thinkpad-acpi: rework brightness support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slub.c
blob5663da0eb34230904fff7c9ef1137e421237789b
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cpu.h>
21 #include <linux/cpuset.h>
22 #include <linux/mempolicy.h>
23 #include <linux/ctype.h>
24 #include <linux/debugobjects.h>
25 #include <linux/kallsyms.h>
26 #include <linux/memory.h>
27 #include <linux/math64.h>
28 #include <linux/fault-inject.h>
31 * Lock order:
32 * 1. slab_lock(page)
33 * 2. slab->list_lock
35 * The slab_lock protects operations on the object of a particular
36 * slab and its metadata in the page struct. If the slab lock
37 * has been taken then no allocations nor frees can be performed
38 * on the objects in the slab nor can the slab be added or removed
39 * from the partial or full lists since this would mean modifying
40 * the page_struct of the slab.
42 * The list_lock protects the partial and full list on each node and
43 * the partial slab counter. If taken then no new slabs may be added or
44 * removed from the lists nor make the number of partial slabs be modified.
45 * (Note that the total number of slabs is an atomic value that may be
46 * modified without taking the list lock).
48 * The list_lock is a centralized lock and thus we avoid taking it as
49 * much as possible. As long as SLUB does not have to handle partial
50 * slabs, operations can continue without any centralized lock. F.e.
51 * allocating a long series of objects that fill up slabs does not require
52 * the list lock.
54 * The lock order is sometimes inverted when we are trying to get a slab
55 * off a list. We take the list_lock and then look for a page on the list
56 * to use. While we do that objects in the slabs may be freed. We can
57 * only operate on the slab if we have also taken the slab_lock. So we use
58 * a slab_trylock() on the slab. If trylock was successful then no frees
59 * can occur anymore and we can use the slab for allocations etc. If the
60 * slab_trylock() does not succeed then frees are in progress in the slab and
61 * we must stay away from it for a while since we may cause a bouncing
62 * cacheline if we try to acquire the lock. So go onto the next slab.
63 * If all pages are busy then we may allocate a new slab instead of reusing
64 * a partial slab. A new slab has noone operating on it and thus there is
65 * no danger of cacheline contention.
67 * Interrupts are disabled during allocation and deallocation in order to
68 * make the slab allocator safe to use in the context of an irq. In addition
69 * interrupts are disabled to ensure that the processor does not change
70 * while handling per_cpu slabs, due to kernel preemption.
72 * SLUB assigns one slab for allocation to each processor.
73 * Allocations only occur from these slabs called cpu slabs.
75 * Slabs with free elements are kept on a partial list and during regular
76 * operations no list for full slabs is used. If an object in a full slab is
77 * freed then the slab will show up again on the partial lists.
78 * We track full slabs for debugging purposes though because otherwise we
79 * cannot scan all objects.
81 * Slabs are freed when they become empty. Teardown and setup is
82 * minimal so we rely on the page allocators per cpu caches for
83 * fast frees and allocs.
85 * Overloading of page flags that are otherwise used for LRU management.
87 * PageActive The slab is frozen and exempt from list processing.
88 * This means that the slab is dedicated to a purpose
89 * such as satisfying allocations for a specific
90 * processor. Objects may be freed in the slab while
91 * it is frozen but slab_free will then skip the usual
92 * list operations. It is up to the processor holding
93 * the slab to integrate the slab into the slab lists
94 * when the slab is no longer needed.
96 * One use of this flag is to mark slabs that are
97 * used for allocations. Then such a slab becomes a cpu
98 * slab. The cpu slab may be equipped with an additional
99 * freelist that allows lockless access to
100 * free objects in addition to the regular freelist
101 * that requires the slab lock.
103 * PageError Slab requires special handling due to debug
104 * options set. This moves slab handling out of
105 * the fast path and disables lockless freelists.
108 #ifdef CONFIG_SLUB_DEBUG
109 #define SLABDEBUG 1
110 #else
111 #define SLABDEBUG 0
112 #endif
115 * Issues still to be resolved:
117 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
119 * - Variable sizing of the per node arrays
122 /* Enable to test recovery from slab corruption on boot */
123 #undef SLUB_RESILIENCY_TEST
126 * Mininum number of partial slabs. These will be left on the partial
127 * lists even if they are empty. kmem_cache_shrink may reclaim them.
129 #define MIN_PARTIAL 5
132 * Maximum number of desirable partial slabs.
133 * The existence of more partial slabs makes kmem_cache_shrink
134 * sort the partial list by the number of objects in the.
136 #define MAX_PARTIAL 10
138 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
139 SLAB_POISON | SLAB_STORE_USER)
142 * Set of flags that will prevent slab merging
144 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
145 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
147 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
148 SLAB_CACHE_DMA)
150 #ifndef ARCH_KMALLOC_MINALIGN
151 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
152 #endif
154 #ifndef ARCH_SLAB_MINALIGN
155 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
156 #endif
158 #define OO_SHIFT 16
159 #define OO_MASK ((1 << OO_SHIFT) - 1)
160 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
162 /* Internal SLUB flags */
163 #define __OBJECT_POISON 0x80000000 /* Poison object */
164 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
166 static int kmem_size = sizeof(struct kmem_cache);
168 #ifdef CONFIG_SMP
169 static struct notifier_block slab_notifier;
170 #endif
172 static enum {
173 DOWN, /* No slab functionality available */
174 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
175 UP, /* Everything works but does not show up in sysfs */
176 SYSFS /* Sysfs up */
177 } slab_state = DOWN;
179 /* A list of all slab caches on the system */
180 static DECLARE_RWSEM(slub_lock);
181 static LIST_HEAD(slab_caches);
184 * Tracking user of a slab.
186 struct track {
187 unsigned long addr; /* Called from address */
188 int cpu; /* Was running on cpu */
189 int pid; /* Pid context */
190 unsigned long when; /* When did the operation occur */
193 enum track_item { TRACK_ALLOC, TRACK_FREE };
195 #ifdef CONFIG_SLUB_DEBUG
196 static int sysfs_slab_add(struct kmem_cache *);
197 static int sysfs_slab_alias(struct kmem_cache *, const char *);
198 static void sysfs_slab_remove(struct kmem_cache *);
200 #else
201 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
202 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
203 { return 0; }
204 static inline void sysfs_slab_remove(struct kmem_cache *s)
206 kfree(s);
209 #endif
211 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
213 #ifdef CONFIG_SLUB_STATS
214 c->stat[si]++;
215 #endif
218 /********************************************************************
219 * Core slab cache functions
220 *******************************************************************/
222 int slab_is_available(void)
224 return slab_state >= UP;
227 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
229 #ifdef CONFIG_NUMA
230 return s->node[node];
231 #else
232 return &s->local_node;
233 #endif
236 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
238 #ifdef CONFIG_SMP
239 return s->cpu_slab[cpu];
240 #else
241 return &s->cpu_slab;
242 #endif
245 /* Verify that a pointer has an address that is valid within a slab page */
246 static inline int check_valid_pointer(struct kmem_cache *s,
247 struct page *page, const void *object)
249 void *base;
251 if (!object)
252 return 1;
254 base = page_address(page);
255 if (object < base || object >= base + page->objects * s->size ||
256 (object - base) % s->size) {
257 return 0;
260 return 1;
264 * Slow version of get and set free pointer.
266 * This version requires touching the cache lines of kmem_cache which
267 * we avoid to do in the fast alloc free paths. There we obtain the offset
268 * from the page struct.
270 static inline void *get_freepointer(struct kmem_cache *s, void *object)
272 return *(void **)(object + s->offset);
275 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
277 *(void **)(object + s->offset) = fp;
280 /* Loop over all objects in a slab */
281 #define for_each_object(__p, __s, __addr, __objects) \
282 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
283 __p += (__s)->size)
285 /* Scan freelist */
286 #define for_each_free_object(__p, __s, __free) \
287 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
289 /* Determine object index from a given position */
290 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
292 return (p - addr) / s->size;
295 static inline struct kmem_cache_order_objects oo_make(int order,
296 unsigned long size)
298 struct kmem_cache_order_objects x = {
299 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
302 return x;
305 static inline int oo_order(struct kmem_cache_order_objects x)
307 return x.x >> OO_SHIFT;
310 static inline int oo_objects(struct kmem_cache_order_objects x)
312 return x.x & OO_MASK;
315 #ifdef CONFIG_SLUB_DEBUG
317 * Debug settings:
319 #ifdef CONFIG_SLUB_DEBUG_ON
320 static int slub_debug = DEBUG_DEFAULT_FLAGS;
321 #else
322 static int slub_debug;
323 #endif
325 static char *slub_debug_slabs;
328 * Object debugging
330 static void print_section(char *text, u8 *addr, unsigned int length)
332 int i, offset;
333 int newline = 1;
334 char ascii[17];
336 ascii[16] = 0;
338 for (i = 0; i < length; i++) {
339 if (newline) {
340 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
341 newline = 0;
343 printk(KERN_CONT " %02x", addr[i]);
344 offset = i % 16;
345 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
346 if (offset == 15) {
347 printk(KERN_CONT " %s\n", ascii);
348 newline = 1;
351 if (!newline) {
352 i %= 16;
353 while (i < 16) {
354 printk(KERN_CONT " ");
355 ascii[i] = ' ';
356 i++;
358 printk(KERN_CONT " %s\n", ascii);
362 static struct track *get_track(struct kmem_cache *s, void *object,
363 enum track_item alloc)
365 struct track *p;
367 if (s->offset)
368 p = object + s->offset + sizeof(void *);
369 else
370 p = object + s->inuse;
372 return p + alloc;
375 static void set_track(struct kmem_cache *s, void *object,
376 enum track_item alloc, unsigned long addr)
378 struct track *p;
380 if (s->offset)
381 p = object + s->offset + sizeof(void *);
382 else
383 p = object + s->inuse;
385 p += alloc;
386 if (addr) {
387 p->addr = addr;
388 p->cpu = smp_processor_id();
389 p->pid = current->pid;
390 p->when = jiffies;
391 } else
392 memset(p, 0, sizeof(struct track));
395 static void init_tracking(struct kmem_cache *s, void *object)
397 if (!(s->flags & SLAB_STORE_USER))
398 return;
400 set_track(s, object, TRACK_FREE, 0UL);
401 set_track(s, object, TRACK_ALLOC, 0UL);
404 static void print_track(const char *s, struct track *t)
406 if (!t->addr)
407 return;
409 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
410 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
413 static void print_tracking(struct kmem_cache *s, void *object)
415 if (!(s->flags & SLAB_STORE_USER))
416 return;
418 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
419 print_track("Freed", get_track(s, object, TRACK_FREE));
422 static void print_page_info(struct page *page)
424 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
425 page, page->objects, page->inuse, page->freelist, page->flags);
429 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
431 va_list args;
432 char buf[100];
434 va_start(args, fmt);
435 vsnprintf(buf, sizeof(buf), fmt, args);
436 va_end(args);
437 printk(KERN_ERR "========================================"
438 "=====================================\n");
439 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
440 printk(KERN_ERR "----------------------------------------"
441 "-------------------------------------\n\n");
444 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
446 va_list args;
447 char buf[100];
449 va_start(args, fmt);
450 vsnprintf(buf, sizeof(buf), fmt, args);
451 va_end(args);
452 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
455 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
457 unsigned int off; /* Offset of last byte */
458 u8 *addr = page_address(page);
460 print_tracking(s, p);
462 print_page_info(page);
464 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
465 p, p - addr, get_freepointer(s, p));
467 if (p > addr + 16)
468 print_section("Bytes b4", p - 16, 16);
470 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
472 if (s->flags & SLAB_RED_ZONE)
473 print_section("Redzone", p + s->objsize,
474 s->inuse - s->objsize);
476 if (s->offset)
477 off = s->offset + sizeof(void *);
478 else
479 off = s->inuse;
481 if (s->flags & SLAB_STORE_USER)
482 off += 2 * sizeof(struct track);
484 if (off != s->size)
485 /* Beginning of the filler is the free pointer */
486 print_section("Padding", p + off, s->size - off);
488 dump_stack();
491 static void object_err(struct kmem_cache *s, struct page *page,
492 u8 *object, char *reason)
494 slab_bug(s, "%s", reason);
495 print_trailer(s, page, object);
498 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
500 va_list args;
501 char buf[100];
503 va_start(args, fmt);
504 vsnprintf(buf, sizeof(buf), fmt, args);
505 va_end(args);
506 slab_bug(s, "%s", buf);
507 print_page_info(page);
508 dump_stack();
511 static void init_object(struct kmem_cache *s, void *object, int active)
513 u8 *p = object;
515 if (s->flags & __OBJECT_POISON) {
516 memset(p, POISON_FREE, s->objsize - 1);
517 p[s->objsize - 1] = POISON_END;
520 if (s->flags & SLAB_RED_ZONE)
521 memset(p + s->objsize,
522 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
523 s->inuse - s->objsize);
526 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
528 while (bytes) {
529 if (*start != (u8)value)
530 return start;
531 start++;
532 bytes--;
534 return NULL;
537 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
538 void *from, void *to)
540 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
541 memset(from, data, to - from);
544 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
545 u8 *object, char *what,
546 u8 *start, unsigned int value, unsigned int bytes)
548 u8 *fault;
549 u8 *end;
551 fault = check_bytes(start, value, bytes);
552 if (!fault)
553 return 1;
555 end = start + bytes;
556 while (end > fault && end[-1] == value)
557 end--;
559 slab_bug(s, "%s overwritten", what);
560 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
561 fault, end - 1, fault[0], value);
562 print_trailer(s, page, object);
564 restore_bytes(s, what, value, fault, end);
565 return 0;
569 * Object layout:
571 * object address
572 * Bytes of the object to be managed.
573 * If the freepointer may overlay the object then the free
574 * pointer is the first word of the object.
576 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
577 * 0xa5 (POISON_END)
579 * object + s->objsize
580 * Padding to reach word boundary. This is also used for Redzoning.
581 * Padding is extended by another word if Redzoning is enabled and
582 * objsize == inuse.
584 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
585 * 0xcc (RED_ACTIVE) for objects in use.
587 * object + s->inuse
588 * Meta data starts here.
590 * A. Free pointer (if we cannot overwrite object on free)
591 * B. Tracking data for SLAB_STORE_USER
592 * C. Padding to reach required alignment boundary or at mininum
593 * one word if debugging is on to be able to detect writes
594 * before the word boundary.
596 * Padding is done using 0x5a (POISON_INUSE)
598 * object + s->size
599 * Nothing is used beyond s->size.
601 * If slabcaches are merged then the objsize and inuse boundaries are mostly
602 * ignored. And therefore no slab options that rely on these boundaries
603 * may be used with merged slabcaches.
606 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
608 unsigned long off = s->inuse; /* The end of info */
610 if (s->offset)
611 /* Freepointer is placed after the object. */
612 off += sizeof(void *);
614 if (s->flags & SLAB_STORE_USER)
615 /* We also have user information there */
616 off += 2 * sizeof(struct track);
618 if (s->size == off)
619 return 1;
621 return check_bytes_and_report(s, page, p, "Object padding",
622 p + off, POISON_INUSE, s->size - off);
625 /* Check the pad bytes at the end of a slab page */
626 static int slab_pad_check(struct kmem_cache *s, struct page *page)
628 u8 *start;
629 u8 *fault;
630 u8 *end;
631 int length;
632 int remainder;
634 if (!(s->flags & SLAB_POISON))
635 return 1;
637 start = page_address(page);
638 length = (PAGE_SIZE << compound_order(page));
639 end = start + length;
640 remainder = length % s->size;
641 if (!remainder)
642 return 1;
644 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
645 if (!fault)
646 return 1;
647 while (end > fault && end[-1] == POISON_INUSE)
648 end--;
650 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
651 print_section("Padding", end - remainder, remainder);
653 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
654 return 0;
657 static int check_object(struct kmem_cache *s, struct page *page,
658 void *object, int active)
660 u8 *p = object;
661 u8 *endobject = object + s->objsize;
663 if (s->flags & SLAB_RED_ZONE) {
664 unsigned int red =
665 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
667 if (!check_bytes_and_report(s, page, object, "Redzone",
668 endobject, red, s->inuse - s->objsize))
669 return 0;
670 } else {
671 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
672 check_bytes_and_report(s, page, p, "Alignment padding",
673 endobject, POISON_INUSE, s->inuse - s->objsize);
677 if (s->flags & SLAB_POISON) {
678 if (!active && (s->flags & __OBJECT_POISON) &&
679 (!check_bytes_and_report(s, page, p, "Poison", p,
680 POISON_FREE, s->objsize - 1) ||
681 !check_bytes_and_report(s, page, p, "Poison",
682 p + s->objsize - 1, POISON_END, 1)))
683 return 0;
685 * check_pad_bytes cleans up on its own.
687 check_pad_bytes(s, page, p);
690 if (!s->offset && active)
692 * Object and freepointer overlap. Cannot check
693 * freepointer while object is allocated.
695 return 1;
697 /* Check free pointer validity */
698 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
699 object_err(s, page, p, "Freepointer corrupt");
701 * No choice but to zap it and thus lose the remainder
702 * of the free objects in this slab. May cause
703 * another error because the object count is now wrong.
705 set_freepointer(s, p, NULL);
706 return 0;
708 return 1;
711 static int check_slab(struct kmem_cache *s, struct page *page)
713 int maxobj;
715 VM_BUG_ON(!irqs_disabled());
717 if (!PageSlab(page)) {
718 slab_err(s, page, "Not a valid slab page");
719 return 0;
722 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
723 if (page->objects > maxobj) {
724 slab_err(s, page, "objects %u > max %u",
725 s->name, page->objects, maxobj);
726 return 0;
728 if (page->inuse > page->objects) {
729 slab_err(s, page, "inuse %u > max %u",
730 s->name, page->inuse, page->objects);
731 return 0;
733 /* Slab_pad_check fixes things up after itself */
734 slab_pad_check(s, page);
735 return 1;
739 * Determine if a certain object on a page is on the freelist. Must hold the
740 * slab lock to guarantee that the chains are in a consistent state.
742 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
744 int nr = 0;
745 void *fp = page->freelist;
746 void *object = NULL;
747 unsigned long max_objects;
749 while (fp && nr <= page->objects) {
750 if (fp == search)
751 return 1;
752 if (!check_valid_pointer(s, page, fp)) {
753 if (object) {
754 object_err(s, page, object,
755 "Freechain corrupt");
756 set_freepointer(s, object, NULL);
757 break;
758 } else {
759 slab_err(s, page, "Freepointer corrupt");
760 page->freelist = NULL;
761 page->inuse = page->objects;
762 slab_fix(s, "Freelist cleared");
763 return 0;
765 break;
767 object = fp;
768 fp = get_freepointer(s, object);
769 nr++;
772 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
773 if (max_objects > MAX_OBJS_PER_PAGE)
774 max_objects = MAX_OBJS_PER_PAGE;
776 if (page->objects != max_objects) {
777 slab_err(s, page, "Wrong number of objects. Found %d but "
778 "should be %d", page->objects, max_objects);
779 page->objects = max_objects;
780 slab_fix(s, "Number of objects adjusted.");
782 if (page->inuse != page->objects - nr) {
783 slab_err(s, page, "Wrong object count. Counter is %d but "
784 "counted were %d", page->inuse, page->objects - nr);
785 page->inuse = page->objects - nr;
786 slab_fix(s, "Object count adjusted.");
788 return search == NULL;
791 static void trace(struct kmem_cache *s, struct page *page, void *object,
792 int alloc)
794 if (s->flags & SLAB_TRACE) {
795 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
796 s->name,
797 alloc ? "alloc" : "free",
798 object, page->inuse,
799 page->freelist);
801 if (!alloc)
802 print_section("Object", (void *)object, s->objsize);
804 dump_stack();
809 * Tracking of fully allocated slabs for debugging purposes.
811 static void add_full(struct kmem_cache_node *n, struct page *page)
813 spin_lock(&n->list_lock);
814 list_add(&page->lru, &n->full);
815 spin_unlock(&n->list_lock);
818 static void remove_full(struct kmem_cache *s, struct page *page)
820 struct kmem_cache_node *n;
822 if (!(s->flags & SLAB_STORE_USER))
823 return;
825 n = get_node(s, page_to_nid(page));
827 spin_lock(&n->list_lock);
828 list_del(&page->lru);
829 spin_unlock(&n->list_lock);
832 /* Tracking of the number of slabs for debugging purposes */
833 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
835 struct kmem_cache_node *n = get_node(s, node);
837 return atomic_long_read(&n->nr_slabs);
840 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
842 struct kmem_cache_node *n = get_node(s, node);
845 * May be called early in order to allocate a slab for the
846 * kmem_cache_node structure. Solve the chicken-egg
847 * dilemma by deferring the increment of the count during
848 * bootstrap (see early_kmem_cache_node_alloc).
850 if (!NUMA_BUILD || n) {
851 atomic_long_inc(&n->nr_slabs);
852 atomic_long_add(objects, &n->total_objects);
855 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
857 struct kmem_cache_node *n = get_node(s, node);
859 atomic_long_dec(&n->nr_slabs);
860 atomic_long_sub(objects, &n->total_objects);
863 /* Object debug checks for alloc/free paths */
864 static void setup_object_debug(struct kmem_cache *s, struct page *page,
865 void *object)
867 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
868 return;
870 init_object(s, object, 0);
871 init_tracking(s, object);
874 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
875 void *object, unsigned long addr)
877 if (!check_slab(s, page))
878 goto bad;
880 if (!on_freelist(s, page, object)) {
881 object_err(s, page, object, "Object already allocated");
882 goto bad;
885 if (!check_valid_pointer(s, page, object)) {
886 object_err(s, page, object, "Freelist Pointer check fails");
887 goto bad;
890 if (!check_object(s, page, object, 0))
891 goto bad;
893 /* Success perform special debug activities for allocs */
894 if (s->flags & SLAB_STORE_USER)
895 set_track(s, object, TRACK_ALLOC, addr);
896 trace(s, page, object, 1);
897 init_object(s, object, 1);
898 return 1;
900 bad:
901 if (PageSlab(page)) {
903 * If this is a slab page then lets do the best we can
904 * to avoid issues in the future. Marking all objects
905 * as used avoids touching the remaining objects.
907 slab_fix(s, "Marking all objects used");
908 page->inuse = page->objects;
909 page->freelist = NULL;
911 return 0;
914 static int free_debug_processing(struct kmem_cache *s, struct page *page,
915 void *object, unsigned long addr)
917 if (!check_slab(s, page))
918 goto fail;
920 if (!check_valid_pointer(s, page, object)) {
921 slab_err(s, page, "Invalid object pointer 0x%p", object);
922 goto fail;
925 if (on_freelist(s, page, object)) {
926 object_err(s, page, object, "Object already free");
927 goto fail;
930 if (!check_object(s, page, object, 1))
931 return 0;
933 if (unlikely(s != page->slab)) {
934 if (!PageSlab(page)) {
935 slab_err(s, page, "Attempt to free object(0x%p) "
936 "outside of slab", object);
937 } else if (!page->slab) {
938 printk(KERN_ERR
939 "SLUB <none>: no slab for object 0x%p.\n",
940 object);
941 dump_stack();
942 } else
943 object_err(s, page, object,
944 "page slab pointer corrupt.");
945 goto fail;
948 /* Special debug activities for freeing objects */
949 if (!PageSlubFrozen(page) && !page->freelist)
950 remove_full(s, page);
951 if (s->flags & SLAB_STORE_USER)
952 set_track(s, object, TRACK_FREE, addr);
953 trace(s, page, object, 0);
954 init_object(s, object, 0);
955 return 1;
957 fail:
958 slab_fix(s, "Object at 0x%p not freed", object);
959 return 0;
962 static int __init setup_slub_debug(char *str)
964 slub_debug = DEBUG_DEFAULT_FLAGS;
965 if (*str++ != '=' || !*str)
967 * No options specified. Switch on full debugging.
969 goto out;
971 if (*str == ',')
973 * No options but restriction on slabs. This means full
974 * debugging for slabs matching a pattern.
976 goto check_slabs;
978 slub_debug = 0;
979 if (*str == '-')
981 * Switch off all debugging measures.
983 goto out;
986 * Determine which debug features should be switched on
988 for (; *str && *str != ','; str++) {
989 switch (tolower(*str)) {
990 case 'f':
991 slub_debug |= SLAB_DEBUG_FREE;
992 break;
993 case 'z':
994 slub_debug |= SLAB_RED_ZONE;
995 break;
996 case 'p':
997 slub_debug |= SLAB_POISON;
998 break;
999 case 'u':
1000 slub_debug |= SLAB_STORE_USER;
1001 break;
1002 case 't':
1003 slub_debug |= SLAB_TRACE;
1004 break;
1005 default:
1006 printk(KERN_ERR "slub_debug option '%c' "
1007 "unknown. skipped\n", *str);
1011 check_slabs:
1012 if (*str == ',')
1013 slub_debug_slabs = str + 1;
1014 out:
1015 return 1;
1018 __setup("slub_debug", setup_slub_debug);
1020 static unsigned long kmem_cache_flags(unsigned long objsize,
1021 unsigned long flags, const char *name,
1022 void (*ctor)(void *))
1025 * Enable debugging if selected on the kernel commandline.
1027 if (slub_debug && (!slub_debug_slabs ||
1028 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1029 flags |= slub_debug;
1031 return flags;
1033 #else
1034 static inline void setup_object_debug(struct kmem_cache *s,
1035 struct page *page, void *object) {}
1037 static inline int alloc_debug_processing(struct kmem_cache *s,
1038 struct page *page, void *object, unsigned long addr) { return 0; }
1040 static inline int free_debug_processing(struct kmem_cache *s,
1041 struct page *page, void *object, unsigned long addr) { return 0; }
1043 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1044 { return 1; }
1045 static inline int check_object(struct kmem_cache *s, struct page *page,
1046 void *object, int active) { return 1; }
1047 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1048 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1049 unsigned long flags, const char *name,
1050 void (*ctor)(void *))
1052 return flags;
1054 #define slub_debug 0
1056 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1057 { return 0; }
1058 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1059 int objects) {}
1060 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1061 int objects) {}
1062 #endif
1065 * Slab allocation and freeing
1067 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1068 struct kmem_cache_order_objects oo)
1070 int order = oo_order(oo);
1072 if (node == -1)
1073 return alloc_pages(flags, order);
1074 else
1075 return alloc_pages_node(node, flags, order);
1078 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1080 struct page *page;
1081 struct kmem_cache_order_objects oo = s->oo;
1083 flags |= s->allocflags;
1085 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1086 oo);
1087 if (unlikely(!page)) {
1088 oo = s->min;
1090 * Allocation may have failed due to fragmentation.
1091 * Try a lower order alloc if possible
1093 page = alloc_slab_page(flags, node, oo);
1094 if (!page)
1095 return NULL;
1097 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1099 page->objects = oo_objects(oo);
1100 mod_zone_page_state(page_zone(page),
1101 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1102 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1103 1 << oo_order(oo));
1105 return page;
1108 static void setup_object(struct kmem_cache *s, struct page *page,
1109 void *object)
1111 setup_object_debug(s, page, object);
1112 if (unlikely(s->ctor))
1113 s->ctor(object);
1116 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1118 struct page *page;
1119 void *start;
1120 void *last;
1121 void *p;
1123 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1125 page = allocate_slab(s,
1126 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1127 if (!page)
1128 goto out;
1130 inc_slabs_node(s, page_to_nid(page), page->objects);
1131 page->slab = s;
1132 page->flags |= 1 << PG_slab;
1133 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1134 SLAB_STORE_USER | SLAB_TRACE))
1135 __SetPageSlubDebug(page);
1137 start = page_address(page);
1139 if (unlikely(s->flags & SLAB_POISON))
1140 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1142 last = start;
1143 for_each_object(p, s, start, page->objects) {
1144 setup_object(s, page, last);
1145 set_freepointer(s, last, p);
1146 last = p;
1148 setup_object(s, page, last);
1149 set_freepointer(s, last, NULL);
1151 page->freelist = start;
1152 page->inuse = 0;
1153 out:
1154 return page;
1157 static void __free_slab(struct kmem_cache *s, struct page *page)
1159 int order = compound_order(page);
1160 int pages = 1 << order;
1162 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1163 void *p;
1165 slab_pad_check(s, page);
1166 for_each_object(p, s, page_address(page),
1167 page->objects)
1168 check_object(s, page, p, 0);
1169 __ClearPageSlubDebug(page);
1172 mod_zone_page_state(page_zone(page),
1173 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1174 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1175 -pages);
1177 __ClearPageSlab(page);
1178 reset_page_mapcount(page);
1179 if (current->reclaim_state)
1180 current->reclaim_state->reclaimed_slab += pages;
1181 __free_pages(page, order);
1184 static void rcu_free_slab(struct rcu_head *h)
1186 struct page *page;
1188 page = container_of((struct list_head *)h, struct page, lru);
1189 __free_slab(page->slab, page);
1192 static void free_slab(struct kmem_cache *s, struct page *page)
1194 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1196 * RCU free overloads the RCU head over the LRU
1198 struct rcu_head *head = (void *)&page->lru;
1200 call_rcu(head, rcu_free_slab);
1201 } else
1202 __free_slab(s, page);
1205 static void discard_slab(struct kmem_cache *s, struct page *page)
1207 dec_slabs_node(s, page_to_nid(page), page->objects);
1208 free_slab(s, page);
1212 * Per slab locking using the pagelock
1214 static __always_inline void slab_lock(struct page *page)
1216 bit_spin_lock(PG_locked, &page->flags);
1219 static __always_inline void slab_unlock(struct page *page)
1221 __bit_spin_unlock(PG_locked, &page->flags);
1224 static __always_inline int slab_trylock(struct page *page)
1226 int rc = 1;
1228 rc = bit_spin_trylock(PG_locked, &page->flags);
1229 return rc;
1233 * Management of partially allocated slabs
1235 static void add_partial(struct kmem_cache_node *n,
1236 struct page *page, int tail)
1238 spin_lock(&n->list_lock);
1239 n->nr_partial++;
1240 if (tail)
1241 list_add_tail(&page->lru, &n->partial);
1242 else
1243 list_add(&page->lru, &n->partial);
1244 spin_unlock(&n->list_lock);
1247 static void remove_partial(struct kmem_cache *s, struct page *page)
1249 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1251 spin_lock(&n->list_lock);
1252 list_del(&page->lru);
1253 n->nr_partial--;
1254 spin_unlock(&n->list_lock);
1258 * Lock slab and remove from the partial list.
1260 * Must hold list_lock.
1262 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1263 struct page *page)
1265 if (slab_trylock(page)) {
1266 list_del(&page->lru);
1267 n->nr_partial--;
1268 __SetPageSlubFrozen(page);
1269 return 1;
1271 return 0;
1275 * Try to allocate a partial slab from a specific node.
1277 static struct page *get_partial_node(struct kmem_cache_node *n)
1279 struct page *page;
1282 * Racy check. If we mistakenly see no partial slabs then we
1283 * just allocate an empty slab. If we mistakenly try to get a
1284 * partial slab and there is none available then get_partials()
1285 * will return NULL.
1287 if (!n || !n->nr_partial)
1288 return NULL;
1290 spin_lock(&n->list_lock);
1291 list_for_each_entry(page, &n->partial, lru)
1292 if (lock_and_freeze_slab(n, page))
1293 goto out;
1294 page = NULL;
1295 out:
1296 spin_unlock(&n->list_lock);
1297 return page;
1301 * Get a page from somewhere. Search in increasing NUMA distances.
1303 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1305 #ifdef CONFIG_NUMA
1306 struct zonelist *zonelist;
1307 struct zoneref *z;
1308 struct zone *zone;
1309 enum zone_type high_zoneidx = gfp_zone(flags);
1310 struct page *page;
1313 * The defrag ratio allows a configuration of the tradeoffs between
1314 * inter node defragmentation and node local allocations. A lower
1315 * defrag_ratio increases the tendency to do local allocations
1316 * instead of attempting to obtain partial slabs from other nodes.
1318 * If the defrag_ratio is set to 0 then kmalloc() always
1319 * returns node local objects. If the ratio is higher then kmalloc()
1320 * may return off node objects because partial slabs are obtained
1321 * from other nodes and filled up.
1323 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1324 * defrag_ratio = 1000) then every (well almost) allocation will
1325 * first attempt to defrag slab caches on other nodes. This means
1326 * scanning over all nodes to look for partial slabs which may be
1327 * expensive if we do it every time we are trying to find a slab
1328 * with available objects.
1330 if (!s->remote_node_defrag_ratio ||
1331 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1332 return NULL;
1334 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1335 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1336 struct kmem_cache_node *n;
1338 n = get_node(s, zone_to_nid(zone));
1340 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1341 n->nr_partial > n->min_partial) {
1342 page = get_partial_node(n);
1343 if (page)
1344 return page;
1347 #endif
1348 return NULL;
1352 * Get a partial page, lock it and return it.
1354 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1356 struct page *page;
1357 int searchnode = (node == -1) ? numa_node_id() : node;
1359 page = get_partial_node(get_node(s, searchnode));
1360 if (page || (flags & __GFP_THISNODE))
1361 return page;
1363 return get_any_partial(s, flags);
1367 * Move a page back to the lists.
1369 * Must be called with the slab lock held.
1371 * On exit the slab lock will have been dropped.
1373 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1375 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1376 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1378 __ClearPageSlubFrozen(page);
1379 if (page->inuse) {
1381 if (page->freelist) {
1382 add_partial(n, page, tail);
1383 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1384 } else {
1385 stat(c, DEACTIVATE_FULL);
1386 if (SLABDEBUG && PageSlubDebug(page) &&
1387 (s->flags & SLAB_STORE_USER))
1388 add_full(n, page);
1390 slab_unlock(page);
1391 } else {
1392 stat(c, DEACTIVATE_EMPTY);
1393 if (n->nr_partial < n->min_partial) {
1395 * Adding an empty slab to the partial slabs in order
1396 * to avoid page allocator overhead. This slab needs
1397 * to come after the other slabs with objects in
1398 * so that the others get filled first. That way the
1399 * size of the partial list stays small.
1401 * kmem_cache_shrink can reclaim any empty slabs from
1402 * the partial list.
1404 add_partial(n, page, 1);
1405 slab_unlock(page);
1406 } else {
1407 slab_unlock(page);
1408 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1409 discard_slab(s, page);
1415 * Remove the cpu slab
1417 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1419 struct page *page = c->page;
1420 int tail = 1;
1422 if (page->freelist)
1423 stat(c, DEACTIVATE_REMOTE_FREES);
1425 * Merge cpu freelist into slab freelist. Typically we get here
1426 * because both freelists are empty. So this is unlikely
1427 * to occur.
1429 while (unlikely(c->freelist)) {
1430 void **object;
1432 tail = 0; /* Hot objects. Put the slab first */
1434 /* Retrieve object from cpu_freelist */
1435 object = c->freelist;
1436 c->freelist = c->freelist[c->offset];
1438 /* And put onto the regular freelist */
1439 object[c->offset] = page->freelist;
1440 page->freelist = object;
1441 page->inuse--;
1443 c->page = NULL;
1444 unfreeze_slab(s, page, tail);
1447 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1449 stat(c, CPUSLAB_FLUSH);
1450 slab_lock(c->page);
1451 deactivate_slab(s, c);
1455 * Flush cpu slab.
1457 * Called from IPI handler with interrupts disabled.
1459 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1461 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1463 if (likely(c && c->page))
1464 flush_slab(s, c);
1467 static void flush_cpu_slab(void *d)
1469 struct kmem_cache *s = d;
1471 __flush_cpu_slab(s, smp_processor_id());
1474 static void flush_all(struct kmem_cache *s)
1476 on_each_cpu(flush_cpu_slab, s, 1);
1480 * Check if the objects in a per cpu structure fit numa
1481 * locality expectations.
1483 static inline int node_match(struct kmem_cache_cpu *c, int node)
1485 #ifdef CONFIG_NUMA
1486 if (node != -1 && c->node != node)
1487 return 0;
1488 #endif
1489 return 1;
1493 * Slow path. The lockless freelist is empty or we need to perform
1494 * debugging duties.
1496 * Interrupts are disabled.
1498 * Processing is still very fast if new objects have been freed to the
1499 * regular freelist. In that case we simply take over the regular freelist
1500 * as the lockless freelist and zap the regular freelist.
1502 * If that is not working then we fall back to the partial lists. We take the
1503 * first element of the freelist as the object to allocate now and move the
1504 * rest of the freelist to the lockless freelist.
1506 * And if we were unable to get a new slab from the partial slab lists then
1507 * we need to allocate a new slab. This is the slowest path since it involves
1508 * a call to the page allocator and the setup of a new slab.
1510 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1511 unsigned long addr, struct kmem_cache_cpu *c)
1513 void **object;
1514 struct page *new;
1516 /* We handle __GFP_ZERO in the caller */
1517 gfpflags &= ~__GFP_ZERO;
1519 if (!c->page)
1520 goto new_slab;
1522 slab_lock(c->page);
1523 if (unlikely(!node_match(c, node)))
1524 goto another_slab;
1526 stat(c, ALLOC_REFILL);
1528 load_freelist:
1529 object = c->page->freelist;
1530 if (unlikely(!object))
1531 goto another_slab;
1532 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1533 goto debug;
1535 c->freelist = object[c->offset];
1536 c->page->inuse = c->page->objects;
1537 c->page->freelist = NULL;
1538 c->node = page_to_nid(c->page);
1539 unlock_out:
1540 slab_unlock(c->page);
1541 stat(c, ALLOC_SLOWPATH);
1542 return object;
1544 another_slab:
1545 deactivate_slab(s, c);
1547 new_slab:
1548 new = get_partial(s, gfpflags, node);
1549 if (new) {
1550 c->page = new;
1551 stat(c, ALLOC_FROM_PARTIAL);
1552 goto load_freelist;
1555 if (gfpflags & __GFP_WAIT)
1556 local_irq_enable();
1558 new = new_slab(s, gfpflags, node);
1560 if (gfpflags & __GFP_WAIT)
1561 local_irq_disable();
1563 if (new) {
1564 c = get_cpu_slab(s, smp_processor_id());
1565 stat(c, ALLOC_SLAB);
1566 if (c->page)
1567 flush_slab(s, c);
1568 slab_lock(new);
1569 __SetPageSlubFrozen(new);
1570 c->page = new;
1571 goto load_freelist;
1573 return NULL;
1574 debug:
1575 if (!alloc_debug_processing(s, c->page, object, addr))
1576 goto another_slab;
1578 c->page->inuse++;
1579 c->page->freelist = object[c->offset];
1580 c->node = -1;
1581 goto unlock_out;
1585 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1586 * have the fastpath folded into their functions. So no function call
1587 * overhead for requests that can be satisfied on the fastpath.
1589 * The fastpath works by first checking if the lockless freelist can be used.
1590 * If not then __slab_alloc is called for slow processing.
1592 * Otherwise we can simply pick the next object from the lockless free list.
1594 static __always_inline void *slab_alloc(struct kmem_cache *s,
1595 gfp_t gfpflags, int node, unsigned long addr)
1597 void **object;
1598 struct kmem_cache_cpu *c;
1599 unsigned long flags;
1600 unsigned int objsize;
1602 might_sleep_if(gfpflags & __GFP_WAIT);
1604 if (should_failslab(s->objsize, gfpflags))
1605 return NULL;
1607 local_irq_save(flags);
1608 c = get_cpu_slab(s, smp_processor_id());
1609 objsize = c->objsize;
1610 if (unlikely(!c->freelist || !node_match(c, node)))
1612 object = __slab_alloc(s, gfpflags, node, addr, c);
1614 else {
1615 object = c->freelist;
1616 c->freelist = object[c->offset];
1617 stat(c, ALLOC_FASTPATH);
1619 local_irq_restore(flags);
1621 if (unlikely((gfpflags & __GFP_ZERO) && object))
1622 memset(object, 0, objsize);
1624 return object;
1627 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1629 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1631 EXPORT_SYMBOL(kmem_cache_alloc);
1633 #ifdef CONFIG_NUMA
1634 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1636 return slab_alloc(s, gfpflags, node, _RET_IP_);
1638 EXPORT_SYMBOL(kmem_cache_alloc_node);
1639 #endif
1642 * Slow patch handling. This may still be called frequently since objects
1643 * have a longer lifetime than the cpu slabs in most processing loads.
1645 * So we still attempt to reduce cache line usage. Just take the slab
1646 * lock and free the item. If there is no additional partial page
1647 * handling required then we can return immediately.
1649 static void __slab_free(struct kmem_cache *s, struct page *page,
1650 void *x, unsigned long addr, unsigned int offset)
1652 void *prior;
1653 void **object = (void *)x;
1654 struct kmem_cache_cpu *c;
1656 c = get_cpu_slab(s, raw_smp_processor_id());
1657 stat(c, FREE_SLOWPATH);
1658 slab_lock(page);
1660 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1661 goto debug;
1663 checks_ok:
1664 prior = object[offset] = page->freelist;
1665 page->freelist = object;
1666 page->inuse--;
1668 if (unlikely(PageSlubFrozen(page))) {
1669 stat(c, FREE_FROZEN);
1670 goto out_unlock;
1673 if (unlikely(!page->inuse))
1674 goto slab_empty;
1677 * Objects left in the slab. If it was not on the partial list before
1678 * then add it.
1680 if (unlikely(!prior)) {
1681 add_partial(get_node(s, page_to_nid(page)), page, 1);
1682 stat(c, FREE_ADD_PARTIAL);
1685 out_unlock:
1686 slab_unlock(page);
1687 return;
1689 slab_empty:
1690 if (prior) {
1692 * Slab still on the partial list.
1694 remove_partial(s, page);
1695 stat(c, FREE_REMOVE_PARTIAL);
1697 slab_unlock(page);
1698 stat(c, FREE_SLAB);
1699 discard_slab(s, page);
1700 return;
1702 debug:
1703 if (!free_debug_processing(s, page, x, addr))
1704 goto out_unlock;
1705 goto checks_ok;
1709 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1710 * can perform fastpath freeing without additional function calls.
1712 * The fastpath is only possible if we are freeing to the current cpu slab
1713 * of this processor. This typically the case if we have just allocated
1714 * the item before.
1716 * If fastpath is not possible then fall back to __slab_free where we deal
1717 * with all sorts of special processing.
1719 static __always_inline void slab_free(struct kmem_cache *s,
1720 struct page *page, void *x, unsigned long addr)
1722 void **object = (void *)x;
1723 struct kmem_cache_cpu *c;
1724 unsigned long flags;
1726 local_irq_save(flags);
1727 c = get_cpu_slab(s, smp_processor_id());
1728 debug_check_no_locks_freed(object, c->objsize);
1729 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1730 debug_check_no_obj_freed(object, s->objsize);
1731 if (likely(page == c->page && c->node >= 0)) {
1732 object[c->offset] = c->freelist;
1733 c->freelist = object;
1734 stat(c, FREE_FASTPATH);
1735 } else
1736 __slab_free(s, page, x, addr, c->offset);
1738 local_irq_restore(flags);
1741 void kmem_cache_free(struct kmem_cache *s, void *x)
1743 struct page *page;
1745 page = virt_to_head_page(x);
1747 slab_free(s, page, x, _RET_IP_);
1749 EXPORT_SYMBOL(kmem_cache_free);
1751 /* Figure out on which slab page the object resides */
1752 static struct page *get_object_page(const void *x)
1754 struct page *page = virt_to_head_page(x);
1756 if (!PageSlab(page))
1757 return NULL;
1759 return page;
1763 * Object placement in a slab is made very easy because we always start at
1764 * offset 0. If we tune the size of the object to the alignment then we can
1765 * get the required alignment by putting one properly sized object after
1766 * another.
1768 * Notice that the allocation order determines the sizes of the per cpu
1769 * caches. Each processor has always one slab available for allocations.
1770 * Increasing the allocation order reduces the number of times that slabs
1771 * must be moved on and off the partial lists and is therefore a factor in
1772 * locking overhead.
1776 * Mininum / Maximum order of slab pages. This influences locking overhead
1777 * and slab fragmentation. A higher order reduces the number of partial slabs
1778 * and increases the number of allocations possible without having to
1779 * take the list_lock.
1781 static int slub_min_order;
1782 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1783 static int slub_min_objects;
1786 * Merge control. If this is set then no merging of slab caches will occur.
1787 * (Could be removed. This was introduced to pacify the merge skeptics.)
1789 static int slub_nomerge;
1792 * Calculate the order of allocation given an slab object size.
1794 * The order of allocation has significant impact on performance and other
1795 * system components. Generally order 0 allocations should be preferred since
1796 * order 0 does not cause fragmentation in the page allocator. Larger objects
1797 * be problematic to put into order 0 slabs because there may be too much
1798 * unused space left. We go to a higher order if more than 1/16th of the slab
1799 * would be wasted.
1801 * In order to reach satisfactory performance we must ensure that a minimum
1802 * number of objects is in one slab. Otherwise we may generate too much
1803 * activity on the partial lists which requires taking the list_lock. This is
1804 * less a concern for large slabs though which are rarely used.
1806 * slub_max_order specifies the order where we begin to stop considering the
1807 * number of objects in a slab as critical. If we reach slub_max_order then
1808 * we try to keep the page order as low as possible. So we accept more waste
1809 * of space in favor of a small page order.
1811 * Higher order allocations also allow the placement of more objects in a
1812 * slab and thereby reduce object handling overhead. If the user has
1813 * requested a higher mininum order then we start with that one instead of
1814 * the smallest order which will fit the object.
1816 static inline int slab_order(int size, int min_objects,
1817 int max_order, int fract_leftover)
1819 int order;
1820 int rem;
1821 int min_order = slub_min_order;
1823 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1824 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1826 for (order = max(min_order,
1827 fls(min_objects * size - 1) - PAGE_SHIFT);
1828 order <= max_order; order++) {
1830 unsigned long slab_size = PAGE_SIZE << order;
1832 if (slab_size < min_objects * size)
1833 continue;
1835 rem = slab_size % size;
1837 if (rem <= slab_size / fract_leftover)
1838 break;
1842 return order;
1845 static inline int calculate_order(int size)
1847 int order;
1848 int min_objects;
1849 int fraction;
1852 * Attempt to find best configuration for a slab. This
1853 * works by first attempting to generate a layout with
1854 * the best configuration and backing off gradually.
1856 * First we reduce the acceptable waste in a slab. Then
1857 * we reduce the minimum objects required in a slab.
1859 min_objects = slub_min_objects;
1860 if (!min_objects)
1861 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1862 while (min_objects > 1) {
1863 fraction = 16;
1864 while (fraction >= 4) {
1865 order = slab_order(size, min_objects,
1866 slub_max_order, fraction);
1867 if (order <= slub_max_order)
1868 return order;
1869 fraction /= 2;
1871 min_objects /= 2;
1875 * We were unable to place multiple objects in a slab. Now
1876 * lets see if we can place a single object there.
1878 order = slab_order(size, 1, slub_max_order, 1);
1879 if (order <= slub_max_order)
1880 return order;
1883 * Doh this slab cannot be placed using slub_max_order.
1885 order = slab_order(size, 1, MAX_ORDER, 1);
1886 if (order <= MAX_ORDER)
1887 return order;
1888 return -ENOSYS;
1892 * Figure out what the alignment of the objects will be.
1894 static unsigned long calculate_alignment(unsigned long flags,
1895 unsigned long align, unsigned long size)
1898 * If the user wants hardware cache aligned objects then follow that
1899 * suggestion if the object is sufficiently large.
1901 * The hardware cache alignment cannot override the specified
1902 * alignment though. If that is greater then use it.
1904 if (flags & SLAB_HWCACHE_ALIGN) {
1905 unsigned long ralign = cache_line_size();
1906 while (size <= ralign / 2)
1907 ralign /= 2;
1908 align = max(align, ralign);
1911 if (align < ARCH_SLAB_MINALIGN)
1912 align = ARCH_SLAB_MINALIGN;
1914 return ALIGN(align, sizeof(void *));
1917 static void init_kmem_cache_cpu(struct kmem_cache *s,
1918 struct kmem_cache_cpu *c)
1920 c->page = NULL;
1921 c->freelist = NULL;
1922 c->node = 0;
1923 c->offset = s->offset / sizeof(void *);
1924 c->objsize = s->objsize;
1925 #ifdef CONFIG_SLUB_STATS
1926 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1927 #endif
1930 static void
1931 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1933 n->nr_partial = 0;
1936 * The larger the object size is, the more pages we want on the partial
1937 * list to avoid pounding the page allocator excessively.
1939 n->min_partial = ilog2(s->size);
1940 if (n->min_partial < MIN_PARTIAL)
1941 n->min_partial = MIN_PARTIAL;
1942 else if (n->min_partial > MAX_PARTIAL)
1943 n->min_partial = MAX_PARTIAL;
1945 spin_lock_init(&n->list_lock);
1946 INIT_LIST_HEAD(&n->partial);
1947 #ifdef CONFIG_SLUB_DEBUG
1948 atomic_long_set(&n->nr_slabs, 0);
1949 atomic_long_set(&n->total_objects, 0);
1950 INIT_LIST_HEAD(&n->full);
1951 #endif
1954 #ifdef CONFIG_SMP
1956 * Per cpu array for per cpu structures.
1958 * The per cpu array places all kmem_cache_cpu structures from one processor
1959 * close together meaning that it becomes possible that multiple per cpu
1960 * structures are contained in one cacheline. This may be particularly
1961 * beneficial for the kmalloc caches.
1963 * A desktop system typically has around 60-80 slabs. With 100 here we are
1964 * likely able to get per cpu structures for all caches from the array defined
1965 * here. We must be able to cover all kmalloc caches during bootstrap.
1967 * If the per cpu array is exhausted then fall back to kmalloc
1968 * of individual cachelines. No sharing is possible then.
1970 #define NR_KMEM_CACHE_CPU 100
1972 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1973 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1975 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1976 static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
1978 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1979 int cpu, gfp_t flags)
1981 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1983 if (c)
1984 per_cpu(kmem_cache_cpu_free, cpu) =
1985 (void *)c->freelist;
1986 else {
1987 /* Table overflow: So allocate ourselves */
1988 c = kmalloc_node(
1989 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1990 flags, cpu_to_node(cpu));
1991 if (!c)
1992 return NULL;
1995 init_kmem_cache_cpu(s, c);
1996 return c;
1999 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2001 if (c < per_cpu(kmem_cache_cpu, cpu) ||
2002 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
2003 kfree(c);
2004 return;
2006 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2007 per_cpu(kmem_cache_cpu_free, cpu) = c;
2010 static void free_kmem_cache_cpus(struct kmem_cache *s)
2012 int cpu;
2014 for_each_online_cpu(cpu) {
2015 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2017 if (c) {
2018 s->cpu_slab[cpu] = NULL;
2019 free_kmem_cache_cpu(c, cpu);
2024 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2026 int cpu;
2028 for_each_online_cpu(cpu) {
2029 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2031 if (c)
2032 continue;
2034 c = alloc_kmem_cache_cpu(s, cpu, flags);
2035 if (!c) {
2036 free_kmem_cache_cpus(s);
2037 return 0;
2039 s->cpu_slab[cpu] = c;
2041 return 1;
2045 * Initialize the per cpu array.
2047 static void init_alloc_cpu_cpu(int cpu)
2049 int i;
2051 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
2052 return;
2054 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2055 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2057 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
2060 static void __init init_alloc_cpu(void)
2062 int cpu;
2064 for_each_online_cpu(cpu)
2065 init_alloc_cpu_cpu(cpu);
2068 #else
2069 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2070 static inline void init_alloc_cpu(void) {}
2072 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2074 init_kmem_cache_cpu(s, &s->cpu_slab);
2075 return 1;
2077 #endif
2079 #ifdef CONFIG_NUMA
2081 * No kmalloc_node yet so do it by hand. We know that this is the first
2082 * slab on the node for this slabcache. There are no concurrent accesses
2083 * possible.
2085 * Note that this function only works on the kmalloc_node_cache
2086 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2087 * memory on a fresh node that has no slab structures yet.
2089 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2091 struct page *page;
2092 struct kmem_cache_node *n;
2093 unsigned long flags;
2095 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2097 page = new_slab(kmalloc_caches, gfpflags, node);
2099 BUG_ON(!page);
2100 if (page_to_nid(page) != node) {
2101 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2102 "node %d\n", node);
2103 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2104 "in order to be able to continue\n");
2107 n = page->freelist;
2108 BUG_ON(!n);
2109 page->freelist = get_freepointer(kmalloc_caches, n);
2110 page->inuse++;
2111 kmalloc_caches->node[node] = n;
2112 #ifdef CONFIG_SLUB_DEBUG
2113 init_object(kmalloc_caches, n, 1);
2114 init_tracking(kmalloc_caches, n);
2115 #endif
2116 init_kmem_cache_node(n, kmalloc_caches);
2117 inc_slabs_node(kmalloc_caches, node, page->objects);
2120 * lockdep requires consistent irq usage for each lock
2121 * so even though there cannot be a race this early in
2122 * the boot sequence, we still disable irqs.
2124 local_irq_save(flags);
2125 add_partial(n, page, 0);
2126 local_irq_restore(flags);
2129 static void free_kmem_cache_nodes(struct kmem_cache *s)
2131 int node;
2133 for_each_node_state(node, N_NORMAL_MEMORY) {
2134 struct kmem_cache_node *n = s->node[node];
2135 if (n && n != &s->local_node)
2136 kmem_cache_free(kmalloc_caches, n);
2137 s->node[node] = NULL;
2141 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2143 int node;
2144 int local_node;
2146 if (slab_state >= UP)
2147 local_node = page_to_nid(virt_to_page(s));
2148 else
2149 local_node = 0;
2151 for_each_node_state(node, N_NORMAL_MEMORY) {
2152 struct kmem_cache_node *n;
2154 if (local_node == node)
2155 n = &s->local_node;
2156 else {
2157 if (slab_state == DOWN) {
2158 early_kmem_cache_node_alloc(gfpflags, node);
2159 continue;
2161 n = kmem_cache_alloc_node(kmalloc_caches,
2162 gfpflags, node);
2164 if (!n) {
2165 free_kmem_cache_nodes(s);
2166 return 0;
2170 s->node[node] = n;
2171 init_kmem_cache_node(n, s);
2173 return 1;
2175 #else
2176 static void free_kmem_cache_nodes(struct kmem_cache *s)
2180 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2182 init_kmem_cache_node(&s->local_node, s);
2183 return 1;
2185 #endif
2188 * calculate_sizes() determines the order and the distribution of data within
2189 * a slab object.
2191 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2193 unsigned long flags = s->flags;
2194 unsigned long size = s->objsize;
2195 unsigned long align = s->align;
2196 int order;
2199 * Round up object size to the next word boundary. We can only
2200 * place the free pointer at word boundaries and this determines
2201 * the possible location of the free pointer.
2203 size = ALIGN(size, sizeof(void *));
2205 #ifdef CONFIG_SLUB_DEBUG
2207 * Determine if we can poison the object itself. If the user of
2208 * the slab may touch the object after free or before allocation
2209 * then we should never poison the object itself.
2211 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2212 !s->ctor)
2213 s->flags |= __OBJECT_POISON;
2214 else
2215 s->flags &= ~__OBJECT_POISON;
2219 * If we are Redzoning then check if there is some space between the
2220 * end of the object and the free pointer. If not then add an
2221 * additional word to have some bytes to store Redzone information.
2223 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2224 size += sizeof(void *);
2225 #endif
2228 * With that we have determined the number of bytes in actual use
2229 * by the object. This is the potential offset to the free pointer.
2231 s->inuse = size;
2233 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2234 s->ctor)) {
2236 * Relocate free pointer after the object if it is not
2237 * permitted to overwrite the first word of the object on
2238 * kmem_cache_free.
2240 * This is the case if we do RCU, have a constructor or
2241 * destructor or are poisoning the objects.
2243 s->offset = size;
2244 size += sizeof(void *);
2247 #ifdef CONFIG_SLUB_DEBUG
2248 if (flags & SLAB_STORE_USER)
2250 * Need to store information about allocs and frees after
2251 * the object.
2253 size += 2 * sizeof(struct track);
2255 if (flags & SLAB_RED_ZONE)
2257 * Add some empty padding so that we can catch
2258 * overwrites from earlier objects rather than let
2259 * tracking information or the free pointer be
2260 * corrupted if a user writes before the start
2261 * of the object.
2263 size += sizeof(void *);
2264 #endif
2267 * Determine the alignment based on various parameters that the
2268 * user specified and the dynamic determination of cache line size
2269 * on bootup.
2271 align = calculate_alignment(flags, align, s->objsize);
2274 * SLUB stores one object immediately after another beginning from
2275 * offset 0. In order to align the objects we have to simply size
2276 * each object to conform to the alignment.
2278 size = ALIGN(size, align);
2279 s->size = size;
2280 if (forced_order >= 0)
2281 order = forced_order;
2282 else
2283 order = calculate_order(size);
2285 if (order < 0)
2286 return 0;
2288 s->allocflags = 0;
2289 if (order)
2290 s->allocflags |= __GFP_COMP;
2292 if (s->flags & SLAB_CACHE_DMA)
2293 s->allocflags |= SLUB_DMA;
2295 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2296 s->allocflags |= __GFP_RECLAIMABLE;
2299 * Determine the number of objects per slab
2301 s->oo = oo_make(order, size);
2302 s->min = oo_make(get_order(size), size);
2303 if (oo_objects(s->oo) > oo_objects(s->max))
2304 s->max = s->oo;
2306 return !!oo_objects(s->oo);
2310 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2311 const char *name, size_t size,
2312 size_t align, unsigned long flags,
2313 void (*ctor)(void *))
2315 memset(s, 0, kmem_size);
2316 s->name = name;
2317 s->ctor = ctor;
2318 s->objsize = size;
2319 s->align = align;
2320 s->flags = kmem_cache_flags(size, flags, name, ctor);
2322 if (!calculate_sizes(s, -1))
2323 goto error;
2325 s->refcount = 1;
2326 #ifdef CONFIG_NUMA
2327 s->remote_node_defrag_ratio = 1000;
2328 #endif
2329 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2330 goto error;
2332 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2333 return 1;
2334 free_kmem_cache_nodes(s);
2335 error:
2336 if (flags & SLAB_PANIC)
2337 panic("Cannot create slab %s size=%lu realsize=%u "
2338 "order=%u offset=%u flags=%lx\n",
2339 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2340 s->offset, flags);
2341 return 0;
2345 * Check if a given pointer is valid
2347 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2349 struct page *page;
2351 page = get_object_page(object);
2353 if (!page || s != page->slab)
2354 /* No slab or wrong slab */
2355 return 0;
2357 if (!check_valid_pointer(s, page, object))
2358 return 0;
2361 * We could also check if the object is on the slabs freelist.
2362 * But this would be too expensive and it seems that the main
2363 * purpose of kmem_ptr_valid() is to check if the object belongs
2364 * to a certain slab.
2366 return 1;
2368 EXPORT_SYMBOL(kmem_ptr_validate);
2371 * Determine the size of a slab object
2373 unsigned int kmem_cache_size(struct kmem_cache *s)
2375 return s->objsize;
2377 EXPORT_SYMBOL(kmem_cache_size);
2379 const char *kmem_cache_name(struct kmem_cache *s)
2381 return s->name;
2383 EXPORT_SYMBOL(kmem_cache_name);
2385 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2386 const char *text)
2388 #ifdef CONFIG_SLUB_DEBUG
2389 void *addr = page_address(page);
2390 void *p;
2391 DECLARE_BITMAP(map, page->objects);
2393 bitmap_zero(map, page->objects);
2394 slab_err(s, page, "%s", text);
2395 slab_lock(page);
2396 for_each_free_object(p, s, page->freelist)
2397 set_bit(slab_index(p, s, addr), map);
2399 for_each_object(p, s, addr, page->objects) {
2401 if (!test_bit(slab_index(p, s, addr), map)) {
2402 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2403 p, p - addr);
2404 print_tracking(s, p);
2407 slab_unlock(page);
2408 #endif
2412 * Attempt to free all partial slabs on a node.
2414 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2416 unsigned long flags;
2417 struct page *page, *h;
2419 spin_lock_irqsave(&n->list_lock, flags);
2420 list_for_each_entry_safe(page, h, &n->partial, lru) {
2421 if (!page->inuse) {
2422 list_del(&page->lru);
2423 discard_slab(s, page);
2424 n->nr_partial--;
2425 } else {
2426 list_slab_objects(s, page,
2427 "Objects remaining on kmem_cache_close()");
2430 spin_unlock_irqrestore(&n->list_lock, flags);
2434 * Release all resources used by a slab cache.
2436 static inline int kmem_cache_close(struct kmem_cache *s)
2438 int node;
2440 flush_all(s);
2442 /* Attempt to free all objects */
2443 free_kmem_cache_cpus(s);
2444 for_each_node_state(node, N_NORMAL_MEMORY) {
2445 struct kmem_cache_node *n = get_node(s, node);
2447 free_partial(s, n);
2448 if (n->nr_partial || slabs_node(s, node))
2449 return 1;
2451 free_kmem_cache_nodes(s);
2452 return 0;
2456 * Close a cache and release the kmem_cache structure
2457 * (must be used for caches created using kmem_cache_create)
2459 void kmem_cache_destroy(struct kmem_cache *s)
2461 down_write(&slub_lock);
2462 s->refcount--;
2463 if (!s->refcount) {
2464 list_del(&s->list);
2465 up_write(&slub_lock);
2466 if (kmem_cache_close(s)) {
2467 printk(KERN_ERR "SLUB %s: %s called for cache that "
2468 "still has objects.\n", s->name, __func__);
2469 dump_stack();
2471 sysfs_slab_remove(s);
2472 } else
2473 up_write(&slub_lock);
2475 EXPORT_SYMBOL(kmem_cache_destroy);
2477 /********************************************************************
2478 * Kmalloc subsystem
2479 *******************************************************************/
2481 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2482 EXPORT_SYMBOL(kmalloc_caches);
2484 static int __init setup_slub_min_order(char *str)
2486 get_option(&str, &slub_min_order);
2488 return 1;
2491 __setup("slub_min_order=", setup_slub_min_order);
2493 static int __init setup_slub_max_order(char *str)
2495 get_option(&str, &slub_max_order);
2497 return 1;
2500 __setup("slub_max_order=", setup_slub_max_order);
2502 static int __init setup_slub_min_objects(char *str)
2504 get_option(&str, &slub_min_objects);
2506 return 1;
2509 __setup("slub_min_objects=", setup_slub_min_objects);
2511 static int __init setup_slub_nomerge(char *str)
2513 slub_nomerge = 1;
2514 return 1;
2517 __setup("slub_nomerge", setup_slub_nomerge);
2519 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2520 const char *name, int size, gfp_t gfp_flags)
2522 unsigned int flags = 0;
2524 if (gfp_flags & SLUB_DMA)
2525 flags = SLAB_CACHE_DMA;
2527 down_write(&slub_lock);
2528 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2529 flags, NULL))
2530 goto panic;
2532 list_add(&s->list, &slab_caches);
2533 up_write(&slub_lock);
2534 if (sysfs_slab_add(s))
2535 goto panic;
2536 return s;
2538 panic:
2539 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2542 #ifdef CONFIG_ZONE_DMA
2543 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2545 static void sysfs_add_func(struct work_struct *w)
2547 struct kmem_cache *s;
2549 down_write(&slub_lock);
2550 list_for_each_entry(s, &slab_caches, list) {
2551 if (s->flags & __SYSFS_ADD_DEFERRED) {
2552 s->flags &= ~__SYSFS_ADD_DEFERRED;
2553 sysfs_slab_add(s);
2556 up_write(&slub_lock);
2559 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2561 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2563 struct kmem_cache *s;
2564 char *text;
2565 size_t realsize;
2567 s = kmalloc_caches_dma[index];
2568 if (s)
2569 return s;
2571 /* Dynamically create dma cache */
2572 if (flags & __GFP_WAIT)
2573 down_write(&slub_lock);
2574 else {
2575 if (!down_write_trylock(&slub_lock))
2576 goto out;
2579 if (kmalloc_caches_dma[index])
2580 goto unlock_out;
2582 realsize = kmalloc_caches[index].objsize;
2583 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2584 (unsigned int)realsize);
2585 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2587 if (!s || !text || !kmem_cache_open(s, flags, text,
2588 realsize, ARCH_KMALLOC_MINALIGN,
2589 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2590 kfree(s);
2591 kfree(text);
2592 goto unlock_out;
2595 list_add(&s->list, &slab_caches);
2596 kmalloc_caches_dma[index] = s;
2598 schedule_work(&sysfs_add_work);
2600 unlock_out:
2601 up_write(&slub_lock);
2602 out:
2603 return kmalloc_caches_dma[index];
2605 #endif
2608 * Conversion table for small slabs sizes / 8 to the index in the
2609 * kmalloc array. This is necessary for slabs < 192 since we have non power
2610 * of two cache sizes there. The size of larger slabs can be determined using
2611 * fls.
2613 static s8 size_index[24] = {
2614 3, /* 8 */
2615 4, /* 16 */
2616 5, /* 24 */
2617 5, /* 32 */
2618 6, /* 40 */
2619 6, /* 48 */
2620 6, /* 56 */
2621 6, /* 64 */
2622 1, /* 72 */
2623 1, /* 80 */
2624 1, /* 88 */
2625 1, /* 96 */
2626 7, /* 104 */
2627 7, /* 112 */
2628 7, /* 120 */
2629 7, /* 128 */
2630 2, /* 136 */
2631 2, /* 144 */
2632 2, /* 152 */
2633 2, /* 160 */
2634 2, /* 168 */
2635 2, /* 176 */
2636 2, /* 184 */
2637 2 /* 192 */
2640 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2642 int index;
2644 if (size <= 192) {
2645 if (!size)
2646 return ZERO_SIZE_PTR;
2648 index = size_index[(size - 1) / 8];
2649 } else
2650 index = fls(size - 1);
2652 #ifdef CONFIG_ZONE_DMA
2653 if (unlikely((flags & SLUB_DMA)))
2654 return dma_kmalloc_cache(index, flags);
2656 #endif
2657 return &kmalloc_caches[index];
2660 void *__kmalloc(size_t size, gfp_t flags)
2662 struct kmem_cache *s;
2664 if (unlikely(size > PAGE_SIZE))
2665 return kmalloc_large(size, flags);
2667 s = get_slab(size, flags);
2669 if (unlikely(ZERO_OR_NULL_PTR(s)))
2670 return s;
2672 return slab_alloc(s, flags, -1, _RET_IP_);
2674 EXPORT_SYMBOL(__kmalloc);
2676 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2678 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2679 get_order(size));
2681 if (page)
2682 return page_address(page);
2683 else
2684 return NULL;
2687 #ifdef CONFIG_NUMA
2688 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2690 struct kmem_cache *s;
2692 if (unlikely(size > PAGE_SIZE))
2693 return kmalloc_large_node(size, flags, node);
2695 s = get_slab(size, flags);
2697 if (unlikely(ZERO_OR_NULL_PTR(s)))
2698 return s;
2700 return slab_alloc(s, flags, node, _RET_IP_);
2702 EXPORT_SYMBOL(__kmalloc_node);
2703 #endif
2705 size_t ksize(const void *object)
2707 struct page *page;
2708 struct kmem_cache *s;
2710 if (unlikely(object == ZERO_SIZE_PTR))
2711 return 0;
2713 page = virt_to_head_page(object);
2715 if (unlikely(!PageSlab(page))) {
2716 WARN_ON(!PageCompound(page));
2717 return PAGE_SIZE << compound_order(page);
2719 s = page->slab;
2721 #ifdef CONFIG_SLUB_DEBUG
2723 * Debugging requires use of the padding between object
2724 * and whatever may come after it.
2726 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2727 return s->objsize;
2729 #endif
2731 * If we have the need to store the freelist pointer
2732 * back there or track user information then we can
2733 * only use the space before that information.
2735 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2736 return s->inuse;
2738 * Else we can use all the padding etc for the allocation
2740 return s->size;
2742 EXPORT_SYMBOL(ksize);
2744 void kfree(const void *x)
2746 struct page *page;
2747 void *object = (void *)x;
2749 if (unlikely(ZERO_OR_NULL_PTR(x)))
2750 return;
2752 page = virt_to_head_page(x);
2753 if (unlikely(!PageSlab(page))) {
2754 BUG_ON(!PageCompound(page));
2755 put_page(page);
2756 return;
2758 slab_free(page->slab, page, object, _RET_IP_);
2760 EXPORT_SYMBOL(kfree);
2763 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2764 * the remaining slabs by the number of items in use. The slabs with the
2765 * most items in use come first. New allocations will then fill those up
2766 * and thus they can be removed from the partial lists.
2768 * The slabs with the least items are placed last. This results in them
2769 * being allocated from last increasing the chance that the last objects
2770 * are freed in them.
2772 int kmem_cache_shrink(struct kmem_cache *s)
2774 int node;
2775 int i;
2776 struct kmem_cache_node *n;
2777 struct page *page;
2778 struct page *t;
2779 int objects = oo_objects(s->max);
2780 struct list_head *slabs_by_inuse =
2781 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2782 unsigned long flags;
2784 if (!slabs_by_inuse)
2785 return -ENOMEM;
2787 flush_all(s);
2788 for_each_node_state(node, N_NORMAL_MEMORY) {
2789 n = get_node(s, node);
2791 if (!n->nr_partial)
2792 continue;
2794 for (i = 0; i < objects; i++)
2795 INIT_LIST_HEAD(slabs_by_inuse + i);
2797 spin_lock_irqsave(&n->list_lock, flags);
2800 * Build lists indexed by the items in use in each slab.
2802 * Note that concurrent frees may occur while we hold the
2803 * list_lock. page->inuse here is the upper limit.
2805 list_for_each_entry_safe(page, t, &n->partial, lru) {
2806 if (!page->inuse && slab_trylock(page)) {
2808 * Must hold slab lock here because slab_free
2809 * may have freed the last object and be
2810 * waiting to release the slab.
2812 list_del(&page->lru);
2813 n->nr_partial--;
2814 slab_unlock(page);
2815 discard_slab(s, page);
2816 } else {
2817 list_move(&page->lru,
2818 slabs_by_inuse + page->inuse);
2823 * Rebuild the partial list with the slabs filled up most
2824 * first and the least used slabs at the end.
2826 for (i = objects - 1; i >= 0; i--)
2827 list_splice(slabs_by_inuse + i, n->partial.prev);
2829 spin_unlock_irqrestore(&n->list_lock, flags);
2832 kfree(slabs_by_inuse);
2833 return 0;
2835 EXPORT_SYMBOL(kmem_cache_shrink);
2837 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2838 static int slab_mem_going_offline_callback(void *arg)
2840 struct kmem_cache *s;
2842 down_read(&slub_lock);
2843 list_for_each_entry(s, &slab_caches, list)
2844 kmem_cache_shrink(s);
2845 up_read(&slub_lock);
2847 return 0;
2850 static void slab_mem_offline_callback(void *arg)
2852 struct kmem_cache_node *n;
2853 struct kmem_cache *s;
2854 struct memory_notify *marg = arg;
2855 int offline_node;
2857 offline_node = marg->status_change_nid;
2860 * If the node still has available memory. we need kmem_cache_node
2861 * for it yet.
2863 if (offline_node < 0)
2864 return;
2866 down_read(&slub_lock);
2867 list_for_each_entry(s, &slab_caches, list) {
2868 n = get_node(s, offline_node);
2869 if (n) {
2871 * if n->nr_slabs > 0, slabs still exist on the node
2872 * that is going down. We were unable to free them,
2873 * and offline_pages() function shoudn't call this
2874 * callback. So, we must fail.
2876 BUG_ON(slabs_node(s, offline_node));
2878 s->node[offline_node] = NULL;
2879 kmem_cache_free(kmalloc_caches, n);
2882 up_read(&slub_lock);
2885 static int slab_mem_going_online_callback(void *arg)
2887 struct kmem_cache_node *n;
2888 struct kmem_cache *s;
2889 struct memory_notify *marg = arg;
2890 int nid = marg->status_change_nid;
2891 int ret = 0;
2894 * If the node's memory is already available, then kmem_cache_node is
2895 * already created. Nothing to do.
2897 if (nid < 0)
2898 return 0;
2901 * We are bringing a node online. No memory is available yet. We must
2902 * allocate a kmem_cache_node structure in order to bring the node
2903 * online.
2905 down_read(&slub_lock);
2906 list_for_each_entry(s, &slab_caches, list) {
2908 * XXX: kmem_cache_alloc_node will fallback to other nodes
2909 * since memory is not yet available from the node that
2910 * is brought up.
2912 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2913 if (!n) {
2914 ret = -ENOMEM;
2915 goto out;
2917 init_kmem_cache_node(n, s);
2918 s->node[nid] = n;
2920 out:
2921 up_read(&slub_lock);
2922 return ret;
2925 static int slab_memory_callback(struct notifier_block *self,
2926 unsigned long action, void *arg)
2928 int ret = 0;
2930 switch (action) {
2931 case MEM_GOING_ONLINE:
2932 ret = slab_mem_going_online_callback(arg);
2933 break;
2934 case MEM_GOING_OFFLINE:
2935 ret = slab_mem_going_offline_callback(arg);
2936 break;
2937 case MEM_OFFLINE:
2938 case MEM_CANCEL_ONLINE:
2939 slab_mem_offline_callback(arg);
2940 break;
2941 case MEM_ONLINE:
2942 case MEM_CANCEL_OFFLINE:
2943 break;
2945 if (ret)
2946 ret = notifier_from_errno(ret);
2947 else
2948 ret = NOTIFY_OK;
2949 return ret;
2952 #endif /* CONFIG_MEMORY_HOTPLUG */
2954 /********************************************************************
2955 * Basic setup of slabs
2956 *******************************************************************/
2958 void __init kmem_cache_init(void)
2960 int i;
2961 int caches = 0;
2963 init_alloc_cpu();
2965 #ifdef CONFIG_NUMA
2967 * Must first have the slab cache available for the allocations of the
2968 * struct kmem_cache_node's. There is special bootstrap code in
2969 * kmem_cache_open for slab_state == DOWN.
2971 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2972 sizeof(struct kmem_cache_node), GFP_KERNEL);
2973 kmalloc_caches[0].refcount = -1;
2974 caches++;
2976 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2977 #endif
2979 /* Able to allocate the per node structures */
2980 slab_state = PARTIAL;
2982 /* Caches that are not of the two-to-the-power-of size */
2983 if (KMALLOC_MIN_SIZE <= 64) {
2984 create_kmalloc_cache(&kmalloc_caches[1],
2985 "kmalloc-96", 96, GFP_KERNEL);
2986 caches++;
2987 create_kmalloc_cache(&kmalloc_caches[2],
2988 "kmalloc-192", 192, GFP_KERNEL);
2989 caches++;
2992 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2993 create_kmalloc_cache(&kmalloc_caches[i],
2994 "kmalloc", 1 << i, GFP_KERNEL);
2995 caches++;
3000 * Patch up the size_index table if we have strange large alignment
3001 * requirements for the kmalloc array. This is only the case for
3002 * MIPS it seems. The standard arches will not generate any code here.
3004 * Largest permitted alignment is 256 bytes due to the way we
3005 * handle the index determination for the smaller caches.
3007 * Make sure that nothing crazy happens if someone starts tinkering
3008 * around with ARCH_KMALLOC_MINALIGN
3010 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3011 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3013 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3014 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3016 if (KMALLOC_MIN_SIZE == 128) {
3018 * The 192 byte sized cache is not used if the alignment
3019 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3020 * instead.
3022 for (i = 128 + 8; i <= 192; i += 8)
3023 size_index[(i - 1) / 8] = 8;
3026 slab_state = UP;
3028 /* Provide the correct kmalloc names now that the caches are up */
3029 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3030 kmalloc_caches[i]. name =
3031 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3033 #ifdef CONFIG_SMP
3034 register_cpu_notifier(&slab_notifier);
3035 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3036 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3037 #else
3038 kmem_size = sizeof(struct kmem_cache);
3039 #endif
3041 printk(KERN_INFO
3042 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3043 " CPUs=%d, Nodes=%d\n",
3044 caches, cache_line_size(),
3045 slub_min_order, slub_max_order, slub_min_objects,
3046 nr_cpu_ids, nr_node_ids);
3050 * Find a mergeable slab cache
3052 static int slab_unmergeable(struct kmem_cache *s)
3054 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3055 return 1;
3057 if (s->ctor)
3058 return 1;
3061 * We may have set a slab to be unmergeable during bootstrap.
3063 if (s->refcount < 0)
3064 return 1;
3066 return 0;
3069 static struct kmem_cache *find_mergeable(size_t size,
3070 size_t align, unsigned long flags, const char *name,
3071 void (*ctor)(void *))
3073 struct kmem_cache *s;
3075 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3076 return NULL;
3078 if (ctor)
3079 return NULL;
3081 size = ALIGN(size, sizeof(void *));
3082 align = calculate_alignment(flags, align, size);
3083 size = ALIGN(size, align);
3084 flags = kmem_cache_flags(size, flags, name, NULL);
3086 list_for_each_entry(s, &slab_caches, list) {
3087 if (slab_unmergeable(s))
3088 continue;
3090 if (size > s->size)
3091 continue;
3093 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3094 continue;
3096 * Check if alignment is compatible.
3097 * Courtesy of Adrian Drzewiecki
3099 if ((s->size & ~(align - 1)) != s->size)
3100 continue;
3102 if (s->size - size >= sizeof(void *))
3103 continue;
3105 return s;
3107 return NULL;
3110 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3111 size_t align, unsigned long flags, void (*ctor)(void *))
3113 struct kmem_cache *s;
3115 down_write(&slub_lock);
3116 s = find_mergeable(size, align, flags, name, ctor);
3117 if (s) {
3118 int cpu;
3120 s->refcount++;
3122 * Adjust the object sizes so that we clear
3123 * the complete object on kzalloc.
3125 s->objsize = max(s->objsize, (int)size);
3128 * And then we need to update the object size in the
3129 * per cpu structures
3131 for_each_online_cpu(cpu)
3132 get_cpu_slab(s, cpu)->objsize = s->objsize;
3134 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3135 up_write(&slub_lock);
3137 if (sysfs_slab_alias(s, name)) {
3138 down_write(&slub_lock);
3139 s->refcount--;
3140 up_write(&slub_lock);
3141 goto err;
3143 return s;
3146 s = kmalloc(kmem_size, GFP_KERNEL);
3147 if (s) {
3148 if (kmem_cache_open(s, GFP_KERNEL, name,
3149 size, align, flags, ctor)) {
3150 list_add(&s->list, &slab_caches);
3151 up_write(&slub_lock);
3152 if (sysfs_slab_add(s)) {
3153 down_write(&slub_lock);
3154 list_del(&s->list);
3155 up_write(&slub_lock);
3156 kfree(s);
3157 goto err;
3159 return s;
3161 kfree(s);
3163 up_write(&slub_lock);
3165 err:
3166 if (flags & SLAB_PANIC)
3167 panic("Cannot create slabcache %s\n", name);
3168 else
3169 s = NULL;
3170 return s;
3172 EXPORT_SYMBOL(kmem_cache_create);
3174 #ifdef CONFIG_SMP
3176 * Use the cpu notifier to insure that the cpu slabs are flushed when
3177 * necessary.
3179 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3180 unsigned long action, void *hcpu)
3182 long cpu = (long)hcpu;
3183 struct kmem_cache *s;
3184 unsigned long flags;
3186 switch (action) {
3187 case CPU_UP_PREPARE:
3188 case CPU_UP_PREPARE_FROZEN:
3189 init_alloc_cpu_cpu(cpu);
3190 down_read(&slub_lock);
3191 list_for_each_entry(s, &slab_caches, list)
3192 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3193 GFP_KERNEL);
3194 up_read(&slub_lock);
3195 break;
3197 case CPU_UP_CANCELED:
3198 case CPU_UP_CANCELED_FROZEN:
3199 case CPU_DEAD:
3200 case CPU_DEAD_FROZEN:
3201 down_read(&slub_lock);
3202 list_for_each_entry(s, &slab_caches, list) {
3203 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3205 local_irq_save(flags);
3206 __flush_cpu_slab(s, cpu);
3207 local_irq_restore(flags);
3208 free_kmem_cache_cpu(c, cpu);
3209 s->cpu_slab[cpu] = NULL;
3211 up_read(&slub_lock);
3212 break;
3213 default:
3214 break;
3216 return NOTIFY_OK;
3219 static struct notifier_block __cpuinitdata slab_notifier = {
3220 .notifier_call = slab_cpuup_callback
3223 #endif
3225 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3227 struct kmem_cache *s;
3229 if (unlikely(size > PAGE_SIZE))
3230 return kmalloc_large(size, gfpflags);
3232 s = get_slab(size, gfpflags);
3234 if (unlikely(ZERO_OR_NULL_PTR(s)))
3235 return s;
3237 return slab_alloc(s, gfpflags, -1, caller);
3240 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3241 int node, unsigned long caller)
3243 struct kmem_cache *s;
3245 if (unlikely(size > PAGE_SIZE))
3246 return kmalloc_large_node(size, gfpflags, node);
3248 s = get_slab(size, gfpflags);
3250 if (unlikely(ZERO_OR_NULL_PTR(s)))
3251 return s;
3253 return slab_alloc(s, gfpflags, node, caller);
3256 #ifdef CONFIG_SLUB_DEBUG
3257 static unsigned long count_partial(struct kmem_cache_node *n,
3258 int (*get_count)(struct page *))
3260 unsigned long flags;
3261 unsigned long x = 0;
3262 struct page *page;
3264 spin_lock_irqsave(&n->list_lock, flags);
3265 list_for_each_entry(page, &n->partial, lru)
3266 x += get_count(page);
3267 spin_unlock_irqrestore(&n->list_lock, flags);
3268 return x;
3271 static int count_inuse(struct page *page)
3273 return page->inuse;
3276 static int count_total(struct page *page)
3278 return page->objects;
3281 static int count_free(struct page *page)
3283 return page->objects - page->inuse;
3286 static int validate_slab(struct kmem_cache *s, struct page *page,
3287 unsigned long *map)
3289 void *p;
3290 void *addr = page_address(page);
3292 if (!check_slab(s, page) ||
3293 !on_freelist(s, page, NULL))
3294 return 0;
3296 /* Now we know that a valid freelist exists */
3297 bitmap_zero(map, page->objects);
3299 for_each_free_object(p, s, page->freelist) {
3300 set_bit(slab_index(p, s, addr), map);
3301 if (!check_object(s, page, p, 0))
3302 return 0;
3305 for_each_object(p, s, addr, page->objects)
3306 if (!test_bit(slab_index(p, s, addr), map))
3307 if (!check_object(s, page, p, 1))
3308 return 0;
3309 return 1;
3312 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3313 unsigned long *map)
3315 if (slab_trylock(page)) {
3316 validate_slab(s, page, map);
3317 slab_unlock(page);
3318 } else
3319 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3320 s->name, page);
3322 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3323 if (!PageSlubDebug(page))
3324 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3325 "on slab 0x%p\n", s->name, page);
3326 } else {
3327 if (PageSlubDebug(page))
3328 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3329 "slab 0x%p\n", s->name, page);
3333 static int validate_slab_node(struct kmem_cache *s,
3334 struct kmem_cache_node *n, unsigned long *map)
3336 unsigned long count = 0;
3337 struct page *page;
3338 unsigned long flags;
3340 spin_lock_irqsave(&n->list_lock, flags);
3342 list_for_each_entry(page, &n->partial, lru) {
3343 validate_slab_slab(s, page, map);
3344 count++;
3346 if (count != n->nr_partial)
3347 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3348 "counter=%ld\n", s->name, count, n->nr_partial);
3350 if (!(s->flags & SLAB_STORE_USER))
3351 goto out;
3353 list_for_each_entry(page, &n->full, lru) {
3354 validate_slab_slab(s, page, map);
3355 count++;
3357 if (count != atomic_long_read(&n->nr_slabs))
3358 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3359 "counter=%ld\n", s->name, count,
3360 atomic_long_read(&n->nr_slabs));
3362 out:
3363 spin_unlock_irqrestore(&n->list_lock, flags);
3364 return count;
3367 static long validate_slab_cache(struct kmem_cache *s)
3369 int node;
3370 unsigned long count = 0;
3371 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3372 sizeof(unsigned long), GFP_KERNEL);
3374 if (!map)
3375 return -ENOMEM;
3377 flush_all(s);
3378 for_each_node_state(node, N_NORMAL_MEMORY) {
3379 struct kmem_cache_node *n = get_node(s, node);
3381 count += validate_slab_node(s, n, map);
3383 kfree(map);
3384 return count;
3387 #ifdef SLUB_RESILIENCY_TEST
3388 static void resiliency_test(void)
3390 u8 *p;
3392 printk(KERN_ERR "SLUB resiliency testing\n");
3393 printk(KERN_ERR "-----------------------\n");
3394 printk(KERN_ERR "A. Corruption after allocation\n");
3396 p = kzalloc(16, GFP_KERNEL);
3397 p[16] = 0x12;
3398 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3399 " 0x12->0x%p\n\n", p + 16);
3401 validate_slab_cache(kmalloc_caches + 4);
3403 /* Hmmm... The next two are dangerous */
3404 p = kzalloc(32, GFP_KERNEL);
3405 p[32 + sizeof(void *)] = 0x34;
3406 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3407 " 0x34 -> -0x%p\n", p);
3408 printk(KERN_ERR
3409 "If allocated object is overwritten then not detectable\n\n");
3411 validate_slab_cache(kmalloc_caches + 5);
3412 p = kzalloc(64, GFP_KERNEL);
3413 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3414 *p = 0x56;
3415 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3417 printk(KERN_ERR
3418 "If allocated object is overwritten then not detectable\n\n");
3419 validate_slab_cache(kmalloc_caches + 6);
3421 printk(KERN_ERR "\nB. Corruption after free\n");
3422 p = kzalloc(128, GFP_KERNEL);
3423 kfree(p);
3424 *p = 0x78;
3425 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3426 validate_slab_cache(kmalloc_caches + 7);
3428 p = kzalloc(256, GFP_KERNEL);
3429 kfree(p);
3430 p[50] = 0x9a;
3431 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3433 validate_slab_cache(kmalloc_caches + 8);
3435 p = kzalloc(512, GFP_KERNEL);
3436 kfree(p);
3437 p[512] = 0xab;
3438 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3439 validate_slab_cache(kmalloc_caches + 9);
3441 #else
3442 static void resiliency_test(void) {};
3443 #endif
3446 * Generate lists of code addresses where slabcache objects are allocated
3447 * and freed.
3450 struct location {
3451 unsigned long count;
3452 unsigned long addr;
3453 long long sum_time;
3454 long min_time;
3455 long max_time;
3456 long min_pid;
3457 long max_pid;
3458 DECLARE_BITMAP(cpus, NR_CPUS);
3459 nodemask_t nodes;
3462 struct loc_track {
3463 unsigned long max;
3464 unsigned long count;
3465 struct location *loc;
3468 static void free_loc_track(struct loc_track *t)
3470 if (t->max)
3471 free_pages((unsigned long)t->loc,
3472 get_order(sizeof(struct location) * t->max));
3475 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3477 struct location *l;
3478 int order;
3480 order = get_order(sizeof(struct location) * max);
3482 l = (void *)__get_free_pages(flags, order);
3483 if (!l)
3484 return 0;
3486 if (t->count) {
3487 memcpy(l, t->loc, sizeof(struct location) * t->count);
3488 free_loc_track(t);
3490 t->max = max;
3491 t->loc = l;
3492 return 1;
3495 static int add_location(struct loc_track *t, struct kmem_cache *s,
3496 const struct track *track)
3498 long start, end, pos;
3499 struct location *l;
3500 unsigned long caddr;
3501 unsigned long age = jiffies - track->when;
3503 start = -1;
3504 end = t->count;
3506 for ( ; ; ) {
3507 pos = start + (end - start + 1) / 2;
3510 * There is nothing at "end". If we end up there
3511 * we need to add something to before end.
3513 if (pos == end)
3514 break;
3516 caddr = t->loc[pos].addr;
3517 if (track->addr == caddr) {
3519 l = &t->loc[pos];
3520 l->count++;
3521 if (track->when) {
3522 l->sum_time += age;
3523 if (age < l->min_time)
3524 l->min_time = age;
3525 if (age > l->max_time)
3526 l->max_time = age;
3528 if (track->pid < l->min_pid)
3529 l->min_pid = track->pid;
3530 if (track->pid > l->max_pid)
3531 l->max_pid = track->pid;
3533 cpumask_set_cpu(track->cpu,
3534 to_cpumask(l->cpus));
3536 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3537 return 1;
3540 if (track->addr < caddr)
3541 end = pos;
3542 else
3543 start = pos;
3547 * Not found. Insert new tracking element.
3549 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3550 return 0;
3552 l = t->loc + pos;
3553 if (pos < t->count)
3554 memmove(l + 1, l,
3555 (t->count - pos) * sizeof(struct location));
3556 t->count++;
3557 l->count = 1;
3558 l->addr = track->addr;
3559 l->sum_time = age;
3560 l->min_time = age;
3561 l->max_time = age;
3562 l->min_pid = track->pid;
3563 l->max_pid = track->pid;
3564 cpumask_clear(to_cpumask(l->cpus));
3565 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3566 nodes_clear(l->nodes);
3567 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3568 return 1;
3571 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3572 struct page *page, enum track_item alloc)
3574 void *addr = page_address(page);
3575 DECLARE_BITMAP(map, page->objects);
3576 void *p;
3578 bitmap_zero(map, page->objects);
3579 for_each_free_object(p, s, page->freelist)
3580 set_bit(slab_index(p, s, addr), map);
3582 for_each_object(p, s, addr, page->objects)
3583 if (!test_bit(slab_index(p, s, addr), map))
3584 add_location(t, s, get_track(s, p, alloc));
3587 static int list_locations(struct kmem_cache *s, char *buf,
3588 enum track_item alloc)
3590 int len = 0;
3591 unsigned long i;
3592 struct loc_track t = { 0, 0, NULL };
3593 int node;
3595 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3596 GFP_TEMPORARY))
3597 return sprintf(buf, "Out of memory\n");
3599 /* Push back cpu slabs */
3600 flush_all(s);
3602 for_each_node_state(node, N_NORMAL_MEMORY) {
3603 struct kmem_cache_node *n = get_node(s, node);
3604 unsigned long flags;
3605 struct page *page;
3607 if (!atomic_long_read(&n->nr_slabs))
3608 continue;
3610 spin_lock_irqsave(&n->list_lock, flags);
3611 list_for_each_entry(page, &n->partial, lru)
3612 process_slab(&t, s, page, alloc);
3613 list_for_each_entry(page, &n->full, lru)
3614 process_slab(&t, s, page, alloc);
3615 spin_unlock_irqrestore(&n->list_lock, flags);
3618 for (i = 0; i < t.count; i++) {
3619 struct location *l = &t.loc[i];
3621 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3622 break;
3623 len += sprintf(buf + len, "%7ld ", l->count);
3625 if (l->addr)
3626 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3627 else
3628 len += sprintf(buf + len, "<not-available>");
3630 if (l->sum_time != l->min_time) {
3631 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3632 l->min_time,
3633 (long)div_u64(l->sum_time, l->count),
3634 l->max_time);
3635 } else
3636 len += sprintf(buf + len, " age=%ld",
3637 l->min_time);
3639 if (l->min_pid != l->max_pid)
3640 len += sprintf(buf + len, " pid=%ld-%ld",
3641 l->min_pid, l->max_pid);
3642 else
3643 len += sprintf(buf + len, " pid=%ld",
3644 l->min_pid);
3646 if (num_online_cpus() > 1 &&
3647 !cpumask_empty(to_cpumask(l->cpus)) &&
3648 len < PAGE_SIZE - 60) {
3649 len += sprintf(buf + len, " cpus=");
3650 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3651 to_cpumask(l->cpus));
3654 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3655 len < PAGE_SIZE - 60) {
3656 len += sprintf(buf + len, " nodes=");
3657 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3658 l->nodes);
3661 len += sprintf(buf + len, "\n");
3664 free_loc_track(&t);
3665 if (!t.count)
3666 len += sprintf(buf, "No data\n");
3667 return len;
3670 enum slab_stat_type {
3671 SL_ALL, /* All slabs */
3672 SL_PARTIAL, /* Only partially allocated slabs */
3673 SL_CPU, /* Only slabs used for cpu caches */
3674 SL_OBJECTS, /* Determine allocated objects not slabs */
3675 SL_TOTAL /* Determine object capacity not slabs */
3678 #define SO_ALL (1 << SL_ALL)
3679 #define SO_PARTIAL (1 << SL_PARTIAL)
3680 #define SO_CPU (1 << SL_CPU)
3681 #define SO_OBJECTS (1 << SL_OBJECTS)
3682 #define SO_TOTAL (1 << SL_TOTAL)
3684 static ssize_t show_slab_objects(struct kmem_cache *s,
3685 char *buf, unsigned long flags)
3687 unsigned long total = 0;
3688 int node;
3689 int x;
3690 unsigned long *nodes;
3691 unsigned long *per_cpu;
3693 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3694 if (!nodes)
3695 return -ENOMEM;
3696 per_cpu = nodes + nr_node_ids;
3698 if (flags & SO_CPU) {
3699 int cpu;
3701 for_each_possible_cpu(cpu) {
3702 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3704 if (!c || c->node < 0)
3705 continue;
3707 if (c->page) {
3708 if (flags & SO_TOTAL)
3709 x = c->page->objects;
3710 else if (flags & SO_OBJECTS)
3711 x = c->page->inuse;
3712 else
3713 x = 1;
3715 total += x;
3716 nodes[c->node] += x;
3718 per_cpu[c->node]++;
3722 if (flags & SO_ALL) {
3723 for_each_node_state(node, N_NORMAL_MEMORY) {
3724 struct kmem_cache_node *n = get_node(s, node);
3726 if (flags & SO_TOTAL)
3727 x = atomic_long_read(&n->total_objects);
3728 else if (flags & SO_OBJECTS)
3729 x = atomic_long_read(&n->total_objects) -
3730 count_partial(n, count_free);
3732 else
3733 x = atomic_long_read(&n->nr_slabs);
3734 total += x;
3735 nodes[node] += x;
3738 } else if (flags & SO_PARTIAL) {
3739 for_each_node_state(node, N_NORMAL_MEMORY) {
3740 struct kmem_cache_node *n = get_node(s, node);
3742 if (flags & SO_TOTAL)
3743 x = count_partial(n, count_total);
3744 else if (flags & SO_OBJECTS)
3745 x = count_partial(n, count_inuse);
3746 else
3747 x = n->nr_partial;
3748 total += x;
3749 nodes[node] += x;
3752 x = sprintf(buf, "%lu", total);
3753 #ifdef CONFIG_NUMA
3754 for_each_node_state(node, N_NORMAL_MEMORY)
3755 if (nodes[node])
3756 x += sprintf(buf + x, " N%d=%lu",
3757 node, nodes[node]);
3758 #endif
3759 kfree(nodes);
3760 return x + sprintf(buf + x, "\n");
3763 static int any_slab_objects(struct kmem_cache *s)
3765 int node;
3767 for_each_online_node(node) {
3768 struct kmem_cache_node *n = get_node(s, node);
3770 if (!n)
3771 continue;
3773 if (atomic_long_read(&n->total_objects))
3774 return 1;
3776 return 0;
3779 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3780 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3782 struct slab_attribute {
3783 struct attribute attr;
3784 ssize_t (*show)(struct kmem_cache *s, char *buf);
3785 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3788 #define SLAB_ATTR_RO(_name) \
3789 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3791 #define SLAB_ATTR(_name) \
3792 static struct slab_attribute _name##_attr = \
3793 __ATTR(_name, 0644, _name##_show, _name##_store)
3795 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3797 return sprintf(buf, "%d\n", s->size);
3799 SLAB_ATTR_RO(slab_size);
3801 static ssize_t align_show(struct kmem_cache *s, char *buf)
3803 return sprintf(buf, "%d\n", s->align);
3805 SLAB_ATTR_RO(align);
3807 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3809 return sprintf(buf, "%d\n", s->objsize);
3811 SLAB_ATTR_RO(object_size);
3813 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3815 return sprintf(buf, "%d\n", oo_objects(s->oo));
3817 SLAB_ATTR_RO(objs_per_slab);
3819 static ssize_t order_store(struct kmem_cache *s,
3820 const char *buf, size_t length)
3822 unsigned long order;
3823 int err;
3825 err = strict_strtoul(buf, 10, &order);
3826 if (err)
3827 return err;
3829 if (order > slub_max_order || order < slub_min_order)
3830 return -EINVAL;
3832 calculate_sizes(s, order);
3833 return length;
3836 static ssize_t order_show(struct kmem_cache *s, char *buf)
3838 return sprintf(buf, "%d\n", oo_order(s->oo));
3840 SLAB_ATTR(order);
3842 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3844 if (s->ctor) {
3845 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3847 return n + sprintf(buf + n, "\n");
3849 return 0;
3851 SLAB_ATTR_RO(ctor);
3853 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3855 return sprintf(buf, "%d\n", s->refcount - 1);
3857 SLAB_ATTR_RO(aliases);
3859 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3861 return show_slab_objects(s, buf, SO_ALL);
3863 SLAB_ATTR_RO(slabs);
3865 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3867 return show_slab_objects(s, buf, SO_PARTIAL);
3869 SLAB_ATTR_RO(partial);
3871 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3873 return show_slab_objects(s, buf, SO_CPU);
3875 SLAB_ATTR_RO(cpu_slabs);
3877 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3879 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3881 SLAB_ATTR_RO(objects);
3883 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3885 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3887 SLAB_ATTR_RO(objects_partial);
3889 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3891 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3893 SLAB_ATTR_RO(total_objects);
3895 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3897 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3900 static ssize_t sanity_checks_store(struct kmem_cache *s,
3901 const char *buf, size_t length)
3903 s->flags &= ~SLAB_DEBUG_FREE;
3904 if (buf[0] == '1')
3905 s->flags |= SLAB_DEBUG_FREE;
3906 return length;
3908 SLAB_ATTR(sanity_checks);
3910 static ssize_t trace_show(struct kmem_cache *s, char *buf)
3912 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3915 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3916 size_t length)
3918 s->flags &= ~SLAB_TRACE;
3919 if (buf[0] == '1')
3920 s->flags |= SLAB_TRACE;
3921 return length;
3923 SLAB_ATTR(trace);
3925 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3927 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3930 static ssize_t reclaim_account_store(struct kmem_cache *s,
3931 const char *buf, size_t length)
3933 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3934 if (buf[0] == '1')
3935 s->flags |= SLAB_RECLAIM_ACCOUNT;
3936 return length;
3938 SLAB_ATTR(reclaim_account);
3940 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3942 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3944 SLAB_ATTR_RO(hwcache_align);
3946 #ifdef CONFIG_ZONE_DMA
3947 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3949 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3951 SLAB_ATTR_RO(cache_dma);
3952 #endif
3954 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3956 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3958 SLAB_ATTR_RO(destroy_by_rcu);
3960 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3962 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3965 static ssize_t red_zone_store(struct kmem_cache *s,
3966 const char *buf, size_t length)
3968 if (any_slab_objects(s))
3969 return -EBUSY;
3971 s->flags &= ~SLAB_RED_ZONE;
3972 if (buf[0] == '1')
3973 s->flags |= SLAB_RED_ZONE;
3974 calculate_sizes(s, -1);
3975 return length;
3977 SLAB_ATTR(red_zone);
3979 static ssize_t poison_show(struct kmem_cache *s, char *buf)
3981 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3984 static ssize_t poison_store(struct kmem_cache *s,
3985 const char *buf, size_t length)
3987 if (any_slab_objects(s))
3988 return -EBUSY;
3990 s->flags &= ~SLAB_POISON;
3991 if (buf[0] == '1')
3992 s->flags |= SLAB_POISON;
3993 calculate_sizes(s, -1);
3994 return length;
3996 SLAB_ATTR(poison);
3998 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4000 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4003 static ssize_t store_user_store(struct kmem_cache *s,
4004 const char *buf, size_t length)
4006 if (any_slab_objects(s))
4007 return -EBUSY;
4009 s->flags &= ~SLAB_STORE_USER;
4010 if (buf[0] == '1')
4011 s->flags |= SLAB_STORE_USER;
4012 calculate_sizes(s, -1);
4013 return length;
4015 SLAB_ATTR(store_user);
4017 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4019 return 0;
4022 static ssize_t validate_store(struct kmem_cache *s,
4023 const char *buf, size_t length)
4025 int ret = -EINVAL;
4027 if (buf[0] == '1') {
4028 ret = validate_slab_cache(s);
4029 if (ret >= 0)
4030 ret = length;
4032 return ret;
4034 SLAB_ATTR(validate);
4036 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4038 return 0;
4041 static ssize_t shrink_store(struct kmem_cache *s,
4042 const char *buf, size_t length)
4044 if (buf[0] == '1') {
4045 int rc = kmem_cache_shrink(s);
4047 if (rc)
4048 return rc;
4049 } else
4050 return -EINVAL;
4051 return length;
4053 SLAB_ATTR(shrink);
4055 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4057 if (!(s->flags & SLAB_STORE_USER))
4058 return -ENOSYS;
4059 return list_locations(s, buf, TRACK_ALLOC);
4061 SLAB_ATTR_RO(alloc_calls);
4063 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4065 if (!(s->flags & SLAB_STORE_USER))
4066 return -ENOSYS;
4067 return list_locations(s, buf, TRACK_FREE);
4069 SLAB_ATTR_RO(free_calls);
4071 #ifdef CONFIG_NUMA
4072 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4074 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4077 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4078 const char *buf, size_t length)
4080 unsigned long ratio;
4081 int err;
4083 err = strict_strtoul(buf, 10, &ratio);
4084 if (err)
4085 return err;
4087 if (ratio <= 100)
4088 s->remote_node_defrag_ratio = ratio * 10;
4090 return length;
4092 SLAB_ATTR(remote_node_defrag_ratio);
4093 #endif
4095 #ifdef CONFIG_SLUB_STATS
4096 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4098 unsigned long sum = 0;
4099 int cpu;
4100 int len;
4101 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4103 if (!data)
4104 return -ENOMEM;
4106 for_each_online_cpu(cpu) {
4107 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4109 data[cpu] = x;
4110 sum += x;
4113 len = sprintf(buf, "%lu", sum);
4115 #ifdef CONFIG_SMP
4116 for_each_online_cpu(cpu) {
4117 if (data[cpu] && len < PAGE_SIZE - 20)
4118 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4120 #endif
4121 kfree(data);
4122 return len + sprintf(buf + len, "\n");
4125 #define STAT_ATTR(si, text) \
4126 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4128 return show_stat(s, buf, si); \
4130 SLAB_ATTR_RO(text); \
4132 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4133 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4134 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4135 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4136 STAT_ATTR(FREE_FROZEN, free_frozen);
4137 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4138 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4139 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4140 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4141 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4142 STAT_ATTR(FREE_SLAB, free_slab);
4143 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4144 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4145 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4146 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4147 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4148 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4149 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4150 #endif
4152 static struct attribute *slab_attrs[] = {
4153 &slab_size_attr.attr,
4154 &object_size_attr.attr,
4155 &objs_per_slab_attr.attr,
4156 &order_attr.attr,
4157 &objects_attr.attr,
4158 &objects_partial_attr.attr,
4159 &total_objects_attr.attr,
4160 &slabs_attr.attr,
4161 &partial_attr.attr,
4162 &cpu_slabs_attr.attr,
4163 &ctor_attr.attr,
4164 &aliases_attr.attr,
4165 &align_attr.attr,
4166 &sanity_checks_attr.attr,
4167 &trace_attr.attr,
4168 &hwcache_align_attr.attr,
4169 &reclaim_account_attr.attr,
4170 &destroy_by_rcu_attr.attr,
4171 &red_zone_attr.attr,
4172 &poison_attr.attr,
4173 &store_user_attr.attr,
4174 &validate_attr.attr,
4175 &shrink_attr.attr,
4176 &alloc_calls_attr.attr,
4177 &free_calls_attr.attr,
4178 #ifdef CONFIG_ZONE_DMA
4179 &cache_dma_attr.attr,
4180 #endif
4181 #ifdef CONFIG_NUMA
4182 &remote_node_defrag_ratio_attr.attr,
4183 #endif
4184 #ifdef CONFIG_SLUB_STATS
4185 &alloc_fastpath_attr.attr,
4186 &alloc_slowpath_attr.attr,
4187 &free_fastpath_attr.attr,
4188 &free_slowpath_attr.attr,
4189 &free_frozen_attr.attr,
4190 &free_add_partial_attr.attr,
4191 &free_remove_partial_attr.attr,
4192 &alloc_from_partial_attr.attr,
4193 &alloc_slab_attr.attr,
4194 &alloc_refill_attr.attr,
4195 &free_slab_attr.attr,
4196 &cpuslab_flush_attr.attr,
4197 &deactivate_full_attr.attr,
4198 &deactivate_empty_attr.attr,
4199 &deactivate_to_head_attr.attr,
4200 &deactivate_to_tail_attr.attr,
4201 &deactivate_remote_frees_attr.attr,
4202 &order_fallback_attr.attr,
4203 #endif
4204 NULL
4207 static struct attribute_group slab_attr_group = {
4208 .attrs = slab_attrs,
4211 static ssize_t slab_attr_show(struct kobject *kobj,
4212 struct attribute *attr,
4213 char *buf)
4215 struct slab_attribute *attribute;
4216 struct kmem_cache *s;
4217 int err;
4219 attribute = to_slab_attr(attr);
4220 s = to_slab(kobj);
4222 if (!attribute->show)
4223 return -EIO;
4225 err = attribute->show(s, buf);
4227 return err;
4230 static ssize_t slab_attr_store(struct kobject *kobj,
4231 struct attribute *attr,
4232 const char *buf, size_t len)
4234 struct slab_attribute *attribute;
4235 struct kmem_cache *s;
4236 int err;
4238 attribute = to_slab_attr(attr);
4239 s = to_slab(kobj);
4241 if (!attribute->store)
4242 return -EIO;
4244 err = attribute->store(s, buf, len);
4246 return err;
4249 static void kmem_cache_release(struct kobject *kobj)
4251 struct kmem_cache *s = to_slab(kobj);
4253 kfree(s);
4256 static struct sysfs_ops slab_sysfs_ops = {
4257 .show = slab_attr_show,
4258 .store = slab_attr_store,
4261 static struct kobj_type slab_ktype = {
4262 .sysfs_ops = &slab_sysfs_ops,
4263 .release = kmem_cache_release
4266 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4268 struct kobj_type *ktype = get_ktype(kobj);
4270 if (ktype == &slab_ktype)
4271 return 1;
4272 return 0;
4275 static struct kset_uevent_ops slab_uevent_ops = {
4276 .filter = uevent_filter,
4279 static struct kset *slab_kset;
4281 #define ID_STR_LENGTH 64
4283 /* Create a unique string id for a slab cache:
4285 * Format :[flags-]size
4287 static char *create_unique_id(struct kmem_cache *s)
4289 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4290 char *p = name;
4292 BUG_ON(!name);
4294 *p++ = ':';
4296 * First flags affecting slabcache operations. We will only
4297 * get here for aliasable slabs so we do not need to support
4298 * too many flags. The flags here must cover all flags that
4299 * are matched during merging to guarantee that the id is
4300 * unique.
4302 if (s->flags & SLAB_CACHE_DMA)
4303 *p++ = 'd';
4304 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4305 *p++ = 'a';
4306 if (s->flags & SLAB_DEBUG_FREE)
4307 *p++ = 'F';
4308 if (p != name + 1)
4309 *p++ = '-';
4310 p += sprintf(p, "%07d", s->size);
4311 BUG_ON(p > name + ID_STR_LENGTH - 1);
4312 return name;
4315 static int sysfs_slab_add(struct kmem_cache *s)
4317 int err;
4318 const char *name;
4319 int unmergeable;
4321 if (slab_state < SYSFS)
4322 /* Defer until later */
4323 return 0;
4325 unmergeable = slab_unmergeable(s);
4326 if (unmergeable) {
4328 * Slabcache can never be merged so we can use the name proper.
4329 * This is typically the case for debug situations. In that
4330 * case we can catch duplicate names easily.
4332 sysfs_remove_link(&slab_kset->kobj, s->name);
4333 name = s->name;
4334 } else {
4336 * Create a unique name for the slab as a target
4337 * for the symlinks.
4339 name = create_unique_id(s);
4342 s->kobj.kset = slab_kset;
4343 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4344 if (err) {
4345 kobject_put(&s->kobj);
4346 return err;
4349 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4350 if (err)
4351 return err;
4352 kobject_uevent(&s->kobj, KOBJ_ADD);
4353 if (!unmergeable) {
4354 /* Setup first alias */
4355 sysfs_slab_alias(s, s->name);
4356 kfree(name);
4358 return 0;
4361 static void sysfs_slab_remove(struct kmem_cache *s)
4363 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4364 kobject_del(&s->kobj);
4365 kobject_put(&s->kobj);
4369 * Need to buffer aliases during bootup until sysfs becomes
4370 * available lest we lose that information.
4372 struct saved_alias {
4373 struct kmem_cache *s;
4374 const char *name;
4375 struct saved_alias *next;
4378 static struct saved_alias *alias_list;
4380 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4382 struct saved_alias *al;
4384 if (slab_state == SYSFS) {
4386 * If we have a leftover link then remove it.
4388 sysfs_remove_link(&slab_kset->kobj, name);
4389 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4392 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4393 if (!al)
4394 return -ENOMEM;
4396 al->s = s;
4397 al->name = name;
4398 al->next = alias_list;
4399 alias_list = al;
4400 return 0;
4403 static int __init slab_sysfs_init(void)
4405 struct kmem_cache *s;
4406 int err;
4408 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4409 if (!slab_kset) {
4410 printk(KERN_ERR "Cannot register slab subsystem.\n");
4411 return -ENOSYS;
4414 slab_state = SYSFS;
4416 list_for_each_entry(s, &slab_caches, list) {
4417 err = sysfs_slab_add(s);
4418 if (err)
4419 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4420 " to sysfs\n", s->name);
4423 while (alias_list) {
4424 struct saved_alias *al = alias_list;
4426 alias_list = alias_list->next;
4427 err = sysfs_slab_alias(al->s, al->name);
4428 if (err)
4429 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4430 " %s to sysfs\n", s->name);
4431 kfree(al);
4434 resiliency_test();
4435 return 0;
4438 __initcall(slab_sysfs_init);
4439 #endif
4442 * The /proc/slabinfo ABI
4444 #ifdef CONFIG_SLABINFO
4445 static void print_slabinfo_header(struct seq_file *m)
4447 seq_puts(m, "slabinfo - version: 2.1\n");
4448 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4449 "<objperslab> <pagesperslab>");
4450 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4451 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4452 seq_putc(m, '\n');
4455 static void *s_start(struct seq_file *m, loff_t *pos)
4457 loff_t n = *pos;
4459 down_read(&slub_lock);
4460 if (!n)
4461 print_slabinfo_header(m);
4463 return seq_list_start(&slab_caches, *pos);
4466 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4468 return seq_list_next(p, &slab_caches, pos);
4471 static void s_stop(struct seq_file *m, void *p)
4473 up_read(&slub_lock);
4476 static int s_show(struct seq_file *m, void *p)
4478 unsigned long nr_partials = 0;
4479 unsigned long nr_slabs = 0;
4480 unsigned long nr_inuse = 0;
4481 unsigned long nr_objs = 0;
4482 unsigned long nr_free = 0;
4483 struct kmem_cache *s;
4484 int node;
4486 s = list_entry(p, struct kmem_cache, list);
4488 for_each_online_node(node) {
4489 struct kmem_cache_node *n = get_node(s, node);
4491 if (!n)
4492 continue;
4494 nr_partials += n->nr_partial;
4495 nr_slabs += atomic_long_read(&n->nr_slabs);
4496 nr_objs += atomic_long_read(&n->total_objects);
4497 nr_free += count_partial(n, count_free);
4500 nr_inuse = nr_objs - nr_free;
4502 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4503 nr_objs, s->size, oo_objects(s->oo),
4504 (1 << oo_order(s->oo)));
4505 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4506 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4507 0UL);
4508 seq_putc(m, '\n');
4509 return 0;
4512 static const struct seq_operations slabinfo_op = {
4513 .start = s_start,
4514 .next = s_next,
4515 .stop = s_stop,
4516 .show = s_show,
4519 static int slabinfo_open(struct inode *inode, struct file *file)
4521 return seq_open(file, &slabinfo_op);
4524 static const struct file_operations proc_slabinfo_operations = {
4525 .open = slabinfo_open,
4526 .read = seq_read,
4527 .llseek = seq_lseek,
4528 .release = seq_release,
4531 static int __init slab_proc_init(void)
4533 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4534 return 0;
4536 module_init(slab_proc_init);
4537 #endif /* CONFIG_SLABINFO */