1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 /* ethtool support for igb */
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
43 char stat_string
[ETH_GSTRING_LEN
];
48 #define IGB_STAT(_name, _stat) { \
49 .stat_string = _name, \
50 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51 .stat_offset = offsetof(struct igb_adapter, _stat) \
53 static const struct igb_stats igb_gstrings_stats
[] = {
54 IGB_STAT("rx_packets", stats
.gprc
),
55 IGB_STAT("tx_packets", stats
.gptc
),
56 IGB_STAT("rx_bytes", stats
.gorc
),
57 IGB_STAT("tx_bytes", stats
.gotc
),
58 IGB_STAT("rx_broadcast", stats
.bprc
),
59 IGB_STAT("tx_broadcast", stats
.bptc
),
60 IGB_STAT("rx_multicast", stats
.mprc
),
61 IGB_STAT("tx_multicast", stats
.mptc
),
62 IGB_STAT("multicast", stats
.mprc
),
63 IGB_STAT("collisions", stats
.colc
),
64 IGB_STAT("rx_crc_errors", stats
.crcerrs
),
65 IGB_STAT("rx_no_buffer_count", stats
.rnbc
),
66 IGB_STAT("rx_missed_errors", stats
.mpc
),
67 IGB_STAT("tx_aborted_errors", stats
.ecol
),
68 IGB_STAT("tx_carrier_errors", stats
.tncrs
),
69 IGB_STAT("tx_window_errors", stats
.latecol
),
70 IGB_STAT("tx_abort_late_coll", stats
.latecol
),
71 IGB_STAT("tx_deferred_ok", stats
.dc
),
72 IGB_STAT("tx_single_coll_ok", stats
.scc
),
73 IGB_STAT("tx_multi_coll_ok", stats
.mcc
),
74 IGB_STAT("tx_timeout_count", tx_timeout_count
),
75 IGB_STAT("rx_long_length_errors", stats
.roc
),
76 IGB_STAT("rx_short_length_errors", stats
.ruc
),
77 IGB_STAT("rx_align_errors", stats
.algnerrc
),
78 IGB_STAT("tx_tcp_seg_good", stats
.tsctc
),
79 IGB_STAT("tx_tcp_seg_failed", stats
.tsctfc
),
80 IGB_STAT("rx_flow_control_xon", stats
.xonrxc
),
81 IGB_STAT("rx_flow_control_xoff", stats
.xoffrxc
),
82 IGB_STAT("tx_flow_control_xon", stats
.xontxc
),
83 IGB_STAT("tx_flow_control_xoff", stats
.xofftxc
),
84 IGB_STAT("rx_long_byte_count", stats
.gorc
),
85 IGB_STAT("tx_dma_out_of_sync", stats
.doosync
),
86 IGB_STAT("tx_smbus", stats
.mgptc
),
87 IGB_STAT("rx_smbus", stats
.mgprc
),
88 IGB_STAT("dropped_smbus", stats
.mgpdc
),
91 #define IGB_NETDEV_STAT(_net_stat) { \
92 .stat_string = __stringify(_net_stat), \
93 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
94 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
96 static const struct igb_stats igb_gstrings_net_stats
[] = {
97 IGB_NETDEV_STAT(rx_errors
),
98 IGB_NETDEV_STAT(tx_errors
),
99 IGB_NETDEV_STAT(tx_dropped
),
100 IGB_NETDEV_STAT(rx_length_errors
),
101 IGB_NETDEV_STAT(rx_over_errors
),
102 IGB_NETDEV_STAT(rx_frame_errors
),
103 IGB_NETDEV_STAT(rx_fifo_errors
),
104 IGB_NETDEV_STAT(tx_fifo_errors
),
105 IGB_NETDEV_STAT(tx_heartbeat_errors
)
108 #define IGB_GLOBAL_STATS_LEN \
109 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
110 #define IGB_NETDEV_STATS_LEN \
111 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
112 #define IGB_RX_QUEUE_STATS_LEN \
113 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
115 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
117 #define IGB_QUEUE_STATS_LEN \
118 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
119 IGB_RX_QUEUE_STATS_LEN) + \
120 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
121 IGB_TX_QUEUE_STATS_LEN))
122 #define IGB_STATS_LEN \
123 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
125 static const char igb_gstrings_test
[][ETH_GSTRING_LEN
] = {
126 "Register test (offline)", "Eeprom test (offline)",
127 "Interrupt test (offline)", "Loopback test (offline)",
128 "Link test (on/offline)"
130 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
132 static int igb_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
134 struct igb_adapter
*adapter
= netdev_priv(netdev
);
135 struct e1000_hw
*hw
= &adapter
->hw
;
138 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
140 ecmd
->supported
= (SUPPORTED_10baseT_Half
|
141 SUPPORTED_10baseT_Full
|
142 SUPPORTED_100baseT_Half
|
143 SUPPORTED_100baseT_Full
|
144 SUPPORTED_1000baseT_Full
|
147 ecmd
->advertising
= ADVERTISED_TP
;
149 if (hw
->mac
.autoneg
== 1) {
150 ecmd
->advertising
|= ADVERTISED_Autoneg
;
151 /* the e1000 autoneg seems to match ethtool nicely */
152 ecmd
->advertising
|= hw
->phy
.autoneg_advertised
;
155 ecmd
->port
= PORT_TP
;
156 ecmd
->phy_address
= hw
->phy
.addr
;
158 ecmd
->supported
= (SUPPORTED_1000baseT_Full
|
162 ecmd
->advertising
= (ADVERTISED_1000baseT_Full
|
166 ecmd
->port
= PORT_FIBRE
;
169 ecmd
->transceiver
= XCVR_INTERNAL
;
171 status
= rd32(E1000_STATUS
);
173 if (status
& E1000_STATUS_LU
) {
175 if ((status
& E1000_STATUS_SPEED_1000
) ||
176 hw
->phy
.media_type
!= e1000_media_type_copper
)
177 ecmd
->speed
= SPEED_1000
;
178 else if (status
& E1000_STATUS_SPEED_100
)
179 ecmd
->speed
= SPEED_100
;
181 ecmd
->speed
= SPEED_10
;
183 if ((status
& E1000_STATUS_FD
) ||
184 hw
->phy
.media_type
!= e1000_media_type_copper
)
185 ecmd
->duplex
= DUPLEX_FULL
;
187 ecmd
->duplex
= DUPLEX_HALF
;
193 ecmd
->autoneg
= hw
->mac
.autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
;
197 static int igb_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*ecmd
)
199 struct igb_adapter
*adapter
= netdev_priv(netdev
);
200 struct e1000_hw
*hw
= &adapter
->hw
;
202 /* When SoL/IDER sessions are active, autoneg/speed/duplex
203 * cannot be changed */
204 if (igb_check_reset_block(hw
)) {
205 dev_err(&adapter
->pdev
->dev
, "Cannot change link "
206 "characteristics when SoL/IDER is active.\n");
210 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
213 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
215 hw
->phy
.autoneg_advertised
= ecmd
->advertising
|
218 ecmd
->advertising
= hw
->phy
.autoneg_advertised
;
219 if (adapter
->fc_autoneg
)
220 hw
->fc
.requested_mode
= e1000_fc_default
;
222 if (igb_set_spd_dplx(adapter
, ecmd
->speed
+ ecmd
->duplex
)) {
223 clear_bit(__IGB_RESETTING
, &adapter
->state
);
229 if (netif_running(adapter
->netdev
)) {
235 clear_bit(__IGB_RESETTING
, &adapter
->state
);
239 static u32
igb_get_link(struct net_device
*netdev
)
241 struct igb_adapter
*adapter
= netdev_priv(netdev
);
242 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
245 * If the link is not reported up to netdev, interrupts are disabled,
246 * and so the physical link state may have changed since we last
247 * looked. Set get_link_status to make sure that the true link
248 * state is interrogated, rather than pulling a cached and possibly
249 * stale link state from the driver.
251 if (!netif_carrier_ok(netdev
))
252 mac
->get_link_status
= 1;
254 return igb_has_link(adapter
);
257 static void igb_get_pauseparam(struct net_device
*netdev
,
258 struct ethtool_pauseparam
*pause
)
260 struct igb_adapter
*adapter
= netdev_priv(netdev
);
261 struct e1000_hw
*hw
= &adapter
->hw
;
264 (adapter
->fc_autoneg
? AUTONEG_ENABLE
: AUTONEG_DISABLE
);
266 if (hw
->fc
.current_mode
== e1000_fc_rx_pause
)
268 else if (hw
->fc
.current_mode
== e1000_fc_tx_pause
)
270 else if (hw
->fc
.current_mode
== e1000_fc_full
) {
276 static int igb_set_pauseparam(struct net_device
*netdev
,
277 struct ethtool_pauseparam
*pause
)
279 struct igb_adapter
*adapter
= netdev_priv(netdev
);
280 struct e1000_hw
*hw
= &adapter
->hw
;
283 adapter
->fc_autoneg
= pause
->autoneg
;
285 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
288 if (adapter
->fc_autoneg
== AUTONEG_ENABLE
) {
289 hw
->fc
.requested_mode
= e1000_fc_default
;
290 if (netif_running(adapter
->netdev
)) {
297 if (pause
->rx_pause
&& pause
->tx_pause
)
298 hw
->fc
.requested_mode
= e1000_fc_full
;
299 else if (pause
->rx_pause
&& !pause
->tx_pause
)
300 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
301 else if (!pause
->rx_pause
&& pause
->tx_pause
)
302 hw
->fc
.requested_mode
= e1000_fc_tx_pause
;
303 else if (!pause
->rx_pause
&& !pause
->tx_pause
)
304 hw
->fc
.requested_mode
= e1000_fc_none
;
306 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
308 retval
= ((hw
->phy
.media_type
== e1000_media_type_copper
) ?
309 igb_force_mac_fc(hw
) : igb_setup_link(hw
));
312 clear_bit(__IGB_RESETTING
, &adapter
->state
);
316 static u32
igb_get_rx_csum(struct net_device
*netdev
)
318 struct igb_adapter
*adapter
= netdev_priv(netdev
);
319 return !!(adapter
->rx_ring
[0]->flags
& IGB_RING_FLAG_RX_CSUM
);
322 static int igb_set_rx_csum(struct net_device
*netdev
, u32 data
)
324 struct igb_adapter
*adapter
= netdev_priv(netdev
);
327 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
329 adapter
->rx_ring
[i
]->flags
|= IGB_RING_FLAG_RX_CSUM
;
331 adapter
->rx_ring
[i
]->flags
&= ~IGB_RING_FLAG_RX_CSUM
;
337 static u32
igb_get_tx_csum(struct net_device
*netdev
)
339 return (netdev
->features
& NETIF_F_IP_CSUM
) != 0;
342 static int igb_set_tx_csum(struct net_device
*netdev
, u32 data
)
344 struct igb_adapter
*adapter
= netdev_priv(netdev
);
347 netdev
->features
|= (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
);
348 if (adapter
->hw
.mac
.type
>= e1000_82576
)
349 netdev
->features
|= NETIF_F_SCTP_CSUM
;
351 netdev
->features
&= ~(NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
358 static int igb_set_tso(struct net_device
*netdev
, u32 data
)
360 struct igb_adapter
*adapter
= netdev_priv(netdev
);
363 netdev
->features
|= NETIF_F_TSO
;
364 netdev
->features
|= NETIF_F_TSO6
;
366 netdev
->features
&= ~NETIF_F_TSO
;
367 netdev
->features
&= ~NETIF_F_TSO6
;
370 dev_info(&adapter
->pdev
->dev
, "TSO is %s\n",
371 data
? "Enabled" : "Disabled");
375 static u32
igb_get_msglevel(struct net_device
*netdev
)
377 struct igb_adapter
*adapter
= netdev_priv(netdev
);
378 return adapter
->msg_enable
;
381 static void igb_set_msglevel(struct net_device
*netdev
, u32 data
)
383 struct igb_adapter
*adapter
= netdev_priv(netdev
);
384 adapter
->msg_enable
= data
;
387 static int igb_get_regs_len(struct net_device
*netdev
)
389 #define IGB_REGS_LEN 551
390 return IGB_REGS_LEN
* sizeof(u32
);
393 static void igb_get_regs(struct net_device
*netdev
,
394 struct ethtool_regs
*regs
, void *p
)
396 struct igb_adapter
*adapter
= netdev_priv(netdev
);
397 struct e1000_hw
*hw
= &adapter
->hw
;
401 memset(p
, 0, IGB_REGS_LEN
* sizeof(u32
));
403 regs
->version
= (1 << 24) | (hw
->revision_id
<< 16) | hw
->device_id
;
405 /* General Registers */
406 regs_buff
[0] = rd32(E1000_CTRL
);
407 regs_buff
[1] = rd32(E1000_STATUS
);
408 regs_buff
[2] = rd32(E1000_CTRL_EXT
);
409 regs_buff
[3] = rd32(E1000_MDIC
);
410 regs_buff
[4] = rd32(E1000_SCTL
);
411 regs_buff
[5] = rd32(E1000_CONNSW
);
412 regs_buff
[6] = rd32(E1000_VET
);
413 regs_buff
[7] = rd32(E1000_LEDCTL
);
414 regs_buff
[8] = rd32(E1000_PBA
);
415 regs_buff
[9] = rd32(E1000_PBS
);
416 regs_buff
[10] = rd32(E1000_FRTIMER
);
417 regs_buff
[11] = rd32(E1000_TCPTIMER
);
420 regs_buff
[12] = rd32(E1000_EECD
);
423 /* Reading EICS for EICR because they read the
424 * same but EICS does not clear on read */
425 regs_buff
[13] = rd32(E1000_EICS
);
426 regs_buff
[14] = rd32(E1000_EICS
);
427 regs_buff
[15] = rd32(E1000_EIMS
);
428 regs_buff
[16] = rd32(E1000_EIMC
);
429 regs_buff
[17] = rd32(E1000_EIAC
);
430 regs_buff
[18] = rd32(E1000_EIAM
);
431 /* Reading ICS for ICR because they read the
432 * same but ICS does not clear on read */
433 regs_buff
[19] = rd32(E1000_ICS
);
434 regs_buff
[20] = rd32(E1000_ICS
);
435 regs_buff
[21] = rd32(E1000_IMS
);
436 regs_buff
[22] = rd32(E1000_IMC
);
437 regs_buff
[23] = rd32(E1000_IAC
);
438 regs_buff
[24] = rd32(E1000_IAM
);
439 regs_buff
[25] = rd32(E1000_IMIRVP
);
442 regs_buff
[26] = rd32(E1000_FCAL
);
443 regs_buff
[27] = rd32(E1000_FCAH
);
444 regs_buff
[28] = rd32(E1000_FCTTV
);
445 regs_buff
[29] = rd32(E1000_FCRTL
);
446 regs_buff
[30] = rd32(E1000_FCRTH
);
447 regs_buff
[31] = rd32(E1000_FCRTV
);
450 regs_buff
[32] = rd32(E1000_RCTL
);
451 regs_buff
[33] = rd32(E1000_RXCSUM
);
452 regs_buff
[34] = rd32(E1000_RLPML
);
453 regs_buff
[35] = rd32(E1000_RFCTL
);
454 regs_buff
[36] = rd32(E1000_MRQC
);
455 regs_buff
[37] = rd32(E1000_VT_CTL
);
458 regs_buff
[38] = rd32(E1000_TCTL
);
459 regs_buff
[39] = rd32(E1000_TCTL_EXT
);
460 regs_buff
[40] = rd32(E1000_TIPG
);
461 regs_buff
[41] = rd32(E1000_DTXCTL
);
464 regs_buff
[42] = rd32(E1000_WUC
);
465 regs_buff
[43] = rd32(E1000_WUFC
);
466 regs_buff
[44] = rd32(E1000_WUS
);
467 regs_buff
[45] = rd32(E1000_IPAV
);
468 regs_buff
[46] = rd32(E1000_WUPL
);
471 regs_buff
[47] = rd32(E1000_PCS_CFG0
);
472 regs_buff
[48] = rd32(E1000_PCS_LCTL
);
473 regs_buff
[49] = rd32(E1000_PCS_LSTAT
);
474 regs_buff
[50] = rd32(E1000_PCS_ANADV
);
475 regs_buff
[51] = rd32(E1000_PCS_LPAB
);
476 regs_buff
[52] = rd32(E1000_PCS_NPTX
);
477 regs_buff
[53] = rd32(E1000_PCS_LPABNP
);
480 regs_buff
[54] = adapter
->stats
.crcerrs
;
481 regs_buff
[55] = adapter
->stats
.algnerrc
;
482 regs_buff
[56] = adapter
->stats
.symerrs
;
483 regs_buff
[57] = adapter
->stats
.rxerrc
;
484 regs_buff
[58] = adapter
->stats
.mpc
;
485 regs_buff
[59] = adapter
->stats
.scc
;
486 regs_buff
[60] = adapter
->stats
.ecol
;
487 regs_buff
[61] = adapter
->stats
.mcc
;
488 regs_buff
[62] = adapter
->stats
.latecol
;
489 regs_buff
[63] = adapter
->stats
.colc
;
490 regs_buff
[64] = adapter
->stats
.dc
;
491 regs_buff
[65] = adapter
->stats
.tncrs
;
492 regs_buff
[66] = adapter
->stats
.sec
;
493 regs_buff
[67] = adapter
->stats
.htdpmc
;
494 regs_buff
[68] = adapter
->stats
.rlec
;
495 regs_buff
[69] = adapter
->stats
.xonrxc
;
496 regs_buff
[70] = adapter
->stats
.xontxc
;
497 regs_buff
[71] = adapter
->stats
.xoffrxc
;
498 regs_buff
[72] = adapter
->stats
.xofftxc
;
499 regs_buff
[73] = adapter
->stats
.fcruc
;
500 regs_buff
[74] = adapter
->stats
.prc64
;
501 regs_buff
[75] = adapter
->stats
.prc127
;
502 regs_buff
[76] = adapter
->stats
.prc255
;
503 regs_buff
[77] = adapter
->stats
.prc511
;
504 regs_buff
[78] = adapter
->stats
.prc1023
;
505 regs_buff
[79] = adapter
->stats
.prc1522
;
506 regs_buff
[80] = adapter
->stats
.gprc
;
507 regs_buff
[81] = adapter
->stats
.bprc
;
508 regs_buff
[82] = adapter
->stats
.mprc
;
509 regs_buff
[83] = adapter
->stats
.gptc
;
510 regs_buff
[84] = adapter
->stats
.gorc
;
511 regs_buff
[86] = adapter
->stats
.gotc
;
512 regs_buff
[88] = adapter
->stats
.rnbc
;
513 regs_buff
[89] = adapter
->stats
.ruc
;
514 regs_buff
[90] = adapter
->stats
.rfc
;
515 regs_buff
[91] = adapter
->stats
.roc
;
516 regs_buff
[92] = adapter
->stats
.rjc
;
517 regs_buff
[93] = adapter
->stats
.mgprc
;
518 regs_buff
[94] = adapter
->stats
.mgpdc
;
519 regs_buff
[95] = adapter
->stats
.mgptc
;
520 regs_buff
[96] = adapter
->stats
.tor
;
521 regs_buff
[98] = adapter
->stats
.tot
;
522 regs_buff
[100] = adapter
->stats
.tpr
;
523 regs_buff
[101] = adapter
->stats
.tpt
;
524 regs_buff
[102] = adapter
->stats
.ptc64
;
525 regs_buff
[103] = adapter
->stats
.ptc127
;
526 regs_buff
[104] = adapter
->stats
.ptc255
;
527 regs_buff
[105] = adapter
->stats
.ptc511
;
528 regs_buff
[106] = adapter
->stats
.ptc1023
;
529 regs_buff
[107] = adapter
->stats
.ptc1522
;
530 regs_buff
[108] = adapter
->stats
.mptc
;
531 regs_buff
[109] = adapter
->stats
.bptc
;
532 regs_buff
[110] = adapter
->stats
.tsctc
;
533 regs_buff
[111] = adapter
->stats
.iac
;
534 regs_buff
[112] = adapter
->stats
.rpthc
;
535 regs_buff
[113] = adapter
->stats
.hgptc
;
536 regs_buff
[114] = adapter
->stats
.hgorc
;
537 regs_buff
[116] = adapter
->stats
.hgotc
;
538 regs_buff
[118] = adapter
->stats
.lenerrs
;
539 regs_buff
[119] = adapter
->stats
.scvpc
;
540 regs_buff
[120] = adapter
->stats
.hrmpc
;
542 for (i
= 0; i
< 4; i
++)
543 regs_buff
[121 + i
] = rd32(E1000_SRRCTL(i
));
544 for (i
= 0; i
< 4; i
++)
545 regs_buff
[125 + i
] = rd32(E1000_PSRTYPE(i
));
546 for (i
= 0; i
< 4; i
++)
547 regs_buff
[129 + i
] = rd32(E1000_RDBAL(i
));
548 for (i
= 0; i
< 4; i
++)
549 regs_buff
[133 + i
] = rd32(E1000_RDBAH(i
));
550 for (i
= 0; i
< 4; i
++)
551 regs_buff
[137 + i
] = rd32(E1000_RDLEN(i
));
552 for (i
= 0; i
< 4; i
++)
553 regs_buff
[141 + i
] = rd32(E1000_RDH(i
));
554 for (i
= 0; i
< 4; i
++)
555 regs_buff
[145 + i
] = rd32(E1000_RDT(i
));
556 for (i
= 0; i
< 4; i
++)
557 regs_buff
[149 + i
] = rd32(E1000_RXDCTL(i
));
559 for (i
= 0; i
< 10; i
++)
560 regs_buff
[153 + i
] = rd32(E1000_EITR(i
));
561 for (i
= 0; i
< 8; i
++)
562 regs_buff
[163 + i
] = rd32(E1000_IMIR(i
));
563 for (i
= 0; i
< 8; i
++)
564 regs_buff
[171 + i
] = rd32(E1000_IMIREXT(i
));
565 for (i
= 0; i
< 16; i
++)
566 regs_buff
[179 + i
] = rd32(E1000_RAL(i
));
567 for (i
= 0; i
< 16; i
++)
568 regs_buff
[195 + i
] = rd32(E1000_RAH(i
));
570 for (i
= 0; i
< 4; i
++)
571 regs_buff
[211 + i
] = rd32(E1000_TDBAL(i
));
572 for (i
= 0; i
< 4; i
++)
573 regs_buff
[215 + i
] = rd32(E1000_TDBAH(i
));
574 for (i
= 0; i
< 4; i
++)
575 regs_buff
[219 + i
] = rd32(E1000_TDLEN(i
));
576 for (i
= 0; i
< 4; i
++)
577 regs_buff
[223 + i
] = rd32(E1000_TDH(i
));
578 for (i
= 0; i
< 4; i
++)
579 regs_buff
[227 + i
] = rd32(E1000_TDT(i
));
580 for (i
= 0; i
< 4; i
++)
581 regs_buff
[231 + i
] = rd32(E1000_TXDCTL(i
));
582 for (i
= 0; i
< 4; i
++)
583 regs_buff
[235 + i
] = rd32(E1000_TDWBAL(i
));
584 for (i
= 0; i
< 4; i
++)
585 regs_buff
[239 + i
] = rd32(E1000_TDWBAH(i
));
586 for (i
= 0; i
< 4; i
++)
587 regs_buff
[243 + i
] = rd32(E1000_DCA_TXCTRL(i
));
589 for (i
= 0; i
< 4; i
++)
590 regs_buff
[247 + i
] = rd32(E1000_IP4AT_REG(i
));
591 for (i
= 0; i
< 4; i
++)
592 regs_buff
[251 + i
] = rd32(E1000_IP6AT_REG(i
));
593 for (i
= 0; i
< 32; i
++)
594 regs_buff
[255 + i
] = rd32(E1000_WUPM_REG(i
));
595 for (i
= 0; i
< 128; i
++)
596 regs_buff
[287 + i
] = rd32(E1000_FFMT_REG(i
));
597 for (i
= 0; i
< 128; i
++)
598 regs_buff
[415 + i
] = rd32(E1000_FFVT_REG(i
));
599 for (i
= 0; i
< 4; i
++)
600 regs_buff
[543 + i
] = rd32(E1000_FFLT_REG(i
));
602 regs_buff
[547] = rd32(E1000_TDFH
);
603 regs_buff
[548] = rd32(E1000_TDFT
);
604 regs_buff
[549] = rd32(E1000_TDFHS
);
605 regs_buff
[550] = rd32(E1000_TDFPC
);
609 static int igb_get_eeprom_len(struct net_device
*netdev
)
611 struct igb_adapter
*adapter
= netdev_priv(netdev
);
612 return adapter
->hw
.nvm
.word_size
* 2;
615 static int igb_get_eeprom(struct net_device
*netdev
,
616 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
618 struct igb_adapter
*adapter
= netdev_priv(netdev
);
619 struct e1000_hw
*hw
= &adapter
->hw
;
621 int first_word
, last_word
;
625 if (eeprom
->len
== 0)
628 eeprom
->magic
= hw
->vendor_id
| (hw
->device_id
<< 16);
630 first_word
= eeprom
->offset
>> 1;
631 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
633 eeprom_buff
= kmalloc(sizeof(u16
) *
634 (last_word
- first_word
+ 1), GFP_KERNEL
);
638 if (hw
->nvm
.type
== e1000_nvm_eeprom_spi
)
639 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
,
640 last_word
- first_word
+ 1,
643 for (i
= 0; i
< last_word
- first_word
+ 1; i
++) {
644 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
+ i
, 1,
651 /* Device's eeprom is always little-endian, word addressable */
652 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
653 le16_to_cpus(&eeprom_buff
[i
]);
655 memcpy(bytes
, (u8
*)eeprom_buff
+ (eeprom
->offset
& 1),
662 static int igb_set_eeprom(struct net_device
*netdev
,
663 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
665 struct igb_adapter
*adapter
= netdev_priv(netdev
);
666 struct e1000_hw
*hw
= &adapter
->hw
;
669 int max_len
, first_word
, last_word
, ret_val
= 0;
672 if (eeprom
->len
== 0)
675 if (eeprom
->magic
!= (hw
->vendor_id
| (hw
->device_id
<< 16)))
678 max_len
= hw
->nvm
.word_size
* 2;
680 first_word
= eeprom
->offset
>> 1;
681 last_word
= (eeprom
->offset
+ eeprom
->len
- 1) >> 1;
682 eeprom_buff
= kmalloc(max_len
, GFP_KERNEL
);
686 ptr
= (void *)eeprom_buff
;
688 if (eeprom
->offset
& 1) {
689 /* need read/modify/write of first changed EEPROM word */
690 /* only the second byte of the word is being modified */
691 ret_val
= hw
->nvm
.ops
.read(hw
, first_word
, 1,
695 if (((eeprom
->offset
+ eeprom
->len
) & 1) && (ret_val
== 0)) {
696 /* need read/modify/write of last changed EEPROM word */
697 /* only the first byte of the word is being modified */
698 ret_val
= hw
->nvm
.ops
.read(hw
, last_word
, 1,
699 &eeprom_buff
[last_word
- first_word
]);
702 /* Device's eeprom is always little-endian, word addressable */
703 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
704 le16_to_cpus(&eeprom_buff
[i
]);
706 memcpy(ptr
, bytes
, eeprom
->len
);
708 for (i
= 0; i
< last_word
- first_word
+ 1; i
++)
709 eeprom_buff
[i
] = cpu_to_le16(eeprom_buff
[i
]);
711 ret_val
= hw
->nvm
.ops
.write(hw
, first_word
,
712 last_word
- first_word
+ 1, eeprom_buff
);
714 /* Update the checksum over the first part of the EEPROM if needed
715 * and flush shadow RAM for 82573 controllers */
716 if ((ret_val
== 0) && ((first_word
<= NVM_CHECKSUM_REG
)))
717 igb_update_nvm_checksum(hw
);
723 static void igb_get_drvinfo(struct net_device
*netdev
,
724 struct ethtool_drvinfo
*drvinfo
)
726 struct igb_adapter
*adapter
= netdev_priv(netdev
);
727 char firmware_version
[32];
730 strncpy(drvinfo
->driver
, igb_driver_name
, 32);
731 strncpy(drvinfo
->version
, igb_driver_version
, 32);
733 /* EEPROM image version # is reported as firmware version # for
734 * 82575 controllers */
735 adapter
->hw
.nvm
.ops
.read(&adapter
->hw
, 5, 1, &eeprom_data
);
736 sprintf(firmware_version
, "%d.%d-%d",
737 (eeprom_data
& 0xF000) >> 12,
738 (eeprom_data
& 0x0FF0) >> 4,
739 eeprom_data
& 0x000F);
741 strncpy(drvinfo
->fw_version
, firmware_version
, 32);
742 strncpy(drvinfo
->bus_info
, pci_name(adapter
->pdev
), 32);
743 drvinfo
->n_stats
= IGB_STATS_LEN
;
744 drvinfo
->testinfo_len
= IGB_TEST_LEN
;
745 drvinfo
->regdump_len
= igb_get_regs_len(netdev
);
746 drvinfo
->eedump_len
= igb_get_eeprom_len(netdev
);
749 static void igb_get_ringparam(struct net_device
*netdev
,
750 struct ethtool_ringparam
*ring
)
752 struct igb_adapter
*adapter
= netdev_priv(netdev
);
754 ring
->rx_max_pending
= IGB_MAX_RXD
;
755 ring
->tx_max_pending
= IGB_MAX_TXD
;
756 ring
->rx_mini_max_pending
= 0;
757 ring
->rx_jumbo_max_pending
= 0;
758 ring
->rx_pending
= adapter
->rx_ring_count
;
759 ring
->tx_pending
= adapter
->tx_ring_count
;
760 ring
->rx_mini_pending
= 0;
761 ring
->rx_jumbo_pending
= 0;
764 static int igb_set_ringparam(struct net_device
*netdev
,
765 struct ethtool_ringparam
*ring
)
767 struct igb_adapter
*adapter
= netdev_priv(netdev
);
768 struct igb_ring
*temp_ring
;
770 u16 new_rx_count
, new_tx_count
;
772 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
775 new_rx_count
= min_t(u32
, ring
->rx_pending
, IGB_MAX_RXD
);
776 new_rx_count
= max_t(u16
, new_rx_count
, IGB_MIN_RXD
);
777 new_rx_count
= ALIGN(new_rx_count
, REQ_RX_DESCRIPTOR_MULTIPLE
);
779 new_tx_count
= min_t(u32
, ring
->tx_pending
, IGB_MAX_TXD
);
780 new_tx_count
= max_t(u16
, new_tx_count
, IGB_MIN_TXD
);
781 new_tx_count
= ALIGN(new_tx_count
, REQ_TX_DESCRIPTOR_MULTIPLE
);
783 if ((new_tx_count
== adapter
->tx_ring_count
) &&
784 (new_rx_count
== adapter
->rx_ring_count
)) {
789 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
792 if (!netif_running(adapter
->netdev
)) {
793 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
794 adapter
->tx_ring
[i
]->count
= new_tx_count
;
795 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
796 adapter
->rx_ring
[i
]->count
= new_rx_count
;
797 adapter
->tx_ring_count
= new_tx_count
;
798 adapter
->rx_ring_count
= new_rx_count
;
802 if (adapter
->num_tx_queues
> adapter
->num_rx_queues
)
803 temp_ring
= vmalloc(adapter
->num_tx_queues
* sizeof(struct igb_ring
));
805 temp_ring
= vmalloc(adapter
->num_rx_queues
* sizeof(struct igb_ring
));
815 * We can't just free everything and then setup again,
816 * because the ISRs in MSI-X mode get passed pointers
817 * to the tx and rx ring structs.
819 if (new_tx_count
!= adapter
->tx_ring_count
) {
820 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
821 memcpy(&temp_ring
[i
], adapter
->tx_ring
[i
],
822 sizeof(struct igb_ring
));
824 temp_ring
[i
].count
= new_tx_count
;
825 err
= igb_setup_tx_resources(&temp_ring
[i
]);
829 igb_free_tx_resources(&temp_ring
[i
]);
835 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
836 igb_free_tx_resources(adapter
->tx_ring
[i
]);
838 memcpy(adapter
->tx_ring
[i
], &temp_ring
[i
],
839 sizeof(struct igb_ring
));
842 adapter
->tx_ring_count
= new_tx_count
;
845 if (new_rx_count
!= adapter
->rx_ring_count
) {
846 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
847 memcpy(&temp_ring
[i
], adapter
->rx_ring
[i
],
848 sizeof(struct igb_ring
));
850 temp_ring
[i
].count
= new_rx_count
;
851 err
= igb_setup_rx_resources(&temp_ring
[i
]);
855 igb_free_rx_resources(&temp_ring
[i
]);
862 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
863 igb_free_rx_resources(adapter
->rx_ring
[i
]);
865 memcpy(adapter
->rx_ring
[i
], &temp_ring
[i
],
866 sizeof(struct igb_ring
));
869 adapter
->rx_ring_count
= new_rx_count
;
875 clear_bit(__IGB_RESETTING
, &adapter
->state
);
879 /* ethtool register test data */
880 struct igb_reg_test
{
889 /* In the hardware, registers are laid out either singly, in arrays
890 * spaced 0x100 bytes apart, or in contiguous tables. We assume
891 * most tests take place on arrays or single registers (handled
892 * as a single-element array) and special-case the tables.
893 * Table tests are always pattern tests.
895 * We also make provision for some required setup steps by specifying
896 * registers to be written without any read-back testing.
899 #define PATTERN_TEST 1
900 #define SET_READ_TEST 2
901 #define WRITE_NO_TEST 3
902 #define TABLE32_TEST 4
903 #define TABLE64_TEST_LO 5
904 #define TABLE64_TEST_HI 6
907 static struct igb_reg_test reg_test_i350
[] = {
908 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
909 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
910 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
911 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFF0000, 0xFFFF0000 },
912 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
913 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
914 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
915 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
916 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
917 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
918 /* RDH is read-only for i350, only test RDT. */
919 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
920 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
921 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
922 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
923 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
924 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
925 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
926 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
927 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
928 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
929 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
930 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
931 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
932 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
933 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
934 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
935 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
936 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
937 0xFFFFFFFF, 0xFFFFFFFF },
938 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
939 0xC3FFFFFF, 0xFFFFFFFF },
940 { E1000_RA2
, 0, 16, TABLE64_TEST_LO
,
941 0xFFFFFFFF, 0xFFFFFFFF },
942 { E1000_RA2
, 0, 16, TABLE64_TEST_HI
,
943 0xC3FFFFFF, 0xFFFFFFFF },
944 { E1000_MTA
, 0, 128, TABLE32_TEST
,
945 0xFFFFFFFF, 0xFFFFFFFF },
950 static struct igb_reg_test reg_test_82580
[] = {
951 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
952 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
953 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
954 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
955 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
956 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
957 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
958 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
959 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
960 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
961 /* RDH is read-only for 82580, only test RDT. */
962 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
963 { E1000_RDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
964 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
965 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
966 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
967 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
968 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
969 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
970 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
971 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
972 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
973 { E1000_TDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
974 { E1000_TDT(4), 0x40, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
975 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
976 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
977 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
978 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
979 { E1000_RA
, 0, 16, TABLE64_TEST_LO
,
980 0xFFFFFFFF, 0xFFFFFFFF },
981 { E1000_RA
, 0, 16, TABLE64_TEST_HI
,
982 0x83FFFFFF, 0xFFFFFFFF },
983 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
,
984 0xFFFFFFFF, 0xFFFFFFFF },
985 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
,
986 0x83FFFFFF, 0xFFFFFFFF },
987 { E1000_MTA
, 0, 128, TABLE32_TEST
,
988 0xFFFFFFFF, 0xFFFFFFFF },
993 static struct igb_reg_test reg_test_82576
[] = {
994 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
995 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
996 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
997 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
998 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
999 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1000 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1001 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1002 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1003 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1004 /* Enable all RX queues before testing. */
1005 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
1006 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
1007 /* RDH is read-only for 82576, only test RDT. */
1008 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1009 { E1000_RDT(4), 0x40, 12, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1010 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
1011 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST
, 0, 0 },
1012 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1013 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1014 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1015 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1016 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1017 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1018 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1019 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1020 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST
, 0x000FFFF0, 0x000FFFFF },
1021 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1022 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0x003FFFFB },
1023 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB0FE, 0xFFFFFFFF },
1024 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1025 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1026 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
1027 { E1000_RA2
, 0, 8, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1028 { E1000_RA2
, 0, 8, TABLE64_TEST_HI
, 0x83FFFFFF, 0xFFFFFFFF },
1029 { E1000_MTA
, 0, 128,TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1033 /* 82575 register test */
1034 static struct igb_reg_test reg_test_82575
[] = {
1035 { E1000_FCAL
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1036 { E1000_FCAH
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1037 { E1000_FCT
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0xFFFFFFFF },
1038 { E1000_VET
, 0x100, 1, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1039 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1040 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1041 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1042 /* Enable all four RX queues before testing. */
1043 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, E1000_RXDCTL_QUEUE_ENABLE
},
1044 /* RDH is read-only for 82575, only test RDT. */
1045 { E1000_RDT(0), 0x100, 4, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1046 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST
, 0, 0 },
1047 { E1000_FCRTH
, 0x100, 1, PATTERN_TEST
, 0x0000FFF0, 0x0000FFF0 },
1048 { E1000_FCTTV
, 0x100, 1, PATTERN_TEST
, 0x0000FFFF, 0x0000FFFF },
1049 { E1000_TIPG
, 0x100, 1, PATTERN_TEST
, 0x3FFFFFFF, 0x3FFFFFFF },
1050 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFF80, 0xFFFFFFFF },
1051 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1052 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST
, 0x000FFF80, 0x000FFFFF },
1053 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1054 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0x003FFFFB },
1055 { E1000_RCTL
, 0x100, 1, SET_READ_TEST
, 0x04CFB3FE, 0xFFFFFFFF },
1056 { E1000_TCTL
, 0x100, 1, SET_READ_TEST
, 0xFFFFFFFF, 0x00000000 },
1057 { E1000_TXCW
, 0x100, 1, PATTERN_TEST
, 0xC000FFFF, 0x0000FFFF },
1058 { E1000_RA
, 0, 16, TABLE64_TEST_LO
, 0xFFFFFFFF, 0xFFFFFFFF },
1059 { E1000_RA
, 0, 16, TABLE64_TEST_HI
, 0x800FFFFF, 0xFFFFFFFF },
1060 { E1000_MTA
, 0, 128, TABLE32_TEST
, 0xFFFFFFFF, 0xFFFFFFFF },
1064 static bool reg_pattern_test(struct igb_adapter
*adapter
, u64
*data
,
1065 int reg
, u32 mask
, u32 write
)
1067 struct e1000_hw
*hw
= &adapter
->hw
;
1069 static const u32 _test
[] =
1070 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1071 for (pat
= 0; pat
< ARRAY_SIZE(_test
); pat
++) {
1072 wr32(reg
, (_test
[pat
] & write
));
1074 if (val
!= (_test
[pat
] & write
& mask
)) {
1075 dev_err(&adapter
->pdev
->dev
, "pattern test reg %04X "
1076 "failed: got 0x%08X expected 0x%08X\n",
1077 reg
, val
, (_test
[pat
] & write
& mask
));
1086 static bool reg_set_and_check(struct igb_adapter
*adapter
, u64
*data
,
1087 int reg
, u32 mask
, u32 write
)
1089 struct e1000_hw
*hw
= &adapter
->hw
;
1091 wr32(reg
, write
& mask
);
1093 if ((write
& mask
) != (val
& mask
)) {
1094 dev_err(&adapter
->pdev
->dev
, "set/check reg %04X test failed:"
1095 " got 0x%08X expected 0x%08X\n", reg
,
1096 (val
& mask
), (write
& mask
));
1104 #define REG_PATTERN_TEST(reg, mask, write) \
1106 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1110 #define REG_SET_AND_CHECK(reg, mask, write) \
1112 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1116 static int igb_reg_test(struct igb_adapter
*adapter
, u64
*data
)
1118 struct e1000_hw
*hw
= &adapter
->hw
;
1119 struct igb_reg_test
*test
;
1120 u32 value
, before
, after
;
1123 switch (adapter
->hw
.mac
.type
) {
1125 test
= reg_test_i350
;
1126 toggle
= 0x7FEFF3FF;
1129 test
= reg_test_82580
;
1130 toggle
= 0x7FEFF3FF;
1133 test
= reg_test_82576
;
1134 toggle
= 0x7FFFF3FF;
1137 test
= reg_test_82575
;
1138 toggle
= 0x7FFFF3FF;
1142 /* Because the status register is such a special case,
1143 * we handle it separately from the rest of the register
1144 * tests. Some bits are read-only, some toggle, and some
1145 * are writable on newer MACs.
1147 before
= rd32(E1000_STATUS
);
1148 value
= (rd32(E1000_STATUS
) & toggle
);
1149 wr32(E1000_STATUS
, toggle
);
1150 after
= rd32(E1000_STATUS
) & toggle
;
1151 if (value
!= after
) {
1152 dev_err(&adapter
->pdev
->dev
, "failed STATUS register test "
1153 "got: 0x%08X expected: 0x%08X\n", after
, value
);
1157 /* restore previous status */
1158 wr32(E1000_STATUS
, before
);
1160 /* Perform the remainder of the register test, looping through
1161 * the test table until we either fail or reach the null entry.
1164 for (i
= 0; i
< test
->array_len
; i
++) {
1165 switch (test
->test_type
) {
1167 REG_PATTERN_TEST(test
->reg
+
1168 (i
* test
->reg_offset
),
1173 REG_SET_AND_CHECK(test
->reg
+
1174 (i
* test
->reg_offset
),
1180 (adapter
->hw
.hw_addr
+ test
->reg
)
1181 + (i
* test
->reg_offset
));
1184 REG_PATTERN_TEST(test
->reg
+ (i
* 4),
1188 case TABLE64_TEST_LO
:
1189 REG_PATTERN_TEST(test
->reg
+ (i
* 8),
1193 case TABLE64_TEST_HI
:
1194 REG_PATTERN_TEST((test
->reg
+ 4) + (i
* 8),
1207 static int igb_eeprom_test(struct igb_adapter
*adapter
, u64
*data
)
1214 /* Read and add up the contents of the EEPROM */
1215 for (i
= 0; i
< (NVM_CHECKSUM_REG
+ 1); i
++) {
1216 if ((adapter
->hw
.nvm
.ops
.read(&adapter
->hw
, i
, 1, &temp
)) < 0) {
1223 /* If Checksum is not Correct return error else test passed */
1224 if ((checksum
!= (u16
) NVM_SUM
) && !(*data
))
1230 static irqreturn_t
igb_test_intr(int irq
, void *data
)
1232 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
1233 struct e1000_hw
*hw
= &adapter
->hw
;
1235 adapter
->test_icr
|= rd32(E1000_ICR
);
1240 static int igb_intr_test(struct igb_adapter
*adapter
, u64
*data
)
1242 struct e1000_hw
*hw
= &adapter
->hw
;
1243 struct net_device
*netdev
= adapter
->netdev
;
1244 u32 mask
, ics_mask
, i
= 0, shared_int
= true;
1245 u32 irq
= adapter
->pdev
->irq
;
1249 /* Hook up test interrupt handler just for this test */
1250 if (adapter
->msix_entries
) {
1251 if (request_irq(adapter
->msix_entries
[0].vector
,
1252 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1256 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
1258 if (request_irq(irq
,
1259 igb_test_intr
, 0, netdev
->name
, adapter
)) {
1263 } else if (!request_irq(irq
, igb_test_intr
, IRQF_PROBE_SHARED
,
1264 netdev
->name
, adapter
)) {
1266 } else if (request_irq(irq
, igb_test_intr
, IRQF_SHARED
,
1267 netdev
->name
, adapter
)) {
1271 dev_info(&adapter
->pdev
->dev
, "testing %s interrupt\n",
1272 (shared_int
? "shared" : "unshared"));
1274 /* Disable all the interrupts */
1275 wr32(E1000_IMC
, ~0);
1278 /* Define all writable bits for ICS */
1279 switch (hw
->mac
.type
) {
1281 ics_mask
= 0x37F47EDD;
1284 ics_mask
= 0x77D4FBFD;
1287 ics_mask
= 0x77DCFED5;
1290 ics_mask
= 0x77DCFED5;
1293 ics_mask
= 0x7FFFFFFF;
1297 /* Test each interrupt */
1298 for (; i
< 31; i
++) {
1299 /* Interrupt to test */
1302 if (!(mask
& ics_mask
))
1306 /* Disable the interrupt to be reported in
1307 * the cause register and then force the same
1308 * interrupt and see if one gets posted. If
1309 * an interrupt was posted to the bus, the
1312 adapter
->test_icr
= 0;
1314 /* Flush any pending interrupts */
1315 wr32(E1000_ICR
, ~0);
1317 wr32(E1000_IMC
, mask
);
1318 wr32(E1000_ICS
, mask
);
1321 if (adapter
->test_icr
& mask
) {
1327 /* Enable the interrupt to be reported in
1328 * the cause register and then force the same
1329 * interrupt and see if one gets posted. If
1330 * an interrupt was not posted to the bus, the
1333 adapter
->test_icr
= 0;
1335 /* Flush any pending interrupts */
1336 wr32(E1000_ICR
, ~0);
1338 wr32(E1000_IMS
, mask
);
1339 wr32(E1000_ICS
, mask
);
1342 if (!(adapter
->test_icr
& mask
)) {
1348 /* Disable the other interrupts to be reported in
1349 * the cause register and then force the other
1350 * interrupts and see if any get posted. If
1351 * an interrupt was posted to the bus, the
1354 adapter
->test_icr
= 0;
1356 /* Flush any pending interrupts */
1357 wr32(E1000_ICR
, ~0);
1359 wr32(E1000_IMC
, ~mask
);
1360 wr32(E1000_ICS
, ~mask
);
1363 if (adapter
->test_icr
& mask
) {
1370 /* Disable all the interrupts */
1371 wr32(E1000_IMC
, ~0);
1374 /* Unhook test interrupt handler */
1375 if (adapter
->msix_entries
)
1376 free_irq(adapter
->msix_entries
[0].vector
, adapter
);
1378 free_irq(irq
, adapter
);
1383 static void igb_free_desc_rings(struct igb_adapter
*adapter
)
1385 igb_free_tx_resources(&adapter
->test_tx_ring
);
1386 igb_free_rx_resources(&adapter
->test_rx_ring
);
1389 static int igb_setup_desc_rings(struct igb_adapter
*adapter
)
1391 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1392 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1393 struct e1000_hw
*hw
= &adapter
->hw
;
1396 /* Setup Tx descriptor ring and Tx buffers */
1397 tx_ring
->count
= IGB_DEFAULT_TXD
;
1398 tx_ring
->dev
= &adapter
->pdev
->dev
;
1399 tx_ring
->netdev
= adapter
->netdev
;
1400 tx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1402 if (igb_setup_tx_resources(tx_ring
)) {
1407 igb_setup_tctl(adapter
);
1408 igb_configure_tx_ring(adapter
, tx_ring
);
1410 /* Setup Rx descriptor ring and Rx buffers */
1411 rx_ring
->count
= IGB_DEFAULT_RXD
;
1412 rx_ring
->dev
= &adapter
->pdev
->dev
;
1413 rx_ring
->netdev
= adapter
->netdev
;
1414 rx_ring
->rx_buffer_len
= IGB_RXBUFFER_2048
;
1415 rx_ring
->reg_idx
= adapter
->vfs_allocated_count
;
1417 if (igb_setup_rx_resources(rx_ring
)) {
1422 /* set the default queue to queue 0 of PF */
1423 wr32(E1000_MRQC
, adapter
->vfs_allocated_count
<< 3);
1425 /* enable receive ring */
1426 igb_setup_rctl(adapter
);
1427 igb_configure_rx_ring(adapter
, rx_ring
);
1429 igb_alloc_rx_buffers_adv(rx_ring
, igb_desc_unused(rx_ring
));
1434 igb_free_desc_rings(adapter
);
1438 static void igb_phy_disable_receiver(struct igb_adapter
*adapter
)
1440 struct e1000_hw
*hw
= &adapter
->hw
;
1442 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1443 igb_write_phy_reg(hw
, 29, 0x001F);
1444 igb_write_phy_reg(hw
, 30, 0x8FFC);
1445 igb_write_phy_reg(hw
, 29, 0x001A);
1446 igb_write_phy_reg(hw
, 30, 0x8FF0);
1449 static int igb_integrated_phy_loopback(struct igb_adapter
*adapter
)
1451 struct e1000_hw
*hw
= &adapter
->hw
;
1454 hw
->mac
.autoneg
= false;
1456 if (hw
->phy
.type
== e1000_phy_m88
) {
1457 /* Auto-MDI/MDIX Off */
1458 igb_write_phy_reg(hw
, M88E1000_PHY_SPEC_CTRL
, 0x0808);
1459 /* reset to update Auto-MDI/MDIX */
1460 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x9140);
1462 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x8140);
1463 } else if (hw
->phy
.type
== e1000_phy_82580
) {
1464 /* enable MII loopback */
1465 igb_write_phy_reg(hw
, I82580_PHY_LBK_CTRL
, 0x8041);
1468 ctrl_reg
= rd32(E1000_CTRL
);
1470 /* force 1000, set loopback */
1471 igb_write_phy_reg(hw
, PHY_CONTROL
, 0x4140);
1473 /* Now set up the MAC to the same speed/duplex as the PHY. */
1474 ctrl_reg
= rd32(E1000_CTRL
);
1475 ctrl_reg
&= ~E1000_CTRL_SPD_SEL
; /* Clear the speed sel bits */
1476 ctrl_reg
|= (E1000_CTRL_FRCSPD
| /* Set the Force Speed Bit */
1477 E1000_CTRL_FRCDPX
| /* Set the Force Duplex Bit */
1478 E1000_CTRL_SPD_1000
|/* Force Speed to 1000 */
1479 E1000_CTRL_FD
| /* Force Duplex to FULL */
1480 E1000_CTRL_SLU
); /* Set link up enable bit */
1482 if (hw
->phy
.type
== e1000_phy_m88
)
1483 ctrl_reg
|= E1000_CTRL_ILOS
; /* Invert Loss of Signal */
1485 wr32(E1000_CTRL
, ctrl_reg
);
1487 /* Disable the receiver on the PHY so when a cable is plugged in, the
1488 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1490 if (hw
->phy
.type
== e1000_phy_m88
)
1491 igb_phy_disable_receiver(adapter
);
1498 static int igb_set_phy_loopback(struct igb_adapter
*adapter
)
1500 return igb_integrated_phy_loopback(adapter
);
1503 static int igb_setup_loopback_test(struct igb_adapter
*adapter
)
1505 struct e1000_hw
*hw
= &adapter
->hw
;
1508 reg
= rd32(E1000_CTRL_EXT
);
1510 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1511 if (reg
& E1000_CTRL_EXT_LINK_MODE_MASK
) {
1512 reg
= rd32(E1000_RCTL
);
1513 reg
|= E1000_RCTL_LBM_TCVR
;
1514 wr32(E1000_RCTL
, reg
);
1516 wr32(E1000_SCTL
, E1000_ENABLE_SERDES_LOOPBACK
);
1518 reg
= rd32(E1000_CTRL
);
1519 reg
&= ~(E1000_CTRL_RFCE
|
1522 reg
|= E1000_CTRL_SLU
|
1524 wr32(E1000_CTRL
, reg
);
1526 /* Unset switch control to serdes energy detect */
1527 reg
= rd32(E1000_CONNSW
);
1528 reg
&= ~E1000_CONNSW_ENRGSRC
;
1529 wr32(E1000_CONNSW
, reg
);
1531 /* Set PCS register for forced speed */
1532 reg
= rd32(E1000_PCS_LCTL
);
1533 reg
&= ~E1000_PCS_LCTL_AN_ENABLE
; /* Disable Autoneg*/
1534 reg
|= E1000_PCS_LCTL_FLV_LINK_UP
| /* Force link up */
1535 E1000_PCS_LCTL_FSV_1000
| /* Force 1000 */
1536 E1000_PCS_LCTL_FDV_FULL
| /* SerDes Full duplex */
1537 E1000_PCS_LCTL_FSD
| /* Force Speed */
1538 E1000_PCS_LCTL_FORCE_LINK
; /* Force Link */
1539 wr32(E1000_PCS_LCTL
, reg
);
1544 return igb_set_phy_loopback(adapter
);
1547 static void igb_loopback_cleanup(struct igb_adapter
*adapter
)
1549 struct e1000_hw
*hw
= &adapter
->hw
;
1553 rctl
= rd32(E1000_RCTL
);
1554 rctl
&= ~(E1000_RCTL_LBM_TCVR
| E1000_RCTL_LBM_MAC
);
1555 wr32(E1000_RCTL
, rctl
);
1557 hw
->mac
.autoneg
= true;
1558 igb_read_phy_reg(hw
, PHY_CONTROL
, &phy_reg
);
1559 if (phy_reg
& MII_CR_LOOPBACK
) {
1560 phy_reg
&= ~MII_CR_LOOPBACK
;
1561 igb_write_phy_reg(hw
, PHY_CONTROL
, phy_reg
);
1562 igb_phy_sw_reset(hw
);
1566 static void igb_create_lbtest_frame(struct sk_buff
*skb
,
1567 unsigned int frame_size
)
1569 memset(skb
->data
, 0xFF, frame_size
);
1571 memset(&skb
->data
[frame_size
], 0xAA, frame_size
- 1);
1572 memset(&skb
->data
[frame_size
+ 10], 0xBE, 1);
1573 memset(&skb
->data
[frame_size
+ 12], 0xAF, 1);
1576 static int igb_check_lbtest_frame(struct sk_buff
*skb
, unsigned int frame_size
)
1579 if (*(skb
->data
+ 3) == 0xFF) {
1580 if ((*(skb
->data
+ frame_size
+ 10) == 0xBE) &&
1581 (*(skb
->data
+ frame_size
+ 12) == 0xAF)) {
1588 static int igb_clean_test_rings(struct igb_ring
*rx_ring
,
1589 struct igb_ring
*tx_ring
,
1592 union e1000_adv_rx_desc
*rx_desc
;
1593 struct igb_buffer
*buffer_info
;
1594 int rx_ntc
, tx_ntc
, count
= 0;
1597 /* initialize next to clean and descriptor values */
1598 rx_ntc
= rx_ring
->next_to_clean
;
1599 tx_ntc
= tx_ring
->next_to_clean
;
1600 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, rx_ntc
);
1601 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1603 while (staterr
& E1000_RXD_STAT_DD
) {
1604 /* check rx buffer */
1605 buffer_info
= &rx_ring
->buffer_info
[rx_ntc
];
1607 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1608 dma_unmap_single(rx_ring
->dev
,
1610 rx_ring
->rx_buffer_len
,
1612 buffer_info
->dma
= 0;
1614 /* verify contents of skb */
1615 if (!igb_check_lbtest_frame(buffer_info
->skb
, size
))
1618 /* unmap buffer on tx side */
1619 buffer_info
= &tx_ring
->buffer_info
[tx_ntc
];
1620 igb_unmap_and_free_tx_resource(tx_ring
, buffer_info
);
1622 /* increment rx/tx next to clean counters */
1624 if (rx_ntc
== rx_ring
->count
)
1627 if (tx_ntc
== tx_ring
->count
)
1630 /* fetch next descriptor */
1631 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, rx_ntc
);
1632 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1635 /* re-map buffers to ring, store next to clean values */
1636 igb_alloc_rx_buffers_adv(rx_ring
, count
);
1637 rx_ring
->next_to_clean
= rx_ntc
;
1638 tx_ring
->next_to_clean
= tx_ntc
;
1643 static int igb_run_loopback_test(struct igb_adapter
*adapter
)
1645 struct igb_ring
*tx_ring
= &adapter
->test_tx_ring
;
1646 struct igb_ring
*rx_ring
= &adapter
->test_rx_ring
;
1647 int i
, j
, lc
, good_cnt
, ret_val
= 0;
1648 unsigned int size
= 1024;
1649 netdev_tx_t tx_ret_val
;
1650 struct sk_buff
*skb
;
1652 /* allocate test skb */
1653 skb
= alloc_skb(size
, GFP_KERNEL
);
1657 /* place data into test skb */
1658 igb_create_lbtest_frame(skb
, size
);
1662 * Calculate the loop count based on the largest descriptor ring
1663 * The idea is to wrap the largest ring a number of times using 64
1664 * send/receive pairs during each loop
1667 if (rx_ring
->count
<= tx_ring
->count
)
1668 lc
= ((tx_ring
->count
/ 64) * 2) + 1;
1670 lc
= ((rx_ring
->count
/ 64) * 2) + 1;
1672 for (j
= 0; j
<= lc
; j
++) { /* loop count loop */
1673 /* reset count of good packets */
1676 /* place 64 packets on the transmit queue*/
1677 for (i
= 0; i
< 64; i
++) {
1679 tx_ret_val
= igb_xmit_frame_ring_adv(skb
, tx_ring
);
1680 if (tx_ret_val
== NETDEV_TX_OK
)
1684 if (good_cnt
!= 64) {
1689 /* allow 200 milliseconds for packets to go from tx to rx */
1692 good_cnt
= igb_clean_test_rings(rx_ring
, tx_ring
, size
);
1693 if (good_cnt
!= 64) {
1697 } /* end loop count loop */
1699 /* free the original skb */
1705 static int igb_loopback_test(struct igb_adapter
*adapter
, u64
*data
)
1707 /* PHY loopback cannot be performed if SoL/IDER
1708 * sessions are active */
1709 if (igb_check_reset_block(&adapter
->hw
)) {
1710 dev_err(&adapter
->pdev
->dev
,
1711 "Cannot do PHY loopback test "
1712 "when SoL/IDER is active.\n");
1716 *data
= igb_setup_desc_rings(adapter
);
1719 *data
= igb_setup_loopback_test(adapter
);
1722 *data
= igb_run_loopback_test(adapter
);
1723 igb_loopback_cleanup(adapter
);
1726 igb_free_desc_rings(adapter
);
1731 static int igb_link_test(struct igb_adapter
*adapter
, u64
*data
)
1733 struct e1000_hw
*hw
= &adapter
->hw
;
1735 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
) {
1737 hw
->mac
.serdes_has_link
= false;
1739 /* On some blade server designs, link establishment
1740 * could take as long as 2-3 minutes */
1742 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1743 if (hw
->mac
.serdes_has_link
)
1746 } while (i
++ < 3750);
1750 hw
->mac
.ops
.check_for_link(&adapter
->hw
);
1751 if (hw
->mac
.autoneg
)
1754 if (!(rd32(E1000_STATUS
) & E1000_STATUS_LU
))
1760 static void igb_diag_test(struct net_device
*netdev
,
1761 struct ethtool_test
*eth_test
, u64
*data
)
1763 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1764 u16 autoneg_advertised
;
1765 u8 forced_speed_duplex
, autoneg
;
1766 bool if_running
= netif_running(netdev
);
1768 set_bit(__IGB_TESTING
, &adapter
->state
);
1769 if (eth_test
->flags
== ETH_TEST_FL_OFFLINE
) {
1772 /* save speed, duplex, autoneg settings */
1773 autoneg_advertised
= adapter
->hw
.phy
.autoneg_advertised
;
1774 forced_speed_duplex
= adapter
->hw
.mac
.forced_speed_duplex
;
1775 autoneg
= adapter
->hw
.mac
.autoneg
;
1777 dev_info(&adapter
->pdev
->dev
, "offline testing starting\n");
1779 /* power up link for link test */
1780 igb_power_up_link(adapter
);
1782 /* Link test performed before hardware reset so autoneg doesn't
1783 * interfere with test result */
1784 if (igb_link_test(adapter
, &data
[4]))
1785 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1788 /* indicate we're in test mode */
1793 if (igb_reg_test(adapter
, &data
[0]))
1794 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1797 if (igb_eeprom_test(adapter
, &data
[1]))
1798 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1801 if (igb_intr_test(adapter
, &data
[2]))
1802 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1805 /* power up link for loopback test */
1806 igb_power_up_link(adapter
);
1807 if (igb_loopback_test(adapter
, &data
[3]))
1808 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1810 /* restore speed, duplex, autoneg settings */
1811 adapter
->hw
.phy
.autoneg_advertised
= autoneg_advertised
;
1812 adapter
->hw
.mac
.forced_speed_duplex
= forced_speed_duplex
;
1813 adapter
->hw
.mac
.autoneg
= autoneg
;
1815 /* force this routine to wait until autoneg complete/timeout */
1816 adapter
->hw
.phy
.autoneg_wait_to_complete
= true;
1818 adapter
->hw
.phy
.autoneg_wait_to_complete
= false;
1820 clear_bit(__IGB_TESTING
, &adapter
->state
);
1824 dev_info(&adapter
->pdev
->dev
, "online testing starting\n");
1826 /* PHY is powered down when interface is down */
1827 if (if_running
&& igb_link_test(adapter
, &data
[4]))
1828 eth_test
->flags
|= ETH_TEST_FL_FAILED
;
1832 /* Online tests aren't run; pass by default */
1838 clear_bit(__IGB_TESTING
, &adapter
->state
);
1840 msleep_interruptible(4 * 1000);
1843 static int igb_wol_exclusion(struct igb_adapter
*adapter
,
1844 struct ethtool_wolinfo
*wol
)
1846 struct e1000_hw
*hw
= &adapter
->hw
;
1847 int retval
= 1; /* fail by default */
1849 switch (hw
->device_id
) {
1850 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1851 /* WoL not supported */
1854 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1855 case E1000_DEV_ID_82576_FIBER
:
1856 case E1000_DEV_ID_82576_SERDES
:
1857 /* Wake events not supported on port B */
1858 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
) {
1862 /* return success for non excluded adapter ports */
1865 case E1000_DEV_ID_82576_QUAD_COPPER
:
1866 case E1000_DEV_ID_82576_QUAD_COPPER_ET2
:
1867 /* quad port adapters only support WoL on port A */
1868 if (!(adapter
->flags
& IGB_FLAG_QUAD_PORT_A
)) {
1872 /* return success for non excluded adapter ports */
1876 /* dual port cards only support WoL on port A from now on
1877 * unless it was enabled in the eeprom for port B
1878 * so exclude FUNC_1 ports from having WoL enabled */
1879 if ((rd32(E1000_STATUS
) & E1000_STATUS_FUNC_MASK
) &&
1880 !adapter
->eeprom_wol
) {
1891 static void igb_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1893 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1895 wol
->supported
= WAKE_UCAST
| WAKE_MCAST
|
1896 WAKE_BCAST
| WAKE_MAGIC
|
1900 /* this function will set ->supported = 0 and return 1 if wol is not
1901 * supported by this hardware */
1902 if (igb_wol_exclusion(adapter
, wol
) ||
1903 !device_can_wakeup(&adapter
->pdev
->dev
))
1906 /* apply any specific unsupported masks here */
1907 switch (adapter
->hw
.device_id
) {
1912 if (adapter
->wol
& E1000_WUFC_EX
)
1913 wol
->wolopts
|= WAKE_UCAST
;
1914 if (adapter
->wol
& E1000_WUFC_MC
)
1915 wol
->wolopts
|= WAKE_MCAST
;
1916 if (adapter
->wol
& E1000_WUFC_BC
)
1917 wol
->wolopts
|= WAKE_BCAST
;
1918 if (adapter
->wol
& E1000_WUFC_MAG
)
1919 wol
->wolopts
|= WAKE_MAGIC
;
1920 if (adapter
->wol
& E1000_WUFC_LNKC
)
1921 wol
->wolopts
|= WAKE_PHY
;
1924 static int igb_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
1926 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1928 if (wol
->wolopts
& (WAKE_ARP
| WAKE_MAGICSECURE
))
1931 if (igb_wol_exclusion(adapter
, wol
) ||
1932 !device_can_wakeup(&adapter
->pdev
->dev
))
1933 return wol
->wolopts
? -EOPNOTSUPP
: 0;
1935 /* these settings will always override what we currently have */
1938 if (wol
->wolopts
& WAKE_UCAST
)
1939 adapter
->wol
|= E1000_WUFC_EX
;
1940 if (wol
->wolopts
& WAKE_MCAST
)
1941 adapter
->wol
|= E1000_WUFC_MC
;
1942 if (wol
->wolopts
& WAKE_BCAST
)
1943 adapter
->wol
|= E1000_WUFC_BC
;
1944 if (wol
->wolopts
& WAKE_MAGIC
)
1945 adapter
->wol
|= E1000_WUFC_MAG
;
1946 if (wol
->wolopts
& WAKE_PHY
)
1947 adapter
->wol
|= E1000_WUFC_LNKC
;
1948 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1953 /* bit defines for adapter->led_status */
1954 #define IGB_LED_ON 0
1956 static int igb_phys_id(struct net_device
*netdev
, u32 data
)
1958 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1959 struct e1000_hw
*hw
= &adapter
->hw
;
1960 unsigned long timeout
;
1962 timeout
= data
* 1000;
1965 * msleep_interruptable only accepts unsigned int so we are limited
1966 * in how long a duration we can wait
1968 if (!timeout
|| timeout
> UINT_MAX
)
1972 msleep_interruptible(timeout
);
1975 clear_bit(IGB_LED_ON
, &adapter
->led_status
);
1976 igb_cleanup_led(hw
);
1981 static int igb_set_coalesce(struct net_device
*netdev
,
1982 struct ethtool_coalesce
*ec
)
1984 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1987 if ((ec
->rx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
1988 ((ec
->rx_coalesce_usecs
> 3) &&
1989 (ec
->rx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
1990 (ec
->rx_coalesce_usecs
== 2))
1993 if ((ec
->tx_coalesce_usecs
> IGB_MAX_ITR_USECS
) ||
1994 ((ec
->tx_coalesce_usecs
> 3) &&
1995 (ec
->tx_coalesce_usecs
< IGB_MIN_ITR_USECS
)) ||
1996 (ec
->tx_coalesce_usecs
== 2))
1999 if ((adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
) && ec
->tx_coalesce_usecs
)
2002 /* convert to rate of irq's per second */
2003 if (ec
->rx_coalesce_usecs
&& ec
->rx_coalesce_usecs
<= 3)
2004 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
;
2006 adapter
->rx_itr_setting
= ec
->rx_coalesce_usecs
<< 2;
2008 /* convert to rate of irq's per second */
2009 if (adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)
2010 adapter
->tx_itr_setting
= adapter
->rx_itr_setting
;
2011 else if (ec
->tx_coalesce_usecs
&& ec
->tx_coalesce_usecs
<= 3)
2012 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
;
2014 adapter
->tx_itr_setting
= ec
->tx_coalesce_usecs
<< 2;
2016 for (i
= 0; i
< adapter
->num_q_vectors
; i
++) {
2017 struct igb_q_vector
*q_vector
= adapter
->q_vector
[i
];
2018 if (q_vector
->rx_ring
)
2019 q_vector
->itr_val
= adapter
->rx_itr_setting
;
2021 q_vector
->itr_val
= adapter
->tx_itr_setting
;
2022 if (q_vector
->itr_val
&& q_vector
->itr_val
<= 3)
2023 q_vector
->itr_val
= IGB_START_ITR
;
2024 q_vector
->set_itr
= 1;
2030 static int igb_get_coalesce(struct net_device
*netdev
,
2031 struct ethtool_coalesce
*ec
)
2033 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2035 if (adapter
->rx_itr_setting
<= 3)
2036 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
;
2038 ec
->rx_coalesce_usecs
= adapter
->rx_itr_setting
>> 2;
2040 if (!(adapter
->flags
& IGB_FLAG_QUEUE_PAIRS
)) {
2041 if (adapter
->tx_itr_setting
<= 3)
2042 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
;
2044 ec
->tx_coalesce_usecs
= adapter
->tx_itr_setting
>> 2;
2050 static int igb_nway_reset(struct net_device
*netdev
)
2052 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2053 if (netif_running(netdev
))
2054 igb_reinit_locked(adapter
);
2058 static int igb_get_sset_count(struct net_device
*netdev
, int sset
)
2062 return IGB_STATS_LEN
;
2064 return IGB_TEST_LEN
;
2070 static void igb_get_ethtool_stats(struct net_device
*netdev
,
2071 struct ethtool_stats
*stats
, u64
*data
)
2073 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2074 struct rtnl_link_stats64
*net_stats
= &adapter
->stats64
;
2076 struct igb_ring
*ring
;
2080 spin_lock(&adapter
->stats64_lock
);
2081 igb_update_stats(adapter
, net_stats
);
2083 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2084 p
= (char *)adapter
+ igb_gstrings_stats
[i
].stat_offset
;
2085 data
[i
] = (igb_gstrings_stats
[i
].sizeof_stat
==
2086 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2088 for (j
= 0; j
< IGB_NETDEV_STATS_LEN
; j
++, i
++) {
2089 p
= (char *)net_stats
+ igb_gstrings_net_stats
[j
].stat_offset
;
2090 data
[i
] = (igb_gstrings_net_stats
[j
].sizeof_stat
==
2091 sizeof(u64
)) ? *(u64
*)p
: *(u32
*)p
;
2093 for (j
= 0; j
< adapter
->num_tx_queues
; j
++) {
2096 ring
= adapter
->tx_ring
[j
];
2098 start
= u64_stats_fetch_begin_bh(&ring
->tx_syncp
);
2099 data
[i
] = ring
->tx_stats
.packets
;
2100 data
[i
+1] = ring
->tx_stats
.bytes
;
2101 data
[i
+2] = ring
->tx_stats
.restart_queue
;
2102 } while (u64_stats_fetch_retry_bh(&ring
->tx_syncp
, start
));
2104 start
= u64_stats_fetch_begin_bh(&ring
->tx_syncp2
);
2105 restart2
= ring
->tx_stats
.restart_queue2
;
2106 } while (u64_stats_fetch_retry_bh(&ring
->tx_syncp2
, start
));
2107 data
[i
+2] += restart2
;
2109 i
+= IGB_TX_QUEUE_STATS_LEN
;
2111 for (j
= 0; j
< adapter
->num_rx_queues
; j
++) {
2112 ring
= adapter
->rx_ring
[j
];
2114 start
= u64_stats_fetch_begin_bh(&ring
->rx_syncp
);
2115 data
[i
] = ring
->rx_stats
.packets
;
2116 data
[i
+1] = ring
->rx_stats
.bytes
;
2117 data
[i
+2] = ring
->rx_stats
.drops
;
2118 data
[i
+3] = ring
->rx_stats
.csum_err
;
2119 data
[i
+4] = ring
->rx_stats
.alloc_failed
;
2120 } while (u64_stats_fetch_retry_bh(&ring
->rx_syncp
, start
));
2121 i
+= IGB_RX_QUEUE_STATS_LEN
;
2123 spin_unlock(&adapter
->stats64_lock
);
2126 static void igb_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2128 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2132 switch (stringset
) {
2134 memcpy(data
, *igb_gstrings_test
,
2135 IGB_TEST_LEN
*ETH_GSTRING_LEN
);
2138 for (i
= 0; i
< IGB_GLOBAL_STATS_LEN
; i
++) {
2139 memcpy(p
, igb_gstrings_stats
[i
].stat_string
,
2141 p
+= ETH_GSTRING_LEN
;
2143 for (i
= 0; i
< IGB_NETDEV_STATS_LEN
; i
++) {
2144 memcpy(p
, igb_gstrings_net_stats
[i
].stat_string
,
2146 p
+= ETH_GSTRING_LEN
;
2148 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
2149 sprintf(p
, "tx_queue_%u_packets", i
);
2150 p
+= ETH_GSTRING_LEN
;
2151 sprintf(p
, "tx_queue_%u_bytes", i
);
2152 p
+= ETH_GSTRING_LEN
;
2153 sprintf(p
, "tx_queue_%u_restart", i
);
2154 p
+= ETH_GSTRING_LEN
;
2156 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
2157 sprintf(p
, "rx_queue_%u_packets", i
);
2158 p
+= ETH_GSTRING_LEN
;
2159 sprintf(p
, "rx_queue_%u_bytes", i
);
2160 p
+= ETH_GSTRING_LEN
;
2161 sprintf(p
, "rx_queue_%u_drops", i
);
2162 p
+= ETH_GSTRING_LEN
;
2163 sprintf(p
, "rx_queue_%u_csum_err", i
);
2164 p
+= ETH_GSTRING_LEN
;
2165 sprintf(p
, "rx_queue_%u_alloc_failed", i
);
2166 p
+= ETH_GSTRING_LEN
;
2168 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2173 static const struct ethtool_ops igb_ethtool_ops
= {
2174 .get_settings
= igb_get_settings
,
2175 .set_settings
= igb_set_settings
,
2176 .get_drvinfo
= igb_get_drvinfo
,
2177 .get_regs_len
= igb_get_regs_len
,
2178 .get_regs
= igb_get_regs
,
2179 .get_wol
= igb_get_wol
,
2180 .set_wol
= igb_set_wol
,
2181 .get_msglevel
= igb_get_msglevel
,
2182 .set_msglevel
= igb_set_msglevel
,
2183 .nway_reset
= igb_nway_reset
,
2184 .get_link
= igb_get_link
,
2185 .get_eeprom_len
= igb_get_eeprom_len
,
2186 .get_eeprom
= igb_get_eeprom
,
2187 .set_eeprom
= igb_set_eeprom
,
2188 .get_ringparam
= igb_get_ringparam
,
2189 .set_ringparam
= igb_set_ringparam
,
2190 .get_pauseparam
= igb_get_pauseparam
,
2191 .set_pauseparam
= igb_set_pauseparam
,
2192 .get_rx_csum
= igb_get_rx_csum
,
2193 .set_rx_csum
= igb_set_rx_csum
,
2194 .get_tx_csum
= igb_get_tx_csum
,
2195 .set_tx_csum
= igb_set_tx_csum
,
2196 .get_sg
= ethtool_op_get_sg
,
2197 .set_sg
= ethtool_op_set_sg
,
2198 .get_tso
= ethtool_op_get_tso
,
2199 .set_tso
= igb_set_tso
,
2200 .self_test
= igb_diag_test
,
2201 .get_strings
= igb_get_strings
,
2202 .phys_id
= igb_phys_id
,
2203 .get_sset_count
= igb_get_sset_count
,
2204 .get_ethtool_stats
= igb_get_ethtool_stats
,
2205 .get_coalesce
= igb_get_coalesce
,
2206 .set_coalesce
= igb_set_coalesce
,
2209 void igb_set_ethtool_ops(struct net_device
*netdev
)
2211 SET_ETHTOOL_OPS(netdev
, &igb_ethtool_ops
);