filp->private_data;
1919 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1920 return 0;
1922 ld = tty_ldisc_ref_wait(tty);
1923 if (ld->ops->poll)
1924 ret = (ld->ops->poll)(tty, filp, wait);
1925 tty_ldisc_deref(ld);
1926 return ret;
1929 static int tty_fasync(int fd, struct file *filp, int on)
1931 struct tty_struct *tty;
1932 unsigned long flags;
1933 int retval = 0;
1935 lock_kernel();
1936 tty = (struct tty_struct *)filp->private_data;
1937 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1938 goto out;
1940 retval = fasync_helper(fd, filp, on, &tty->fasync);
1941 if (retval <= 0)
1942 goto out;
1944 if (on) {
1945 enum pid_type type;
1946 struct pid *pid;
1947 if (!waitqueue_active(&tty->read_wait))
1948 tty->minimum_to_wake = 1;
1949 spin_lock_irqsave(&tty->ctrl_lock, flags);
1950 if (tty->pgrp) {
1951 pid = tty->pgrp;
1952 type = PIDTYPE_PGID;
1953 } else {
1954 pid = task_pid(current);
1955 type = PIDTYPE_PID;
1957 get_pid(pid);
1958 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1959 retval = __f_setown(filp, pid, type, 0);
1960 put_pid(pid);
1961 if (retval)
1962 goto out;
1963 } else {
1964 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1965 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1967 retval = 0;
1968 out:
1969 unlock_kernel();
1970 return retval;
1974 * tiocsti - fake input character
1975 * @tty: tty to fake input into
1976 * @p: pointer to character
1978 * Fake input to a tty device. Does the necessary locking and
1979 * input management.
1981 * FIXME: does not honour flow control ??
1983 * Locking:
1984 * Called functions take tty_ldisc_lock
1985 * current->signal->tty check is safe without locks
1987 * FIXME: may race normal receive processing
1990 static int tiocsti(struct tty_struct *tty, char __user *p)
1992 char ch, mbz = 0;
1993 struct tty_ldisc *ld;
1995 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1996 return -EPERM;
1997 if (get_user(ch, p))
1998 return -EFAULT;
1999 tty_audit_tiocsti(tty, ch);
2000 ld = tty_ldisc_ref_wait(tty);
2001 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2002 tty_ldisc_deref(ld);
2003 return 0;
2007 * tiocgwinsz - implement window query ioctl
2008 * @tty; tty
2009 * @arg: user buffer for result
2011 * Copies the kernel idea of the window size into the user buffer.
2013 * Locking: tty->termios_mutex is taken to ensure the winsize data
2014 * is consistent.
2017 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2019 int err;
2021 mutex_lock(&tty->termios_mutex);
2022 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2023 mutex_unlock(&tty->termios_mutex);
2025 return err ? -EFAULT: 0;
2029 * tty_do_resize - resize event
2030 * @tty: tty being resized
2031 * @rows: rows (character)
2032 * @cols: cols (character)
2034 * Update the termios variables and send the necessary signals to
2035 * peform a terminal resize correctly
2038 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2040 struct pid *pgrp;
2041 unsigned long flags;
2043 /* Lock the tty */
2044 mutex_lock(&tty->termios_mutex);
2045 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2046 goto done;
2047 /* Get the PID values and reference them so we can
2048 avoid holding the tty ctrl lock while sending signals */
2049 spin_lock_irqsave(&tty->ctrl_lock, flags);
2050 pgrp = get_pid(tty->pgrp);
2051 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2053 if (pgrp)
2054 kill_pgrp(pgrp, SIGWINCH, 1);
2055 put_pid(pgrp);
2057 tty->winsize = *ws;
2058 done:
2059 mutex_unlock(&tty->termios_mutex);
2060 return 0;
2064 * tiocswinsz - implement window size set ioctl
2065 * @tty; tty side of tty
2066 * @arg: user buffer for result
2068 * Copies the user idea of the window size to the kernel. Traditionally
2069 * this is just advisory information but for the Linux console it
2070 * actually has driver level meaning and triggers a VC resize.
2072 * Locking:
2073 * Driver dependant. The default do_resize method takes the
2074 * tty termios mutex and ctrl_lock. The console takes its own lock
2075 * then calls into the default method.
2078 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2080 struct winsize tmp_ws;
2081 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2082 return -EFAULT;
2084 if (tty->ops->resize)
2085 return tty->ops->resize(tty, &tmp_ws);
2086 else
2087 return tty_do_resize(tty, &tmp_ws);
2091 * tioccons - allow admin to move logical console
2092 * @file: the file to become console
2094 * Allow the adminstrator to move the redirected console device
2096 * Locking: uses redirect_lock to guard the redirect information
2099 static int tioccons(struct file *file)
2101 if (!capable(CAP_SYS_ADMIN))
2102 return -EPERM;
2103 if (file->f_op->write == redirected_tty_write) {
2104 struct file *f;
2105 spin_lock(&redirect_lock);
2106 f = redirect;
2107 redirect = NULL;
2108 spin_unlock(&redirect_lock);
2109 if (f)
2110 fput(f);
2111 return 0;
2113 spin_lock(&redirect_lock);
2114 if (redirect) {
2115 spin_unlock(&redirect_lock);
2116 return -EBUSY;
2118 get_file(file);
2119 redirect = file;
2120 spin_unlock(&redirect_lock);
2121 return 0;
2125 * fionbio - non blocking ioctl
2126 * @file: file to set blocking value
2127 * @p: user parameter
2129 * Historical tty interfaces had a blocking control ioctl before
2130 * the generic functionality existed. This piece of history is preserved
2131 * in the expected tty API of posix OS's.
2133 * Locking: none, the open file handle ensures it won't go away.
2136 static int fionbio(struct file *file, int __user *p)
2138 int nonblock;
2140 if (get_user(nonblock, p))
2141 return -EFAULT;
2143 spin_lock(&file->f_lock);
2144 if (nonblock)
2145 file->f_flags |= O_NONBLOCK;
2146 else
2147 file->f_flags &= ~O_NONBLOCK;
2148 spin_unlock(&file->f_lock);
2149 return 0;
2153 * tiocsctty - set controlling tty
2154 * @tty: tty structure
2155 * @arg: user argument
2157 * This ioctl is used to manage job control. It permits a session
2158 * leader to set this tty as the controlling tty for the session.
2160 * Locking:
2161 * Takes tty_mutex() to protect tty instance
2162 * Takes tasklist_lock internally to walk sessions
2163 * Takes ->siglock() when updating signal->tty
2166 static int tiocsctty(struct tty_struct *tty, int arg)
2168 int ret = 0;
2169 if (current->signal->leader && (task_session(current) == tty->session))
2170 return ret;
2172 mutex_lock(&tty_mutex);
2174 * The process must be a session leader and
2175 * not have a controlling tty already.
2177 if (!current->signal->leader || current->signal->tty) {
2178 ret = -EPERM;
2179 goto unlock;
2182 if (tty->session) {
2184 * This tty is already the controlling
2185 * tty for another session group!
2187 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2189 * Steal it away
2191 read_lock(&tasklist_lock);
2192 session_clear_tty(tty->session);
2193 read_unlock(&tasklist_lock);
2194 } else {
2195 ret = -EPERM;
2196 goto unlock;
2199 proc_set_tty(current, tty);
2200 unlock:
2201 mutex_unlock(&tty_mutex);
2202 return ret;
2206 * tty_get_pgrp - return a ref counted pgrp pid
2207 * @tty: tty to read
2209 * Returns a refcounted instance of the pid struct for the process
2210 * group controlling the tty.
2213 struct pid *tty_get_pgrp(struct tty_struct *tty)
2215 unsigned long flags;
2216 struct pid *pgrp;
2218 spin_lock_irqsave(&tty->ctrl_lock, flags);
2219 pgrp = get_pid(tty->pgrp);
2220 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2222 return pgrp;
2224 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2227 * tiocgpgrp - get process group
2228 * @tty: tty passed by user
2229 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2230 * @p: returned pid
2232 * Obtain the process group of the tty. If there is no process group
2233 * return an error.
2235 * Locking: none. Reference to current->signal->tty is safe.
2238 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2240 struct pid *pid;
2241 int ret;
2243 * (tty == real_tty) is a cheap way of
2244 * testing if the tty is NOT a master pty.
2246 if (tty == real_tty && current->signal->tty != real_tty)
2247 return -ENOTTY;
2248 pid = tty_get_pgrp(real_tty);
2249 ret = put_user(pid_vnr(pid), p);
2250 put_pid(pid);
2251 return ret;
2255 * tiocspgrp - attempt to set process group
2256 * @tty: tty passed by user
2257 * @real_tty: tty side device matching tty passed by user
2258 * @p: pid pointer
2260 * Set the process group of the tty to the session passed. Only
2261 * permitted where the tty session is our session.
2263 * Locking: RCU, ctrl lock
2266 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2268 struct pid *pgrp;
2269 pid_t pgrp_nr;
2270 int retval = tty_check_change(real_tty);
2271 unsigned long flags;
2273 if (retval == -EIO)
2274 return -ENOTTY;
2275 if (retval)
2276 return retval;
2277 if (!current->signal->tty ||
2278 (current->signal->tty != real_tty) ||
2279 (real_tty->session != task_session(current)))
2280 return -ENOTTY;
2281 if (get_user(pgrp_nr, p))
2282 return -EFAULT;
2283 if (pgrp_nr < 0)
2284 return -EINVAL;
2285 rcu_read_lock();
2286 pgrp = find_vpid(pgrp_nr);
2287 retval = -ESRCH;
2288 if (!pgrp)
2289 goto out_unlock;
2290 retval = -EPERM;
2291 if (session_of_pgrp(pgrp) != task_session(current))
2292 goto out_unlock;
2293 retval = 0;
2294 spin_lock_irqsave(&tty->ctrl_lock, flags);
2295 put_pid(real_tty->pgrp);
2296 real_tty->pgrp = get_pid(pgrp);
2297 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2298 out_unlock:
2299 rcu_read_unlock();
2300 return retval;
2304 * tiocgsid - get session id
2305 * @tty: tty passed by user
2306 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2307 * @p: pointer to returned session id
2309 * Obtain the session id of the tty. If there is no session
2310 * return an error.
2312 * Locking: none. Reference to current->signal->tty is safe.
2315 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2318 * (tty == real_tty) is a cheap way of
2319 * testing if the tty is NOT a master pty.
2321 if (tty == real_tty && current->signal->tty != real_tty)
2322 return -ENOTTY;
2323 if (!real_tty->session)
2324 return -ENOTTY;
2325 return put_user(pid_vnr(real_tty->session), p);
2329 * tiocsetd - set line discipline
2330 * @tty: tty device
2331 * @p: pointer to user data
2333 * Set the line discipline according to user request.
2335 * Locking: see tty_set_ldisc, this function is just a helper
2338 static int tiocsetd(struct tty_struct *tty, int __user *p)
2340 int ldisc;
2341 int ret;
2343 if (get_user(ldisc, p))
2344 return -EFAULT;
2346 ret = tty_set_ldisc(tty, ldisc);
2348 return ret;
2352 * send_break - performed time break
2353 * @tty: device to break on
2354 * @duration: timeout in mS
2356 * Perform a timed break on hardware that lacks its own driver level
2357 * timed break functionality.
2359 * Locking:
2360 * atomic_write_lock serializes
2364 static int send_break(struct tty_struct *tty, unsigned int duration)
2366 int retval;
2368 if (tty->ops->break_ctl == NULL)
2369 return 0;
2371 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2372 retval = tty->ops->break_ctl(tty, duration);
2373 else {
2374 /* Do the work ourselves */
2375 if (tty_write_lock(tty, 0) < 0)
2376 return -EINTR;
2377 retval = tty->ops->break_ctl(tty, -1);
2378 if (retval)
2379 goto out;
2380 if (!signal_pending(current))
2381 msleep_interruptible(duration);
2382 retval = tty->ops->break_ctl(tty, 0);
2383 out:
2384 tty_write_unlock(tty);
2385 if (signal_pending(current))
2386 retval = -EINTR;
2388 return retval;
2392 * tty_tiocmget - get modem status
2393 * @tty: tty device
2394 * @file: user file pointer
2395 * @p: pointer to result
2397 * Obtain the modem status bits from the tty driver if the feature
2398 * is supported. Return -EINVAL if it is not available.
2400 * Locking: none (up to the driver)
2403 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2405 int retval = -EINVAL;
2407 if (tty->ops->tiocmget) {
2408 retval = tty->ops->tiocmget(tty, file);
2410 if (retval >= 0)
2411 retval = put_user(retval, p);
2413 return retval;
2417 * tty_tiocmset - set modem status
2418 * @tty: tty device
2419 * @file: user file pointer
2420 * @cmd: command - clear bits, set bits or set all
2421 * @p: pointer to desired bits
2423 * Set the modem status bits from the tty driver if the feature
2424 * is supported. Return -EINVAL if it is not available.
2426 * Locking: none (up to the driver)
2429 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2430 unsigned __user *p)
2432 int retval;
2433 unsigned int set, clear, val;
2435 if (tty->ops->tiocmset == NULL)
2436 return -EINVAL;
2438 retval = get_user(val, p);
2439 if (retval)
2440 return retval;
2441 set = clear = 0;
2442 switch (cmd) {
2443 case TIOCMBIS:
2444 set = val;
2445 break;
2446 case TIOCMBIC:
2447 clear = val;
2448 break;
2449 case TIOCMSET:
2450 set = val;
2451 clear = ~val;
2452 break;
2454 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2455 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2456 return tty->ops->tiocmset(tty, file, set, clear);
2459 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2461 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2462 tty->driver->subtype == PTY_TYPE_MASTER)
2463 tty = tty->link;
2464 return tty;
2466 EXPORT_SYMBOL(tty_pair_get_tty);
2468 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2470 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2471 tty->driver->subtype == PTY_TYPE_MASTER)
2472 return tty;
2473 return tty->link;
2475 EXPORT_SYMBOL(tty_pair_get_pty);
2478 * Split this up, as gcc can choke on it otherwise..
2480 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2482 struct tty_struct *tty, *real_tty;
2483 void __user *p = (void __user *)arg;
2484 int retval;
2485 struct tty_ldisc *ld;
2486 struct inode *inode = file->f_dentry->d_inode;
2488 tty = (struct tty_struct *)file->private_data;
2489 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2490 return -EINVAL;
2492 real_tty = tty_pair_get_tty(tty);
2495 * Factor out some common prep work
2497 switch (cmd) {
2498 case TIOCSETD:
2499 case TIOCSBRK:
2500 case TIOCCBRK:
2501 case TCSBRK:
2502 case TCSBRKP:
2503 retval = tty_check_change(tty);
2504 if (retval)
2505 return retval;
2506 if (cmd != TIOCCBRK) {
2507 tty_wait_until_sent(tty, 0);
2508 if (signal_pending(current))
2509 return -EINTR;
2511 break;
2515 * Now do the stuff.
2517 switch (cmd) {
2518 case TIOCSTI:
2519 return tiocsti(tty, p);
2520 case TIOCGWINSZ:
2521 return tiocgwinsz(real_tty, p);
2522 case TIOCSWINSZ:
2523 return tiocswinsz(real_tty, p);
2524 case TIOCCONS:
2525 return real_tty != tty ? -EINVAL : tioccons(file);
2526 case FIONBIO:
2527 return fionbio(file, p);
2528 case TIOCEXCL:
2529 set_bit(TTY_EXCLUSIVE, &tty->flags);
2530 return 0;
2531 case TIOCNXCL:
2532 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2533 return 0;
2534 case TIOCNOTTY:
2535 if (current->signal->tty != tty)
2536 return -ENOTTY;
2537 no_tty();
2538 return 0;
2539 case TIOCSCTTY:
2540 return tiocsctty(tty, arg);
2541 case TIOCGPGRP:
2542 return tiocgpgrp(tty, real_tty, p);
2543 case TIOCSPGRP:
2544 return tiocspgrp(tty, real_tty, p);
2545 case TIOCGSID:
2546 return tiocgsid(tty, real_tty, p);
2547 case TIOCGETD:
2548 return put_user(tty->ldisc->ops->num, (int __user *)p);
2549 case TIOCSETD:
2550 return tiocsetd(tty, p);
2552 * Break handling
2554 case TIOCSBRK: /* Turn break on, unconditionally */
2555 if (tty->ops->break_ctl)
2556 return tty->ops->break_ctl(tty, -1);
2557 return 0;
2558 case TIOCCBRK: /* Turn break off, unconditionally */
2559 if (tty->ops->break_ctl)
2560 return tty->ops->break_ctl(tty, 0);
2561 return 0;
2562 case TCSBRK: /* SVID version: non-zero arg --> no break */
2563 /* non-zero arg means wait for all output data
2564 * to be sent (performed above) but don't send break.
2565 * This is used by the tcdrain() termios function.
2567 if (!arg)
2568 return send_break(tty, 250);
2569 return 0;
2570 case TCSBRKP: /* support for POSIX tcsendbreak() */
2571 return send_break(tty, arg ? arg*100 : 250);
2573 case TIOCMGET:
2574 return tty_tiocmget(tty, file, p);
2575 case TIOCMSET:
2576 case TIOCMBIC:
2577 case TIOCMBIS:
2578 return tty_tiocmset(tty, file, cmd, p);
2579 case TCFLSH:
2580 switch (arg) {
2581 case TCIFLUSH:
2582 case TCIOFLUSH:
2583 /* flush tty buffer and allow ldisc to process ioctl */
2584 tty_buffer_flush(tty);
2585 break;
2587 break;
2589 if (tty->ops->ioctl) {
2590 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2591 if (retval != -ENOIOCTLCMD)
2592 return retval;
2594 ld = tty_ldisc_ref_wait(tty);
2595 retval = -EINVAL;
2596 if (ld->ops->ioctl) {
2597 retval = ld->ops->ioctl(tty, file, cmd, arg);
2598 if (retval == -ENOIOCTLCMD)
2599 retval = -EINVAL;
2601 tty_ldisc_deref(ld);
2602 return retval;
2605 #ifdef CONFIG_COMPAT
2606 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2607 unsigned long arg)
2609 struct inode *inode = file->f_dentry->d_inode;
2610 struct tty_struct *tty = file->private_data;
2611 struct tty_ldisc *ld;
2612 int retval = -ENOIOCTLCMD;
2614 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2615 return -EINVAL;
2617 if (tty->ops->compat_ioctl) {
2618 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2619 if (retval != -ENOIOCTLCMD)
2620 return retval;
2623 ld = tty_ldisc_ref_wait(tty);
2624 if (ld->ops->compat_ioctl)
2625 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2626 tty_ldisc_deref(ld);
2628 return retval;
2630 #endif
2633 * This implements the "Secure Attention Key" --- the idea is to
2634 * prevent trojan horses by killing all processes associated with this
2635 * tty when the user hits the "Secure Attention Key". Required for
2636 * super-paranoid applications --- see the Orange Book for more details.
2638 * This code could be nicer; ideally it should send a HUP, wait a few
2639 * seconds, then send a INT, and then a KILL signal. But you then
2640 * have to coordinate with the init process, since all processes associated
2641 * with the current tty must be dead before the new getty is allowed
2642 * to spawn.
2644 * Now, if it would be correct ;-/ The current code has a nasty hole -
2645 * it doesn't catch files in flight. We may send the descriptor to ourselves
2646 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2648 * Nasty bug: do_SAK is being called in interrupt context. This can
2649 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2651 void __do_SAK(struct tty_struct *tty)
2653 #ifdef TTY_SOFT_SAK
2654 tty_hangup(tty);
2655 #else
2656 struct task_struct *g, *p;
2657 struct pid *session;
2658 int i;
2659 struct file *filp;
2660 struct fdtable *fdt;
2662 if (!tty)
2663 return;
2664 session = tty->session;
2666 tty_ldisc_flush(tty);
2668 tty_driver_flush_buffer(tty);
2670 read_lock(&tasklist_lock);
2671 /* Kill the entire session */
2672 do_each_pid_task(session, PIDTYPE_SID, p) {
2673 printk(KERN_NOTICE "SAK: killed process %d"
2674 " (%s): task_session(p)==tty->session\n",
2675 task_pid_nr(p), p->comm);
2676 send_sig(SIGKILL, p, 1);
2677 } while_each_pid_task(session, PIDTYPE_SID, p);
2678 /* Now kill any processes that happen to have the
2679 * tty open.
2681 do_each_thread(g, p) {
2682 if (p->signal->tty == tty) {
2683 printk(KERN_NOTICE "SAK: killed process %d"
2684 " (%s): task_session(p)==tty->session\n",
2685 task_pid_nr(p), p->comm);
2686 send_sig(SIGKILL, p, 1);
2687 continue;
2689 task_lock(p);
2690 if (p->files) {
2692 * We don't take a ref to the file, so we must
2693 * hold ->file_lock instead.
2695 spin_lock(&p->files->file_lock);
2696 fdt = files_fdtable(p->files);
2697 for (i = 0; i < fdt->max_fds; i++) {
2698 filp = fcheck_files(p->files, i);
2699 if (!filp)
2700 continue;
2701 if (filp->f_op->read == tty_read &&
2702 filp->private_data == tty) {
2703 printk(KERN_NOTICE "SAK: killed process %d"
2704 " (%s): fd#%d opened to the tty\n",
2705 task_pid_nr(p), p->comm, i);
2706 force_sig(SIGKILL, p);
2707 break;
2710 spin_unlock(&p->files->file_lock);
2712 task_unlock(p);
2713 } while_each_thread(g, p);
2714 read_unlock(&tasklist_lock);
2715 #endif
2718 static void do_SAK_work(struct work_struct *work)
2720 struct tty_struct *tty =
2721 container_of(work, struct tty_struct, SAK_work);
2722 __do_SAK(tty);
2726 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2727 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2728 * the values which we write to it will be identical to the values which it
2729 * already has. --akpm
2731 void do_SAK(struct tty_struct *tty)
2733 if (!tty)
2734 return;
2735 schedule_work(&tty->SAK_work);
2738 EXPORT_SYMBOL(do_SAK);
2741 * initialize_tty_struct
2742 * @tty: tty to initialize
2744 * This subroutine initializes a tty structure that has been newly
2745 * allocated.
2747 * Locking: none - tty in question must not be exposed at this point
2750 void initialize_tty_struct(struct tty_struct *tty,
2751 struct tty_driver *driver, int idx)
2753 memset(tty, 0, sizeof(struct tty_struct));
2754 kref_init(&tty->kref);
2755 tty->magic = TTY_MAGIC;
2756 tty_ldisc_init(tty);
2757 tty->session = NULL;
2758 tty->pgrp = NULL;
2759 tty->overrun_time = jiffies;
2760 tty->buf.head = tty->buf.tail = NULL;
2761 tty_buffer_init(tty);
2762 mutex_init(&tty->termios_mutex);
2763 mutex_init(&tty->ldisc_mutex);
2764 init_waitqueue_head(&tty->write_wait);
2765 init_waitqueue_head(&tty->read_wait);
2766 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2767 mutex_init(&tty->atomic_read_lock);
2768 mutex_init(&tty->atomic_write_lock);
2769 mutex_init(&tty->output_lock);
2770 mutex_init(&tty->echo_lock);
2771 spin_lock_init(&tty->read_lock);
2772 spin_lock_init(&tty->ctrl_lock);
2773 INIT_LIST_HEAD(&tty->tty_files);
2774 INIT_WORK(&tty->SAK_work, do_SAK_work);
2776 tty->driver = driver;
2777 tty->ops = driver->ops;
2778 tty->index = idx;
2779 tty_line_name(driver, idx, tty->name);
2783 * tty_put_char - write one character to a tty
2784 * @tty: tty
2785 * @ch: character
2787 * Write one byte to the tty using the provided put_char method
2788 * if present. Returns the number of characters successfully output.
2790 * Note: the specific put_char operation in the driver layer may go
2791 * away soon. Don't call it directly, use this method
2794 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2796 if (tty->ops->put_char)
2797 return tty->ops->put_char(tty, ch);
2798 return tty->ops->write(tty, &ch, 1);
2800 EXPORT_SYMBOL_GPL(tty_put_char);
2802 struct class *tty_class;
2805 * tty_register_device - register a tty device
2806 * @driver: the tty driver that describes the tty device
2807 * @index: the index in the tty driver for this tty device
2808 * @device: a struct device that is associated with this tty device.
2809 * This field is optional, if there is no known struct device
2810 * for this tty device it can be set to NULL safely.
2812 * Returns a pointer to the struct device for this tty device
2813 * (or ERR_PTR(-EFOO) on error).
2815 * This call is required to be made to register an individual tty device
2816 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2817 * that bit is not set, this function should not be called by a tty
2818 * driver.
2820 * Locking: ??
2823 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2824 struct device *device)
2826 char name[64];
2827 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2829 if (index >= driver->num) {
2830 printk(KERN_ERR "Attempt to register invalid tty line number "
2831 " (%d).\n", index);
2832 return ERR_PTR(-EINVAL);
2835 if (driver->type == TTY_DRIVER_TYPE_PTY)
2836 pty_line_name(driver, index, name);
2837 else
2838 tty_line_name(driver, index, name);
2840 return device_create(tty_class, device, dev, NULL, name);
2842 EXPORT_SYMBOL(tty_register_device);
2845 * tty_unregister_device - unregister a tty device
2846 * @driver: the tty driver that describes the tty device
2847 * @index: the index in the tty driver for this tty device
2849 * If a tty device is registered with a call to tty_register_device() then
2850 * this function must be called when the tty device is gone.
2852 * Locking: ??
2855 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2857 device_destroy(tty_class,
2858 MKDEV(driver->major, driver->minor_start) + index);
2860 EXPORT_SYMBOL(tty_unregister_device);
2862 struct tty_driver *alloc_tty_driver(int lines)
2864 struct tty_driver *driver;
2866 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2867 if (driver) {
2868 kref_init(&driver->kref);
2869 driver->magic = TTY_DRIVER_MAGIC;
2870 driver->num = lines;
2871 /* later we'll move allocation of tables here */
2873 return driver;
2875 EXPORT_SYMBOL(alloc_tty_driver);
2877 static void destruct_tty_driver(struct kref *kref)
2879 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2880 int i;
2881 struct ktermios *tp;
2882 void *p;
2884 if (driver->flags & TTY_DRIVER_INSTALLED) {
2886 * Free the termios and termios_locked structures because
2887 * we don't want to get memory leaks when modular tty
2888 * drivers are removed from the kernel.
2890 for (i = 0; i < driver->num; i++) {
2891 tp = driver->termios[i];
2892 if (tp) {
2893 driver->termios[i] = NULL;
2894 kfree(tp);
2896 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2897 tty_unregister_device(driver, i);
2899 p = driver->ttys;
2900 proc_tty_unregister_driver(driver);
2901 driver->ttys = NULL;
2902 driver->termios = NULL;
2903 kfree(p);
2904 cdev_del(&driver->cdev);
2906 kfree(driver);
2909 void tty_driver_kref_put(struct tty_driver *driver)
2911 kref_put(&driver->kref, destruct_tty_driver);
2913 EXPORT_SYMBOL(tty_driver_kref_put);
2915 void tty_set_operations(struct tty_driver *driver,
2916 const struct tty_operations *op)
2918 driver->ops = op;
2920 EXPORT_SYMBOL(tty_set_operations);
2922 void put_tty_driver(struct tty_driver *d)
2924 tty_driver_kref_put(d);
2926 EXPORT_SYMBOL(put_tty_driver);
2929 * Called by a tty driver to register itself.
2931 int tty_register_driver(struct tty_driver *driver)
2933 int error;
2934 int i;
2935 dev_t dev;
2936 void **p = NULL;
2938 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2939 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2940 if (!p)
2941 return -ENOMEM;
2944 if (!driver->major) {
2945 error = alloc_chrdev_region(&dev, driver->minor_start,
2946 driver->num, driver->name);
2947 if (!error) {
2948 driver->major = MAJOR(dev);
2949 driver->minor_start = MINOR(dev);
2951 } else {
2952 dev = MKDEV(driver->major, driver->minor_start);
2953 error = register_chrdev_region(dev, driver->num, driver->name);
2955 if (error < 0) {
2956 kfree(p);
2957 return error;
2960 if (p) {
2961 driver->ttys = (struct tty_struct **)p;
2962 driver->termios = (struct ktermios **)(p + driver->num);
2963 } else {
2964 driver->ttys = NULL;
2965 driver->termios = NULL;
2968 cdev_init(&driver->cdev, &tty_fops);
2969 driver->cdev.owner = driver->owner;
2970 error = cdev_add(&driver->cdev, dev, driver->num);
2971 if (error) {
2972 unregister_chrdev_region(dev, driver->num);
2973 driver->ttys = NULL;
2974 driver->termios = NULL;
2975 kfree(p);
2976 return error;
2979 mutex_lock(&tty_mutex);
2980 list_add(&driver->tty_drivers, &tty_drivers);
2981 mutex_unlock(&tty_mutex);
2983 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2984 for (i = 0; i < driver->num; i++)
2985 tty_register_device(driver, i, NULL);
2987 proc_tty_register_driver(driver);
2988 driver->flags |= TTY_DRIVER_INSTALLED;
2989 return 0;
2992 EXPORT_SYMBOL(tty_register_driver);
2995 * Called by a tty driver to unregister itself.
2997 int tty_unregister_driver(struct tty_driver *driver)
2999 #if 0
3000 /* FIXME */
3001 if (driver->refcount)
3002 return -EBUSY;
3003 #endif
3004 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3005 driver->num);
3006 mutex_lock(&tty_mutex);
3007 list_del(&driver->tty_drivers);
3008 mutex_unlock(&tty_mutex);
3009 return 0;
3012 EXPORT_SYMBOL(tty_unregister_driver);
3014 dev_t tty_devnum(struct tty_struct *tty)
3016 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3018 EXPORT_SYMBOL(tty_devnum);
3020 void proc_clear_tty(struct task_struct *p)
3022 unsigned long flags;
3023 struct tty_struct *tty;
3024 spin_lock_irqsave(&p->sighand->siglock, flags);
3025 tty = p->signal->tty;
3026 p->signal->tty = NULL;
3027 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3028 tty_kref_put(tty);
3031 /* Called under the sighand lock */
3033 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3035 if (tty) {
3036 unsigned long flags;
3037 /* We should not have a session or pgrp to put here but.... */
3038 spin_lock_irqsave(&tty->ctrl_lock, flags);
3039 put_pid(tty->session);
3040 put_pid(tty->pgrp);
3041 tty->pgrp = get_pid(task_pgrp(tsk));
3042 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3043 tty->session = get_pid(task_session(tsk));
3044 if (tsk->signal->tty) {
3045 printk(KERN_DEBUG "tty not NULL!!\n");
3046 tty_kref_put(tsk->signal->tty);
3049 put_pid(tsk->signal->tty_old_pgrp);
3050 tsk->signal->tty = tty_kref_get(tty);
3051 tsk->signal->tty_old_pgrp = NULL;
3054 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3056 spin_lock_irq(&tsk->sighand->siglock);
3057 __proc_set_tty(tsk, tty);
3058 spin_unlock_irq(&tsk->sighand->siglock);
3061 struct tty_struct *get_current_tty(void)
3063 struct tty_struct *tty;
3064 unsigned long flags;
3066 spin_lock_irqsave(&current->sighand->siglock, flags);
3067 tty = tty_kref_get(current->signal->tty);
3068 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3069 return tty;
3071 EXPORT_SYMBOL_GPL(get_current_tty);
3073 void tty_default_fops(struct file_operations *fops)
3075 *fops = tty_fops;
3079 * Initialize the console device. This is called *early*, so
3080 * we can't necessarily depend on lots of kernel help here.
3081 * Just do some early initializations, and do the complex setup
3082 * later.
3084 void __init console_init(void)
3086 initcall_t *call;
3088 /* Setup the default TTY line discipline. */
3089 tty_ldisc_begin();
3092 * set up the console device so that later boot sequences can
3093 * inform about problems etc..
3095 call = __con_initcall_start;
3096 while (call < __con_initcall_end) {
3097 (*call)();
3098 call++;
3102 static char *tty_devnode(struct device *dev, mode_t *mode)
3104 if (!mode)
3105 return NULL;
3106 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3107 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3108 *mode = 0666;
3109 return NULL;
3112 static int __init tty_class_init(void)
3114 tty_class = class_create(THIS_MODULE, "tty");
3115 if (IS_ERR(tty_class))
3116 return PTR_ERR(tty_class);
3117 tty_class->devnode = tty_devnode;
3118 return 0;
3121 postcore_initcall(tty_class_init);
3123 /* 3/2004 jmc: why do these devices exist? */
3125 static struct cdev tty_cdev, console_cdev;
3128 * Ok, now we can initialize the rest of the tty devices and can count
3129 * on memory allocations, interrupts etc..
3131 static int __init tty_init(void)
3133 cdev_init(&tty_cdev, &tty_fops);
3134 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3135 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3136 panic("Couldn't register /dev/tty driver\n");
3137 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3138 "tty");
3140 cdev_init(&console_cdev, &console_fops);
3141 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3142 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3143 panic("Couldn't register /dev/console driver\n");
3144 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3145 "console");
3147 #ifdef CONFIG_VT
3148 vty_init(&console_fops);
3149 #endif
3150 return 0;
3152 module_init(tty_init);