fs/ecryptfs/file.c: introduce missing free
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / istallion.c
blob4e395c956a09f1c4c1a8f472b1caad9401fb4585
1 /*****************************************************************************/
3 /*
4 * istallion.c -- stallion intelligent multiport serial driver.
6 * Copyright (C) 1996-1999 Stallion Technologies
7 * Copyright (C) 1994-1996 Greg Ungerer.
9 * This code is loosely based on the Linux serial driver, written by
10 * Linus Torvalds, Theodore T'so and others.
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
19 /*****************************************************************************/
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/smp_lock.h>
25 #include <linux/interrupt.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial.h>
29 #include <linux/seq_file.h>
30 #include <linux/cdk.h>
31 #include <linux/comstats.h>
32 #include <linux/istallion.h>
33 #include <linux/ioport.h>
34 #include <linux/delay.h>
35 #include <linux/init.h>
36 #include <linux/device.h>
37 #include <linux/wait.h>
38 #include <linux/eisa.h>
39 #include <linux/ctype.h>
41 #include <asm/io.h>
42 #include <asm/uaccess.h>
44 #include <linux/pci.h>
46 /*****************************************************************************/
49 * Define different board types. Not all of the following board types
50 * are supported by this driver. But I will use the standard "assigned"
51 * board numbers. Currently supported boards are abbreviated as:
52 * ECP = EasyConnection 8/64, ONB = ONboard, BBY = Brumby and
53 * STAL = Stallion.
55 #define BRD_UNKNOWN 0
56 #define BRD_STALLION 1
57 #define BRD_BRUMBY4 2
58 #define BRD_ONBOARD2 3
59 #define BRD_ONBOARD 4
60 #define BRD_ONBOARDE 7
61 #define BRD_ECP 23
62 #define BRD_ECPE 24
63 #define BRD_ECPMC 25
64 #define BRD_ECPPCI 29
66 #define BRD_BRUMBY BRD_BRUMBY4
69 * Define a configuration structure to hold the board configuration.
70 * Need to set this up in the code (for now) with the boards that are
71 * to be configured into the system. This is what needs to be modified
72 * when adding/removing/modifying boards. Each line entry in the
73 * stli_brdconf[] array is a board. Each line contains io/irq/memory
74 * ranges for that board (as well as what type of board it is).
75 * Some examples:
76 * { BRD_ECP, 0x2a0, 0, 0xcc000, 0, 0 },
77 * This line will configure an EasyConnection 8/64 at io address 2a0,
78 * and shared memory address of cc000. Multiple EasyConnection 8/64
79 * boards can share the same shared memory address space. No interrupt
80 * is required for this board type.
81 * Another example:
82 * { BRD_ECPE, 0x5000, 0, 0x80000000, 0, 0 },
83 * This line will configure an EasyConnection 8/64 EISA in slot 5 and
84 * shared memory address of 0x80000000 (2 GByte). Multiple
85 * EasyConnection 8/64 EISA boards can share the same shared memory
86 * address space. No interrupt is required for this board type.
87 * Another example:
88 * { BRD_ONBOARD, 0x240, 0, 0xd0000, 0, 0 },
89 * This line will configure an ONboard (ISA type) at io address 240,
90 * and shared memory address of d0000. Multiple ONboards can share
91 * the same shared memory address space. No interrupt required.
92 * Another example:
93 * { BRD_BRUMBY4, 0x360, 0, 0xc8000, 0, 0 },
94 * This line will configure a Brumby board (any number of ports!) at
95 * io address 360 and shared memory address of c8000. All Brumby boards
96 * configured into a system must have their own separate io and memory
97 * addresses. No interrupt is required.
98 * Another example:
99 * { BRD_STALLION, 0x330, 0, 0xd0000, 0, 0 },
100 * This line will configure an original Stallion board at io address 330
101 * and shared memory address d0000 (this would only be valid for a "V4.0"
102 * or Rev.O Stallion board). All Stallion boards configured into the
103 * system must have their own separate io and memory addresses. No
104 * interrupt is required.
107 struct stlconf {
108 int brdtype;
109 int ioaddr1;
110 int ioaddr2;
111 unsigned long memaddr;
112 int irq;
113 int irqtype;
116 static unsigned int stli_nrbrds;
118 /* stli_lock must NOT be taken holding brd_lock */
119 static spinlock_t stli_lock; /* TTY logic lock */
120 static spinlock_t brd_lock; /* Board logic lock */
123 * There is some experimental EISA board detection code in this driver.
124 * By default it is disabled, but for those that want to try it out,
125 * then set the define below to be 1.
127 #define STLI_EISAPROBE 0
129 /*****************************************************************************/
132 * Define some important driver characteristics. Device major numbers
133 * allocated as per Linux Device Registry.
135 #ifndef STL_SIOMEMMAJOR
136 #define STL_SIOMEMMAJOR 28
137 #endif
138 #ifndef STL_SERIALMAJOR
139 #define STL_SERIALMAJOR 24
140 #endif
141 #ifndef STL_CALLOUTMAJOR
142 #define STL_CALLOUTMAJOR 25
143 #endif
145 /*****************************************************************************/
148 * Define our local driver identity first. Set up stuff to deal with
149 * all the local structures required by a serial tty driver.
151 static char *stli_drvtitle = "Stallion Intelligent Multiport Serial Driver";
152 static char *stli_drvname = "istallion";
153 static char *stli_drvversion = "5.6.0";
154 static char *stli_serialname = "ttyE";
156 static struct tty_driver *stli_serial;
157 static const struct tty_port_operations stli_port_ops;
159 #define STLI_TXBUFSIZE 4096
162 * Use a fast local buffer for cooked characters. Typically a whole
163 * bunch of cooked characters come in for a port, 1 at a time. So we
164 * save those up into a local buffer, then write out the whole lot
165 * with a large memcpy. Just use 1 buffer for all ports, since its
166 * use it is only need for short periods of time by each port.
168 static char *stli_txcookbuf;
169 static int stli_txcooksize;
170 static int stli_txcookrealsize;
171 static struct tty_struct *stli_txcooktty;
174 * Define a local default termios struct. All ports will be created
175 * with this termios initially. Basically all it defines is a raw port
176 * at 9600 baud, 8 data bits, no parity, 1 stop bit.
178 static struct ktermios stli_deftermios = {
179 .c_cflag = (B9600 | CS8 | CREAD | HUPCL | CLOCAL),
180 .c_cc = INIT_C_CC,
181 .c_ispeed = 9600,
182 .c_ospeed = 9600,
186 * Define global stats structures. Not used often, and can be
187 * re-used for each stats call.
189 static comstats_t stli_comstats;
190 static combrd_t stli_brdstats;
191 static struct asystats stli_cdkstats;
193 /*****************************************************************************/
195 static DEFINE_MUTEX(stli_brdslock);
196 static struct stlibrd *stli_brds[STL_MAXBRDS];
198 static int stli_shared;
201 * Per board state flags. Used with the state field of the board struct.
202 * Not really much here... All we need to do is keep track of whether
203 * the board has been detected, and whether it is actually running a slave
204 * or not.
206 #define BST_FOUND 0x1
207 #define BST_STARTED 0x2
208 #define BST_PROBED 0x4
211 * Define the set of port state flags. These are marked for internal
212 * state purposes only, usually to do with the state of communications
213 * with the slave. Most of them need to be updated atomically, so always
214 * use the bit setting operations (unless protected by cli/sti).
216 #define ST_OPENING 2
217 #define ST_CLOSING 3
218 #define ST_CMDING 4
219 #define ST_TXBUSY 5
220 #define ST_RXING 6
221 #define ST_DOFLUSHRX 7
222 #define ST_DOFLUSHTX 8
223 #define ST_DOSIGS 9
224 #define ST_RXSTOP 10
225 #define ST_GETSIGS 11
228 * Define an array of board names as printable strings. Handy for
229 * referencing boards when printing trace and stuff.
231 static char *stli_brdnames[] = {
232 "Unknown",
233 "Stallion",
234 "Brumby",
235 "ONboard-MC",
236 "ONboard",
237 "Brumby",
238 "Brumby",
239 "ONboard-EI",
240 NULL,
241 "ONboard",
242 "ONboard-MC",
243 "ONboard-MC",
244 NULL,
245 NULL,
246 NULL,
247 NULL,
248 NULL,
249 NULL,
250 NULL,
251 NULL,
252 "EasyIO",
253 "EC8/32-AT",
254 "EC8/32-MC",
255 "EC8/64-AT",
256 "EC8/64-EI",
257 "EC8/64-MC",
258 "EC8/32-PCI",
259 "EC8/64-PCI",
260 "EasyIO-PCI",
261 "EC/RA-PCI",
264 /*****************************************************************************/
267 * Define some string labels for arguments passed from the module
268 * load line. These allow for easy board definitions, and easy
269 * modification of the io, memory and irq resoucres.
272 static char *board0[8];
273 static char *board1[8];
274 static char *board2[8];
275 static char *board3[8];
277 static char **stli_brdsp[] = {
278 (char **) &board0,
279 (char **) &board1,
280 (char **) &board2,
281 (char **) &board3
285 * Define a set of common board names, and types. This is used to
286 * parse any module arguments.
289 static struct stlibrdtype {
290 char *name;
291 int type;
292 } stli_brdstr[] = {
293 { "stallion", BRD_STALLION },
294 { "1", BRD_STALLION },
295 { "brumby", BRD_BRUMBY },
296 { "brumby4", BRD_BRUMBY },
297 { "brumby/4", BRD_BRUMBY },
298 { "brumby-4", BRD_BRUMBY },
299 { "brumby8", BRD_BRUMBY },
300 { "brumby/8", BRD_BRUMBY },
301 { "brumby-8", BRD_BRUMBY },
302 { "brumby16", BRD_BRUMBY },
303 { "brumby/16", BRD_BRUMBY },
304 { "brumby-16", BRD_BRUMBY },
305 { "2", BRD_BRUMBY },
306 { "onboard2", BRD_ONBOARD2 },
307 { "onboard-2", BRD_ONBOARD2 },
308 { "onboard/2", BRD_ONBOARD2 },
309 { "onboard-mc", BRD_ONBOARD2 },
310 { "onboard/mc", BRD_ONBOARD2 },
311 { "onboard-mca", BRD_ONBOARD2 },
312 { "onboard/mca", BRD_ONBOARD2 },
313 { "3", BRD_ONBOARD2 },
314 { "onboard", BRD_ONBOARD },
315 { "onboardat", BRD_ONBOARD },
316 { "4", BRD_ONBOARD },
317 { "onboarde", BRD_ONBOARDE },
318 { "onboard-e", BRD_ONBOARDE },
319 { "onboard/e", BRD_ONBOARDE },
320 { "onboard-ei", BRD_ONBOARDE },
321 { "onboard/ei", BRD_ONBOARDE },
322 { "7", BRD_ONBOARDE },
323 { "ecp", BRD_ECP },
324 { "ecpat", BRD_ECP },
325 { "ec8/64", BRD_ECP },
326 { "ec8/64-at", BRD_ECP },
327 { "ec8/64-isa", BRD_ECP },
328 { "23", BRD_ECP },
329 { "ecpe", BRD_ECPE },
330 { "ecpei", BRD_ECPE },
331 { "ec8/64-e", BRD_ECPE },
332 { "ec8/64-ei", BRD_ECPE },
333 { "24", BRD_ECPE },
334 { "ecpmc", BRD_ECPMC },
335 { "ec8/64-mc", BRD_ECPMC },
336 { "ec8/64-mca", BRD_ECPMC },
337 { "25", BRD_ECPMC },
338 { "ecppci", BRD_ECPPCI },
339 { "ec/ra", BRD_ECPPCI },
340 { "ec/ra-pc", BRD_ECPPCI },
341 { "ec/ra-pci", BRD_ECPPCI },
342 { "29", BRD_ECPPCI },
346 * Define the module agruments.
348 MODULE_AUTHOR("Greg Ungerer");
349 MODULE_DESCRIPTION("Stallion Intelligent Multiport Serial Driver");
350 MODULE_LICENSE("GPL");
353 module_param_array(board0, charp, NULL, 0);
354 MODULE_PARM_DESC(board0, "Board 0 config -> name[,ioaddr[,memaddr]");
355 module_param_array(board1, charp, NULL, 0);
356 MODULE_PARM_DESC(board1, "Board 1 config -> name[,ioaddr[,memaddr]");
357 module_param_array(board2, charp, NULL, 0);
358 MODULE_PARM_DESC(board2, "Board 2 config -> name[,ioaddr[,memaddr]");
359 module_param_array(board3, charp, NULL, 0);
360 MODULE_PARM_DESC(board3, "Board 3 config -> name[,ioaddr[,memaddr]");
362 #if STLI_EISAPROBE != 0
364 * Set up a default memory address table for EISA board probing.
365 * The default addresses are all bellow 1Mbyte, which has to be the
366 * case anyway. They should be safe, since we only read values from
367 * them, and interrupts are disabled while we do it. If the higher
368 * memory support is compiled in then we also try probing around
369 * the 1Gb, 2Gb and 3Gb areas as well...
371 static unsigned long stli_eisamemprobeaddrs[] = {
372 0xc0000, 0xd0000, 0xe0000, 0xf0000,
373 0x80000000, 0x80010000, 0x80020000, 0x80030000,
374 0x40000000, 0x40010000, 0x40020000, 0x40030000,
375 0xc0000000, 0xc0010000, 0xc0020000, 0xc0030000,
376 0xff000000, 0xff010000, 0xff020000, 0xff030000,
379 static int stli_eisamempsize = ARRAY_SIZE(stli_eisamemprobeaddrs);
380 #endif
383 * Define the Stallion PCI vendor and device IDs.
385 #ifndef PCI_DEVICE_ID_ECRA
386 #define PCI_DEVICE_ID_ECRA 0x0004
387 #endif
389 static struct pci_device_id istallion_pci_tbl[] = {
390 { PCI_DEVICE(PCI_VENDOR_ID_STALLION, PCI_DEVICE_ID_ECRA), },
391 { 0 }
393 MODULE_DEVICE_TABLE(pci, istallion_pci_tbl);
395 static struct pci_driver stli_pcidriver;
397 /*****************************************************************************/
400 * Hardware configuration info for ECP boards. These defines apply
401 * to the directly accessible io ports of the ECP. There is a set of
402 * defines for each ECP board type, ISA, EISA, MCA and PCI.
404 #define ECP_IOSIZE 4
406 #define ECP_MEMSIZE (128 * 1024)
407 #define ECP_PCIMEMSIZE (256 * 1024)
409 #define ECP_ATPAGESIZE (4 * 1024)
410 #define ECP_MCPAGESIZE (4 * 1024)
411 #define ECP_EIPAGESIZE (64 * 1024)
412 #define ECP_PCIPAGESIZE (64 * 1024)
414 #define STL_EISAID 0x8c4e
417 * Important defines for the ISA class of ECP board.
419 #define ECP_ATIREG 0
420 #define ECP_ATCONFR 1
421 #define ECP_ATMEMAR 2
422 #define ECP_ATMEMPR 3
423 #define ECP_ATSTOP 0x1
424 #define ECP_ATINTENAB 0x10
425 #define ECP_ATENABLE 0x20
426 #define ECP_ATDISABLE 0x00
427 #define ECP_ATADDRMASK 0x3f000
428 #define ECP_ATADDRSHFT 12
431 * Important defines for the EISA class of ECP board.
433 #define ECP_EIIREG 0
434 #define ECP_EIMEMARL 1
435 #define ECP_EICONFR 2
436 #define ECP_EIMEMARH 3
437 #define ECP_EIENABLE 0x1
438 #define ECP_EIDISABLE 0x0
439 #define ECP_EISTOP 0x4
440 #define ECP_EIEDGE 0x00
441 #define ECP_EILEVEL 0x80
442 #define ECP_EIADDRMASKL 0x00ff0000
443 #define ECP_EIADDRSHFTL 16
444 #define ECP_EIADDRMASKH 0xff000000
445 #define ECP_EIADDRSHFTH 24
446 #define ECP_EIBRDENAB 0xc84
448 #define ECP_EISAID 0x4
451 * Important defines for the Micro-channel class of ECP board.
452 * (It has a lot in common with the ISA boards.)
454 #define ECP_MCIREG 0
455 #define ECP_MCCONFR 1
456 #define ECP_MCSTOP 0x20
457 #define ECP_MCENABLE 0x80
458 #define ECP_MCDISABLE 0x00
461 * Important defines for the PCI class of ECP board.
462 * (It has a lot in common with the other ECP boards.)
464 #define ECP_PCIIREG 0
465 #define ECP_PCICONFR 1
466 #define ECP_PCISTOP 0x01
469 * Hardware configuration info for ONboard and Brumby boards. These
470 * defines apply to the directly accessible io ports of these boards.
472 #define ONB_IOSIZE 16
473 #define ONB_MEMSIZE (64 * 1024)
474 #define ONB_ATPAGESIZE (64 * 1024)
475 #define ONB_MCPAGESIZE (64 * 1024)
476 #define ONB_EIMEMSIZE (128 * 1024)
477 #define ONB_EIPAGESIZE (64 * 1024)
480 * Important defines for the ISA class of ONboard board.
482 #define ONB_ATIREG 0
483 #define ONB_ATMEMAR 1
484 #define ONB_ATCONFR 2
485 #define ONB_ATSTOP 0x4
486 #define ONB_ATENABLE 0x01
487 #define ONB_ATDISABLE 0x00
488 #define ONB_ATADDRMASK 0xff0000
489 #define ONB_ATADDRSHFT 16
491 #define ONB_MEMENABLO 0
492 #define ONB_MEMENABHI 0x02
495 * Important defines for the EISA class of ONboard board.
497 #define ONB_EIIREG 0
498 #define ONB_EIMEMARL 1
499 #define ONB_EICONFR 2
500 #define ONB_EIMEMARH 3
501 #define ONB_EIENABLE 0x1
502 #define ONB_EIDISABLE 0x0
503 #define ONB_EISTOP 0x4
504 #define ONB_EIEDGE 0x00
505 #define ONB_EILEVEL 0x80
506 #define ONB_EIADDRMASKL 0x00ff0000
507 #define ONB_EIADDRSHFTL 16
508 #define ONB_EIADDRMASKH 0xff000000
509 #define ONB_EIADDRSHFTH 24
510 #define ONB_EIBRDENAB 0xc84
512 #define ONB_EISAID 0x1
515 * Important defines for the Brumby boards. They are pretty simple,
516 * there is not much that is programmably configurable.
518 #define BBY_IOSIZE 16
519 #define BBY_MEMSIZE (64 * 1024)
520 #define BBY_PAGESIZE (16 * 1024)
522 #define BBY_ATIREG 0
523 #define BBY_ATCONFR 1
524 #define BBY_ATSTOP 0x4
527 * Important defines for the Stallion boards. They are pretty simple,
528 * there is not much that is programmably configurable.
530 #define STAL_IOSIZE 16
531 #define STAL_MEMSIZE (64 * 1024)
532 #define STAL_PAGESIZE (64 * 1024)
535 * Define the set of status register values for EasyConnection panels.
536 * The signature will return with the status value for each panel. From
537 * this we can determine what is attached to the board - before we have
538 * actually down loaded any code to it.
540 #define ECH_PNLSTATUS 2
541 #define ECH_PNL16PORT 0x20
542 #define ECH_PNLIDMASK 0x07
543 #define ECH_PNLXPID 0x40
544 #define ECH_PNLINTRPEND 0x80
547 * Define some macros to do things to the board. Even those these boards
548 * are somewhat related there is often significantly different ways of
549 * doing some operation on it (like enable, paging, reset, etc). So each
550 * board class has a set of functions which do the commonly required
551 * operations. The macros below basically just call these functions,
552 * generally checking for a NULL function - which means that the board
553 * needs nothing done to it to achieve this operation!
555 #define EBRDINIT(brdp) \
556 if (brdp->init != NULL) \
557 (* brdp->init)(brdp)
559 #define EBRDENABLE(brdp) \
560 if (brdp->enable != NULL) \
561 (* brdp->enable)(brdp);
563 #define EBRDDISABLE(brdp) \
564 if (brdp->disable != NULL) \
565 (* brdp->disable)(brdp);
567 #define EBRDINTR(brdp) \
568 if (brdp->intr != NULL) \
569 (* brdp->intr)(brdp);
571 #define EBRDRESET(brdp) \
572 if (brdp->reset != NULL) \
573 (* brdp->reset)(brdp);
575 #define EBRDGETMEMPTR(brdp,offset) \
576 (* brdp->getmemptr)(brdp, offset, __LINE__)
579 * Define the maximal baud rate, and the default baud base for ports.
581 #define STL_MAXBAUD 460800
582 #define STL_BAUDBASE 115200
583 #define STL_CLOSEDELAY (5 * HZ / 10)
585 /*****************************************************************************/
588 * Define macros to extract a brd or port number from a minor number.
590 #define MINOR2BRD(min) (((min) & 0xc0) >> 6)
591 #define MINOR2PORT(min) ((min) & 0x3f)
593 /*****************************************************************************/
596 * Prototype all functions in this driver!
599 static int stli_parsebrd(struct stlconf *confp, char **argp);
600 static int stli_open(struct tty_struct *tty, struct file *filp);
601 static void stli_close(struct tty_struct *tty, struct file *filp);
602 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count);
603 static int stli_putchar(struct tty_struct *tty, unsigned char ch);
604 static void stli_flushchars(struct tty_struct *tty);
605 static int stli_writeroom(struct tty_struct *tty);
606 static int stli_charsinbuffer(struct tty_struct *tty);
607 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg);
608 static void stli_settermios(struct tty_struct *tty, struct ktermios *old);
609 static void stli_throttle(struct tty_struct *tty);
610 static void stli_unthrottle(struct tty_struct *tty);
611 static void stli_stop(struct tty_struct *tty);
612 static void stli_start(struct tty_struct *tty);
613 static void stli_flushbuffer(struct tty_struct *tty);
614 static int stli_breakctl(struct tty_struct *tty, int state);
615 static void stli_waituntilsent(struct tty_struct *tty, int timeout);
616 static void stli_sendxchar(struct tty_struct *tty, char ch);
617 static void stli_hangup(struct tty_struct *tty);
619 static int stli_brdinit(struct stlibrd *brdp);
620 static int stli_startbrd(struct stlibrd *brdp);
621 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp);
622 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp);
623 static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg);
624 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp);
625 static void stli_poll(unsigned long arg);
626 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp);
627 static int stli_initopen(struct tty_struct *tty, struct stlibrd *brdp, struct stliport *portp);
628 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
629 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait);
630 static int stli_setport(struct tty_struct *tty);
631 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
632 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
633 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback);
634 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp);
635 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp, asyport_t *pp, struct ktermios *tiosp);
636 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts);
637 static long stli_mktiocm(unsigned long sigvalue);
638 static void stli_read(struct stlibrd *brdp, struct stliport *portp);
639 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp);
640 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp);
641 static int stli_getbrdstats(combrd_t __user *bp);
642 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp, comstats_t __user *cp);
643 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp);
644 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp);
645 static int stli_getportstruct(struct stliport __user *arg);
646 static int stli_getbrdstruct(struct stlibrd __user *arg);
647 static struct stlibrd *stli_allocbrd(void);
649 static void stli_ecpinit(struct stlibrd *brdp);
650 static void stli_ecpenable(struct stlibrd *brdp);
651 static void stli_ecpdisable(struct stlibrd *brdp);
652 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
653 static void stli_ecpreset(struct stlibrd *brdp);
654 static void stli_ecpintr(struct stlibrd *brdp);
655 static void stli_ecpeiinit(struct stlibrd *brdp);
656 static void stli_ecpeienable(struct stlibrd *brdp);
657 static void stli_ecpeidisable(struct stlibrd *brdp);
658 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
659 static void stli_ecpeireset(struct stlibrd *brdp);
660 static void stli_ecpmcenable(struct stlibrd *brdp);
661 static void stli_ecpmcdisable(struct stlibrd *brdp);
662 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
663 static void stli_ecpmcreset(struct stlibrd *brdp);
664 static void stli_ecppciinit(struct stlibrd *brdp);
665 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
666 static void stli_ecppcireset(struct stlibrd *brdp);
668 static void stli_onbinit(struct stlibrd *brdp);
669 static void stli_onbenable(struct stlibrd *brdp);
670 static void stli_onbdisable(struct stlibrd *brdp);
671 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
672 static void stli_onbreset(struct stlibrd *brdp);
673 static void stli_onbeinit(struct stlibrd *brdp);
674 static void stli_onbeenable(struct stlibrd *brdp);
675 static void stli_onbedisable(struct stlibrd *brdp);
676 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
677 static void stli_onbereset(struct stlibrd *brdp);
678 static void stli_bbyinit(struct stlibrd *brdp);
679 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
680 static void stli_bbyreset(struct stlibrd *brdp);
681 static void stli_stalinit(struct stlibrd *brdp);
682 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line);
683 static void stli_stalreset(struct stlibrd *brdp);
685 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr, unsigned int portnr);
687 static int stli_initecp(struct stlibrd *brdp);
688 static int stli_initonb(struct stlibrd *brdp);
689 #if STLI_EISAPROBE != 0
690 static int stli_eisamemprobe(struct stlibrd *brdp);
691 #endif
692 static int stli_initports(struct stlibrd *brdp);
694 /*****************************************************************************/
697 * Define the driver info for a user level shared memory device. This
698 * device will work sort of like the /dev/kmem device - except that it
699 * will give access to the shared memory on the Stallion intelligent
700 * board. This is also a very useful debugging tool.
702 static const struct file_operations stli_fsiomem = {
703 .owner = THIS_MODULE,
704 .read = stli_memread,
705 .write = stli_memwrite,
706 .unlocked_ioctl = stli_memioctl,
709 /*****************************************************************************/
712 * Define a timer_list entry for our poll routine. The slave board
713 * is polled every so often to see if anything needs doing. This is
714 * much cheaper on host cpu than using interrupts. It turns out to
715 * not increase character latency by much either...
717 static DEFINE_TIMER(stli_timerlist, stli_poll, 0, 0);
719 static int stli_timeron;
722 * Define the calculation for the timeout routine.
724 #define STLI_TIMEOUT (jiffies + 1)
726 /*****************************************************************************/
728 static struct class *istallion_class;
730 static void stli_cleanup_ports(struct stlibrd *brdp)
732 struct stliport *portp;
733 unsigned int j;
734 struct tty_struct *tty;
736 for (j = 0; j < STL_MAXPORTS; j++) {
737 portp = brdp->ports[j];
738 if (portp != NULL) {
739 tty = tty_port_tty_get(&portp->port);
740 if (tty != NULL) {
741 tty_hangup(tty);
742 tty_kref_put(tty);
744 kfree(portp);
749 /*****************************************************************************/
752 * Parse the supplied argument string, into the board conf struct.
755 static int stli_parsebrd(struct stlconf *confp, char **argp)
757 unsigned int i;
758 char *sp;
760 if (argp[0] == NULL || *argp[0] == 0)
761 return 0;
763 for (sp = argp[0], i = 0; ((*sp != 0) && (i < 25)); sp++, i++)
764 *sp = tolower(*sp);
766 for (i = 0; i < ARRAY_SIZE(stli_brdstr); i++) {
767 if (strcmp(stli_brdstr[i].name, argp[0]) == 0)
768 break;
770 if (i == ARRAY_SIZE(stli_brdstr)) {
771 printk(KERN_WARNING "istallion: unknown board name, %s?\n", argp[0]);
772 return 0;
775 confp->brdtype = stli_brdstr[i].type;
776 if (argp[1] != NULL && *argp[1] != 0)
777 confp->ioaddr1 = simple_strtoul(argp[1], NULL, 0);
778 if (argp[2] != NULL && *argp[2] != 0)
779 confp->memaddr = simple_strtoul(argp[2], NULL, 0);
780 return(1);
783 /*****************************************************************************/
786 * On the first open of the device setup the port hardware, and
787 * initialize the per port data structure. Since initializing the port
788 * requires several commands to the board we will need to wait for any
789 * other open that is already initializing the port.
791 * Locking: protected by the port mutex.
794 static int stli_activate(struct tty_port *port, struct tty_struct *tty)
796 struct stliport *portp = container_of(port, struct stliport, port);
797 struct stlibrd *brdp = stli_brds[portp->brdnr];
798 int rc;
800 if ((rc = stli_initopen(tty, brdp, portp)) >= 0)
801 clear_bit(TTY_IO_ERROR, &tty->flags);
802 wake_up_interruptible(&portp->raw_wait);
803 return rc;
806 static int stli_open(struct tty_struct *tty, struct file *filp)
808 struct stlibrd *brdp;
809 struct stliport *portp;
810 unsigned int minordev, brdnr, portnr;
812 minordev = tty->index;
813 brdnr = MINOR2BRD(minordev);
814 if (brdnr >= stli_nrbrds)
815 return -ENODEV;
816 brdp = stli_brds[brdnr];
817 if (brdp == NULL)
818 return -ENODEV;
819 if ((brdp->state & BST_STARTED) == 0)
820 return -ENODEV;
821 portnr = MINOR2PORT(minordev);
822 if (portnr > brdp->nrports)
823 return -ENODEV;
825 portp = brdp->ports[portnr];
826 if (portp == NULL)
827 return -ENODEV;
828 if (portp->devnr < 1)
829 return -ENODEV;
831 tty->driver_data = portp;
832 return tty_port_open(&portp->port, tty, filp);
836 /*****************************************************************************/
838 static void stli_shutdown(struct tty_port *port)
840 struct stlibrd *brdp;
841 unsigned long ftype;
842 unsigned long flags;
843 struct stliport *portp = container_of(port, struct stliport, port);
845 if (portp->brdnr >= stli_nrbrds)
846 return;
847 brdp = stli_brds[portp->brdnr];
848 if (brdp == NULL)
849 return;
852 * May want to wait for data to drain before closing. The BUSY
853 * flag keeps track of whether we are still transmitting or not.
854 * It is updated by messages from the slave - indicating when all
855 * chars really have drained.
858 if (!test_bit(ST_CLOSING, &portp->state))
859 stli_rawclose(brdp, portp, 0, 0);
861 spin_lock_irqsave(&stli_lock, flags);
862 clear_bit(ST_TXBUSY, &portp->state);
863 clear_bit(ST_RXSTOP, &portp->state);
864 spin_unlock_irqrestore(&stli_lock, flags);
866 ftype = FLUSHTX | FLUSHRX;
867 stli_cmdwait(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
870 static void stli_close(struct tty_struct *tty, struct file *filp)
872 struct stliport *portp = tty->driver_data;
873 unsigned long flags;
874 if (portp == NULL)
875 return;
876 spin_lock_irqsave(&stli_lock, flags);
877 /* Flush any internal buffering out first */
878 if (tty == stli_txcooktty)
879 stli_flushchars(tty);
880 spin_unlock_irqrestore(&stli_lock, flags);
881 tty_port_close(&portp->port, tty, filp);
884 /*****************************************************************************/
887 * Carry out first open operations on a port. This involves a number of
888 * commands to be sent to the slave. We need to open the port, set the
889 * notification events, set the initial port settings, get and set the
890 * initial signal values. We sleep and wait in between each one. But
891 * this still all happens pretty quickly.
894 static int stli_initopen(struct tty_struct *tty,
895 struct stlibrd *brdp, struct stliport *portp)
897 asynotify_t nt;
898 asyport_t aport;
899 int rc;
901 if ((rc = stli_rawopen(brdp, portp, 0, 1)) < 0)
902 return rc;
904 memset(&nt, 0, sizeof(asynotify_t));
905 nt.data = (DT_TXLOW | DT_TXEMPTY | DT_RXBUSY | DT_RXBREAK);
906 nt.signal = SG_DCD;
907 if ((rc = stli_cmdwait(brdp, portp, A_SETNOTIFY, &nt,
908 sizeof(asynotify_t), 0)) < 0)
909 return rc;
911 stli_mkasyport(tty, portp, &aport, tty->termios);
912 if ((rc = stli_cmdwait(brdp, portp, A_SETPORT, &aport,
913 sizeof(asyport_t), 0)) < 0)
914 return rc;
916 set_bit(ST_GETSIGS, &portp->state);
917 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS, &portp->asig,
918 sizeof(asysigs_t), 1)) < 0)
919 return rc;
920 if (test_and_clear_bit(ST_GETSIGS, &portp->state))
921 portp->sigs = stli_mktiocm(portp->asig.sigvalue);
922 stli_mkasysigs(&portp->asig, 1, 1);
923 if ((rc = stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
924 sizeof(asysigs_t), 0)) < 0)
925 return rc;
927 return 0;
930 /*****************************************************************************/
933 * Send an open message to the slave. This will sleep waiting for the
934 * acknowledgement, so must have user context. We need to co-ordinate
935 * with close events here, since we don't want open and close events
936 * to overlap.
939 static int stli_rawopen(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
941 cdkhdr_t __iomem *hdrp;
942 cdkctrl_t __iomem *cp;
943 unsigned char __iomem *bits;
944 unsigned long flags;
945 int rc;
948 * Send a message to the slave to open this port.
952 * Slave is already closing this port. This can happen if a hangup
953 * occurs on this port. So we must wait until it is complete. The
954 * order of opens and closes may not be preserved across shared
955 * memory, so we must wait until it is complete.
957 wait_event_interruptible(portp->raw_wait,
958 !test_bit(ST_CLOSING, &portp->state));
959 if (signal_pending(current)) {
960 return -ERESTARTSYS;
964 * Everything is ready now, so write the open message into shared
965 * memory. Once the message is in set the service bits to say that
966 * this port wants service.
968 spin_lock_irqsave(&brd_lock, flags);
969 EBRDENABLE(brdp);
970 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
971 writel(arg, &cp->openarg);
972 writeb(1, &cp->open);
973 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
974 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
975 portp->portidx;
976 writeb(readb(bits) | portp->portbit, bits);
977 EBRDDISABLE(brdp);
979 if (wait == 0) {
980 spin_unlock_irqrestore(&brd_lock, flags);
981 return 0;
985 * Slave is in action, so now we must wait for the open acknowledgment
986 * to come back.
988 rc = 0;
989 set_bit(ST_OPENING, &portp->state);
990 spin_unlock_irqrestore(&brd_lock, flags);
992 wait_event_interruptible(portp->raw_wait,
993 !test_bit(ST_OPENING, &portp->state));
994 if (signal_pending(current))
995 rc = -ERESTARTSYS;
997 if ((rc == 0) && (portp->rc != 0))
998 rc = -EIO;
999 return rc;
1002 /*****************************************************************************/
1005 * Send a close message to the slave. Normally this will sleep waiting
1006 * for the acknowledgement, but if wait parameter is 0 it will not. If
1007 * wait is true then must have user context (to sleep).
1010 static int stli_rawclose(struct stlibrd *brdp, struct stliport *portp, unsigned long arg, int wait)
1012 cdkhdr_t __iomem *hdrp;
1013 cdkctrl_t __iomem *cp;
1014 unsigned char __iomem *bits;
1015 unsigned long flags;
1016 int rc;
1019 * Slave is already closing this port. This can happen if a hangup
1020 * occurs on this port.
1022 if (wait) {
1023 wait_event_interruptible(portp->raw_wait,
1024 !test_bit(ST_CLOSING, &portp->state));
1025 if (signal_pending(current)) {
1026 return -ERESTARTSYS;
1031 * Write the close command into shared memory.
1033 spin_lock_irqsave(&brd_lock, flags);
1034 EBRDENABLE(brdp);
1035 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1036 writel(arg, &cp->closearg);
1037 writeb(1, &cp->close);
1038 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1039 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1040 portp->portidx;
1041 writeb(readb(bits) |portp->portbit, bits);
1042 EBRDDISABLE(brdp);
1044 set_bit(ST_CLOSING, &portp->state);
1045 spin_unlock_irqrestore(&brd_lock, flags);
1047 if (wait == 0)
1048 return 0;
1051 * Slave is in action, so now we must wait for the open acknowledgment
1052 * to come back.
1054 rc = 0;
1055 wait_event_interruptible(portp->raw_wait,
1056 !test_bit(ST_CLOSING, &portp->state));
1057 if (signal_pending(current))
1058 rc = -ERESTARTSYS;
1060 if ((rc == 0) && (portp->rc != 0))
1061 rc = -EIO;
1062 return rc;
1065 /*****************************************************************************/
1068 * Send a command to the slave and wait for the response. This must
1069 * have user context (it sleeps). This routine is generic in that it
1070 * can send any type of command. Its purpose is to wait for that command
1071 * to complete (as opposed to initiating the command then returning).
1074 static int stli_cmdwait(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1076 wait_event_interruptible(portp->raw_wait,
1077 !test_bit(ST_CMDING, &portp->state));
1078 if (signal_pending(current))
1079 return -ERESTARTSYS;
1081 stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
1083 wait_event_interruptible(portp->raw_wait,
1084 !test_bit(ST_CMDING, &portp->state));
1085 if (signal_pending(current))
1086 return -ERESTARTSYS;
1088 if (portp->rc != 0)
1089 return -EIO;
1090 return 0;
1093 /*****************************************************************************/
1096 * Send the termios settings for this port to the slave. This sleeps
1097 * waiting for the command to complete - so must have user context.
1100 static int stli_setport(struct tty_struct *tty)
1102 struct stliport *portp = tty->driver_data;
1103 struct stlibrd *brdp;
1104 asyport_t aport;
1106 if (portp == NULL)
1107 return -ENODEV;
1108 if (portp->brdnr >= stli_nrbrds)
1109 return -ENODEV;
1110 brdp = stli_brds[portp->brdnr];
1111 if (brdp == NULL)
1112 return -ENODEV;
1114 stli_mkasyport(tty, portp, &aport, tty->termios);
1115 return(stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0));
1118 /*****************************************************************************/
1120 static int stli_carrier_raised(struct tty_port *port)
1122 struct stliport *portp = container_of(port, struct stliport, port);
1123 return (portp->sigs & TIOCM_CD) ? 1 : 0;
1126 static void stli_dtr_rts(struct tty_port *port, int on)
1128 struct stliport *portp = container_of(port, struct stliport, port);
1129 struct stlibrd *brdp = stli_brds[portp->brdnr];
1130 stli_mkasysigs(&portp->asig, on, on);
1131 if (stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1132 sizeof(asysigs_t), 0) < 0)
1133 printk(KERN_WARNING "istallion: dtr set failed.\n");
1137 /*****************************************************************************/
1140 * Write routine. Take the data and put it in the shared memory ring
1141 * queue. If port is not already sending chars then need to mark the
1142 * service bits for this port.
1145 static int stli_write(struct tty_struct *tty, const unsigned char *buf, int count)
1147 cdkasy_t __iomem *ap;
1148 cdkhdr_t __iomem *hdrp;
1149 unsigned char __iomem *bits;
1150 unsigned char __iomem *shbuf;
1151 unsigned char *chbuf;
1152 struct stliport *portp;
1153 struct stlibrd *brdp;
1154 unsigned int len, stlen, head, tail, size;
1155 unsigned long flags;
1157 if (tty == stli_txcooktty)
1158 stli_flushchars(tty);
1159 portp = tty->driver_data;
1160 if (portp == NULL)
1161 return 0;
1162 if (portp->brdnr >= stli_nrbrds)
1163 return 0;
1164 brdp = stli_brds[portp->brdnr];
1165 if (brdp == NULL)
1166 return 0;
1167 chbuf = (unsigned char *) buf;
1170 * All data is now local, shove as much as possible into shared memory.
1172 spin_lock_irqsave(&brd_lock, flags);
1173 EBRDENABLE(brdp);
1174 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1175 head = (unsigned int) readw(&ap->txq.head);
1176 tail = (unsigned int) readw(&ap->txq.tail);
1177 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1178 tail = (unsigned int) readw(&ap->txq.tail);
1179 size = portp->txsize;
1180 if (head >= tail) {
1181 len = size - (head - tail) - 1;
1182 stlen = size - head;
1183 } else {
1184 len = tail - head - 1;
1185 stlen = len;
1188 len = min(len, (unsigned int)count);
1189 count = 0;
1190 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->txoffset);
1192 while (len > 0) {
1193 stlen = min(len, stlen);
1194 memcpy_toio(shbuf + head, chbuf, stlen);
1195 chbuf += stlen;
1196 len -= stlen;
1197 count += stlen;
1198 head += stlen;
1199 if (head >= size) {
1200 head = 0;
1201 stlen = tail;
1205 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1206 writew(head, &ap->txq.head);
1207 if (test_bit(ST_TXBUSY, &portp->state)) {
1208 if (readl(&ap->changed.data) & DT_TXEMPTY)
1209 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1211 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1212 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1213 portp->portidx;
1214 writeb(readb(bits) | portp->portbit, bits);
1215 set_bit(ST_TXBUSY, &portp->state);
1216 EBRDDISABLE(brdp);
1217 spin_unlock_irqrestore(&brd_lock, flags);
1219 return(count);
1222 /*****************************************************************************/
1225 * Output a single character. We put it into a temporary local buffer
1226 * (for speed) then write out that buffer when the flushchars routine
1227 * is called. There is a safety catch here so that if some other port
1228 * writes chars before the current buffer has been, then we write them
1229 * first them do the new ports.
1232 static int stli_putchar(struct tty_struct *tty, unsigned char ch)
1234 if (tty != stli_txcooktty) {
1235 if (stli_txcooktty != NULL)
1236 stli_flushchars(stli_txcooktty);
1237 stli_txcooktty = tty;
1240 stli_txcookbuf[stli_txcooksize++] = ch;
1241 return 0;
1244 /*****************************************************************************/
1247 * Transfer characters from the local TX cooking buffer to the board.
1248 * We sort of ignore the tty that gets passed in here. We rely on the
1249 * info stored with the TX cook buffer to tell us which port to flush
1250 * the data on. In any case we clean out the TX cook buffer, for re-use
1251 * by someone else.
1254 static void stli_flushchars(struct tty_struct *tty)
1256 cdkhdr_t __iomem *hdrp;
1257 unsigned char __iomem *bits;
1258 cdkasy_t __iomem *ap;
1259 struct tty_struct *cooktty;
1260 struct stliport *portp;
1261 struct stlibrd *brdp;
1262 unsigned int len, stlen, head, tail, size, count, cooksize;
1263 unsigned char *buf;
1264 unsigned char __iomem *shbuf;
1265 unsigned long flags;
1267 cooksize = stli_txcooksize;
1268 cooktty = stli_txcooktty;
1269 stli_txcooksize = 0;
1270 stli_txcookrealsize = 0;
1271 stli_txcooktty = NULL;
1273 if (cooktty == NULL)
1274 return;
1275 if (tty != cooktty)
1276 tty = cooktty;
1277 if (cooksize == 0)
1278 return;
1280 portp = tty->driver_data;
1281 if (portp == NULL)
1282 return;
1283 if (portp->brdnr >= stli_nrbrds)
1284 return;
1285 brdp = stli_brds[portp->brdnr];
1286 if (brdp == NULL)
1287 return;
1289 spin_lock_irqsave(&brd_lock, flags);
1290 EBRDENABLE(brdp);
1292 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1293 head = (unsigned int) readw(&ap->txq.head);
1294 tail = (unsigned int) readw(&ap->txq.tail);
1295 if (tail != ((unsigned int) readw(&ap->txq.tail)))
1296 tail = (unsigned int) readw(&ap->txq.tail);
1297 size = portp->txsize;
1298 if (head >= tail) {
1299 len = size - (head - tail) - 1;
1300 stlen = size - head;
1301 } else {
1302 len = tail - head - 1;
1303 stlen = len;
1306 len = min(len, cooksize);
1307 count = 0;
1308 shbuf = EBRDGETMEMPTR(brdp, portp->txoffset);
1309 buf = stli_txcookbuf;
1311 while (len > 0) {
1312 stlen = min(len, stlen);
1313 memcpy_toio(shbuf + head, buf, stlen);
1314 buf += stlen;
1315 len -= stlen;
1316 count += stlen;
1317 head += stlen;
1318 if (head >= size) {
1319 head = 0;
1320 stlen = tail;
1324 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
1325 writew(head, &ap->txq.head);
1327 if (test_bit(ST_TXBUSY, &portp->state)) {
1328 if (readl(&ap->changed.data) & DT_TXEMPTY)
1329 writel(readl(&ap->changed.data) & ~DT_TXEMPTY, &ap->changed.data);
1331 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1332 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1333 portp->portidx;
1334 writeb(readb(bits) | portp->portbit, bits);
1335 set_bit(ST_TXBUSY, &portp->state);
1337 EBRDDISABLE(brdp);
1338 spin_unlock_irqrestore(&brd_lock, flags);
1341 /*****************************************************************************/
1343 static int stli_writeroom(struct tty_struct *tty)
1345 cdkasyrq_t __iomem *rp;
1346 struct stliport *portp;
1347 struct stlibrd *brdp;
1348 unsigned int head, tail, len;
1349 unsigned long flags;
1351 if (tty == stli_txcooktty) {
1352 if (stli_txcookrealsize != 0) {
1353 len = stli_txcookrealsize - stli_txcooksize;
1354 return len;
1358 portp = tty->driver_data;
1359 if (portp == NULL)
1360 return 0;
1361 if (portp->brdnr >= stli_nrbrds)
1362 return 0;
1363 brdp = stli_brds[portp->brdnr];
1364 if (brdp == NULL)
1365 return 0;
1367 spin_lock_irqsave(&brd_lock, flags);
1368 EBRDENABLE(brdp);
1369 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1370 head = (unsigned int) readw(&rp->head);
1371 tail = (unsigned int) readw(&rp->tail);
1372 if (tail != ((unsigned int) readw(&rp->tail)))
1373 tail = (unsigned int) readw(&rp->tail);
1374 len = (head >= tail) ? (portp->txsize - (head - tail)) : (tail - head);
1375 len--;
1376 EBRDDISABLE(brdp);
1377 spin_unlock_irqrestore(&brd_lock, flags);
1379 if (tty == stli_txcooktty) {
1380 stli_txcookrealsize = len;
1381 len -= stli_txcooksize;
1383 return len;
1386 /*****************************************************************************/
1389 * Return the number of characters in the transmit buffer. Normally we
1390 * will return the number of chars in the shared memory ring queue.
1391 * We need to kludge around the case where the shared memory buffer is
1392 * empty but not all characters have drained yet, for this case just
1393 * return that there is 1 character in the buffer!
1396 static int stli_charsinbuffer(struct tty_struct *tty)
1398 cdkasyrq_t __iomem *rp;
1399 struct stliport *portp;
1400 struct stlibrd *brdp;
1401 unsigned int head, tail, len;
1402 unsigned long flags;
1404 if (tty == stli_txcooktty)
1405 stli_flushchars(tty);
1406 portp = tty->driver_data;
1407 if (portp == NULL)
1408 return 0;
1409 if (portp->brdnr >= stli_nrbrds)
1410 return 0;
1411 brdp = stli_brds[portp->brdnr];
1412 if (brdp == NULL)
1413 return 0;
1415 spin_lock_irqsave(&brd_lock, flags);
1416 EBRDENABLE(brdp);
1417 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->txq;
1418 head = (unsigned int) readw(&rp->head);
1419 tail = (unsigned int) readw(&rp->tail);
1420 if (tail != ((unsigned int) readw(&rp->tail)))
1421 tail = (unsigned int) readw(&rp->tail);
1422 len = (head >= tail) ? (head - tail) : (portp->txsize - (tail - head));
1423 if ((len == 0) && test_bit(ST_TXBUSY, &portp->state))
1424 len = 1;
1425 EBRDDISABLE(brdp);
1426 spin_unlock_irqrestore(&brd_lock, flags);
1428 return len;
1431 /*****************************************************************************/
1434 * Generate the serial struct info.
1437 static int stli_getserial(struct stliport *portp, struct serial_struct __user *sp)
1439 struct serial_struct sio;
1440 struct stlibrd *brdp;
1442 memset(&sio, 0, sizeof(struct serial_struct));
1443 sio.type = PORT_UNKNOWN;
1444 sio.line = portp->portnr;
1445 sio.irq = 0;
1446 sio.flags = portp->port.flags;
1447 sio.baud_base = portp->baud_base;
1448 sio.close_delay = portp->port.close_delay;
1449 sio.closing_wait = portp->closing_wait;
1450 sio.custom_divisor = portp->custom_divisor;
1451 sio.xmit_fifo_size = 0;
1452 sio.hub6 = 0;
1454 brdp = stli_brds[portp->brdnr];
1455 if (brdp != NULL)
1456 sio.port = brdp->iobase;
1458 return copy_to_user(sp, &sio, sizeof(struct serial_struct)) ?
1459 -EFAULT : 0;
1462 /*****************************************************************************/
1465 * Set port according to the serial struct info.
1466 * At this point we do not do any auto-configure stuff, so we will
1467 * just quietly ignore any requests to change irq, etc.
1470 static int stli_setserial(struct tty_struct *tty, struct serial_struct __user *sp)
1472 struct serial_struct sio;
1473 int rc;
1474 struct stliport *portp = tty->driver_data;
1476 if (copy_from_user(&sio, sp, sizeof(struct serial_struct)))
1477 return -EFAULT;
1478 if (!capable(CAP_SYS_ADMIN)) {
1479 if ((sio.baud_base != portp->baud_base) ||
1480 (sio.close_delay != portp->port.close_delay) ||
1481 ((sio.flags & ~ASYNC_USR_MASK) !=
1482 (portp->port.flags & ~ASYNC_USR_MASK)))
1483 return -EPERM;
1486 portp->port.flags = (portp->port.flags & ~ASYNC_USR_MASK) |
1487 (sio.flags & ASYNC_USR_MASK);
1488 portp->baud_base = sio.baud_base;
1489 portp->port.close_delay = sio.close_delay;
1490 portp->closing_wait = sio.closing_wait;
1491 portp->custom_divisor = sio.custom_divisor;
1493 if ((rc = stli_setport(tty)) < 0)
1494 return rc;
1495 return 0;
1498 /*****************************************************************************/
1500 static int stli_tiocmget(struct tty_struct *tty, struct file *file)
1502 struct stliport *portp = tty->driver_data;
1503 struct stlibrd *brdp;
1504 int rc;
1506 if (portp == NULL)
1507 return -ENODEV;
1508 if (portp->brdnr >= stli_nrbrds)
1509 return 0;
1510 brdp = stli_brds[portp->brdnr];
1511 if (brdp == NULL)
1512 return 0;
1513 if (tty->flags & (1 << TTY_IO_ERROR))
1514 return -EIO;
1516 if ((rc = stli_cmdwait(brdp, portp, A_GETSIGNALS,
1517 &portp->asig, sizeof(asysigs_t), 1)) < 0)
1518 return rc;
1520 return stli_mktiocm(portp->asig.sigvalue);
1523 static int stli_tiocmset(struct tty_struct *tty, struct file *file,
1524 unsigned int set, unsigned int clear)
1526 struct stliport *portp = tty->driver_data;
1527 struct stlibrd *brdp;
1528 int rts = -1, dtr = -1;
1530 if (portp == NULL)
1531 return -ENODEV;
1532 if (portp->brdnr >= stli_nrbrds)
1533 return 0;
1534 brdp = stli_brds[portp->brdnr];
1535 if (brdp == NULL)
1536 return 0;
1537 if (tty->flags & (1 << TTY_IO_ERROR))
1538 return -EIO;
1540 if (set & TIOCM_RTS)
1541 rts = 1;
1542 if (set & TIOCM_DTR)
1543 dtr = 1;
1544 if (clear & TIOCM_RTS)
1545 rts = 0;
1546 if (clear & TIOCM_DTR)
1547 dtr = 0;
1549 stli_mkasysigs(&portp->asig, dtr, rts);
1551 return stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1552 sizeof(asysigs_t), 0);
1555 static int stli_ioctl(struct tty_struct *tty, struct file *file, unsigned int cmd, unsigned long arg)
1557 struct stliport *portp;
1558 struct stlibrd *brdp;
1559 int rc;
1560 void __user *argp = (void __user *)arg;
1562 portp = tty->driver_data;
1563 if (portp == NULL)
1564 return -ENODEV;
1565 if (portp->brdnr >= stli_nrbrds)
1566 return 0;
1567 brdp = stli_brds[portp->brdnr];
1568 if (brdp == NULL)
1569 return 0;
1571 if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
1572 (cmd != COM_GETPORTSTATS) && (cmd != COM_CLRPORTSTATS)) {
1573 if (tty->flags & (1 << TTY_IO_ERROR))
1574 return -EIO;
1577 rc = 0;
1579 switch (cmd) {
1580 case TIOCGSERIAL:
1581 rc = stli_getserial(portp, argp);
1582 break;
1583 case TIOCSSERIAL:
1584 rc = stli_setserial(tty, argp);
1585 break;
1586 case STL_GETPFLAG:
1587 rc = put_user(portp->pflag, (unsigned __user *)argp);
1588 break;
1589 case STL_SETPFLAG:
1590 if ((rc = get_user(portp->pflag, (unsigned __user *)argp)) == 0)
1591 stli_setport(tty);
1592 break;
1593 case COM_GETPORTSTATS:
1594 rc = stli_getportstats(tty, portp, argp);
1595 break;
1596 case COM_CLRPORTSTATS:
1597 rc = stli_clrportstats(portp, argp);
1598 break;
1599 case TIOCSERCONFIG:
1600 case TIOCSERGWILD:
1601 case TIOCSERSWILD:
1602 case TIOCSERGETLSR:
1603 case TIOCSERGSTRUCT:
1604 case TIOCSERGETMULTI:
1605 case TIOCSERSETMULTI:
1606 default:
1607 rc = -ENOIOCTLCMD;
1608 break;
1611 return rc;
1614 /*****************************************************************************/
1617 * This routine assumes that we have user context and can sleep.
1618 * Looks like it is true for the current ttys implementation..!!
1621 static void stli_settermios(struct tty_struct *tty, struct ktermios *old)
1623 struct stliport *portp;
1624 struct stlibrd *brdp;
1625 struct ktermios *tiosp;
1626 asyport_t aport;
1628 portp = tty->driver_data;
1629 if (portp == NULL)
1630 return;
1631 if (portp->brdnr >= stli_nrbrds)
1632 return;
1633 brdp = stli_brds[portp->brdnr];
1634 if (brdp == NULL)
1635 return;
1637 tiosp = tty->termios;
1639 stli_mkasyport(tty, portp, &aport, tiosp);
1640 stli_cmdwait(brdp, portp, A_SETPORT, &aport, sizeof(asyport_t), 0);
1641 stli_mkasysigs(&portp->asig, ((tiosp->c_cflag & CBAUD) ? 1 : 0), -1);
1642 stli_cmdwait(brdp, portp, A_SETSIGNALS, &portp->asig,
1643 sizeof(asysigs_t), 0);
1644 if ((old->c_cflag & CRTSCTS) && ((tiosp->c_cflag & CRTSCTS) == 0))
1645 tty->hw_stopped = 0;
1646 if (((old->c_cflag & CLOCAL) == 0) && (tiosp->c_cflag & CLOCAL))
1647 wake_up_interruptible(&portp->port.open_wait);
1650 /*****************************************************************************/
1653 * Attempt to flow control who ever is sending us data. We won't really
1654 * do any flow control action here. We can't directly, and even if we
1655 * wanted to we would have to send a command to the slave. The slave
1656 * knows how to flow control, and will do so when its buffers reach its
1657 * internal high water marks. So what we will do is set a local state
1658 * bit that will stop us sending any RX data up from the poll routine
1659 * (which is the place where RX data from the slave is handled).
1662 static void stli_throttle(struct tty_struct *tty)
1664 struct stliport *portp = tty->driver_data;
1665 if (portp == NULL)
1666 return;
1667 set_bit(ST_RXSTOP, &portp->state);
1670 /*****************************************************************************/
1673 * Unflow control the device sending us data... That means that all
1674 * we have to do is clear the RXSTOP state bit. The next poll call
1675 * will then be able to pass the RX data back up.
1678 static void stli_unthrottle(struct tty_struct *tty)
1680 struct stliport *portp = tty->driver_data;
1681 if (portp == NULL)
1682 return;
1683 clear_bit(ST_RXSTOP, &portp->state);
1686 /*****************************************************************************/
1689 * Stop the transmitter.
1692 static void stli_stop(struct tty_struct *tty)
1696 /*****************************************************************************/
1699 * Start the transmitter again.
1702 static void stli_start(struct tty_struct *tty)
1706 /*****************************************************************************/
1710 * Hangup this port. This is pretty much like closing the port, only
1711 * a little more brutal. No waiting for data to drain. Shutdown the
1712 * port and maybe drop signals. This is rather tricky really. We want
1713 * to close the port as well.
1716 static void stli_hangup(struct tty_struct *tty)
1718 struct stliport *portp = tty->driver_data;
1719 tty_port_hangup(&portp->port);
1722 /*****************************************************************************/
1725 * Flush characters from the lower buffer. We may not have user context
1726 * so we cannot sleep waiting for it to complete. Also we need to check
1727 * if there is chars for this port in the TX cook buffer, and flush them
1728 * as well.
1731 static void stli_flushbuffer(struct tty_struct *tty)
1733 struct stliport *portp;
1734 struct stlibrd *brdp;
1735 unsigned long ftype, flags;
1737 portp = tty->driver_data;
1738 if (portp == NULL)
1739 return;
1740 if (portp->brdnr >= stli_nrbrds)
1741 return;
1742 brdp = stli_brds[portp->brdnr];
1743 if (brdp == NULL)
1744 return;
1746 spin_lock_irqsave(&brd_lock, flags);
1747 if (tty == stli_txcooktty) {
1748 stli_txcooktty = NULL;
1749 stli_txcooksize = 0;
1750 stli_txcookrealsize = 0;
1752 if (test_bit(ST_CMDING, &portp->state)) {
1753 set_bit(ST_DOFLUSHTX, &portp->state);
1754 } else {
1755 ftype = FLUSHTX;
1756 if (test_bit(ST_DOFLUSHRX, &portp->state)) {
1757 ftype |= FLUSHRX;
1758 clear_bit(ST_DOFLUSHRX, &portp->state);
1760 __stli_sendcmd(brdp, portp, A_FLUSH, &ftype, sizeof(u32), 0);
1762 spin_unlock_irqrestore(&brd_lock, flags);
1763 tty_wakeup(tty);
1766 /*****************************************************************************/
1768 static int stli_breakctl(struct tty_struct *tty, int state)
1770 struct stlibrd *brdp;
1771 struct stliport *portp;
1772 long arg;
1774 portp = tty->driver_data;
1775 if (portp == NULL)
1776 return -EINVAL;
1777 if (portp->brdnr >= stli_nrbrds)
1778 return -EINVAL;
1779 brdp = stli_brds[portp->brdnr];
1780 if (brdp == NULL)
1781 return -EINVAL;
1783 arg = (state == -1) ? BREAKON : BREAKOFF;
1784 stli_cmdwait(brdp, portp, A_BREAK, &arg, sizeof(long), 0);
1785 return 0;
1788 /*****************************************************************************/
1790 static void stli_waituntilsent(struct tty_struct *tty, int timeout)
1792 struct stliport *portp;
1793 unsigned long tend;
1795 portp = tty->driver_data;
1796 if (portp == NULL)
1797 return;
1799 if (timeout == 0)
1800 timeout = HZ;
1801 tend = jiffies + timeout;
1803 while (test_bit(ST_TXBUSY, &portp->state)) {
1804 if (signal_pending(current))
1805 break;
1806 msleep_interruptible(20);
1807 if (time_after_eq(jiffies, tend))
1808 break;
1812 /*****************************************************************************/
1814 static void stli_sendxchar(struct tty_struct *tty, char ch)
1816 struct stlibrd *brdp;
1817 struct stliport *portp;
1818 asyctrl_t actrl;
1820 portp = tty->driver_data;
1821 if (portp == NULL)
1822 return;
1823 if (portp->brdnr >= stli_nrbrds)
1824 return;
1825 brdp = stli_brds[portp->brdnr];
1826 if (brdp == NULL)
1827 return;
1829 memset(&actrl, 0, sizeof(asyctrl_t));
1830 if (ch == STOP_CHAR(tty)) {
1831 actrl.rxctrl = CT_STOPFLOW;
1832 } else if (ch == START_CHAR(tty)) {
1833 actrl.rxctrl = CT_STARTFLOW;
1834 } else {
1835 actrl.txctrl = CT_SENDCHR;
1836 actrl.tximdch = ch;
1838 stli_cmdwait(brdp, portp, A_PORTCTRL, &actrl, sizeof(asyctrl_t), 0);
1841 static void stli_portinfo(struct seq_file *m, struct stlibrd *brdp, struct stliport *portp, int portnr)
1843 char *uart;
1844 int rc;
1846 rc = stli_portcmdstats(NULL, portp);
1848 uart = "UNKNOWN";
1849 if (brdp->state & BST_STARTED) {
1850 switch (stli_comstats.hwid) {
1851 case 0: uart = "2681"; break;
1852 case 1: uart = "SC26198"; break;
1853 default:uart = "CD1400"; break;
1856 seq_printf(m, "%d: uart:%s ", portnr, uart);
1858 if ((brdp->state & BST_STARTED) && (rc >= 0)) {
1859 char sep;
1861 seq_printf(m, "tx:%d rx:%d", (int) stli_comstats.txtotal,
1862 (int) stli_comstats.rxtotal);
1864 if (stli_comstats.rxframing)
1865 seq_printf(m, " fe:%d",
1866 (int) stli_comstats.rxframing);
1867 if (stli_comstats.rxparity)
1868 seq_printf(m, " pe:%d",
1869 (int) stli_comstats.rxparity);
1870 if (stli_comstats.rxbreaks)
1871 seq_printf(m, " brk:%d",
1872 (int) stli_comstats.rxbreaks);
1873 if (stli_comstats.rxoverrun)
1874 seq_printf(m, " oe:%d",
1875 (int) stli_comstats.rxoverrun);
1877 sep = ' ';
1878 if (stli_comstats.signals & TIOCM_RTS) {
1879 seq_printf(m, "%c%s", sep, "RTS");
1880 sep = '|';
1882 if (stli_comstats.signals & TIOCM_CTS) {
1883 seq_printf(m, "%c%s", sep, "CTS");
1884 sep = '|';
1886 if (stli_comstats.signals & TIOCM_DTR) {
1887 seq_printf(m, "%c%s", sep, "DTR");
1888 sep = '|';
1890 if (stli_comstats.signals & TIOCM_CD) {
1891 seq_printf(m, "%c%s", sep, "DCD");
1892 sep = '|';
1894 if (stli_comstats.signals & TIOCM_DSR) {
1895 seq_printf(m, "%c%s", sep, "DSR");
1896 sep = '|';
1899 seq_putc(m, '\n');
1902 /*****************************************************************************/
1905 * Port info, read from the /proc file system.
1908 static int stli_proc_show(struct seq_file *m, void *v)
1910 struct stlibrd *brdp;
1911 struct stliport *portp;
1912 unsigned int brdnr, portnr, totalport;
1914 totalport = 0;
1916 seq_printf(m, "%s: version %s\n", stli_drvtitle, stli_drvversion);
1919 * We scan through for each board, panel and port. The offset is
1920 * calculated on the fly, and irrelevant ports are skipped.
1922 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
1923 brdp = stli_brds[brdnr];
1924 if (brdp == NULL)
1925 continue;
1926 if (brdp->state == 0)
1927 continue;
1929 totalport = brdnr * STL_MAXPORTS;
1930 for (portnr = 0; (portnr < brdp->nrports); portnr++,
1931 totalport++) {
1932 portp = brdp->ports[portnr];
1933 if (portp == NULL)
1934 continue;
1935 stli_portinfo(m, brdp, portp, totalport);
1938 return 0;
1941 static int stli_proc_open(struct inode *inode, struct file *file)
1943 return single_open(file, stli_proc_show, NULL);
1946 static const struct file_operations stli_proc_fops = {
1947 .owner = THIS_MODULE,
1948 .open = stli_proc_open,
1949 .read = seq_read,
1950 .llseek = seq_lseek,
1951 .release = single_release,
1954 /*****************************************************************************/
1957 * Generic send command routine. This will send a message to the slave,
1958 * of the specified type with the specified argument. Must be very
1959 * careful of data that will be copied out from shared memory -
1960 * containing command results. The command completion is all done from
1961 * a poll routine that does not have user context. Therefore you cannot
1962 * copy back directly into user space, or to the kernel stack of a
1963 * process. This routine does not sleep, so can be called from anywhere.
1965 * The caller must hold the brd_lock (see also stli_sendcmd the usual
1966 * entry point)
1969 static void __stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
1971 cdkhdr_t __iomem *hdrp;
1972 cdkctrl_t __iomem *cp;
1973 unsigned char __iomem *bits;
1975 if (test_bit(ST_CMDING, &portp->state)) {
1976 printk(KERN_ERR "istallion: command already busy, cmd=%x!\n",
1977 (int) cmd);
1978 return;
1981 EBRDENABLE(brdp);
1982 cp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->ctrl;
1983 if (size > 0) {
1984 memcpy_toio((void __iomem *) &(cp->args[0]), arg, size);
1985 if (copyback) {
1986 portp->argp = arg;
1987 portp->argsize = size;
1990 writel(0, &cp->status);
1991 writel(cmd, &cp->cmd);
1992 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
1993 bits = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset +
1994 portp->portidx;
1995 writeb(readb(bits) | portp->portbit, bits);
1996 set_bit(ST_CMDING, &portp->state);
1997 EBRDDISABLE(brdp);
2000 static void stli_sendcmd(struct stlibrd *brdp, struct stliport *portp, unsigned long cmd, void *arg, int size, int copyback)
2002 unsigned long flags;
2004 spin_lock_irqsave(&brd_lock, flags);
2005 __stli_sendcmd(brdp, portp, cmd, arg, size, copyback);
2006 spin_unlock_irqrestore(&brd_lock, flags);
2009 /*****************************************************************************/
2012 * Read data from shared memory. This assumes that the shared memory
2013 * is enabled and that interrupts are off. Basically we just empty out
2014 * the shared memory buffer into the tty buffer. Must be careful to
2015 * handle the case where we fill up the tty buffer, but still have
2016 * more chars to unload.
2019 static void stli_read(struct stlibrd *brdp, struct stliport *portp)
2021 cdkasyrq_t __iomem *rp;
2022 char __iomem *shbuf;
2023 struct tty_struct *tty;
2024 unsigned int head, tail, size;
2025 unsigned int len, stlen;
2027 if (test_bit(ST_RXSTOP, &portp->state))
2028 return;
2029 tty = tty_port_tty_get(&portp->port);
2030 if (tty == NULL)
2031 return;
2033 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2034 head = (unsigned int) readw(&rp->head);
2035 if (head != ((unsigned int) readw(&rp->head)))
2036 head = (unsigned int) readw(&rp->head);
2037 tail = (unsigned int) readw(&rp->tail);
2038 size = portp->rxsize;
2039 if (head >= tail) {
2040 len = head - tail;
2041 stlen = len;
2042 } else {
2043 len = size - (tail - head);
2044 stlen = size - tail;
2047 len = tty_buffer_request_room(tty, len);
2049 shbuf = (char __iomem *) EBRDGETMEMPTR(brdp, portp->rxoffset);
2051 while (len > 0) {
2052 unsigned char *cptr;
2054 stlen = min(len, stlen);
2055 tty_prepare_flip_string(tty, &cptr, stlen);
2056 memcpy_fromio(cptr, shbuf + tail, stlen);
2057 len -= stlen;
2058 tail += stlen;
2059 if (tail >= size) {
2060 tail = 0;
2061 stlen = head;
2064 rp = &((cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr))->rxq;
2065 writew(tail, &rp->tail);
2067 if (head != tail)
2068 set_bit(ST_RXING, &portp->state);
2070 tty_schedule_flip(tty);
2071 tty_kref_put(tty);
2074 /*****************************************************************************/
2077 * Set up and carry out any delayed commands. There is only a small set
2078 * of slave commands that can be done "off-level". So it is not too
2079 * difficult to deal with them here.
2082 static void stli_dodelaycmd(struct stliport *portp, cdkctrl_t __iomem *cp)
2084 int cmd;
2086 if (test_bit(ST_DOSIGS, &portp->state)) {
2087 if (test_bit(ST_DOFLUSHTX, &portp->state) &&
2088 test_bit(ST_DOFLUSHRX, &portp->state))
2089 cmd = A_SETSIGNALSF;
2090 else if (test_bit(ST_DOFLUSHTX, &portp->state))
2091 cmd = A_SETSIGNALSFTX;
2092 else if (test_bit(ST_DOFLUSHRX, &portp->state))
2093 cmd = A_SETSIGNALSFRX;
2094 else
2095 cmd = A_SETSIGNALS;
2096 clear_bit(ST_DOFLUSHTX, &portp->state);
2097 clear_bit(ST_DOFLUSHRX, &portp->state);
2098 clear_bit(ST_DOSIGS, &portp->state);
2099 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &portp->asig,
2100 sizeof(asysigs_t));
2101 writel(0, &cp->status);
2102 writel(cmd, &cp->cmd);
2103 set_bit(ST_CMDING, &portp->state);
2104 } else if (test_bit(ST_DOFLUSHTX, &portp->state) ||
2105 test_bit(ST_DOFLUSHRX, &portp->state)) {
2106 cmd = ((test_bit(ST_DOFLUSHTX, &portp->state)) ? FLUSHTX : 0);
2107 cmd |= ((test_bit(ST_DOFLUSHRX, &portp->state)) ? FLUSHRX : 0);
2108 clear_bit(ST_DOFLUSHTX, &portp->state);
2109 clear_bit(ST_DOFLUSHRX, &portp->state);
2110 memcpy_toio((void __iomem *) &(cp->args[0]), (void *) &cmd, sizeof(int));
2111 writel(0, &cp->status);
2112 writel(A_FLUSH, &cp->cmd);
2113 set_bit(ST_CMDING, &portp->state);
2117 /*****************************************************************************/
2120 * Host command service checking. This handles commands or messages
2121 * coming from the slave to the host. Must have board shared memory
2122 * enabled and interrupts off when called. Notice that by servicing the
2123 * read data last we don't need to change the shared memory pointer
2124 * during processing (which is a slow IO operation).
2125 * Return value indicates if this port is still awaiting actions from
2126 * the slave (like open, command, or even TX data being sent). If 0
2127 * then port is still busy, otherwise no longer busy.
2130 static int stli_hostcmd(struct stlibrd *brdp, struct stliport *portp)
2132 cdkasy_t __iomem *ap;
2133 cdkctrl_t __iomem *cp;
2134 struct tty_struct *tty;
2135 asynotify_t nt;
2136 unsigned long oldsigs;
2137 int rc, donerx;
2139 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
2140 cp = &ap->ctrl;
2143 * Check if we are waiting for an open completion message.
2145 if (test_bit(ST_OPENING, &portp->state)) {
2146 rc = readl(&cp->openarg);
2147 if (readb(&cp->open) == 0 && rc != 0) {
2148 if (rc > 0)
2149 rc--;
2150 writel(0, &cp->openarg);
2151 portp->rc = rc;
2152 clear_bit(ST_OPENING, &portp->state);
2153 wake_up_interruptible(&portp->raw_wait);
2158 * Check if we are waiting for a close completion message.
2160 if (test_bit(ST_CLOSING, &portp->state)) {
2161 rc = (int) readl(&cp->closearg);
2162 if (readb(&cp->close) == 0 && rc != 0) {
2163 if (rc > 0)
2164 rc--;
2165 writel(0, &cp->closearg);
2166 portp->rc = rc;
2167 clear_bit(ST_CLOSING, &portp->state);
2168 wake_up_interruptible(&portp->raw_wait);
2173 * Check if we are waiting for a command completion message. We may
2174 * need to copy out the command results associated with this command.
2176 if (test_bit(ST_CMDING, &portp->state)) {
2177 rc = readl(&cp->status);
2178 if (readl(&cp->cmd) == 0 && rc != 0) {
2179 if (rc > 0)
2180 rc--;
2181 if (portp->argp != NULL) {
2182 memcpy_fromio(portp->argp, (void __iomem *) &(cp->args[0]),
2183 portp->argsize);
2184 portp->argp = NULL;
2186 writel(0, &cp->status);
2187 portp->rc = rc;
2188 clear_bit(ST_CMDING, &portp->state);
2189 stli_dodelaycmd(portp, cp);
2190 wake_up_interruptible(&portp->raw_wait);
2195 * Check for any notification messages ready. This includes lots of
2196 * different types of events - RX chars ready, RX break received,
2197 * TX data low or empty in the slave, modem signals changed state.
2199 donerx = 0;
2201 if (ap->notify) {
2202 nt = ap->changed;
2203 ap->notify = 0;
2204 tty = tty_port_tty_get(&portp->port);
2206 if (nt.signal & SG_DCD) {
2207 oldsigs = portp->sigs;
2208 portp->sigs = stli_mktiocm(nt.sigvalue);
2209 clear_bit(ST_GETSIGS, &portp->state);
2210 if ((portp->sigs & TIOCM_CD) &&
2211 ((oldsigs & TIOCM_CD) == 0))
2212 wake_up_interruptible(&portp->port.open_wait);
2213 if ((oldsigs & TIOCM_CD) &&
2214 ((portp->sigs & TIOCM_CD) == 0)) {
2215 if (portp->port.flags & ASYNC_CHECK_CD) {
2216 if (tty)
2217 tty_hangup(tty);
2222 if (nt.data & DT_TXEMPTY)
2223 clear_bit(ST_TXBUSY, &portp->state);
2224 if (nt.data & (DT_TXEMPTY | DT_TXLOW)) {
2225 if (tty != NULL) {
2226 tty_wakeup(tty);
2227 EBRDENABLE(brdp);
2231 if ((nt.data & DT_RXBREAK) && (portp->rxmarkmsk & BRKINT)) {
2232 if (tty != NULL) {
2233 tty_insert_flip_char(tty, 0, TTY_BREAK);
2234 if (portp->port.flags & ASYNC_SAK) {
2235 do_SAK(tty);
2236 EBRDENABLE(brdp);
2238 tty_schedule_flip(tty);
2241 tty_kref_put(tty);
2243 if (nt.data & DT_RXBUSY) {
2244 donerx++;
2245 stli_read(brdp, portp);
2250 * It might seem odd that we are checking for more RX chars here.
2251 * But, we need to handle the case where the tty buffer was previously
2252 * filled, but we had more characters to pass up. The slave will not
2253 * send any more RX notify messages until the RX buffer has been emptied.
2254 * But it will leave the service bits on (since the buffer is not empty).
2255 * So from here we can try to process more RX chars.
2257 if ((!donerx) && test_bit(ST_RXING, &portp->state)) {
2258 clear_bit(ST_RXING, &portp->state);
2259 stli_read(brdp, portp);
2262 return((test_bit(ST_OPENING, &portp->state) ||
2263 test_bit(ST_CLOSING, &portp->state) ||
2264 test_bit(ST_CMDING, &portp->state) ||
2265 test_bit(ST_TXBUSY, &portp->state) ||
2266 test_bit(ST_RXING, &portp->state)) ? 0 : 1);
2269 /*****************************************************************************/
2272 * Service all ports on a particular board. Assumes that the boards
2273 * shared memory is enabled, and that the page pointer is pointed
2274 * at the cdk header structure.
2277 static void stli_brdpoll(struct stlibrd *brdp, cdkhdr_t __iomem *hdrp)
2279 struct stliport *portp;
2280 unsigned char hostbits[(STL_MAXCHANS / 8) + 1];
2281 unsigned char slavebits[(STL_MAXCHANS / 8) + 1];
2282 unsigned char __iomem *slavep;
2283 int bitpos, bitat, bitsize;
2284 int channr, nrdevs, slavebitchange;
2286 bitsize = brdp->bitsize;
2287 nrdevs = brdp->nrdevs;
2290 * Check if slave wants any service. Basically we try to do as
2291 * little work as possible here. There are 2 levels of service
2292 * bits. So if there is nothing to do we bail early. We check
2293 * 8 service bits at a time in the inner loop, so we can bypass
2294 * the lot if none of them want service.
2296 memcpy_fromio(&hostbits[0], (((unsigned char __iomem *) hdrp) + brdp->hostoffset),
2297 bitsize);
2299 memset(&slavebits[0], 0, bitsize);
2300 slavebitchange = 0;
2302 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2303 if (hostbits[bitpos] == 0)
2304 continue;
2305 channr = bitpos * 8;
2306 for (bitat = 0x1; (channr < nrdevs); channr++, bitat <<= 1) {
2307 if (hostbits[bitpos] & bitat) {
2308 portp = brdp->ports[(channr - 1)];
2309 if (stli_hostcmd(brdp, portp)) {
2310 slavebitchange++;
2311 slavebits[bitpos] |= bitat;
2318 * If any of the ports are no longer busy then update them in the
2319 * slave request bits. We need to do this after, since a host port
2320 * service may initiate more slave requests.
2322 if (slavebitchange) {
2323 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2324 slavep = ((unsigned char __iomem *) hdrp) + brdp->slaveoffset;
2325 for (bitpos = 0; (bitpos < bitsize); bitpos++) {
2326 if (readb(slavebits + bitpos))
2327 writeb(readb(slavep + bitpos) & ~slavebits[bitpos], slavebits + bitpos);
2332 /*****************************************************************************/
2335 * Driver poll routine. This routine polls the boards in use and passes
2336 * messages back up to host when necessary. This is actually very
2337 * CPU efficient, since we will always have the kernel poll clock, it
2338 * adds only a few cycles when idle (since board service can be
2339 * determined very easily), but when loaded generates no interrupts
2340 * (with their expensive associated context change).
2343 static void stli_poll(unsigned long arg)
2345 cdkhdr_t __iomem *hdrp;
2346 struct stlibrd *brdp;
2347 unsigned int brdnr;
2349 mod_timer(&stli_timerlist, STLI_TIMEOUT);
2352 * Check each board and do any servicing required.
2354 for (brdnr = 0; (brdnr < stli_nrbrds); brdnr++) {
2355 brdp = stli_brds[brdnr];
2356 if (brdp == NULL)
2357 continue;
2358 if ((brdp->state & BST_STARTED) == 0)
2359 continue;
2361 spin_lock(&brd_lock);
2362 EBRDENABLE(brdp);
2363 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
2364 if (readb(&hdrp->hostreq))
2365 stli_brdpoll(brdp, hdrp);
2366 EBRDDISABLE(brdp);
2367 spin_unlock(&brd_lock);
2371 /*****************************************************************************/
2374 * Translate the termios settings into the port setting structure of
2375 * the slave.
2378 static void stli_mkasyport(struct tty_struct *tty, struct stliport *portp,
2379 asyport_t *pp, struct ktermios *tiosp)
2381 memset(pp, 0, sizeof(asyport_t));
2384 * Start of by setting the baud, char size, parity and stop bit info.
2386 pp->baudout = tty_get_baud_rate(tty);
2387 if ((tiosp->c_cflag & CBAUD) == B38400) {
2388 if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI)
2389 pp->baudout = 57600;
2390 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI)
2391 pp->baudout = 115200;
2392 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI)
2393 pp->baudout = 230400;
2394 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP)
2395 pp->baudout = 460800;
2396 else if ((portp->port.flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)
2397 pp->baudout = (portp->baud_base / portp->custom_divisor);
2399 if (pp->baudout > STL_MAXBAUD)
2400 pp->baudout = STL_MAXBAUD;
2401 pp->baudin = pp->baudout;
2403 switch (tiosp->c_cflag & CSIZE) {
2404 case CS5:
2405 pp->csize = 5;
2406 break;
2407 case CS6:
2408 pp->csize = 6;
2409 break;
2410 case CS7:
2411 pp->csize = 7;
2412 break;
2413 default:
2414 pp->csize = 8;
2415 break;
2418 if (tiosp->c_cflag & CSTOPB)
2419 pp->stopbs = PT_STOP2;
2420 else
2421 pp->stopbs = PT_STOP1;
2423 if (tiosp->c_cflag & PARENB) {
2424 if (tiosp->c_cflag & PARODD)
2425 pp->parity = PT_ODDPARITY;
2426 else
2427 pp->parity = PT_EVENPARITY;
2428 } else {
2429 pp->parity = PT_NOPARITY;
2433 * Set up any flow control options enabled.
2435 if (tiosp->c_iflag & IXON) {
2436 pp->flow |= F_IXON;
2437 if (tiosp->c_iflag & IXANY)
2438 pp->flow |= F_IXANY;
2440 if (tiosp->c_cflag & CRTSCTS)
2441 pp->flow |= (F_RTSFLOW | F_CTSFLOW);
2443 pp->startin = tiosp->c_cc[VSTART];
2444 pp->stopin = tiosp->c_cc[VSTOP];
2445 pp->startout = tiosp->c_cc[VSTART];
2446 pp->stopout = tiosp->c_cc[VSTOP];
2449 * Set up the RX char marking mask with those RX error types we must
2450 * catch. We can get the slave to help us out a little here, it will
2451 * ignore parity errors and breaks for us, and mark parity errors in
2452 * the data stream.
2454 if (tiosp->c_iflag & IGNPAR)
2455 pp->iflag |= FI_IGNRXERRS;
2456 if (tiosp->c_iflag & IGNBRK)
2457 pp->iflag |= FI_IGNBREAK;
2459 portp->rxmarkmsk = 0;
2460 if (tiosp->c_iflag & (INPCK | PARMRK))
2461 pp->iflag |= FI_1MARKRXERRS;
2462 if (tiosp->c_iflag & BRKINT)
2463 portp->rxmarkmsk |= BRKINT;
2466 * Set up clocal processing as required.
2468 if (tiosp->c_cflag & CLOCAL)
2469 portp->port.flags &= ~ASYNC_CHECK_CD;
2470 else
2471 portp->port.flags |= ASYNC_CHECK_CD;
2474 * Transfer any persistent flags into the asyport structure.
2476 pp->pflag = (portp->pflag & 0xffff);
2477 pp->vmin = (portp->pflag & P_RXIMIN) ? 1 : 0;
2478 pp->vtime = (portp->pflag & P_RXITIME) ? 1 : 0;
2479 pp->cc[1] = (portp->pflag & P_RXTHOLD) ? 1 : 0;
2482 /*****************************************************************************/
2485 * Construct a slave signals structure for setting the DTR and RTS
2486 * signals as specified.
2489 static void stli_mkasysigs(asysigs_t *sp, int dtr, int rts)
2491 memset(sp, 0, sizeof(asysigs_t));
2492 if (dtr >= 0) {
2493 sp->signal |= SG_DTR;
2494 sp->sigvalue |= ((dtr > 0) ? SG_DTR : 0);
2496 if (rts >= 0) {
2497 sp->signal |= SG_RTS;
2498 sp->sigvalue |= ((rts > 0) ? SG_RTS : 0);
2502 /*****************************************************************************/
2505 * Convert the signals returned from the slave into a local TIOCM type
2506 * signals value. We keep them locally in TIOCM format.
2509 static long stli_mktiocm(unsigned long sigvalue)
2511 long tiocm = 0;
2512 tiocm |= ((sigvalue & SG_DCD) ? TIOCM_CD : 0);
2513 tiocm |= ((sigvalue & SG_CTS) ? TIOCM_CTS : 0);
2514 tiocm |= ((sigvalue & SG_RI) ? TIOCM_RI : 0);
2515 tiocm |= ((sigvalue & SG_DSR) ? TIOCM_DSR : 0);
2516 tiocm |= ((sigvalue & SG_DTR) ? TIOCM_DTR : 0);
2517 tiocm |= ((sigvalue & SG_RTS) ? TIOCM_RTS : 0);
2518 return(tiocm);
2521 /*****************************************************************************/
2524 * All panels and ports actually attached have been worked out. All
2525 * we need to do here is set up the appropriate per port data structures.
2528 static int stli_initports(struct stlibrd *brdp)
2530 struct stliport *portp;
2531 unsigned int i, panelnr, panelport;
2533 for (i = 0, panelnr = 0, panelport = 0; (i < brdp->nrports); i++) {
2534 portp = kzalloc(sizeof(struct stliport), GFP_KERNEL);
2535 if (!portp) {
2536 printk(KERN_WARNING "istallion: failed to allocate port structure\n");
2537 continue;
2539 tty_port_init(&portp->port);
2540 portp->port.ops = &stli_port_ops;
2541 portp->magic = STLI_PORTMAGIC;
2542 portp->portnr = i;
2543 portp->brdnr = brdp->brdnr;
2544 portp->panelnr = panelnr;
2545 portp->baud_base = STL_BAUDBASE;
2546 portp->port.close_delay = STL_CLOSEDELAY;
2547 portp->closing_wait = 30 * HZ;
2548 init_waitqueue_head(&portp->port.open_wait);
2549 init_waitqueue_head(&portp->port.close_wait);
2550 init_waitqueue_head(&portp->raw_wait);
2551 panelport++;
2552 if (panelport >= brdp->panels[panelnr]) {
2553 panelport = 0;
2554 panelnr++;
2556 brdp->ports[i] = portp;
2559 return 0;
2562 /*****************************************************************************/
2565 * All the following routines are board specific hardware operations.
2568 static void stli_ecpinit(struct stlibrd *brdp)
2570 unsigned long memconf;
2572 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2573 udelay(10);
2574 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2575 udelay(100);
2577 memconf = (brdp->memaddr & ECP_ATADDRMASK) >> ECP_ATADDRSHFT;
2578 outb(memconf, (brdp->iobase + ECP_ATMEMAR));
2581 /*****************************************************************************/
2583 static void stli_ecpenable(struct stlibrd *brdp)
2585 outb(ECP_ATENABLE, (brdp->iobase + ECP_ATCONFR));
2588 /*****************************************************************************/
2590 static void stli_ecpdisable(struct stlibrd *brdp)
2592 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2595 /*****************************************************************************/
2597 static void __iomem *stli_ecpgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2599 void __iomem *ptr;
2600 unsigned char val;
2602 if (offset > brdp->memsize) {
2603 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2604 "range at line=%d(%d), brd=%d\n",
2605 (int) offset, line, __LINE__, brdp->brdnr);
2606 ptr = NULL;
2607 val = 0;
2608 } else {
2609 ptr = brdp->membase + (offset % ECP_ATPAGESIZE);
2610 val = (unsigned char) (offset / ECP_ATPAGESIZE);
2612 outb(val, (brdp->iobase + ECP_ATMEMPR));
2613 return(ptr);
2616 /*****************************************************************************/
2618 static void stli_ecpreset(struct stlibrd *brdp)
2620 outb(ECP_ATSTOP, (brdp->iobase + ECP_ATCONFR));
2621 udelay(10);
2622 outb(ECP_ATDISABLE, (brdp->iobase + ECP_ATCONFR));
2623 udelay(500);
2626 /*****************************************************************************/
2628 static void stli_ecpintr(struct stlibrd *brdp)
2630 outb(0x1, brdp->iobase);
2633 /*****************************************************************************/
2636 * The following set of functions act on ECP EISA boards.
2639 static void stli_ecpeiinit(struct stlibrd *brdp)
2641 unsigned long memconf;
2643 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
2644 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2645 udelay(10);
2646 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2647 udelay(500);
2649 memconf = (brdp->memaddr & ECP_EIADDRMASKL) >> ECP_EIADDRSHFTL;
2650 outb(memconf, (brdp->iobase + ECP_EIMEMARL));
2651 memconf = (brdp->memaddr & ECP_EIADDRMASKH) >> ECP_EIADDRSHFTH;
2652 outb(memconf, (brdp->iobase + ECP_EIMEMARH));
2655 /*****************************************************************************/
2657 static void stli_ecpeienable(struct stlibrd *brdp)
2659 outb(ECP_EIENABLE, (brdp->iobase + ECP_EICONFR));
2662 /*****************************************************************************/
2664 static void stli_ecpeidisable(struct stlibrd *brdp)
2666 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2669 /*****************************************************************************/
2671 static void __iomem *stli_ecpeigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2673 void __iomem *ptr;
2674 unsigned char val;
2676 if (offset > brdp->memsize) {
2677 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2678 "range at line=%d(%d), brd=%d\n",
2679 (int) offset, line, __LINE__, brdp->brdnr);
2680 ptr = NULL;
2681 val = 0;
2682 } else {
2683 ptr = brdp->membase + (offset % ECP_EIPAGESIZE);
2684 if (offset < ECP_EIPAGESIZE)
2685 val = ECP_EIENABLE;
2686 else
2687 val = ECP_EIENABLE | 0x40;
2689 outb(val, (brdp->iobase + ECP_EICONFR));
2690 return(ptr);
2693 /*****************************************************************************/
2695 static void stli_ecpeireset(struct stlibrd *brdp)
2697 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
2698 udelay(10);
2699 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
2700 udelay(500);
2703 /*****************************************************************************/
2706 * The following set of functions act on ECP MCA boards.
2709 static void stli_ecpmcenable(struct stlibrd *brdp)
2711 outb(ECP_MCENABLE, (brdp->iobase + ECP_MCCONFR));
2714 /*****************************************************************************/
2716 static void stli_ecpmcdisable(struct stlibrd *brdp)
2718 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2721 /*****************************************************************************/
2723 static void __iomem *stli_ecpmcgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2725 void __iomem *ptr;
2726 unsigned char val;
2728 if (offset > brdp->memsize) {
2729 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2730 "range at line=%d(%d), brd=%d\n",
2731 (int) offset, line, __LINE__, brdp->brdnr);
2732 ptr = NULL;
2733 val = 0;
2734 } else {
2735 ptr = brdp->membase + (offset % ECP_MCPAGESIZE);
2736 val = ((unsigned char) (offset / ECP_MCPAGESIZE)) | ECP_MCENABLE;
2738 outb(val, (brdp->iobase + ECP_MCCONFR));
2739 return(ptr);
2742 /*****************************************************************************/
2744 static void stli_ecpmcreset(struct stlibrd *brdp)
2746 outb(ECP_MCSTOP, (brdp->iobase + ECP_MCCONFR));
2747 udelay(10);
2748 outb(ECP_MCDISABLE, (brdp->iobase + ECP_MCCONFR));
2749 udelay(500);
2752 /*****************************************************************************/
2755 * The following set of functions act on ECP PCI boards.
2758 static void stli_ecppciinit(struct stlibrd *brdp)
2760 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2761 udelay(10);
2762 outb(0, (brdp->iobase + ECP_PCICONFR));
2763 udelay(500);
2766 /*****************************************************************************/
2768 static void __iomem *stli_ecppcigetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2770 void __iomem *ptr;
2771 unsigned char val;
2773 if (offset > brdp->memsize) {
2774 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2775 "range at line=%d(%d), board=%d\n",
2776 (int) offset, line, __LINE__, brdp->brdnr);
2777 ptr = NULL;
2778 val = 0;
2779 } else {
2780 ptr = brdp->membase + (offset % ECP_PCIPAGESIZE);
2781 val = (offset / ECP_PCIPAGESIZE) << 1;
2783 outb(val, (brdp->iobase + ECP_PCICONFR));
2784 return(ptr);
2787 /*****************************************************************************/
2789 static void stli_ecppcireset(struct stlibrd *brdp)
2791 outb(ECP_PCISTOP, (brdp->iobase + ECP_PCICONFR));
2792 udelay(10);
2793 outb(0, (brdp->iobase + ECP_PCICONFR));
2794 udelay(500);
2797 /*****************************************************************************/
2800 * The following routines act on ONboards.
2803 static void stli_onbinit(struct stlibrd *brdp)
2805 unsigned long memconf;
2807 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2808 udelay(10);
2809 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2810 mdelay(1000);
2812 memconf = (brdp->memaddr & ONB_ATADDRMASK) >> ONB_ATADDRSHFT;
2813 outb(memconf, (brdp->iobase + ONB_ATMEMAR));
2814 outb(0x1, brdp->iobase);
2815 mdelay(1);
2818 /*****************************************************************************/
2820 static void stli_onbenable(struct stlibrd *brdp)
2822 outb((brdp->enabval | ONB_ATENABLE), (brdp->iobase + ONB_ATCONFR));
2825 /*****************************************************************************/
2827 static void stli_onbdisable(struct stlibrd *brdp)
2829 outb((brdp->enabval | ONB_ATDISABLE), (brdp->iobase + ONB_ATCONFR));
2832 /*****************************************************************************/
2834 static void __iomem *stli_onbgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2836 void __iomem *ptr;
2838 if (offset > brdp->memsize) {
2839 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2840 "range at line=%d(%d), brd=%d\n",
2841 (int) offset, line, __LINE__, brdp->brdnr);
2842 ptr = NULL;
2843 } else {
2844 ptr = brdp->membase + (offset % ONB_ATPAGESIZE);
2846 return(ptr);
2849 /*****************************************************************************/
2851 static void stli_onbreset(struct stlibrd *brdp)
2853 outb(ONB_ATSTOP, (brdp->iobase + ONB_ATCONFR));
2854 udelay(10);
2855 outb(ONB_ATDISABLE, (brdp->iobase + ONB_ATCONFR));
2856 mdelay(1000);
2859 /*****************************************************************************/
2862 * The following routines act on ONboard EISA.
2865 static void stli_onbeinit(struct stlibrd *brdp)
2867 unsigned long memconf;
2869 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
2870 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2871 udelay(10);
2872 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2873 mdelay(1000);
2875 memconf = (brdp->memaddr & ONB_EIADDRMASKL) >> ONB_EIADDRSHFTL;
2876 outb(memconf, (brdp->iobase + ONB_EIMEMARL));
2877 memconf = (brdp->memaddr & ONB_EIADDRMASKH) >> ONB_EIADDRSHFTH;
2878 outb(memconf, (brdp->iobase + ONB_EIMEMARH));
2879 outb(0x1, brdp->iobase);
2880 mdelay(1);
2883 /*****************************************************************************/
2885 static void stli_onbeenable(struct stlibrd *brdp)
2887 outb(ONB_EIENABLE, (brdp->iobase + ONB_EICONFR));
2890 /*****************************************************************************/
2892 static void stli_onbedisable(struct stlibrd *brdp)
2894 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2897 /*****************************************************************************/
2899 static void __iomem *stli_onbegetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2901 void __iomem *ptr;
2902 unsigned char val;
2904 if (offset > brdp->memsize) {
2905 printk(KERN_ERR "istallion: shared memory pointer=%x out of "
2906 "range at line=%d(%d), brd=%d\n",
2907 (int) offset, line, __LINE__, brdp->brdnr);
2908 ptr = NULL;
2909 val = 0;
2910 } else {
2911 ptr = brdp->membase + (offset % ONB_EIPAGESIZE);
2912 if (offset < ONB_EIPAGESIZE)
2913 val = ONB_EIENABLE;
2914 else
2915 val = ONB_EIENABLE | 0x40;
2917 outb(val, (brdp->iobase + ONB_EICONFR));
2918 return(ptr);
2921 /*****************************************************************************/
2923 static void stli_onbereset(struct stlibrd *brdp)
2925 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
2926 udelay(10);
2927 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
2928 mdelay(1000);
2931 /*****************************************************************************/
2934 * The following routines act on Brumby boards.
2937 static void stli_bbyinit(struct stlibrd *brdp)
2939 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2940 udelay(10);
2941 outb(0, (brdp->iobase + BBY_ATCONFR));
2942 mdelay(1000);
2943 outb(0x1, brdp->iobase);
2944 mdelay(1);
2947 /*****************************************************************************/
2949 static void __iomem *stli_bbygetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2951 void __iomem *ptr;
2952 unsigned char val;
2954 BUG_ON(offset > brdp->memsize);
2956 ptr = brdp->membase + (offset % BBY_PAGESIZE);
2957 val = (unsigned char) (offset / BBY_PAGESIZE);
2958 outb(val, (brdp->iobase + BBY_ATCONFR));
2959 return(ptr);
2962 /*****************************************************************************/
2964 static void stli_bbyreset(struct stlibrd *brdp)
2966 outb(BBY_ATSTOP, (brdp->iobase + BBY_ATCONFR));
2967 udelay(10);
2968 outb(0, (brdp->iobase + BBY_ATCONFR));
2969 mdelay(1000);
2972 /*****************************************************************************/
2975 * The following routines act on original old Stallion boards.
2978 static void stli_stalinit(struct stlibrd *brdp)
2980 outb(0x1, brdp->iobase);
2981 mdelay(1000);
2984 /*****************************************************************************/
2986 static void __iomem *stli_stalgetmemptr(struct stlibrd *brdp, unsigned long offset, int line)
2988 BUG_ON(offset > brdp->memsize);
2989 return brdp->membase + (offset % STAL_PAGESIZE);
2992 /*****************************************************************************/
2994 static void stli_stalreset(struct stlibrd *brdp)
2996 u32 __iomem *vecp;
2998 vecp = (u32 __iomem *) (brdp->membase + 0x30);
2999 writel(0xffff0000, vecp);
3000 outb(0, brdp->iobase);
3001 mdelay(1000);
3004 /*****************************************************************************/
3007 * Try to find an ECP board and initialize it. This handles only ECP
3008 * board types.
3011 static int stli_initecp(struct stlibrd *brdp)
3013 cdkecpsig_t sig;
3014 cdkecpsig_t __iomem *sigsp;
3015 unsigned int status, nxtid;
3016 char *name;
3017 int retval, panelnr, nrports;
3019 if ((brdp->iobase == 0) || (brdp->memaddr == 0)) {
3020 retval = -ENODEV;
3021 goto err;
3024 brdp->iosize = ECP_IOSIZE;
3026 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3027 retval = -EIO;
3028 goto err;
3032 * Based on the specific board type setup the common vars to access
3033 * and enable shared memory. Set all board specific information now
3034 * as well.
3036 switch (brdp->brdtype) {
3037 case BRD_ECP:
3038 brdp->memsize = ECP_MEMSIZE;
3039 brdp->pagesize = ECP_ATPAGESIZE;
3040 brdp->init = stli_ecpinit;
3041 brdp->enable = stli_ecpenable;
3042 brdp->reenable = stli_ecpenable;
3043 brdp->disable = stli_ecpdisable;
3044 brdp->getmemptr = stli_ecpgetmemptr;
3045 brdp->intr = stli_ecpintr;
3046 brdp->reset = stli_ecpreset;
3047 name = "serial(EC8/64)";
3048 break;
3050 case BRD_ECPE:
3051 brdp->memsize = ECP_MEMSIZE;
3052 brdp->pagesize = ECP_EIPAGESIZE;
3053 brdp->init = stli_ecpeiinit;
3054 brdp->enable = stli_ecpeienable;
3055 brdp->reenable = stli_ecpeienable;
3056 brdp->disable = stli_ecpeidisable;
3057 brdp->getmemptr = stli_ecpeigetmemptr;
3058 brdp->intr = stli_ecpintr;
3059 brdp->reset = stli_ecpeireset;
3060 name = "serial(EC8/64-EI)";
3061 break;
3063 case BRD_ECPMC:
3064 brdp->memsize = ECP_MEMSIZE;
3065 brdp->pagesize = ECP_MCPAGESIZE;
3066 brdp->init = NULL;
3067 brdp->enable = stli_ecpmcenable;
3068 brdp->reenable = stli_ecpmcenable;
3069 brdp->disable = stli_ecpmcdisable;
3070 brdp->getmemptr = stli_ecpmcgetmemptr;
3071 brdp->intr = stli_ecpintr;
3072 brdp->reset = stli_ecpmcreset;
3073 name = "serial(EC8/64-MCA)";
3074 break;
3076 case BRD_ECPPCI:
3077 brdp->memsize = ECP_PCIMEMSIZE;
3078 brdp->pagesize = ECP_PCIPAGESIZE;
3079 brdp->init = stli_ecppciinit;
3080 brdp->enable = NULL;
3081 brdp->reenable = NULL;
3082 brdp->disable = NULL;
3083 brdp->getmemptr = stli_ecppcigetmemptr;
3084 brdp->intr = stli_ecpintr;
3085 brdp->reset = stli_ecppcireset;
3086 name = "serial(EC/RA-PCI)";
3087 break;
3089 default:
3090 retval = -EINVAL;
3091 goto err_reg;
3095 * The per-board operations structure is all set up, so now let's go
3096 * and get the board operational. Firstly initialize board configuration
3097 * registers. Set the memory mapping info so we can get at the boards
3098 * shared memory.
3100 EBRDINIT(brdp);
3102 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3103 if (brdp->membase == NULL) {
3104 retval = -ENOMEM;
3105 goto err_reg;
3109 * Now that all specific code is set up, enable the shared memory and
3110 * look for the a signature area that will tell us exactly what board
3111 * this is, and what it is connected to it.
3113 EBRDENABLE(brdp);
3114 sigsp = (cdkecpsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3115 memcpy_fromio(&sig, sigsp, sizeof(cdkecpsig_t));
3116 EBRDDISABLE(brdp);
3118 if (sig.magic != cpu_to_le32(ECP_MAGIC)) {
3119 retval = -ENODEV;
3120 goto err_unmap;
3124 * Scan through the signature looking at the panels connected to the
3125 * board. Calculate the total number of ports as we go.
3127 for (panelnr = 0, nxtid = 0; (panelnr < STL_MAXPANELS); panelnr++) {
3128 status = sig.panelid[nxtid];
3129 if ((status & ECH_PNLIDMASK) != nxtid)
3130 break;
3132 brdp->panelids[panelnr] = status;
3133 nrports = (status & ECH_PNL16PORT) ? 16 : 8;
3134 if ((nrports == 16) && ((status & ECH_PNLXPID) == 0))
3135 nxtid++;
3136 brdp->panels[panelnr] = nrports;
3137 brdp->nrports += nrports;
3138 nxtid++;
3139 brdp->nrpanels++;
3143 brdp->state |= BST_FOUND;
3144 return 0;
3145 err_unmap:
3146 iounmap(brdp->membase);
3147 brdp->membase = NULL;
3148 err_reg:
3149 release_region(brdp->iobase, brdp->iosize);
3150 err:
3151 return retval;
3154 /*****************************************************************************/
3157 * Try to find an ONboard, Brumby or Stallion board and initialize it.
3158 * This handles only these board types.
3161 static int stli_initonb(struct stlibrd *brdp)
3163 cdkonbsig_t sig;
3164 cdkonbsig_t __iomem *sigsp;
3165 char *name;
3166 int i, retval;
3169 * Do a basic sanity check on the IO and memory addresses.
3171 if (brdp->iobase == 0 || brdp->memaddr == 0) {
3172 retval = -ENODEV;
3173 goto err;
3176 brdp->iosize = ONB_IOSIZE;
3178 if (!request_region(brdp->iobase, brdp->iosize, "istallion")) {
3179 retval = -EIO;
3180 goto err;
3184 * Based on the specific board type setup the common vars to access
3185 * and enable shared memory. Set all board specific information now
3186 * as well.
3188 switch (brdp->brdtype) {
3189 case BRD_ONBOARD:
3190 case BRD_ONBOARD2:
3191 brdp->memsize = ONB_MEMSIZE;
3192 brdp->pagesize = ONB_ATPAGESIZE;
3193 brdp->init = stli_onbinit;
3194 brdp->enable = stli_onbenable;
3195 brdp->reenable = stli_onbenable;
3196 brdp->disable = stli_onbdisable;
3197 brdp->getmemptr = stli_onbgetmemptr;
3198 brdp->intr = stli_ecpintr;
3199 brdp->reset = stli_onbreset;
3200 if (brdp->memaddr > 0x100000)
3201 brdp->enabval = ONB_MEMENABHI;
3202 else
3203 brdp->enabval = ONB_MEMENABLO;
3204 name = "serial(ONBoard)";
3205 break;
3207 case BRD_ONBOARDE:
3208 brdp->memsize = ONB_EIMEMSIZE;
3209 brdp->pagesize = ONB_EIPAGESIZE;
3210 brdp->init = stli_onbeinit;
3211 brdp->enable = stli_onbeenable;
3212 brdp->reenable = stli_onbeenable;
3213 brdp->disable = stli_onbedisable;
3214 brdp->getmemptr = stli_onbegetmemptr;
3215 brdp->intr = stli_ecpintr;
3216 brdp->reset = stli_onbereset;
3217 name = "serial(ONBoard/E)";
3218 break;
3220 case BRD_BRUMBY4:
3221 brdp->memsize = BBY_MEMSIZE;
3222 brdp->pagesize = BBY_PAGESIZE;
3223 brdp->init = stli_bbyinit;
3224 brdp->enable = NULL;
3225 brdp->reenable = NULL;
3226 brdp->disable = NULL;
3227 brdp->getmemptr = stli_bbygetmemptr;
3228 brdp->intr = stli_ecpintr;
3229 brdp->reset = stli_bbyreset;
3230 name = "serial(Brumby)";
3231 break;
3233 case BRD_STALLION:
3234 brdp->memsize = STAL_MEMSIZE;
3235 brdp->pagesize = STAL_PAGESIZE;
3236 brdp->init = stli_stalinit;
3237 brdp->enable = NULL;
3238 brdp->reenable = NULL;
3239 brdp->disable = NULL;
3240 brdp->getmemptr = stli_stalgetmemptr;
3241 brdp->intr = stli_ecpintr;
3242 brdp->reset = stli_stalreset;
3243 name = "serial(Stallion)";
3244 break;
3246 default:
3247 retval = -EINVAL;
3248 goto err_reg;
3252 * The per-board operations structure is all set up, so now let's go
3253 * and get the board operational. Firstly initialize board configuration
3254 * registers. Set the memory mapping info so we can get at the boards
3255 * shared memory.
3257 EBRDINIT(brdp);
3259 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3260 if (brdp->membase == NULL) {
3261 retval = -ENOMEM;
3262 goto err_reg;
3266 * Now that all specific code is set up, enable the shared memory and
3267 * look for the a signature area that will tell us exactly what board
3268 * this is, and how many ports.
3270 EBRDENABLE(brdp);
3271 sigsp = (cdkonbsig_t __iomem *) EBRDGETMEMPTR(brdp, CDK_SIGADDR);
3272 memcpy_fromio(&sig, sigsp, sizeof(cdkonbsig_t));
3273 EBRDDISABLE(brdp);
3275 if (sig.magic0 != cpu_to_le16(ONB_MAGIC0) ||
3276 sig.magic1 != cpu_to_le16(ONB_MAGIC1) ||
3277 sig.magic2 != cpu_to_le16(ONB_MAGIC2) ||
3278 sig.magic3 != cpu_to_le16(ONB_MAGIC3)) {
3279 retval = -ENODEV;
3280 goto err_unmap;
3284 * Scan through the signature alive mask and calculate how many ports
3285 * there are on this board.
3287 brdp->nrpanels = 1;
3288 if (sig.amask1) {
3289 brdp->nrports = 32;
3290 } else {
3291 for (i = 0; (i < 16); i++) {
3292 if (((sig.amask0 << i) & 0x8000) == 0)
3293 break;
3295 brdp->nrports = i;
3297 brdp->panels[0] = brdp->nrports;
3300 brdp->state |= BST_FOUND;
3301 return 0;
3302 err_unmap:
3303 iounmap(brdp->membase);
3304 brdp->membase = NULL;
3305 err_reg:
3306 release_region(brdp->iobase, brdp->iosize);
3307 err:
3308 return retval;
3311 /*****************************************************************************/
3314 * Start up a running board. This routine is only called after the
3315 * code has been down loaded to the board and is operational. It will
3316 * read in the memory map, and get the show on the road...
3319 static int stli_startbrd(struct stlibrd *brdp)
3321 cdkhdr_t __iomem *hdrp;
3322 cdkmem_t __iomem *memp;
3323 cdkasy_t __iomem *ap;
3324 unsigned long flags;
3325 unsigned int portnr, nrdevs, i;
3326 struct stliport *portp;
3327 int rc = 0;
3328 u32 memoff;
3330 spin_lock_irqsave(&brd_lock, flags);
3331 EBRDENABLE(brdp);
3332 hdrp = (cdkhdr_t __iomem *) EBRDGETMEMPTR(brdp, CDK_CDKADDR);
3333 nrdevs = hdrp->nrdevs;
3335 #if 0
3336 printk("%s(%d): CDK version %d.%d.%d --> "
3337 "nrdevs=%d memp=%x hostp=%x slavep=%x\n",
3338 __FILE__, __LINE__, readb(&hdrp->ver_release), readb(&hdrp->ver_modification),
3339 readb(&hdrp->ver_fix), nrdevs, (int) readl(&hdrp->memp), readl(&hdrp->hostp),
3340 readl(&hdrp->slavep));
3341 #endif
3343 if (nrdevs < (brdp->nrports + 1)) {
3344 printk(KERN_ERR "istallion: slave failed to allocate memory for "
3345 "all devices, devices=%d\n", nrdevs);
3346 brdp->nrports = nrdevs - 1;
3348 brdp->nrdevs = nrdevs;
3349 brdp->hostoffset = hdrp->hostp - CDK_CDKADDR;
3350 brdp->slaveoffset = hdrp->slavep - CDK_CDKADDR;
3351 brdp->bitsize = (nrdevs + 7) / 8;
3352 memoff = readl(&hdrp->memp);
3353 if (memoff > brdp->memsize) {
3354 printk(KERN_ERR "istallion: corrupted shared memory region?\n");
3355 rc = -EIO;
3356 goto stli_donestartup;
3358 memp = (cdkmem_t __iomem *) EBRDGETMEMPTR(brdp, memoff);
3359 if (readw(&memp->dtype) != TYP_ASYNCTRL) {
3360 printk(KERN_ERR "istallion: no slave control device found\n");
3361 goto stli_donestartup;
3363 memp++;
3366 * Cycle through memory allocation of each port. We are guaranteed to
3367 * have all ports inside the first page of slave window, so no need to
3368 * change pages while reading memory map.
3370 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++, memp++) {
3371 if (readw(&memp->dtype) != TYP_ASYNC)
3372 break;
3373 portp = brdp->ports[portnr];
3374 if (portp == NULL)
3375 break;
3376 portp->devnr = i;
3377 portp->addr = readl(&memp->offset);
3378 portp->reqbit = (unsigned char) (0x1 << (i * 8 / nrdevs));
3379 portp->portidx = (unsigned char) (i / 8);
3380 portp->portbit = (unsigned char) (0x1 << (i % 8));
3383 writeb(0xff, &hdrp->slavereq);
3386 * For each port setup a local copy of the RX and TX buffer offsets
3387 * and sizes. We do this separate from the above, because we need to
3388 * move the shared memory page...
3390 for (i = 1, portnr = 0; (i < nrdevs); i++, portnr++) {
3391 portp = brdp->ports[portnr];
3392 if (portp == NULL)
3393 break;
3394 if (portp->addr == 0)
3395 break;
3396 ap = (cdkasy_t __iomem *) EBRDGETMEMPTR(brdp, portp->addr);
3397 if (ap != NULL) {
3398 portp->rxsize = readw(&ap->rxq.size);
3399 portp->txsize = readw(&ap->txq.size);
3400 portp->rxoffset = readl(&ap->rxq.offset);
3401 portp->txoffset = readl(&ap->txq.offset);
3405 stli_donestartup:
3406 EBRDDISABLE(brdp);
3407 spin_unlock_irqrestore(&brd_lock, flags);
3409 if (rc == 0)
3410 brdp->state |= BST_STARTED;
3412 if (! stli_timeron) {
3413 stli_timeron++;
3414 mod_timer(&stli_timerlist, STLI_TIMEOUT);
3417 return rc;
3420 /*****************************************************************************/
3423 * Probe and initialize the specified board.
3426 static int __devinit stli_brdinit(struct stlibrd *brdp)
3428 int retval;
3430 switch (brdp->brdtype) {
3431 case BRD_ECP:
3432 case BRD_ECPE:
3433 case BRD_ECPMC:
3434 case BRD_ECPPCI:
3435 retval = stli_initecp(brdp);
3436 break;
3437 case BRD_ONBOARD:
3438 case BRD_ONBOARDE:
3439 case BRD_ONBOARD2:
3440 case BRD_BRUMBY4:
3441 case BRD_STALLION:
3442 retval = stli_initonb(brdp);
3443 break;
3444 default:
3445 printk(KERN_ERR "istallion: board=%d is unknown board "
3446 "type=%d\n", brdp->brdnr, brdp->brdtype);
3447 retval = -ENODEV;
3450 if (retval)
3451 return retval;
3453 stli_initports(brdp);
3454 printk(KERN_INFO "istallion: %s found, board=%d io=%x mem=%x "
3455 "nrpanels=%d nrports=%d\n", stli_brdnames[brdp->brdtype],
3456 brdp->brdnr, brdp->iobase, (int) brdp->memaddr,
3457 brdp->nrpanels, brdp->nrports);
3458 return 0;
3461 #if STLI_EISAPROBE != 0
3462 /*****************************************************************************/
3465 * Probe around trying to find where the EISA boards shared memory
3466 * might be. This is a bit if hack, but it is the best we can do.
3469 static int stli_eisamemprobe(struct stlibrd *brdp)
3471 cdkecpsig_t ecpsig, __iomem *ecpsigp;
3472 cdkonbsig_t onbsig, __iomem *onbsigp;
3473 int i, foundit;
3476 * First up we reset the board, to get it into a known state. There
3477 * is only 2 board types here we need to worry about. Don;t use the
3478 * standard board init routine here, it programs up the shared
3479 * memory address, and we don't know it yet...
3481 if (brdp->brdtype == BRD_ECPE) {
3482 outb(0x1, (brdp->iobase + ECP_EIBRDENAB));
3483 outb(ECP_EISTOP, (brdp->iobase + ECP_EICONFR));
3484 udelay(10);
3485 outb(ECP_EIDISABLE, (brdp->iobase + ECP_EICONFR));
3486 udelay(500);
3487 stli_ecpeienable(brdp);
3488 } else if (brdp->brdtype == BRD_ONBOARDE) {
3489 outb(0x1, (brdp->iobase + ONB_EIBRDENAB));
3490 outb(ONB_EISTOP, (brdp->iobase + ONB_EICONFR));
3491 udelay(10);
3492 outb(ONB_EIDISABLE, (brdp->iobase + ONB_EICONFR));
3493 mdelay(100);
3494 outb(0x1, brdp->iobase);
3495 mdelay(1);
3496 stli_onbeenable(brdp);
3497 } else {
3498 return -ENODEV;
3501 foundit = 0;
3502 brdp->memsize = ECP_MEMSIZE;
3505 * Board shared memory is enabled, so now we have a poke around and
3506 * see if we can find it.
3508 for (i = 0; (i < stli_eisamempsize); i++) {
3509 brdp->memaddr = stli_eisamemprobeaddrs[i];
3510 brdp->membase = ioremap_nocache(brdp->memaddr, brdp->memsize);
3511 if (brdp->membase == NULL)
3512 continue;
3514 if (brdp->brdtype == BRD_ECPE) {
3515 ecpsigp = stli_ecpeigetmemptr(brdp,
3516 CDK_SIGADDR, __LINE__);
3517 memcpy_fromio(&ecpsig, ecpsigp, sizeof(cdkecpsig_t));
3518 if (ecpsig.magic == cpu_to_le32(ECP_MAGIC))
3519 foundit = 1;
3520 } else {
3521 onbsigp = (cdkonbsig_t __iomem *) stli_onbegetmemptr(brdp,
3522 CDK_SIGADDR, __LINE__);
3523 memcpy_fromio(&onbsig, onbsigp, sizeof(cdkonbsig_t));
3524 if ((onbsig.magic0 == cpu_to_le16(ONB_MAGIC0)) &&
3525 (onbsig.magic1 == cpu_to_le16(ONB_MAGIC1)) &&
3526 (onbsig.magic2 == cpu_to_le16(ONB_MAGIC2)) &&
3527 (onbsig.magic3 == cpu_to_le16(ONB_MAGIC3)))
3528 foundit = 1;
3531 iounmap(brdp->membase);
3532 if (foundit)
3533 break;
3537 * Regardless of whether we found the shared memory or not we must
3538 * disable the region. After that return success or failure.
3540 if (brdp->brdtype == BRD_ECPE)
3541 stli_ecpeidisable(brdp);
3542 else
3543 stli_onbedisable(brdp);
3545 if (! foundit) {
3546 brdp->memaddr = 0;
3547 brdp->membase = NULL;
3548 printk(KERN_ERR "istallion: failed to probe shared memory "
3549 "region for %s in EISA slot=%d\n",
3550 stli_brdnames[brdp->brdtype], (brdp->iobase >> 12));
3551 return -ENODEV;
3553 return 0;
3555 #endif
3557 static int stli_getbrdnr(void)
3559 unsigned int i;
3561 for (i = 0; i < STL_MAXBRDS; i++) {
3562 if (!stli_brds[i]) {
3563 if (i >= stli_nrbrds)
3564 stli_nrbrds = i + 1;
3565 return i;
3568 return -1;
3571 #if STLI_EISAPROBE != 0
3572 /*****************************************************************************/
3575 * Probe around and try to find any EISA boards in system. The biggest
3576 * problem here is finding out what memory address is associated with
3577 * an EISA board after it is found. The registers of the ECPE and
3578 * ONboardE are not readable - so we can't read them from there. We
3579 * don't have access to the EISA CMOS (or EISA BIOS) so we don't
3580 * actually have any way to find out the real value. The best we can
3581 * do is go probing around in the usual places hoping we can find it.
3584 static int __init stli_findeisabrds(void)
3586 struct stlibrd *brdp;
3587 unsigned int iobase, eid, i;
3588 int brdnr, found = 0;
3591 * Firstly check if this is an EISA system. If this is not an EISA system then
3592 * don't bother going any further!
3594 if (EISA_bus)
3595 return 0;
3598 * Looks like an EISA system, so go searching for EISA boards.
3600 for (iobase = 0x1000; (iobase <= 0xc000); iobase += 0x1000) {
3601 outb(0xff, (iobase + 0xc80));
3602 eid = inb(iobase + 0xc80);
3603 eid |= inb(iobase + 0xc81) << 8;
3604 if (eid != STL_EISAID)
3605 continue;
3608 * We have found a board. Need to check if this board was
3609 * statically configured already (just in case!).
3611 for (i = 0; (i < STL_MAXBRDS); i++) {
3612 brdp = stli_brds[i];
3613 if (brdp == NULL)
3614 continue;
3615 if (brdp->iobase == iobase)
3616 break;
3618 if (i < STL_MAXBRDS)
3619 continue;
3622 * We have found a Stallion board and it is not configured already.
3623 * Allocate a board structure and initialize it.
3625 if ((brdp = stli_allocbrd()) == NULL)
3626 return found ? : -ENOMEM;
3627 brdnr = stli_getbrdnr();
3628 if (brdnr < 0)
3629 return found ? : -ENOMEM;
3630 brdp->brdnr = (unsigned int)brdnr;
3631 eid = inb(iobase + 0xc82);
3632 if (eid == ECP_EISAID)
3633 brdp->brdtype = BRD_ECPE;
3634 else if (eid == ONB_EISAID)
3635 brdp->brdtype = BRD_ONBOARDE;
3636 else
3637 brdp->brdtype = BRD_UNKNOWN;
3638 brdp->iobase = iobase;
3639 outb(0x1, (iobase + 0xc84));
3640 if (stli_eisamemprobe(brdp))
3641 outb(0, (iobase + 0xc84));
3642 if (stli_brdinit(brdp) < 0) {
3643 kfree(brdp);
3644 continue;
3647 stli_brds[brdp->brdnr] = brdp;
3648 found++;
3650 for (i = 0; i < brdp->nrports; i++)
3651 tty_register_device(stli_serial,
3652 brdp->brdnr * STL_MAXPORTS + i, NULL);
3655 return found;
3657 #else
3658 static inline int stli_findeisabrds(void) { return 0; }
3659 #endif
3661 /*****************************************************************************/
3664 * Find the next available board number that is free.
3667 /*****************************************************************************/
3670 * We have a Stallion board. Allocate a board structure and
3671 * initialize it. Read its IO and MEMORY resources from PCI
3672 * configuration space.
3675 static int __devinit stli_pciprobe(struct pci_dev *pdev,
3676 const struct pci_device_id *ent)
3678 struct stlibrd *brdp;
3679 unsigned int i;
3680 int brdnr, retval = -EIO;
3682 retval = pci_enable_device(pdev);
3683 if (retval)
3684 goto err;
3685 brdp = stli_allocbrd();
3686 if (brdp == NULL) {
3687 retval = -ENOMEM;
3688 goto err;
3690 mutex_lock(&stli_brdslock);
3691 brdnr = stli_getbrdnr();
3692 if (brdnr < 0) {
3693 printk(KERN_INFO "istallion: too many boards found, "
3694 "maximum supported %d\n", STL_MAXBRDS);
3695 mutex_unlock(&stli_brdslock);
3696 retval = -EIO;
3697 goto err_fr;
3699 brdp->brdnr = (unsigned int)brdnr;
3700 stli_brds[brdp->brdnr] = brdp;
3701 mutex_unlock(&stli_brdslock);
3702 brdp->brdtype = BRD_ECPPCI;
3704 * We have all resources from the board, so lets setup the actual
3705 * board structure now.
3707 brdp->iobase = pci_resource_start(pdev, 3);
3708 brdp->memaddr = pci_resource_start(pdev, 2);
3709 retval = stli_brdinit(brdp);
3710 if (retval)
3711 goto err_null;
3713 brdp->state |= BST_PROBED;
3714 pci_set_drvdata(pdev, brdp);
3716 EBRDENABLE(brdp);
3717 brdp->enable = NULL;
3718 brdp->disable = NULL;
3720 for (i = 0; i < brdp->nrports; i++)
3721 tty_register_device(stli_serial, brdp->brdnr * STL_MAXPORTS + i,
3722 &pdev->dev);
3724 return 0;
3725 err_null:
3726 stli_brds[brdp->brdnr] = NULL;
3727 err_fr:
3728 kfree(brdp);
3729 err:
3730 return retval;
3733 static void __devexit stli_pciremove(struct pci_dev *pdev)
3735 struct stlibrd *brdp = pci_get_drvdata(pdev);
3737 stli_cleanup_ports(brdp);
3739 iounmap(brdp->membase);
3740 if (brdp->iosize > 0)
3741 release_region(brdp->iobase, brdp->iosize);
3743 stli_brds[brdp->brdnr] = NULL;
3744 kfree(brdp);
3747 static struct pci_driver stli_pcidriver = {
3748 .name = "istallion",
3749 .id_table = istallion_pci_tbl,
3750 .probe = stli_pciprobe,
3751 .remove = __devexit_p(stli_pciremove)
3753 /*****************************************************************************/
3756 * Allocate a new board structure. Fill out the basic info in it.
3759 static struct stlibrd *stli_allocbrd(void)
3761 struct stlibrd *brdp;
3763 brdp = kzalloc(sizeof(struct stlibrd), GFP_KERNEL);
3764 if (!brdp) {
3765 printk(KERN_ERR "istallion: failed to allocate memory "
3766 "(size=%Zd)\n", sizeof(struct stlibrd));
3767 return NULL;
3769 brdp->magic = STLI_BOARDMAGIC;
3770 return brdp;
3773 /*****************************************************************************/
3776 * Scan through all the boards in the configuration and see what we
3777 * can find.
3780 static int __init stli_initbrds(void)
3782 struct stlibrd *brdp, *nxtbrdp;
3783 struct stlconf conf;
3784 unsigned int i, j, found = 0;
3785 int retval;
3787 for (stli_nrbrds = 0; stli_nrbrds < ARRAY_SIZE(stli_brdsp);
3788 stli_nrbrds++) {
3789 memset(&conf, 0, sizeof(conf));
3790 if (stli_parsebrd(&conf, stli_brdsp[stli_nrbrds]) == 0)
3791 continue;
3792 if ((brdp = stli_allocbrd()) == NULL)
3793 continue;
3794 brdp->brdnr = stli_nrbrds;
3795 brdp->brdtype = conf.brdtype;
3796 brdp->iobase = conf.ioaddr1;
3797 brdp->memaddr = conf.memaddr;
3798 if (stli_brdinit(brdp) < 0) {
3799 kfree(brdp);
3800 continue;
3802 stli_brds[brdp->brdnr] = brdp;
3803 found++;
3805 for (i = 0; i < brdp->nrports; i++)
3806 tty_register_device(stli_serial,
3807 brdp->brdnr * STL_MAXPORTS + i, NULL);
3810 retval = stli_findeisabrds();
3811 if (retval > 0)
3812 found += retval;
3815 * All found boards are initialized. Now for a little optimization, if
3816 * no boards are sharing the "shared memory" regions then we can just
3817 * leave them all enabled. This is in fact the usual case.
3819 stli_shared = 0;
3820 if (stli_nrbrds > 1) {
3821 for (i = 0; (i < stli_nrbrds); i++) {
3822 brdp = stli_brds[i];
3823 if (brdp == NULL)
3824 continue;
3825 for (j = i + 1; (j < stli_nrbrds); j++) {
3826 nxtbrdp = stli_brds[j];
3827 if (nxtbrdp == NULL)
3828 continue;
3829 if ((brdp->membase >= nxtbrdp->membase) &&
3830 (brdp->membase <= (nxtbrdp->membase +
3831 nxtbrdp->memsize - 1))) {
3832 stli_shared++;
3833 break;
3839 if (stli_shared == 0) {
3840 for (i = 0; (i < stli_nrbrds); i++) {
3841 brdp = stli_brds[i];
3842 if (brdp == NULL)
3843 continue;
3844 if (brdp->state & BST_FOUND) {
3845 EBRDENABLE(brdp);
3846 brdp->enable = NULL;
3847 brdp->disable = NULL;
3852 retval = pci_register_driver(&stli_pcidriver);
3853 if (retval && found == 0) {
3854 printk(KERN_ERR "Neither isa nor eisa cards found nor pci "
3855 "driver can be registered!\n");
3856 goto err;
3859 return 0;
3860 err:
3861 return retval;
3864 /*****************************************************************************/
3867 * Code to handle an "staliomem" read operation. This device is the
3868 * contents of the board shared memory. It is used for down loading
3869 * the slave image (and debugging :-)
3872 static ssize_t stli_memread(struct file *fp, char __user *buf, size_t count, loff_t *offp)
3874 unsigned long flags;
3875 void __iomem *memptr;
3876 struct stlibrd *brdp;
3877 unsigned int brdnr;
3878 int size, n;
3879 void *p;
3880 loff_t off = *offp;
3882 brdnr = iminor(fp->f_path.dentry->d_inode);
3883 if (brdnr >= stli_nrbrds)
3884 return -ENODEV;
3885 brdp = stli_brds[brdnr];
3886 if (brdp == NULL)
3887 return -ENODEV;
3888 if (brdp->state == 0)
3889 return -ENODEV;
3890 if (off >= brdp->memsize || off + count < off)
3891 return 0;
3893 size = min(count, (size_t)(brdp->memsize - off));
3896 * Copy the data a page at a time
3899 p = (void *)__get_free_page(GFP_KERNEL);
3900 if(p == NULL)
3901 return -ENOMEM;
3903 while (size > 0) {
3904 spin_lock_irqsave(&brd_lock, flags);
3905 EBRDENABLE(brdp);
3906 memptr = EBRDGETMEMPTR(brdp, off);
3907 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3908 n = min(n, (int)PAGE_SIZE);
3909 memcpy_fromio(p, memptr, n);
3910 EBRDDISABLE(brdp);
3911 spin_unlock_irqrestore(&brd_lock, flags);
3912 if (copy_to_user(buf, p, n)) {
3913 count = -EFAULT;
3914 goto out;
3916 off += n;
3917 buf += n;
3918 size -= n;
3920 out:
3921 *offp = off;
3922 free_page((unsigned long)p);
3923 return count;
3926 /*****************************************************************************/
3929 * Code to handle an "staliomem" write operation. This device is the
3930 * contents of the board shared memory. It is used for down loading
3931 * the slave image (and debugging :-)
3933 * FIXME: copy under lock
3936 static ssize_t stli_memwrite(struct file *fp, const char __user *buf, size_t count, loff_t *offp)
3938 unsigned long flags;
3939 void __iomem *memptr;
3940 struct stlibrd *brdp;
3941 char __user *chbuf;
3942 unsigned int brdnr;
3943 int size, n;
3944 void *p;
3945 loff_t off = *offp;
3947 brdnr = iminor(fp->f_path.dentry->d_inode);
3949 if (brdnr >= stli_nrbrds)
3950 return -ENODEV;
3951 brdp = stli_brds[brdnr];
3952 if (brdp == NULL)
3953 return -ENODEV;
3954 if (brdp->state == 0)
3955 return -ENODEV;
3956 if (off >= brdp->memsize || off + count < off)
3957 return 0;
3959 chbuf = (char __user *) buf;
3960 size = min(count, (size_t)(brdp->memsize - off));
3963 * Copy the data a page at a time
3966 p = (void *)__get_free_page(GFP_KERNEL);
3967 if(p == NULL)
3968 return -ENOMEM;
3970 while (size > 0) {
3971 n = min(size, (int)(brdp->pagesize - (((unsigned long) off) % brdp->pagesize)));
3972 n = min(n, (int)PAGE_SIZE);
3973 if (copy_from_user(p, chbuf, n)) {
3974 if (count == 0)
3975 count = -EFAULT;
3976 goto out;
3978 spin_lock_irqsave(&brd_lock, flags);
3979 EBRDENABLE(brdp);
3980 memptr = EBRDGETMEMPTR(brdp, off);
3981 memcpy_toio(memptr, p, n);
3982 EBRDDISABLE(brdp);
3983 spin_unlock_irqrestore(&brd_lock, flags);
3984 off += n;
3985 chbuf += n;
3986 size -= n;
3988 out:
3989 free_page((unsigned long) p);
3990 *offp = off;
3991 return count;
3994 /*****************************************************************************/
3997 * Return the board stats structure to user app.
4000 static int stli_getbrdstats(combrd_t __user *bp)
4002 struct stlibrd *brdp;
4003 unsigned int i;
4005 if (copy_from_user(&stli_brdstats, bp, sizeof(combrd_t)))
4006 return -EFAULT;
4007 if (stli_brdstats.brd >= STL_MAXBRDS)
4008 return -ENODEV;
4009 brdp = stli_brds[stli_brdstats.brd];
4010 if (brdp == NULL)
4011 return -ENODEV;
4013 memset(&stli_brdstats, 0, sizeof(combrd_t));
4014 stli_brdstats.brd = brdp->brdnr;
4015 stli_brdstats.type = brdp->brdtype;
4016 stli_brdstats.hwid = 0;
4017 stli_brdstats.state = brdp->state;
4018 stli_brdstats.ioaddr = brdp->iobase;
4019 stli_brdstats.memaddr = brdp->memaddr;
4020 stli_brdstats.nrpanels = brdp->nrpanels;
4021 stli_brdstats.nrports = brdp->nrports;
4022 for (i = 0; (i < brdp->nrpanels); i++) {
4023 stli_brdstats.panels[i].panel = i;
4024 stli_brdstats.panels[i].hwid = brdp->panelids[i];
4025 stli_brdstats.panels[i].nrports = brdp->panels[i];
4028 if (copy_to_user(bp, &stli_brdstats, sizeof(combrd_t)))
4029 return -EFAULT;
4030 return 0;
4033 /*****************************************************************************/
4036 * Resolve the referenced port number into a port struct pointer.
4039 static struct stliport *stli_getport(unsigned int brdnr, unsigned int panelnr,
4040 unsigned int portnr)
4042 struct stlibrd *brdp;
4043 unsigned int i;
4045 if (brdnr >= STL_MAXBRDS)
4046 return NULL;
4047 brdp = stli_brds[brdnr];
4048 if (brdp == NULL)
4049 return NULL;
4050 for (i = 0; (i < panelnr); i++)
4051 portnr += brdp->panels[i];
4052 if (portnr >= brdp->nrports)
4053 return NULL;
4054 return brdp->ports[portnr];
4057 /*****************************************************************************/
4060 * Return the port stats structure to user app. A NULL port struct
4061 * pointer passed in means that we need to find out from the app
4062 * what port to get stats for (used through board control device).
4065 static int stli_portcmdstats(struct tty_struct *tty, struct stliport *portp)
4067 unsigned long flags;
4068 struct stlibrd *brdp;
4069 int rc;
4071 memset(&stli_comstats, 0, sizeof(comstats_t));
4073 if (portp == NULL)
4074 return -ENODEV;
4075 brdp = stli_brds[portp->brdnr];
4076 if (brdp == NULL)
4077 return -ENODEV;
4079 if (brdp->state & BST_STARTED) {
4080 if ((rc = stli_cmdwait(brdp, portp, A_GETSTATS,
4081 &stli_cdkstats, sizeof(asystats_t), 1)) < 0)
4082 return rc;
4083 } else {
4084 memset(&stli_cdkstats, 0, sizeof(asystats_t));
4087 stli_comstats.brd = portp->brdnr;
4088 stli_comstats.panel = portp->panelnr;
4089 stli_comstats.port = portp->portnr;
4090 stli_comstats.state = portp->state;
4091 stli_comstats.flags = portp->port.flags;
4093 spin_lock_irqsave(&brd_lock, flags);
4094 if (tty != NULL) {
4095 if (portp->port.tty == tty) {
4096 stli_comstats.ttystate = tty->flags;
4097 stli_comstats.rxbuffered = -1;
4098 if (tty->termios != NULL) {
4099 stli_comstats.cflags = tty->termios->c_cflag;
4100 stli_comstats.iflags = tty->termios->c_iflag;
4101 stli_comstats.oflags = tty->termios->c_oflag;
4102 stli_comstats.lflags = tty->termios->c_lflag;
4106 spin_unlock_irqrestore(&brd_lock, flags);
4108 stli_comstats.txtotal = stli_cdkstats.txchars;
4109 stli_comstats.rxtotal = stli_cdkstats.rxchars + stli_cdkstats.ringover;
4110 stli_comstats.txbuffered = stli_cdkstats.txringq;
4111 stli_comstats.rxbuffered += stli_cdkstats.rxringq;
4112 stli_comstats.rxoverrun = stli_cdkstats.overruns;
4113 stli_comstats.rxparity = stli_cdkstats.parity;
4114 stli_comstats.rxframing = stli_cdkstats.framing;
4115 stli_comstats.rxlost = stli_cdkstats.ringover;
4116 stli_comstats.rxbreaks = stli_cdkstats.rxbreaks;
4117 stli_comstats.txbreaks = stli_cdkstats.txbreaks;
4118 stli_comstats.txxon = stli_cdkstats.txstart;
4119 stli_comstats.txxoff = stli_cdkstats.txstop;
4120 stli_comstats.rxxon = stli_cdkstats.rxstart;
4121 stli_comstats.rxxoff = stli_cdkstats.rxstop;
4122 stli_comstats.rxrtsoff = stli_cdkstats.rtscnt / 2;
4123 stli_comstats.rxrtson = stli_cdkstats.rtscnt - stli_comstats.rxrtsoff;
4124 stli_comstats.modem = stli_cdkstats.dcdcnt;
4125 stli_comstats.hwid = stli_cdkstats.hwid;
4126 stli_comstats.signals = stli_mktiocm(stli_cdkstats.signals);
4128 return 0;
4131 /*****************************************************************************/
4134 * Return the port stats structure to user app. A NULL port struct
4135 * pointer passed in means that we need to find out from the app
4136 * what port to get stats for (used through board control device).
4139 static int stli_getportstats(struct tty_struct *tty, struct stliport *portp,
4140 comstats_t __user *cp)
4142 struct stlibrd *brdp;
4143 int rc;
4145 if (!portp) {
4146 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4147 return -EFAULT;
4148 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4149 stli_comstats.port);
4150 if (!portp)
4151 return -ENODEV;
4154 brdp = stli_brds[portp->brdnr];
4155 if (!brdp)
4156 return -ENODEV;
4158 if ((rc = stli_portcmdstats(tty, portp)) < 0)
4159 return rc;
4161 return copy_to_user(cp, &stli_comstats, sizeof(comstats_t)) ?
4162 -EFAULT : 0;
4165 /*****************************************************************************/
4168 * Clear the port stats structure. We also return it zeroed out...
4171 static int stli_clrportstats(struct stliport *portp, comstats_t __user *cp)
4173 struct stlibrd *brdp;
4174 int rc;
4176 if (!portp) {
4177 if (copy_from_user(&stli_comstats, cp, sizeof(comstats_t)))
4178 return -EFAULT;
4179 portp = stli_getport(stli_comstats.brd, stli_comstats.panel,
4180 stli_comstats.port);
4181 if (!portp)
4182 return -ENODEV;
4185 brdp = stli_brds[portp->brdnr];
4186 if (!brdp)
4187 return -ENODEV;
4189 if (brdp->state & BST_STARTED) {
4190 if ((rc = stli_cmdwait(brdp, portp, A_CLEARSTATS, NULL, 0, 0)) < 0)
4191 return rc;
4194 memset(&stli_comstats, 0, sizeof(comstats_t));
4195 stli_comstats.brd = portp->brdnr;
4196 stli_comstats.panel = portp->panelnr;
4197 stli_comstats.port = portp->portnr;
4199 if (copy_to_user(cp, &stli_comstats, sizeof(comstats_t)))
4200 return -EFAULT;
4201 return 0;
4204 /*****************************************************************************/
4207 * Return the entire driver ports structure to a user app.
4210 static int stli_getportstruct(struct stliport __user *arg)
4212 struct stliport stli_dummyport;
4213 struct stliport *portp;
4215 if (copy_from_user(&stli_dummyport, arg, sizeof(struct stliport)))
4216 return -EFAULT;
4217 portp = stli_getport(stli_dummyport.brdnr, stli_dummyport.panelnr,
4218 stli_dummyport.portnr);
4219 if (!portp)
4220 return -ENODEV;
4221 if (copy_to_user(arg, portp, sizeof(struct stliport)))
4222 return -EFAULT;
4223 return 0;
4226 /*****************************************************************************/
4229 * Return the entire driver board structure to a user app.
4232 static int stli_getbrdstruct(struct stlibrd __user *arg)
4234 struct stlibrd stli_dummybrd;
4235 struct stlibrd *brdp;
4237 if (copy_from_user(&stli_dummybrd, arg, sizeof(struct stlibrd)))
4238 return -EFAULT;
4239 if (stli_dummybrd.brdnr >= STL_MAXBRDS)
4240 return -ENODEV;
4241 brdp = stli_brds[stli_dummybrd.brdnr];
4242 if (!brdp)
4243 return -ENODEV;
4244 if (copy_to_user(arg, brdp, sizeof(struct stlibrd)))
4245 return -EFAULT;
4246 return 0;
4249 /*****************************************************************************/
4252 * The "staliomem" device is also required to do some special operations on
4253 * the board. We need to be able to send an interrupt to the board,
4254 * reset it, and start/stop it.
4257 static long stli_memioctl(struct file *fp, unsigned int cmd, unsigned long arg)
4259 struct stlibrd *brdp;
4260 int brdnr, rc, done;
4261 void __user *argp = (void __user *)arg;
4264 * First up handle the board independent ioctls.
4266 done = 0;
4267 rc = 0;
4269 lock_kernel();
4271 switch (cmd) {
4272 case COM_GETPORTSTATS:
4273 rc = stli_getportstats(NULL, NULL, argp);
4274 done++;
4275 break;
4276 case COM_CLRPORTSTATS:
4277 rc = stli_clrportstats(NULL, argp);
4278 done++;
4279 break;
4280 case COM_GETBRDSTATS:
4281 rc = stli_getbrdstats(argp);
4282 done++;
4283 break;
4284 case COM_READPORT:
4285 rc = stli_getportstruct(argp);
4286 done++;
4287 break;
4288 case COM_READBOARD:
4289 rc = stli_getbrdstruct(argp);
4290 done++;
4291 break;
4293 unlock_kernel();
4295 if (done)
4296 return rc;
4299 * Now handle the board specific ioctls. These all depend on the
4300 * minor number of the device they were called from.
4302 brdnr = iminor(fp->f_dentry->d_inode);
4303 if (brdnr >= STL_MAXBRDS)
4304 return -ENODEV;
4305 brdp = stli_brds[brdnr];
4306 if (!brdp)
4307 return -ENODEV;
4308 if (brdp->state == 0)
4309 return -ENODEV;
4311 lock_kernel();
4313 switch (cmd) {
4314 case STL_BINTR:
4315 EBRDINTR(brdp);
4316 break;
4317 case STL_BSTART:
4318 rc = stli_startbrd(brdp);
4319 break;
4320 case STL_BSTOP:
4321 brdp->state &= ~BST_STARTED;
4322 break;
4323 case STL_BRESET:
4324 brdp->state &= ~BST_STARTED;
4325 EBRDRESET(brdp);
4326 if (stli_shared == 0) {
4327 if (brdp->reenable != NULL)
4328 (* brdp->reenable)(brdp);
4330 break;
4331 default:
4332 rc = -ENOIOCTLCMD;
4333 break;
4335 unlock_kernel();
4336 return rc;
4339 static const struct tty_operations stli_ops = {
4340 .open = stli_open,
4341 .close = stli_close,
4342 .write = stli_write,
4343 .put_char = stli_putchar,
4344 .flush_chars = stli_flushchars,
4345 .write_room = stli_writeroom,
4346 .chars_in_buffer = stli_charsinbuffer,
4347 .ioctl = stli_ioctl,
4348 .set_termios = stli_settermios,
4349 .throttle = stli_throttle,
4350 .unthrottle = stli_unthrottle,
4351 .stop = stli_stop,
4352 .start = stli_start,
4353 .hangup = stli_hangup,
4354 .flush_buffer = stli_flushbuffer,
4355 .break_ctl = stli_breakctl,
4356 .wait_until_sent = stli_waituntilsent,
4357 .send_xchar = stli_sendxchar,
4358 .tiocmget = stli_tiocmget,
4359 .tiocmset = stli_tiocmset,
4360 .proc_fops = &stli_proc_fops,
4363 static const struct tty_port_operations stli_port_ops = {
4364 .carrier_raised = stli_carrier_raised,
4365 .dtr_rts = stli_dtr_rts,
4366 .activate = stli_activate,
4367 .shutdown = stli_shutdown,
4370 /*****************************************************************************/
4372 * Loadable module initialization stuff.
4375 static void istallion_cleanup_isa(void)
4377 struct stlibrd *brdp;
4378 unsigned int j;
4380 for (j = 0; (j < stli_nrbrds); j++) {
4381 if ((brdp = stli_brds[j]) == NULL || (brdp->state & BST_PROBED))
4382 continue;
4384 stli_cleanup_ports(brdp);
4386 iounmap(brdp->membase);
4387 if (brdp->iosize > 0)
4388 release_region(brdp->iobase, brdp->iosize);
4389 kfree(brdp);
4390 stli_brds[j] = NULL;
4394 static int __init istallion_module_init(void)
4396 unsigned int i;
4397 int retval;
4399 printk(KERN_INFO "%s: version %s\n", stli_drvtitle, stli_drvversion);
4401 spin_lock_init(&stli_lock);
4402 spin_lock_init(&brd_lock);
4404 stli_txcookbuf = kmalloc(STLI_TXBUFSIZE, GFP_KERNEL);
4405 if (!stli_txcookbuf) {
4406 printk(KERN_ERR "istallion: failed to allocate memory "
4407 "(size=%d)\n", STLI_TXBUFSIZE);
4408 retval = -ENOMEM;
4409 goto err;
4412 stli_serial = alloc_tty_driver(STL_MAXBRDS * STL_MAXPORTS);
4413 if (!stli_serial) {
4414 retval = -ENOMEM;
4415 goto err_free;
4418 stli_serial->owner = THIS_MODULE;
4419 stli_serial->driver_name = stli_drvname;
4420 stli_serial->name = stli_serialname;
4421 stli_serial->major = STL_SERIALMAJOR;
4422 stli_serial->minor_start = 0;
4423 stli_serial->type = TTY_DRIVER_TYPE_SERIAL;
4424 stli_serial->subtype = SERIAL_TYPE_NORMAL;
4425 stli_serial->init_termios = stli_deftermios;
4426 stli_serial->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
4427 tty_set_operations(stli_serial, &stli_ops);
4429 retval = tty_register_driver(stli_serial);
4430 if (retval) {
4431 printk(KERN_ERR "istallion: failed to register serial driver\n");
4432 goto err_ttyput;
4435 retval = stli_initbrds();
4436 if (retval)
4437 goto err_ttyunr;
4440 * Set up a character driver for the shared memory region. We need this
4441 * to down load the slave code image. Also it is a useful debugging tool.
4443 retval = register_chrdev(STL_SIOMEMMAJOR, "staliomem", &stli_fsiomem);
4444 if (retval) {
4445 printk(KERN_ERR "istallion: failed to register serial memory "
4446 "device\n");
4447 goto err_deinit;
4450 istallion_class = class_create(THIS_MODULE, "staliomem");
4451 for (i = 0; i < 4; i++)
4452 device_create(istallion_class, NULL, MKDEV(STL_SIOMEMMAJOR, i),
4453 NULL, "staliomem%d", i);
4455 return 0;
4456 err_deinit:
4457 pci_unregister_driver(&stli_pcidriver);
4458 istallion_cleanup_isa();
4459 err_ttyunr:
4460 tty_unregister_driver(stli_serial);
4461 err_ttyput:
4462 put_tty_driver(stli_serial);
4463 err_free:
4464 kfree(stli_txcookbuf);
4465 err:
4466 return retval;
4469 /*****************************************************************************/
4471 static void __exit istallion_module_exit(void)
4473 unsigned int j;
4475 printk(KERN_INFO "Unloading %s: version %s\n", stli_drvtitle,
4476 stli_drvversion);
4478 if (stli_timeron) {
4479 stli_timeron = 0;
4480 del_timer_sync(&stli_timerlist);
4483 unregister_chrdev(STL_SIOMEMMAJOR, "staliomem");
4485 for (j = 0; j < 4; j++)
4486 device_destroy(istallion_class, MKDEV(STL_SIOMEMMAJOR, j));
4487 class_destroy(istallion_class);
4489 pci_unregister_driver(&stli_pcidriver);
4490 istallion_cleanup_isa();
4492 tty_unregister_driver(stli_serial);
4493 put_tty_driver(stli_serial);
4495 kfree(stli_txcookbuf);
4498 module_init(istallion_module_init);
4499 module_exit(istallion_module_exit);