2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2007 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
25 #include <linux/mount.h>
26 #include <linux/mutex.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/slab.h>
30 #include <linux/smp_lock.h>
46 * ntfs_test_inode - compare two (possibly fake) inodes for equality
47 * @vi: vfs inode which to test
48 * @na: ntfs attribute which is being tested with
50 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
51 * inode @vi for equality with the ntfs attribute @na.
53 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
54 * @na->name and @na->name_len are then ignored.
56 * Return 1 if the attributes match and 0 if not.
58 * NOTE: This function runs with the inode_lock spin lock held so it is not
61 int ntfs_test_inode(struct inode
*vi
, ntfs_attr
*na
)
65 if (vi
->i_ino
!= na
->mft_no
)
68 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
69 if (likely(!NInoAttr(ni
))) {
70 /* If not looking for a normal inode this is a mismatch. */
71 if (unlikely(na
->type
!= AT_UNUSED
))
74 /* A fake inode describing an attribute. */
75 if (ni
->type
!= na
->type
)
77 if (ni
->name_len
!= na
->name_len
)
79 if (na
->name_len
&& memcmp(ni
->name
, na
->name
,
80 na
->name_len
* sizeof(ntfschar
)))
88 * ntfs_init_locked_inode - initialize an inode
89 * @vi: vfs inode to initialize
90 * @na: ntfs attribute which to initialize @vi to
92 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
93 * order to enable ntfs_test_inode() to do its work.
95 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
96 * In that case, @na->name and @na->name_len should be set to NULL and 0,
97 * respectively. Although that is not strictly necessary as
98 * ntfs_read_locked_inode() will fill them in later.
100 * Return 0 on success and -errno on error.
102 * NOTE: This function runs with the inode_lock spin lock held so it is not
103 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
105 static int ntfs_init_locked_inode(struct inode
*vi
, ntfs_attr
*na
)
107 ntfs_inode
*ni
= NTFS_I(vi
);
109 vi
->i_ino
= na
->mft_no
;
112 if (na
->type
== AT_INDEX_ALLOCATION
)
113 NInoSetMstProtected(ni
);
116 ni
->name_len
= na
->name_len
;
118 /* If initializing a normal inode, we are done. */
119 if (likely(na
->type
== AT_UNUSED
)) {
121 BUG_ON(na
->name_len
);
125 /* It is a fake inode. */
129 * We have I30 global constant as an optimization as it is the name
130 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
131 * allocation but that is ok. And most attributes are unnamed anyway,
132 * thus the fraction of named attributes with name != I30 is actually
135 if (na
->name_len
&& na
->name
!= I30
) {
139 i
= na
->name_len
* sizeof(ntfschar
);
140 ni
->name
= kmalloc(i
+ sizeof(ntfschar
), GFP_ATOMIC
);
143 memcpy(ni
->name
, na
->name
, i
);
149 typedef int (*set_t
)(struct inode
*, void *);
150 static int ntfs_read_locked_inode(struct inode
*vi
);
151 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
);
152 static int ntfs_read_locked_index_inode(struct inode
*base_vi
,
156 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
157 * @sb: super block of mounted volume
158 * @mft_no: mft record number / inode number to obtain
160 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
161 * file or directory).
163 * If the inode is in the cache, it is just returned with an increased
164 * reference count. Otherwise, a new struct inode is allocated and initialized,
165 * and finally ntfs_read_locked_inode() is called to read in the inode and
166 * fill in the remainder of the inode structure.
168 * Return the struct inode on success. Check the return value with IS_ERR() and
169 * if true, the function failed and the error code is obtained from PTR_ERR().
171 struct inode
*ntfs_iget(struct super_block
*sb
, unsigned long mft_no
)
182 vi
= iget5_locked(sb
, mft_no
, (test_t
)ntfs_test_inode
,
183 (set_t
)ntfs_init_locked_inode
, &na
);
185 return ERR_PTR(-ENOMEM
);
189 /* If this is a freshly allocated inode, need to read it now. */
190 if (vi
->i_state
& I_NEW
) {
191 err
= ntfs_read_locked_inode(vi
);
192 unlock_new_inode(vi
);
195 * There is no point in keeping bad inodes around if the failure was
196 * due to ENOMEM. We want to be able to retry again later.
198 if (unlikely(err
== -ENOMEM
)) {
206 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
207 * @base_vi: vfs base inode containing the attribute
208 * @type: attribute type
209 * @name: Unicode name of the attribute (NULL if unnamed)
210 * @name_len: length of @name in Unicode characters (0 if unnamed)
212 * Obtain the (fake) struct inode corresponding to the attribute specified by
213 * @type, @name, and @name_len, which is present in the base mft record
214 * specified by the vfs inode @base_vi.
216 * If the attribute inode is in the cache, it is just returned with an
217 * increased reference count. Otherwise, a new struct inode is allocated and
218 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
219 * attribute and fill in the inode structure.
221 * Note, for index allocation attributes, you need to use ntfs_index_iget()
222 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
224 * Return the struct inode of the attribute inode on success. Check the return
225 * value with IS_ERR() and if true, the function failed and the error code is
226 * obtained from PTR_ERR().
228 struct inode
*ntfs_attr_iget(struct inode
*base_vi
, ATTR_TYPE type
,
229 ntfschar
*name
, u32 name_len
)
235 /* Make sure no one calls ntfs_attr_iget() for indices. */
236 BUG_ON(type
== AT_INDEX_ALLOCATION
);
238 na
.mft_no
= base_vi
->i_ino
;
241 na
.name_len
= name_len
;
243 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
244 (set_t
)ntfs_init_locked_inode
, &na
);
246 return ERR_PTR(-ENOMEM
);
250 /* If this is a freshly allocated inode, need to read it now. */
251 if (vi
->i_state
& I_NEW
) {
252 err
= ntfs_read_locked_attr_inode(base_vi
, vi
);
253 unlock_new_inode(vi
);
256 * There is no point in keeping bad attribute inodes around. This also
257 * simplifies things in that we never need to check for bad attribute
268 * ntfs_index_iget - obtain a struct inode corresponding to an index
269 * @base_vi: vfs base inode containing the index related attributes
270 * @name: Unicode name of the index
271 * @name_len: length of @name in Unicode characters
273 * Obtain the (fake) struct inode corresponding to the index specified by @name
274 * and @name_len, which is present in the base mft record specified by the vfs
277 * If the index inode is in the cache, it is just returned with an increased
278 * reference count. Otherwise, a new struct inode is allocated and
279 * initialized, and finally ntfs_read_locked_index_inode() is called to read
280 * the index related attributes and fill in the inode structure.
282 * Return the struct inode of the index inode on success. Check the return
283 * value with IS_ERR() and if true, the function failed and the error code is
284 * obtained from PTR_ERR().
286 struct inode
*ntfs_index_iget(struct inode
*base_vi
, ntfschar
*name
,
293 na
.mft_no
= base_vi
->i_ino
;
294 na
.type
= AT_INDEX_ALLOCATION
;
296 na
.name_len
= name_len
;
298 vi
= iget5_locked(base_vi
->i_sb
, na
.mft_no
, (test_t
)ntfs_test_inode
,
299 (set_t
)ntfs_init_locked_inode
, &na
);
301 return ERR_PTR(-ENOMEM
);
305 /* If this is a freshly allocated inode, need to read it now. */
306 if (vi
->i_state
& I_NEW
) {
307 err
= ntfs_read_locked_index_inode(base_vi
, vi
);
308 unlock_new_inode(vi
);
311 * There is no point in keeping bad index inodes around. This also
312 * simplifies things in that we never need to check for bad index
322 struct inode
*ntfs_alloc_big_inode(struct super_block
*sb
)
326 ntfs_debug("Entering.");
327 ni
= kmem_cache_alloc(ntfs_big_inode_cache
, GFP_NOFS
);
328 if (likely(ni
!= NULL
)) {
332 ntfs_error(sb
, "Allocation of NTFS big inode structure failed.");
336 void ntfs_destroy_big_inode(struct inode
*inode
)
338 ntfs_inode
*ni
= NTFS_I(inode
);
340 ntfs_debug("Entering.");
342 if (!atomic_dec_and_test(&ni
->count
))
344 kmem_cache_free(ntfs_big_inode_cache
, NTFS_I(inode
));
347 static inline ntfs_inode
*ntfs_alloc_extent_inode(void)
351 ntfs_debug("Entering.");
352 ni
= kmem_cache_alloc(ntfs_inode_cache
, GFP_NOFS
);
353 if (likely(ni
!= NULL
)) {
357 ntfs_error(NULL
, "Allocation of NTFS inode structure failed.");
361 static void ntfs_destroy_extent_inode(ntfs_inode
*ni
)
363 ntfs_debug("Entering.");
365 if (!atomic_dec_and_test(&ni
->count
))
367 kmem_cache_free(ntfs_inode_cache
, ni
);
371 * The attribute runlist lock has separate locking rules from the
372 * normal runlist lock, so split the two lock-classes:
374 static struct lock_class_key attr_list_rl_lock_class
;
377 * __ntfs_init_inode - initialize ntfs specific part of an inode
378 * @sb: super block of mounted volume
379 * @ni: freshly allocated ntfs inode which to initialize
381 * Initialize an ntfs inode to defaults.
383 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
384 * untouched. Make sure to initialize them elsewhere.
386 * Return zero on success and -ENOMEM on error.
388 void __ntfs_init_inode(struct super_block
*sb
, ntfs_inode
*ni
)
390 ntfs_debug("Entering.");
391 rwlock_init(&ni
->size_lock
);
392 ni
->initialized_size
= ni
->allocated_size
= 0;
394 atomic_set(&ni
->count
, 1);
395 ni
->vol
= NTFS_SB(sb
);
396 ntfs_init_runlist(&ni
->runlist
);
397 mutex_init(&ni
->mrec_lock
);
400 ni
->attr_list_size
= 0;
401 ni
->attr_list
= NULL
;
402 ntfs_init_runlist(&ni
->attr_list_rl
);
403 lockdep_set_class(&ni
->attr_list_rl
.lock
,
404 &attr_list_rl_lock_class
);
405 ni
->itype
.index
.block_size
= 0;
406 ni
->itype
.index
.vcn_size
= 0;
407 ni
->itype
.index
.collation_rule
= 0;
408 ni
->itype
.index
.block_size_bits
= 0;
409 ni
->itype
.index
.vcn_size_bits
= 0;
410 mutex_init(&ni
->extent_lock
);
412 ni
->ext
.base_ntfs_ino
= NULL
;
416 * Extent inodes get MFT-mapped in a nested way, while the base inode
417 * is still mapped. Teach this nesting to the lock validator by creating
418 * a separate class for nested inode's mrec_lock's:
420 static struct lock_class_key extent_inode_mrec_lock_key
;
422 inline ntfs_inode
*ntfs_new_extent_inode(struct super_block
*sb
,
423 unsigned long mft_no
)
425 ntfs_inode
*ni
= ntfs_alloc_extent_inode();
427 ntfs_debug("Entering.");
428 if (likely(ni
!= NULL
)) {
429 __ntfs_init_inode(sb
, ni
);
430 lockdep_set_class(&ni
->mrec_lock
, &extent_inode_mrec_lock_key
);
432 ni
->type
= AT_UNUSED
;
440 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
441 * @ctx: initialized attribute search context
443 * Search all file name attributes in the inode described by the attribute
444 * search context @ctx and check if any of the names are in the $Extend system
448 * 1: file is in $Extend directory
449 * 0: file is not in $Extend directory
450 * -errno: failed to determine if the file is in the $Extend directory
452 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx
*ctx
)
456 /* Restart search. */
457 ntfs_attr_reinit_search_ctx(ctx
);
459 /* Get number of hard links. */
460 nr_links
= le16_to_cpu(ctx
->mrec
->link_count
);
462 /* Loop through all hard links. */
463 while (!(err
= ntfs_attr_lookup(AT_FILE_NAME
, NULL
, 0, 0, 0, NULL
, 0,
465 FILE_NAME_ATTR
*file_name_attr
;
466 ATTR_RECORD
*attr
= ctx
->attr
;
471 * Maximum sanity checking as we are called on an inode that
472 * we suspect might be corrupt.
474 p
= (u8
*)attr
+ le32_to_cpu(attr
->length
);
475 if (p
< (u8
*)ctx
->mrec
|| (u8
*)p
> (u8
*)ctx
->mrec
+
476 le32_to_cpu(ctx
->mrec
->bytes_in_use
)) {
478 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Corrupt file name "
479 "attribute. You should run chkdsk.");
482 if (attr
->non_resident
) {
483 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Non-resident file "
484 "name. You should run chkdsk.");
488 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "File name with "
489 "invalid flags. You should run "
493 if (!(attr
->data
.resident
.flags
& RESIDENT_ATTR_IS_INDEXED
)) {
494 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Unindexed file "
495 "name. You should run chkdsk.");
498 file_name_attr
= (FILE_NAME_ATTR
*)((u8
*)attr
+
499 le16_to_cpu(attr
->data
.resident
.value_offset
));
500 p2
= (u8
*)attr
+ le32_to_cpu(attr
->data
.resident
.value_length
);
501 if (p2
< (u8
*)attr
|| p2
> p
)
502 goto err_corrupt_attr
;
503 /* This attribute is ok, but is it in the $Extend directory? */
504 if (MREF_LE(file_name_attr
->parent_directory
) == FILE_Extend
)
505 return 1; /* YES, it's an extended system file. */
507 if (unlikely(err
!= -ENOENT
))
509 if (unlikely(nr_links
)) {
510 ntfs_error(ctx
->ntfs_ino
->vol
->sb
, "Inode hard link count "
511 "doesn't match number of name attributes. You "
512 "should run chkdsk.");
515 return 0; /* NO, it is not an extended system file. */
519 * ntfs_read_locked_inode - read an inode from its device
522 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
523 * described by @vi into memory from the device.
525 * The only fields in @vi that we need to/can look at when the function is
526 * called are i_sb, pointing to the mounted device's super block, and i_ino,
527 * the number of the inode to load.
529 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
530 * for reading and sets up the necessary @vi fields as well as initializing
533 * Q: What locks are held when the function is called?
534 * A: i_state has I_LOCK set, hence the inode is locked, also
535 * i_count is set to 1, so it is not going to go away
536 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
537 * is allowed to write to them. We should of course be honouring them but
538 * we need to do that using the IS_* macros defined in include/linux/fs.h.
539 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
541 * Return 0 on success and -errno on error. In the error case, the inode will
542 * have had make_bad_inode() executed on it.
544 static int ntfs_read_locked_inode(struct inode
*vi
)
546 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
551 STANDARD_INFORMATION
*si
;
552 ntfs_attr_search_ctx
*ctx
;
555 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
557 /* Setup the generic vfs inode parts now. */
560 * This is for checking whether an inode has changed w.r.t. a file so
561 * that the file can be updated if necessary (compare with f_version).
565 vi
->i_uid
= vol
->uid
;
566 vi
->i_gid
= vol
->gid
;
570 * Initialize the ntfs specific part of @vi special casing
571 * FILE_MFT which we need to do at mount time.
573 if (vi
->i_ino
!= FILE_MFT
)
574 ntfs_init_big_inode(vi
);
577 m
= map_mft_record(ni
);
582 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
588 if (!(m
->flags
& MFT_RECORD_IN_USE
)) {
589 ntfs_error(vi
->i_sb
, "Inode is not in use!");
592 if (m
->base_mft_record
) {
593 ntfs_error(vi
->i_sb
, "Inode is an extent inode!");
597 /* Transfer information from mft record into vfs and ntfs inodes. */
598 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
601 * FIXME: Keep in mind that link_count is two for files which have both
602 * a long file name and a short file name as separate entries, so if
603 * we are hiding short file names this will be too high. Either we need
604 * to account for the short file names by subtracting them or we need
605 * to make sure we delete files even though i_nlink is not zero which
606 * might be tricky due to vfs interactions. Need to think about this
607 * some more when implementing the unlink command.
609 vi
->i_nlink
= le16_to_cpu(m
->link_count
);
611 * FIXME: Reparse points can have the directory bit set even though
612 * they would be S_IFLNK. Need to deal with this further below when we
613 * implement reparse points / symbolic links but it will do for now.
614 * Also if not a directory, it could be something else, rather than
615 * a regular file. But again, will do for now.
617 /* Everyone gets all permissions. */
618 vi
->i_mode
|= S_IRWXUGO
;
619 /* If read-only, noone gets write permissions. */
621 vi
->i_mode
&= ~S_IWUGO
;
622 if (m
->flags
& MFT_RECORD_IS_DIRECTORY
) {
623 vi
->i_mode
|= S_IFDIR
;
625 * Apply the directory permissions mask set in the mount
628 vi
->i_mode
&= ~vol
->dmask
;
629 /* Things break without this kludge! */
633 vi
->i_mode
|= S_IFREG
;
634 /* Apply the file permissions mask set in the mount options. */
635 vi
->i_mode
&= ~vol
->fmask
;
638 * Find the standard information attribute in the mft record. At this
639 * stage we haven't setup the attribute list stuff yet, so this could
640 * in fact fail if the standard information is in an extent record, but
641 * I don't think this actually ever happens.
643 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
646 if (err
== -ENOENT
) {
648 * TODO: We should be performing a hot fix here (if the
649 * recover mount option is set) by creating a new
652 ntfs_error(vi
->i_sb
, "$STANDARD_INFORMATION attribute "
658 /* Get the standard information attribute value. */
659 si
= (STANDARD_INFORMATION
*)((u8
*)a
+
660 le16_to_cpu(a
->data
.resident
.value_offset
));
662 /* Transfer information from the standard information into vi. */
664 * Note: The i_?times do not quite map perfectly onto the NTFS times,
665 * but they are close enough, and in the end it doesn't really matter
669 * mtime is the last change of the data within the file. Not changed
670 * when only metadata is changed, e.g. a rename doesn't affect mtime.
672 vi
->i_mtime
= ntfs2utc(si
->last_data_change_time
);
674 * ctime is the last change of the metadata of the file. This obviously
675 * always changes, when mtime is changed. ctime can be changed on its
676 * own, mtime is then not changed, e.g. when a file is renamed.
678 vi
->i_ctime
= ntfs2utc(si
->last_mft_change_time
);
680 * Last access to the data within the file. Not changed during a rename
681 * for example but changed whenever the file is written to.
683 vi
->i_atime
= ntfs2utc(si
->last_access_time
);
685 /* Find the attribute list attribute if present. */
686 ntfs_attr_reinit_search_ctx(ctx
);
687 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
689 if (unlikely(err
!= -ENOENT
)) {
690 ntfs_error(vi
->i_sb
, "Failed to lookup attribute list "
694 } else /* if (!err) */ {
695 if (vi
->i_ino
== FILE_MFT
)
696 goto skip_attr_list_load
;
697 ntfs_debug("Attribute list found in inode 0x%lx.", vi
->i_ino
);
700 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
701 ntfs_error(vi
->i_sb
, "Attribute list attribute is "
705 if (a
->flags
& ATTR_IS_ENCRYPTED
||
706 a
->flags
& ATTR_IS_SPARSE
) {
707 if (a
->non_resident
) {
708 ntfs_error(vi
->i_sb
, "Non-resident attribute "
709 "list attribute is encrypted/"
713 ntfs_warning(vi
->i_sb
, "Resident attribute list "
714 "attribute in inode 0x%lx is marked "
715 "encrypted/sparse which is not true. "
716 "However, Windows allows this and "
717 "chkdsk does not detect or correct it "
718 "so we will just ignore the invalid "
719 "flags and pretend they are not set.",
722 /* Now allocate memory for the attribute list. */
723 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
724 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
725 if (!ni
->attr_list
) {
726 ntfs_error(vi
->i_sb
, "Not enough memory to allocate "
727 "buffer for attribute list.");
731 if (a
->non_resident
) {
732 NInoSetAttrListNonResident(ni
);
733 if (a
->data
.non_resident
.lowest_vcn
) {
734 ntfs_error(vi
->i_sb
, "Attribute list has non "
739 * Setup the runlist. No need for locking as we have
740 * exclusive access to the inode at this time.
742 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
744 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
745 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
746 ni
->attr_list_rl
.rl
= NULL
;
747 ntfs_error(vi
->i_sb
, "Mapping pairs "
748 "decompression failed.");
751 /* Now load the attribute list. */
752 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
753 ni
->attr_list
, ni
->attr_list_size
,
754 sle64_to_cpu(a
->data
.non_resident
.
755 initialized_size
)))) {
756 ntfs_error(vi
->i_sb
, "Failed to load "
757 "attribute list attribute.");
760 } else /* if (!a->non_resident) */ {
761 if ((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
)
763 a
->data
.resident
.value_length
) >
764 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
765 ntfs_error(vi
->i_sb
, "Corrupt attribute list "
769 /* Now copy the attribute list. */
770 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
771 a
->data
.resident
.value_offset
),
773 a
->data
.resident
.value_length
));
778 * If an attribute list is present we now have the attribute list value
779 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
781 if (S_ISDIR(vi
->i_mode
)) {
785 u8
*ir_end
, *index_end
;
787 /* It is a directory, find index root attribute. */
788 ntfs_attr_reinit_search_ctx(ctx
);
789 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, I30
, 4, CASE_SENSITIVE
,
792 if (err
== -ENOENT
) {
793 // FIXME: File is corrupt! Hot-fix with empty
794 // index root attribute if recovery option is
796 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute "
802 /* Set up the state. */
803 if (unlikely(a
->non_resident
)) {
804 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not "
808 /* Ensure the attribute name is placed before the value. */
809 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
810 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
811 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is "
812 "placed after the attribute value.");
816 * Compressed/encrypted index root just means that the newly
817 * created files in that directory should be created compressed/
818 * encrypted. However index root cannot be both compressed and
821 if (a
->flags
& ATTR_COMPRESSION_MASK
)
822 NInoSetCompressed(ni
);
823 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
824 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
825 ntfs_error(vi
->i_sb
, "Found encrypted and "
826 "compressed attribute.");
829 NInoSetEncrypted(ni
);
831 if (a
->flags
& ATTR_IS_SPARSE
)
833 ir
= (INDEX_ROOT
*)((u8
*)a
+
834 le16_to_cpu(a
->data
.resident
.value_offset
));
835 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
836 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
837 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
841 index_end
= (u8
*)&ir
->index
+
842 le32_to_cpu(ir
->index
.index_length
);
843 if (index_end
> ir_end
) {
844 ntfs_error(vi
->i_sb
, "Directory index is corrupt.");
847 if (ir
->type
!= AT_FILE_NAME
) {
848 ntfs_error(vi
->i_sb
, "Indexed attribute is not "
852 if (ir
->collation_rule
!= COLLATION_FILE_NAME
) {
853 ntfs_error(vi
->i_sb
, "Index collation rule is not "
854 "COLLATION_FILE_NAME.");
857 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
858 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
859 if (ni
->itype
.index
.block_size
&
860 (ni
->itype
.index
.block_size
- 1)) {
861 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a "
863 ni
->itype
.index
.block_size
);
866 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
867 ntfs_error(vi
->i_sb
, "Index block size (%u) > "
868 "PAGE_CACHE_SIZE (%ld) is not "
870 ni
->itype
.index
.block_size
,
875 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
876 ntfs_error(vi
->i_sb
, "Index block size (%u) < "
877 "NTFS_BLOCK_SIZE (%i) is not "
879 ni
->itype
.index
.block_size
,
884 ni
->itype
.index
.block_size_bits
=
885 ffs(ni
->itype
.index
.block_size
) - 1;
886 /* Determine the size of a vcn in the directory index. */
887 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
888 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
889 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
891 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
892 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
895 /* Setup the index allocation attribute, even if not present. */
896 NInoSetMstProtected(ni
);
897 ni
->type
= AT_INDEX_ALLOCATION
;
901 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
902 /* No index allocation. */
903 vi
->i_size
= ni
->initialized_size
=
904 ni
->allocated_size
= 0;
905 /* We are done with the mft record, so we release it. */
906 ntfs_attr_put_search_ctx(ctx
);
907 unmap_mft_record(ni
);
910 goto skip_large_dir_stuff
;
911 } /* LARGE_INDEX: Index allocation present. Setup state. */
912 NInoSetIndexAllocPresent(ni
);
913 /* Find index allocation attribute. */
914 ntfs_attr_reinit_search_ctx(ctx
);
915 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, I30
, 4,
916 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
919 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION "
920 "attribute is not present but "
921 "$INDEX_ROOT indicated it is.");
923 ntfs_error(vi
->i_sb
, "Failed to lookup "
929 if (!a
->non_resident
) {
930 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
935 * Ensure the attribute name is placed before the mapping pairs
938 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
940 a
->data
.non_resident
.mapping_pairs_offset
)))) {
941 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name "
942 "is placed after the mapping pairs "
946 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
947 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
951 if (a
->flags
& ATTR_IS_SPARSE
) {
952 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
956 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
957 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute "
961 if (a
->data
.non_resident
.lowest_vcn
) {
962 ntfs_error(vi
->i_sb
, "First extent of "
963 "$INDEX_ALLOCATION attribute has non "
967 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
968 ni
->initialized_size
= sle64_to_cpu(
969 a
->data
.non_resident
.initialized_size
);
970 ni
->allocated_size
= sle64_to_cpu(
971 a
->data
.non_resident
.allocated_size
);
973 * We are done with the mft record, so we release it. Otherwise
974 * we would deadlock in ntfs_attr_iget().
976 ntfs_attr_put_search_ctx(ctx
);
977 unmap_mft_record(ni
);
980 /* Get the index bitmap attribute inode. */
981 bvi
= ntfs_attr_iget(vi
, AT_BITMAP
, I30
, 4);
983 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
988 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
990 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed "
991 "and/or encrypted and/or sparse.");
992 goto iput_unm_err_out
;
994 /* Consistency check bitmap size vs. index allocation size. */
995 bvi_size
= i_size_read(bvi
);
996 if ((bvi_size
<< 3) < (vi
->i_size
>>
997 ni
->itype
.index
.block_size_bits
)) {
998 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) "
999 "for index allocation (0x%llx).",
1000 bvi_size
<< 3, vi
->i_size
);
1001 goto iput_unm_err_out
;
1003 /* No longer need the bitmap attribute inode. */
1005 skip_large_dir_stuff
:
1006 /* Setup the operations for this inode. */
1007 vi
->i_op
= &ntfs_dir_inode_ops
;
1008 vi
->i_fop
= &ntfs_dir_ops
;
1011 ntfs_attr_reinit_search_ctx(ctx
);
1013 /* Setup the data attribute, even if not present. */
1018 /* Find first extent of the unnamed data attribute. */
1019 err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1020 if (unlikely(err
)) {
1021 vi
->i_size
= ni
->initialized_size
=
1022 ni
->allocated_size
= 0;
1023 if (err
!= -ENOENT
) {
1024 ntfs_error(vi
->i_sb
, "Failed to lookup $DATA "
1029 * FILE_Secure does not have an unnamed $DATA
1030 * attribute, so we special case it here.
1032 if (vi
->i_ino
== FILE_Secure
)
1033 goto no_data_attr_special_case
;
1035 * Most if not all the system files in the $Extend
1036 * system directory do not have unnamed data
1037 * attributes so we need to check if the parent
1038 * directory of the file is FILE_Extend and if it is
1039 * ignore this error. To do this we need to get the
1040 * name of this inode from the mft record as the name
1041 * contains the back reference to the parent directory.
1043 if (ntfs_is_extended_system_file(ctx
) > 0)
1044 goto no_data_attr_special_case
;
1045 // FIXME: File is corrupt! Hot-fix with empty data
1046 // attribute if recovery option is set.
1047 ntfs_error(vi
->i_sb
, "$DATA attribute is missing.");
1051 /* Setup the state. */
1052 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1053 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1054 NInoSetCompressed(ni
);
1055 if (vol
->cluster_size
> 4096) {
1056 ntfs_error(vi
->i_sb
, "Found "
1057 "compressed data but "
1060 "cluster size (%i) > "
1065 if ((a
->flags
& ATTR_COMPRESSION_MASK
)
1066 != ATTR_IS_COMPRESSED
) {
1067 ntfs_error(vi
->i_sb
, "Found unknown "
1068 "compression method "
1069 "or corrupt file.");
1073 if (a
->flags
& ATTR_IS_SPARSE
)
1076 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1077 if (NInoCompressed(ni
)) {
1078 ntfs_error(vi
->i_sb
, "Found encrypted and "
1079 "compressed data.");
1082 NInoSetEncrypted(ni
);
1084 if (a
->non_resident
) {
1085 NInoSetNonResident(ni
);
1086 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1087 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1088 compression_unit
!= 4) {
1089 ntfs_error(vi
->i_sb
, "Found "
1091 "compression unit (%u "
1093 "Cannot handle this.",
1094 a
->data
.non_resident
.
1099 if (a
->data
.non_resident
.compression_unit
) {
1100 ni
->itype
.compressed
.block_size
= 1U <<
1101 (a
->data
.non_resident
.
1103 vol
->cluster_size_bits
);
1104 ni
->itype
.compressed
.block_size_bits
=
1108 ni
->itype
.compressed
.block_clusters
=
1113 ni
->itype
.compressed
.block_size
= 0;
1114 ni
->itype
.compressed
.block_size_bits
=
1116 ni
->itype
.compressed
.block_clusters
=
1119 ni
->itype
.compressed
.size
= sle64_to_cpu(
1120 a
->data
.non_resident
.
1123 if (a
->data
.non_resident
.lowest_vcn
) {
1124 ntfs_error(vi
->i_sb
, "First extent of $DATA "
1125 "attribute has non zero "
1129 vi
->i_size
= sle64_to_cpu(
1130 a
->data
.non_resident
.data_size
);
1131 ni
->initialized_size
= sle64_to_cpu(
1132 a
->data
.non_resident
.initialized_size
);
1133 ni
->allocated_size
= sle64_to_cpu(
1134 a
->data
.non_resident
.allocated_size
);
1135 } else { /* Resident attribute. */
1136 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1137 a
->data
.resident
.value_length
);
1138 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1140 a
->data
.resident
.value_offset
);
1141 if (vi
->i_size
> ni
->allocated_size
) {
1142 ntfs_error(vi
->i_sb
, "Resident data attribute "
1143 "is corrupt (size exceeds "
1148 no_data_attr_special_case
:
1149 /* We are done with the mft record, so we release it. */
1150 ntfs_attr_put_search_ctx(ctx
);
1151 unmap_mft_record(ni
);
1154 /* Setup the operations for this inode. */
1155 vi
->i_op
= &ntfs_file_inode_ops
;
1156 vi
->i_fop
= &ntfs_file_ops
;
1158 if (NInoMstProtected(ni
))
1159 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1161 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1163 * The number of 512-byte blocks used on disk (for stat). This is in so
1164 * far inaccurate as it doesn't account for any named streams or other
1165 * special non-resident attributes, but that is how Windows works, too,
1166 * so we are at least consistent with Windows, if not entirely
1167 * consistent with the Linux Way. Doing it the Linux Way would cause a
1168 * significant slowdown as it would involve iterating over all
1169 * attributes in the mft record and adding the allocated/compressed
1170 * sizes of all non-resident attributes present to give us the Linux
1171 * correct size that should go into i_blocks (after division by 512).
1173 if (S_ISREG(vi
->i_mode
) && (NInoCompressed(ni
) || NInoSparse(ni
)))
1174 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1176 vi
->i_blocks
= ni
->allocated_size
>> 9;
1177 ntfs_debug("Done.");
1185 ntfs_attr_put_search_ctx(ctx
);
1187 unmap_mft_record(ni
);
1189 ntfs_error(vol
->sb
, "Failed with error code %i. Marking corrupt "
1190 "inode 0x%lx as bad. Run chkdsk.", err
, vi
->i_ino
);
1192 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1198 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1199 * @base_vi: base inode
1200 * @vi: attribute inode to read
1202 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1203 * attribute inode described by @vi into memory from the base mft record
1204 * described by @base_ni.
1206 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1207 * reading and looks up the attribute described by @vi before setting up the
1208 * necessary fields in @vi as well as initializing the ntfs inode.
1210 * Q: What locks are held when the function is called?
1211 * A: i_state has I_LOCK set, hence the inode is locked, also
1212 * i_count is set to 1, so it is not going to go away
1214 * Return 0 on success and -errno on error. In the error case, the inode will
1215 * have had make_bad_inode() executed on it.
1217 * Note this cannot be called for AT_INDEX_ALLOCATION.
1219 static int ntfs_read_locked_attr_inode(struct inode
*base_vi
, struct inode
*vi
)
1221 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1222 ntfs_inode
*ni
, *base_ni
;
1225 ntfs_attr_search_ctx
*ctx
;
1228 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1230 ntfs_init_big_inode(vi
);
1233 base_ni
= NTFS_I(base_vi
);
1235 /* Just mirror the values from the base inode. */
1236 vi
->i_version
= base_vi
->i_version
;
1237 vi
->i_uid
= base_vi
->i_uid
;
1238 vi
->i_gid
= base_vi
->i_gid
;
1239 vi
->i_nlink
= base_vi
->i_nlink
;
1240 vi
->i_mtime
= base_vi
->i_mtime
;
1241 vi
->i_ctime
= base_vi
->i_ctime
;
1242 vi
->i_atime
= base_vi
->i_atime
;
1243 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1245 /* Set inode type to zero but preserve permissions. */
1246 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1248 m
= map_mft_record(base_ni
);
1253 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1258 /* Find the attribute. */
1259 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1260 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1264 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_SPARSE
)) {
1265 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1266 NInoSetCompressed(ni
);
1267 if ((ni
->type
!= AT_DATA
) || (ni
->type
== AT_DATA
&&
1269 ntfs_error(vi
->i_sb
, "Found compressed "
1270 "non-data or named data "
1271 "attribute. Please report "
1272 "you saw this message to "
1273 "linux-ntfs-dev@lists."
1277 if (vol
->cluster_size
> 4096) {
1278 ntfs_error(vi
->i_sb
, "Found compressed "
1279 "attribute but compression is "
1280 "disabled due to cluster size "
1285 if ((a
->flags
& ATTR_COMPRESSION_MASK
) !=
1286 ATTR_IS_COMPRESSED
) {
1287 ntfs_error(vi
->i_sb
, "Found unknown "
1288 "compression method.");
1293 * The compressed/sparse flag set in an index root just means
1294 * to compress all files.
1296 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1297 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1298 "but the attribute is %s. Please "
1299 "report you saw this message to "
1300 "linux-ntfs-dev@lists.sourceforge.net",
1301 NInoCompressed(ni
) ? "compressed" :
1305 if (a
->flags
& ATTR_IS_SPARSE
)
1308 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1309 if (NInoCompressed(ni
)) {
1310 ntfs_error(vi
->i_sb
, "Found encrypted and compressed "
1315 * The encryption flag set in an index root just means to
1316 * encrypt all files.
1318 if (NInoMstProtected(ni
) && ni
->type
!= AT_INDEX_ROOT
) {
1319 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1320 "but the attribute is encrypted. "
1321 "Please report you saw this message "
1322 "to linux-ntfs-dev@lists.sourceforge."
1326 if (ni
->type
!= AT_DATA
) {
1327 ntfs_error(vi
->i_sb
, "Found encrypted non-data "
1331 NInoSetEncrypted(ni
);
1333 if (!a
->non_resident
) {
1334 /* Ensure the attribute name is placed before the value. */
1335 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1336 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1337 ntfs_error(vol
->sb
, "Attribute name is placed after "
1338 "the attribute value.");
1341 if (NInoMstProtected(ni
)) {
1342 ntfs_error(vi
->i_sb
, "Found mst protected attribute "
1343 "but the attribute is resident. "
1344 "Please report you saw this message to "
1345 "linux-ntfs-dev@lists.sourceforge.net");
1348 vi
->i_size
= ni
->initialized_size
= le32_to_cpu(
1349 a
->data
.resident
.value_length
);
1350 ni
->allocated_size
= le32_to_cpu(a
->length
) -
1351 le16_to_cpu(a
->data
.resident
.value_offset
);
1352 if (vi
->i_size
> ni
->allocated_size
) {
1353 ntfs_error(vi
->i_sb
, "Resident attribute is corrupt "
1354 "(size exceeds allocation).");
1358 NInoSetNonResident(ni
);
1360 * Ensure the attribute name is placed before the mapping pairs
1363 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1365 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1366 ntfs_error(vol
->sb
, "Attribute name is placed after "
1367 "the mapping pairs array.");
1370 if (NInoCompressed(ni
) || NInoSparse(ni
)) {
1371 if (NInoCompressed(ni
) && a
->data
.non_resident
.
1372 compression_unit
!= 4) {
1373 ntfs_error(vi
->i_sb
, "Found non-standard "
1374 "compression unit (%u instead "
1375 "of 4). Cannot handle this.",
1376 a
->data
.non_resident
.
1381 if (a
->data
.non_resident
.compression_unit
) {
1382 ni
->itype
.compressed
.block_size
= 1U <<
1383 (a
->data
.non_resident
.
1385 vol
->cluster_size_bits
);
1386 ni
->itype
.compressed
.block_size_bits
=
1387 ffs(ni
->itype
.compressed
.
1389 ni
->itype
.compressed
.block_clusters
= 1U <<
1390 a
->data
.non_resident
.
1393 ni
->itype
.compressed
.block_size
= 0;
1394 ni
->itype
.compressed
.block_size_bits
= 0;
1395 ni
->itype
.compressed
.block_clusters
= 0;
1397 ni
->itype
.compressed
.size
= sle64_to_cpu(
1398 a
->data
.non_resident
.compressed_size
);
1400 if (a
->data
.non_resident
.lowest_vcn
) {
1401 ntfs_error(vi
->i_sb
, "First extent of attribute has "
1402 "non-zero lowest_vcn.");
1405 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1406 ni
->initialized_size
= sle64_to_cpu(
1407 a
->data
.non_resident
.initialized_size
);
1408 ni
->allocated_size
= sle64_to_cpu(
1409 a
->data
.non_resident
.allocated_size
);
1411 /* Setup the operations for this attribute inode. */
1414 if (NInoMstProtected(ni
))
1415 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1417 vi
->i_mapping
->a_ops
= &ntfs_aops
;
1418 if ((NInoCompressed(ni
) || NInoSparse(ni
)) && ni
->type
!= AT_INDEX_ROOT
)
1419 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
1421 vi
->i_blocks
= ni
->allocated_size
>> 9;
1423 * Make sure the base inode does not go away and attach it to the
1427 ni
->ext
.base_ntfs_ino
= base_ni
;
1428 ni
->nr_extents
= -1;
1430 ntfs_attr_put_search_ctx(ctx
);
1431 unmap_mft_record(base_ni
);
1433 ntfs_debug("Done.");
1440 ntfs_attr_put_search_ctx(ctx
);
1441 unmap_mft_record(base_ni
);
1443 ntfs_error(vol
->sb
, "Failed with error code %i while reading attribute "
1444 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1445 "Marking corrupt inode and base inode 0x%lx as bad. "
1446 "Run chkdsk.", err
, vi
->i_ino
, ni
->type
, ni
->name_len
,
1455 * ntfs_read_locked_index_inode - read an index inode from its base inode
1456 * @base_vi: base inode
1457 * @vi: index inode to read
1459 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1460 * index inode described by @vi into memory from the base mft record described
1463 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1464 * reading and looks up the attributes relating to the index described by @vi
1465 * before setting up the necessary fields in @vi as well as initializing the
1468 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1469 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1470 * are setup like directory inodes since directories are a special case of
1471 * indices ao they need to be treated in much the same way. Most importantly,
1472 * for small indices the index allocation attribute might not actually exist.
1473 * However, the index root attribute always exists but this does not need to
1474 * have an inode associated with it and this is why we define a new inode type
1475 * index. Also, like for directories, we need to have an attribute inode for
1476 * the bitmap attribute corresponding to the index allocation attribute and we
1477 * can store this in the appropriate field of the inode, just like we do for
1478 * normal directory inodes.
1480 * Q: What locks are held when the function is called?
1481 * A: i_state has I_LOCK set, hence the inode is locked, also
1482 * i_count is set to 1, so it is not going to go away
1484 * Return 0 on success and -errno on error. In the error case, the inode will
1485 * have had make_bad_inode() executed on it.
1487 static int ntfs_read_locked_index_inode(struct inode
*base_vi
, struct inode
*vi
)
1490 ntfs_volume
*vol
= NTFS_SB(vi
->i_sb
);
1491 ntfs_inode
*ni
, *base_ni
, *bni
;
1495 ntfs_attr_search_ctx
*ctx
;
1497 u8
*ir_end
, *index_end
;
1500 ntfs_debug("Entering for i_ino 0x%lx.", vi
->i_ino
);
1501 ntfs_init_big_inode(vi
);
1503 base_ni
= NTFS_I(base_vi
);
1504 /* Just mirror the values from the base inode. */
1505 vi
->i_version
= base_vi
->i_version
;
1506 vi
->i_uid
= base_vi
->i_uid
;
1507 vi
->i_gid
= base_vi
->i_gid
;
1508 vi
->i_nlink
= base_vi
->i_nlink
;
1509 vi
->i_mtime
= base_vi
->i_mtime
;
1510 vi
->i_ctime
= base_vi
->i_ctime
;
1511 vi
->i_atime
= base_vi
->i_atime
;
1512 vi
->i_generation
= ni
->seq_no
= base_ni
->seq_no
;
1513 /* Set inode type to zero but preserve permissions. */
1514 vi
->i_mode
= base_vi
->i_mode
& ~S_IFMT
;
1515 /* Map the mft record for the base inode. */
1516 m
= map_mft_record(base_ni
);
1521 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1526 /* Find the index root attribute. */
1527 err
= ntfs_attr_lookup(AT_INDEX_ROOT
, ni
->name
, ni
->name_len
,
1528 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1529 if (unlikely(err
)) {
1531 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is "
1536 /* Set up the state. */
1537 if (unlikely(a
->non_resident
)) {
1538 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute is not resident.");
1541 /* Ensure the attribute name is placed before the value. */
1542 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1543 le16_to_cpu(a
->data
.resident
.value_offset
)))) {
1544 ntfs_error(vol
->sb
, "$INDEX_ROOT attribute name is placed "
1545 "after the attribute value.");
1549 * Compressed/encrypted/sparse index root is not allowed, except for
1550 * directories of course but those are not dealt with here.
1552 if (a
->flags
& (ATTR_COMPRESSION_MASK
| ATTR_IS_ENCRYPTED
|
1554 ntfs_error(vi
->i_sb
, "Found compressed/encrypted/sparse index "
1558 ir
= (INDEX_ROOT
*)((u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
));
1559 ir_end
= (u8
*)ir
+ le32_to_cpu(a
->data
.resident
.value_length
);
1560 if (ir_end
> (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1561 ntfs_error(vi
->i_sb
, "$INDEX_ROOT attribute is corrupt.");
1564 index_end
= (u8
*)&ir
->index
+ le32_to_cpu(ir
->index
.index_length
);
1565 if (index_end
> ir_end
) {
1566 ntfs_error(vi
->i_sb
, "Index is corrupt.");
1570 ntfs_error(vi
->i_sb
, "Index type is not 0 (type is 0x%x).",
1571 le32_to_cpu(ir
->type
));
1574 ni
->itype
.index
.collation_rule
= ir
->collation_rule
;
1575 ntfs_debug("Index collation rule is 0x%x.",
1576 le32_to_cpu(ir
->collation_rule
));
1577 ni
->itype
.index
.block_size
= le32_to_cpu(ir
->index_block_size
);
1578 if (ni
->itype
.index
.block_size
& (ni
->itype
.index
.block_size
- 1)) {
1579 ntfs_error(vi
->i_sb
, "Index block size (%u) is not a power of "
1580 "two.", ni
->itype
.index
.block_size
);
1583 if (ni
->itype
.index
.block_size
> PAGE_CACHE_SIZE
) {
1584 ntfs_error(vi
->i_sb
, "Index block size (%u) > PAGE_CACHE_SIZE "
1585 "(%ld) is not supported. Sorry.",
1586 ni
->itype
.index
.block_size
, PAGE_CACHE_SIZE
);
1590 if (ni
->itype
.index
.block_size
< NTFS_BLOCK_SIZE
) {
1591 ntfs_error(vi
->i_sb
, "Index block size (%u) < NTFS_BLOCK_SIZE "
1592 "(%i) is not supported. Sorry.",
1593 ni
->itype
.index
.block_size
, NTFS_BLOCK_SIZE
);
1597 ni
->itype
.index
.block_size_bits
= ffs(ni
->itype
.index
.block_size
) - 1;
1598 /* Determine the size of a vcn in the index. */
1599 if (vol
->cluster_size
<= ni
->itype
.index
.block_size
) {
1600 ni
->itype
.index
.vcn_size
= vol
->cluster_size
;
1601 ni
->itype
.index
.vcn_size_bits
= vol
->cluster_size_bits
;
1603 ni
->itype
.index
.vcn_size
= vol
->sector_size
;
1604 ni
->itype
.index
.vcn_size_bits
= vol
->sector_size_bits
;
1606 /* Check for presence of index allocation attribute. */
1607 if (!(ir
->index
.flags
& LARGE_INDEX
)) {
1608 /* No index allocation. */
1609 vi
->i_size
= ni
->initialized_size
= ni
->allocated_size
= 0;
1610 /* We are done with the mft record, so we release it. */
1611 ntfs_attr_put_search_ctx(ctx
);
1612 unmap_mft_record(base_ni
);
1615 goto skip_large_index_stuff
;
1616 } /* LARGE_INDEX: Index allocation present. Setup state. */
1617 NInoSetIndexAllocPresent(ni
);
1618 /* Find index allocation attribute. */
1619 ntfs_attr_reinit_search_ctx(ctx
);
1620 err
= ntfs_attr_lookup(AT_INDEX_ALLOCATION
, ni
->name
, ni
->name_len
,
1621 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1622 if (unlikely(err
)) {
1624 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1625 "not present but $INDEX_ROOT "
1626 "indicated it is.");
1628 ntfs_error(vi
->i_sb
, "Failed to lookup "
1629 "$INDEX_ALLOCATION attribute.");
1633 if (!a
->non_resident
) {
1634 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1639 * Ensure the attribute name is placed before the mapping pairs array.
1641 if (unlikely(a
->name_length
&& (le16_to_cpu(a
->name_offset
) >=
1643 a
->data
.non_resident
.mapping_pairs_offset
)))) {
1644 ntfs_error(vol
->sb
, "$INDEX_ALLOCATION attribute name is "
1645 "placed after the mapping pairs array.");
1648 if (a
->flags
& ATTR_IS_ENCRYPTED
) {
1649 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1653 if (a
->flags
& ATTR_IS_SPARSE
) {
1654 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is sparse.");
1657 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1658 ntfs_error(vi
->i_sb
, "$INDEX_ALLOCATION attribute is "
1662 if (a
->data
.non_resident
.lowest_vcn
) {
1663 ntfs_error(vi
->i_sb
, "First extent of $INDEX_ALLOCATION "
1664 "attribute has non zero lowest_vcn.");
1667 vi
->i_size
= sle64_to_cpu(a
->data
.non_resident
.data_size
);
1668 ni
->initialized_size
= sle64_to_cpu(
1669 a
->data
.non_resident
.initialized_size
);
1670 ni
->allocated_size
= sle64_to_cpu(a
->data
.non_resident
.allocated_size
);
1672 * We are done with the mft record, so we release it. Otherwise
1673 * we would deadlock in ntfs_attr_iget().
1675 ntfs_attr_put_search_ctx(ctx
);
1676 unmap_mft_record(base_ni
);
1679 /* Get the index bitmap attribute inode. */
1680 bvi
= ntfs_attr_iget(base_vi
, AT_BITMAP
, ni
->name
, ni
->name_len
);
1682 ntfs_error(vi
->i_sb
, "Failed to get bitmap attribute.");
1687 if (NInoCompressed(bni
) || NInoEncrypted(bni
) ||
1689 ntfs_error(vi
->i_sb
, "$BITMAP attribute is compressed and/or "
1690 "encrypted and/or sparse.");
1691 goto iput_unm_err_out
;
1693 /* Consistency check bitmap size vs. index allocation size. */
1694 bvi_size
= i_size_read(bvi
);
1695 if ((bvi_size
<< 3) < (vi
->i_size
>> ni
->itype
.index
.block_size_bits
)) {
1696 ntfs_error(vi
->i_sb
, "Index bitmap too small (0x%llx) for "
1697 "index allocation (0x%llx).", bvi_size
<< 3,
1699 goto iput_unm_err_out
;
1702 skip_large_index_stuff
:
1703 /* Setup the operations for this index inode. */
1706 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1707 vi
->i_blocks
= ni
->allocated_size
>> 9;
1709 * Make sure the base inode doesn't go away and attach it to the
1713 ni
->ext
.base_ntfs_ino
= base_ni
;
1714 ni
->nr_extents
= -1;
1716 ntfs_debug("Done.");
1724 ntfs_attr_put_search_ctx(ctx
);
1726 unmap_mft_record(base_ni
);
1728 ntfs_error(vi
->i_sb
, "Failed with error code %i while reading index "
1729 "inode (mft_no 0x%lx, name_len %i.", err
, vi
->i_ino
,
1732 if (err
!= -EOPNOTSUPP
&& err
!= -ENOMEM
)
1738 * The MFT inode has special locking, so teach the lock validator
1739 * about this by splitting off the locking rules of the MFT from
1740 * the locking rules of other inodes. The MFT inode can never be
1741 * accessed from the VFS side (or even internally), only by the
1742 * map_mft functions.
1744 static struct lock_class_key mft_ni_runlist_lock_key
, mft_ni_mrec_lock_key
;
1747 * ntfs_read_inode_mount - special read_inode for mount time use only
1748 * @vi: inode to read
1750 * Read inode FILE_MFT at mount time, only called with super_block lock
1751 * held from within the read_super() code path.
1753 * This function exists because when it is called the page cache for $MFT/$DATA
1754 * is not initialized and hence we cannot get at the contents of mft records
1755 * by calling map_mft_record*().
1757 * Further it needs to cope with the circular references problem, i.e. cannot
1758 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1759 * we do not know where the other extent mft records are yet and again, because
1760 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1761 * attribute list is actually present in $MFT inode.
1763 * We solve these problems by starting with the $DATA attribute before anything
1764 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1765 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1766 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1767 * sufficient information for the next step to complete.
1769 * This should work but there are two possible pit falls (see inline comments
1770 * below), but only time will tell if they are real pits or just smoke...
1772 int ntfs_read_inode_mount(struct inode
*vi
)
1774 VCN next_vcn
, last_vcn
, highest_vcn
;
1776 struct super_block
*sb
= vi
->i_sb
;
1777 ntfs_volume
*vol
= NTFS_SB(sb
);
1778 struct buffer_head
*bh
;
1780 MFT_RECORD
*m
= NULL
;
1782 ntfs_attr_search_ctx
*ctx
;
1783 unsigned int i
, nr_blocks
;
1786 ntfs_debug("Entering.");
1788 /* Initialize the ntfs specific part of @vi. */
1789 ntfs_init_big_inode(vi
);
1793 /* Setup the data attribute. It is special as it is mst protected. */
1794 NInoSetNonResident(ni
);
1795 NInoSetMstProtected(ni
);
1796 NInoSetSparseDisabled(ni
);
1801 * This sets up our little cheat allowing us to reuse the async read io
1802 * completion handler for directories.
1804 ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1805 ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1807 /* Very important! Needed to be able to call map_mft_record*(). */
1810 /* Allocate enough memory to read the first mft record. */
1811 if (vol
->mft_record_size
> 64 * 1024) {
1812 ntfs_error(sb
, "Unsupported mft record size %i (max 64kiB).",
1813 vol
->mft_record_size
);
1816 i
= vol
->mft_record_size
;
1817 if (i
< sb
->s_blocksize
)
1818 i
= sb
->s_blocksize
;
1819 m
= (MFT_RECORD
*)ntfs_malloc_nofs(i
);
1821 ntfs_error(sb
, "Failed to allocate buffer for $MFT record 0.");
1825 /* Determine the first block of the $MFT/$DATA attribute. */
1826 block
= vol
->mft_lcn
<< vol
->cluster_size_bits
>>
1827 sb
->s_blocksize_bits
;
1828 nr_blocks
= vol
->mft_record_size
>> sb
->s_blocksize_bits
;
1832 /* Load $MFT/$DATA's first mft record. */
1833 for (i
= 0; i
< nr_blocks
; i
++) {
1834 bh
= sb_bread(sb
, block
++);
1836 ntfs_error(sb
, "Device read failed.");
1839 memcpy((char*)m
+ (i
<< sb
->s_blocksize_bits
), bh
->b_data
,
1844 /* Apply the mst fixups. */
1845 if (post_read_mst_fixup((NTFS_RECORD
*)m
, vol
->mft_record_size
)) {
1846 /* FIXME: Try to use the $MFTMirr now. */
1847 ntfs_error(sb
, "MST fixup failed. $MFT is corrupt.");
1851 /* Need this to sanity check attribute list references to $MFT. */
1852 vi
->i_generation
= ni
->seq_no
= le16_to_cpu(m
->sequence_number
);
1854 /* Provides readpage() and sync_page() for map_mft_record(). */
1855 vi
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1857 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
1863 /* Find the attribute list attribute if present. */
1864 err
= ntfs_attr_lookup(AT_ATTRIBUTE_LIST
, NULL
, 0, 0, 0, NULL
, 0, ctx
);
1866 if (unlikely(err
!= -ENOENT
)) {
1867 ntfs_error(sb
, "Failed to lookup attribute list "
1868 "attribute. You should run chkdsk.");
1871 } else /* if (!err) */ {
1872 ATTR_LIST_ENTRY
*al_entry
, *next_al_entry
;
1874 static const char *es
= " Not allowed. $MFT is corrupt. "
1875 "You should run chkdsk.";
1877 ntfs_debug("Attribute list attribute found in $MFT.");
1878 NInoSetAttrList(ni
);
1880 if (a
->flags
& ATTR_COMPRESSION_MASK
) {
1881 ntfs_error(sb
, "Attribute list attribute is "
1882 "compressed.%s", es
);
1885 if (a
->flags
& ATTR_IS_ENCRYPTED
||
1886 a
->flags
& ATTR_IS_SPARSE
) {
1887 if (a
->non_resident
) {
1888 ntfs_error(sb
, "Non-resident attribute list "
1889 "attribute is encrypted/"
1893 ntfs_warning(sb
, "Resident attribute list attribute "
1894 "in $MFT system file is marked "
1895 "encrypted/sparse which is not true. "
1896 "However, Windows allows this and "
1897 "chkdsk does not detect or correct it "
1898 "so we will just ignore the invalid "
1899 "flags and pretend they are not set.");
1901 /* Now allocate memory for the attribute list. */
1902 ni
->attr_list_size
= (u32
)ntfs_attr_size(a
);
1903 ni
->attr_list
= ntfs_malloc_nofs(ni
->attr_list_size
);
1904 if (!ni
->attr_list
) {
1905 ntfs_error(sb
, "Not enough memory to allocate buffer "
1906 "for attribute list.");
1909 if (a
->non_resident
) {
1910 NInoSetAttrListNonResident(ni
);
1911 if (a
->data
.non_resident
.lowest_vcn
) {
1912 ntfs_error(sb
, "Attribute list has non zero "
1913 "lowest_vcn. $MFT is corrupt. "
1914 "You should run chkdsk.");
1917 /* Setup the runlist. */
1918 ni
->attr_list_rl
.rl
= ntfs_mapping_pairs_decompress(vol
,
1920 if (IS_ERR(ni
->attr_list_rl
.rl
)) {
1921 err
= PTR_ERR(ni
->attr_list_rl
.rl
);
1922 ni
->attr_list_rl
.rl
= NULL
;
1923 ntfs_error(sb
, "Mapping pairs decompression "
1924 "failed with error code %i.",
1928 /* Now load the attribute list. */
1929 if ((err
= load_attribute_list(vol
, &ni
->attr_list_rl
,
1930 ni
->attr_list
, ni
->attr_list_size
,
1931 sle64_to_cpu(a
->data
.
1932 non_resident
.initialized_size
)))) {
1933 ntfs_error(sb
, "Failed to load attribute list "
1934 "attribute with error code %i.",
1938 } else /* if (!ctx.attr->non_resident) */ {
1939 if ((u8
*)a
+ le16_to_cpu(
1940 a
->data
.resident
.value_offset
) +
1942 a
->data
.resident
.value_length
) >
1943 (u8
*)ctx
->mrec
+ vol
->mft_record_size
) {
1944 ntfs_error(sb
, "Corrupt attribute list "
1948 /* Now copy the attribute list. */
1949 memcpy(ni
->attr_list
, (u8
*)a
+ le16_to_cpu(
1950 a
->data
.resident
.value_offset
),
1952 a
->data
.resident
.value_length
));
1954 /* The attribute list is now setup in memory. */
1956 * FIXME: I don't know if this case is actually possible.
1957 * According to logic it is not possible but I have seen too
1958 * many weird things in MS software to rely on logic... Thus we
1959 * perform a manual search and make sure the first $MFT/$DATA
1960 * extent is in the base inode. If it is not we abort with an
1961 * error and if we ever see a report of this error we will need
1962 * to do some magic in order to have the necessary mft record
1963 * loaded and in the right place in the page cache. But
1964 * hopefully logic will prevail and this never happens...
1966 al_entry
= (ATTR_LIST_ENTRY
*)ni
->attr_list
;
1967 al_end
= (u8
*)al_entry
+ ni
->attr_list_size
;
1968 for (;; al_entry
= next_al_entry
) {
1969 /* Out of bounds check. */
1970 if ((u8
*)al_entry
< ni
->attr_list
||
1971 (u8
*)al_entry
> al_end
)
1972 goto em_put_err_out
;
1973 /* Catch the end of the attribute list. */
1974 if ((u8
*)al_entry
== al_end
)
1975 goto em_put_err_out
;
1976 if (!al_entry
->length
)
1977 goto em_put_err_out
;
1978 if ((u8
*)al_entry
+ 6 > al_end
|| (u8
*)al_entry
+
1979 le16_to_cpu(al_entry
->length
) > al_end
)
1980 goto em_put_err_out
;
1981 next_al_entry
= (ATTR_LIST_ENTRY
*)((u8
*)al_entry
+
1982 le16_to_cpu(al_entry
->length
));
1983 if (le32_to_cpu(al_entry
->type
) >
1984 const_le32_to_cpu(AT_DATA
))
1985 goto em_put_err_out
;
1986 if (AT_DATA
!= al_entry
->type
)
1988 /* We want an unnamed attribute. */
1989 if (al_entry
->name_length
)
1990 goto em_put_err_out
;
1991 /* Want the first entry, i.e. lowest_vcn == 0. */
1992 if (al_entry
->lowest_vcn
)
1993 goto em_put_err_out
;
1994 /* First entry has to be in the base mft record. */
1995 if (MREF_LE(al_entry
->mft_reference
) != vi
->i_ino
) {
1996 /* MFT references do not match, logic fails. */
1997 ntfs_error(sb
, "BUG: The first $DATA extent "
1998 "of $MFT is not in the base "
1999 "mft record. Please report "
2000 "you saw this message to "
2001 "linux-ntfs-dev@lists."
2005 /* Sequence numbers must match. */
2006 if (MSEQNO_LE(al_entry
->mft_reference
) !=
2008 goto em_put_err_out
;
2009 /* Got it. All is ok. We can stop now. */
2015 ntfs_attr_reinit_search_ctx(ctx
);
2017 /* Now load all attribute extents. */
2019 next_vcn
= last_vcn
= highest_vcn
= 0;
2020 while (!(err
= ntfs_attr_lookup(AT_DATA
, NULL
, 0, 0, next_vcn
, NULL
, 0,
2022 runlist_element
*nrl
;
2024 /* Cache the current attribute. */
2026 /* $MFT must be non-resident. */
2027 if (!a
->non_resident
) {
2028 ntfs_error(sb
, "$MFT must be non-resident but a "
2029 "resident extent was found. $MFT is "
2030 "corrupt. Run chkdsk.");
2033 /* $MFT must be uncompressed and unencrypted. */
2034 if (a
->flags
& ATTR_COMPRESSION_MASK
||
2035 a
->flags
& ATTR_IS_ENCRYPTED
||
2036 a
->flags
& ATTR_IS_SPARSE
) {
2037 ntfs_error(sb
, "$MFT must be uncompressed, "
2038 "non-sparse, and unencrypted but a "
2039 "compressed/sparse/encrypted extent "
2040 "was found. $MFT is corrupt. Run "
2045 * Decompress the mapping pairs array of this extent and merge
2046 * the result into the existing runlist. No need for locking
2047 * as we have exclusive access to the inode at this time and we
2048 * are a mount in progress task, too.
2050 nrl
= ntfs_mapping_pairs_decompress(vol
, a
, ni
->runlist
.rl
);
2052 ntfs_error(sb
, "ntfs_mapping_pairs_decompress() "
2053 "failed with error code %ld. $MFT is "
2054 "corrupt.", PTR_ERR(nrl
));
2057 ni
->runlist
.rl
= nrl
;
2059 /* Are we in the first extent? */
2061 if (a
->data
.non_resident
.lowest_vcn
) {
2062 ntfs_error(sb
, "First extent of $DATA "
2063 "attribute has non zero "
2064 "lowest_vcn. $MFT is corrupt. "
2065 "You should run chkdsk.");
2068 /* Get the last vcn in the $DATA attribute. */
2069 last_vcn
= sle64_to_cpu(
2070 a
->data
.non_resident
.allocated_size
)
2071 >> vol
->cluster_size_bits
;
2072 /* Fill in the inode size. */
2073 vi
->i_size
= sle64_to_cpu(
2074 a
->data
.non_resident
.data_size
);
2075 ni
->initialized_size
= sle64_to_cpu(
2076 a
->data
.non_resident
.initialized_size
);
2077 ni
->allocated_size
= sle64_to_cpu(
2078 a
->data
.non_resident
.allocated_size
);
2080 * Verify the number of mft records does not exceed
2083 if ((vi
->i_size
>> vol
->mft_record_size_bits
) >=
2085 ntfs_error(sb
, "$MFT is too big! Aborting.");
2089 * We have got the first extent of the runlist for
2090 * $MFT which means it is now relatively safe to call
2091 * the normal ntfs_read_inode() function.
2092 * Complete reading the inode, this will actually
2093 * re-read the mft record for $MFT, this time entering
2094 * it into the page cache with which we complete the
2095 * kick start of the volume. It should be safe to do
2096 * this now as the first extent of $MFT/$DATA is
2097 * already known and we would hope that we don't need
2098 * further extents in order to find the other
2099 * attributes belonging to $MFT. Only time will tell if
2100 * this is really the case. If not we will have to play
2101 * magic at this point, possibly duplicating a lot of
2102 * ntfs_read_inode() at this point. We will need to
2103 * ensure we do enough of its work to be able to call
2104 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2105 * hope this never happens...
2107 ntfs_read_locked_inode(vi
);
2108 if (is_bad_inode(vi
)) {
2109 ntfs_error(sb
, "ntfs_read_inode() of $MFT "
2110 "failed. BUG or corrupt $MFT. "
2111 "Run chkdsk and if no errors "
2112 "are found, please report you "
2113 "saw this message to "
2114 "linux-ntfs-dev@lists."
2116 ntfs_attr_put_search_ctx(ctx
);
2117 /* Revert to the safe super operations. */
2122 * Re-initialize some specifics about $MFT's inode as
2123 * ntfs_read_inode() will have set up the default ones.
2125 /* Set uid and gid to root. */
2126 vi
->i_uid
= vi
->i_gid
= 0;
2127 /* Regular file. No access for anyone. */
2128 vi
->i_mode
= S_IFREG
;
2129 /* No VFS initiated operations allowed for $MFT. */
2130 vi
->i_op
= &ntfs_empty_inode_ops
;
2131 vi
->i_fop
= &ntfs_empty_file_ops
;
2134 /* Get the lowest vcn for the next extent. */
2135 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2136 next_vcn
= highest_vcn
+ 1;
2138 /* Only one extent or error, which we catch below. */
2142 /* Avoid endless loops due to corruption. */
2143 if (next_vcn
< sle64_to_cpu(
2144 a
->data
.non_resident
.lowest_vcn
)) {
2145 ntfs_error(sb
, "$MFT has corrupt attribute list "
2146 "attribute. Run chkdsk.");
2150 if (err
!= -ENOENT
) {
2151 ntfs_error(sb
, "Failed to lookup $MFT/$DATA attribute extent. "
2152 "$MFT is corrupt. Run chkdsk.");
2156 ntfs_error(sb
, "$MFT/$DATA attribute not found. $MFT is "
2157 "corrupt. Run chkdsk.");
2160 if (highest_vcn
&& highest_vcn
!= last_vcn
- 1) {
2161 ntfs_error(sb
, "Failed to load the complete runlist for "
2162 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2164 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2165 (unsigned long long)highest_vcn
,
2166 (unsigned long long)last_vcn
- 1);
2169 ntfs_attr_put_search_ctx(ctx
);
2170 ntfs_debug("Done.");
2174 * Split the locking rules of the MFT inode from the
2175 * locking rules of other inodes:
2177 lockdep_set_class(&ni
->runlist
.lock
, &mft_ni_runlist_lock_key
);
2178 lockdep_set_class(&ni
->mrec_lock
, &mft_ni_mrec_lock_key
);
2183 ntfs_error(sb
, "Couldn't find first extent of $DATA attribute in "
2184 "attribute list. $MFT is corrupt. Run chkdsk.");
2186 ntfs_attr_put_search_ctx(ctx
);
2188 ntfs_error(sb
, "Failed. Marking inode as bad.");
2194 static void __ntfs_clear_inode(ntfs_inode
*ni
)
2196 /* Free all alocated memory. */
2197 down_write(&ni
->runlist
.lock
);
2198 if (ni
->runlist
.rl
) {
2199 ntfs_free(ni
->runlist
.rl
);
2200 ni
->runlist
.rl
= NULL
;
2202 up_write(&ni
->runlist
.lock
);
2204 if (ni
->attr_list
) {
2205 ntfs_free(ni
->attr_list
);
2206 ni
->attr_list
= NULL
;
2209 down_write(&ni
->attr_list_rl
.lock
);
2210 if (ni
->attr_list_rl
.rl
) {
2211 ntfs_free(ni
->attr_list_rl
.rl
);
2212 ni
->attr_list_rl
.rl
= NULL
;
2214 up_write(&ni
->attr_list_rl
.lock
);
2216 if (ni
->name_len
&& ni
->name
!= I30
) {
2223 void ntfs_clear_extent_inode(ntfs_inode
*ni
)
2225 ntfs_debug("Entering for inode 0x%lx.", ni
->mft_no
);
2227 BUG_ON(NInoAttr(ni
));
2228 BUG_ON(ni
->nr_extents
!= -1);
2231 if (NInoDirty(ni
)) {
2232 if (!is_bad_inode(VFS_I(ni
->ext
.base_ntfs_ino
)))
2233 ntfs_error(ni
->vol
->sb
, "Clearing dirty extent inode! "
2234 "Losing data! This is a BUG!!!");
2235 // FIXME: Do something!!!
2237 #endif /* NTFS_RW */
2239 __ntfs_clear_inode(ni
);
2242 ntfs_destroy_extent_inode(ni
);
2246 * ntfs_clear_big_inode - clean up the ntfs specific part of an inode
2247 * @vi: vfs inode pending annihilation
2249 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2250 * is called, which deallocates all memory belonging to the NTFS specific part
2251 * of the inode and returns.
2253 * If the MFT record is dirty, we commit it before doing anything else.
2255 void ntfs_clear_big_inode(struct inode
*vi
)
2257 ntfs_inode
*ni
= NTFS_I(vi
);
2260 if (NInoDirty(ni
)) {
2261 bool was_bad
= (is_bad_inode(vi
));
2263 /* Committing the inode also commits all extent inodes. */
2264 ntfs_commit_inode(vi
);
2266 if (!was_bad
&& (is_bad_inode(vi
) || NInoDirty(ni
))) {
2267 ntfs_error(vi
->i_sb
, "Failed to commit dirty inode "
2268 "0x%lx. Losing data!", vi
->i_ino
);
2269 // FIXME: Do something!!!
2272 #endif /* NTFS_RW */
2274 /* No need to lock at this stage as no one else has a reference. */
2275 if (ni
->nr_extents
> 0) {
2278 for (i
= 0; i
< ni
->nr_extents
; i
++)
2279 ntfs_clear_extent_inode(ni
->ext
.extent_ntfs_inos
[i
]);
2280 kfree(ni
->ext
.extent_ntfs_inos
);
2283 __ntfs_clear_inode(ni
);
2286 /* Release the base inode if we are holding it. */
2287 if (ni
->nr_extents
== -1) {
2288 iput(VFS_I(ni
->ext
.base_ntfs_ino
));
2290 ni
->ext
.base_ntfs_ino
= NULL
;
2297 * ntfs_show_options - show mount options in /proc/mounts
2298 * @sf: seq_file in which to write our mount options
2299 * @mnt: vfs mount whose mount options to display
2301 * Called by the VFS once for each mounted ntfs volume when someone reads
2302 * /proc/mounts in order to display the NTFS specific mount options of each
2303 * mount. The mount options of the vfs mount @mnt are written to the seq file
2304 * @sf and success is returned.
2306 int ntfs_show_options(struct seq_file
*sf
, struct vfsmount
*mnt
)
2308 ntfs_volume
*vol
= NTFS_SB(mnt
->mnt_sb
);
2311 seq_printf(sf
, ",uid=%i", vol
->uid
);
2312 seq_printf(sf
, ",gid=%i", vol
->gid
);
2313 if (vol
->fmask
== vol
->dmask
)
2314 seq_printf(sf
, ",umask=0%o", vol
->fmask
);
2316 seq_printf(sf
, ",fmask=0%o", vol
->fmask
);
2317 seq_printf(sf
, ",dmask=0%o", vol
->dmask
);
2319 seq_printf(sf
, ",nls=%s", vol
->nls_map
->charset
);
2320 if (NVolCaseSensitive(vol
))
2321 seq_printf(sf
, ",case_sensitive");
2322 if (NVolShowSystemFiles(vol
))
2323 seq_printf(sf
, ",show_sys_files");
2324 if (!NVolSparseEnabled(vol
))
2325 seq_printf(sf
, ",disable_sparse");
2326 for (i
= 0; on_errors_arr
[i
].val
; i
++) {
2327 if (on_errors_arr
[i
].val
& vol
->on_errors
)
2328 seq_printf(sf
, ",errors=%s", on_errors_arr
[i
].str
);
2330 seq_printf(sf
, ",mft_zone_multiplier=%i", vol
->mft_zone_multiplier
);
2336 static const char *es
= " Leaving inconsistent metadata. Unmount and run "
2340 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2341 * @vi: inode for which the i_size was changed
2343 * We only support i_size changes for normal files at present, i.e. not
2344 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2347 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2348 * that the change is allowed.
2350 * This implies for us that @vi is a file inode rather than a directory, index,
2351 * or attribute inode as well as that @vi is a base inode.
2353 * Returns 0 on success or -errno on error.
2355 * Called with ->i_mutex held. In all but one case ->i_alloc_sem is held for
2356 * writing. The only case in the kernel where ->i_alloc_sem is not held is
2357 * mm/filemap.c::generic_file_buffered_write() where vmtruncate() is called
2358 * with the current i_size as the offset. The analogous place in NTFS is in
2359 * fs/ntfs/file.c::ntfs_file_buffered_write() where we call vmtruncate() again
2360 * without holding ->i_alloc_sem.
2362 int ntfs_truncate(struct inode
*vi
)
2364 s64 new_size
, old_size
, nr_freed
, new_alloc_size
, old_alloc_size
;
2366 unsigned long flags
;
2367 ntfs_inode
*base_ni
, *ni
= NTFS_I(vi
);
2368 ntfs_volume
*vol
= ni
->vol
;
2369 ntfs_attr_search_ctx
*ctx
;
2372 const char *te
= " Leaving file length out of sync with i_size.";
2373 int err
, mp_size
, size_change
, alloc_change
;
2376 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2377 BUG_ON(NInoAttr(ni
));
2378 BUG_ON(S_ISDIR(vi
->i_mode
));
2379 BUG_ON(NInoMstProtected(ni
));
2380 BUG_ON(ni
->nr_extents
< 0);
2383 * Lock the runlist for writing and map the mft record to ensure it is
2384 * safe to mess with the attribute runlist and sizes.
2386 down_write(&ni
->runlist
.lock
);
2390 base_ni
= ni
->ext
.base_ntfs_ino
;
2391 m
= map_mft_record(base_ni
);
2394 ntfs_error(vi
->i_sb
, "Failed to map mft record for inode 0x%lx "
2395 "(error code %d).%s", vi
->i_ino
, err
, te
);
2400 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
2401 if (unlikely(!ctx
)) {
2402 ntfs_error(vi
->i_sb
, "Failed to allocate a search context for "
2403 "inode 0x%lx (not enough memory).%s",
2408 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
2409 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
2410 if (unlikely(err
)) {
2411 if (err
== -ENOENT
) {
2412 ntfs_error(vi
->i_sb
, "Open attribute is missing from "
2413 "mft record. Inode 0x%lx is corrupt. "
2414 "Run chkdsk.%s", vi
->i_ino
, te
);
2417 ntfs_error(vi
->i_sb
, "Failed to lookup attribute in "
2418 "inode 0x%lx (error code %d).%s",
2419 vi
->i_ino
, err
, te
);
2425 * The i_size of the vfs inode is the new size for the attribute value.
2427 new_size
= i_size_read(vi
);
2428 /* The current size of the attribute value is the old size. */
2429 old_size
= ntfs_attr_size(a
);
2430 /* Calculate the new allocated size. */
2431 if (NInoNonResident(ni
))
2432 new_alloc_size
= (new_size
+ vol
->cluster_size
- 1) &
2433 ~(s64
)vol
->cluster_size_mask
;
2435 new_alloc_size
= (new_size
+ 7) & ~7;
2436 /* The current allocated size is the old allocated size. */
2437 read_lock_irqsave(&ni
->size_lock
, flags
);
2438 old_alloc_size
= ni
->allocated_size
;
2439 read_unlock_irqrestore(&ni
->size_lock
, flags
);
2441 * The change in the file size. This will be 0 if no change, >0 if the
2442 * size is growing, and <0 if the size is shrinking.
2445 if (new_size
- old_size
>= 0) {
2447 if (new_size
== old_size
)
2450 /* As above for the allocated size. */
2452 if (new_alloc_size
- old_alloc_size
>= 0) {
2454 if (new_alloc_size
== old_alloc_size
)
2458 * If neither the size nor the allocation are being changed there is
2461 if (!size_change
&& !alloc_change
)
2463 /* If the size is changing, check if new size is allowed in $AttrDef. */
2465 err
= ntfs_attr_size_bounds_check(vol
, ni
->type
, new_size
);
2466 if (unlikely(err
)) {
2467 if (err
== -ERANGE
) {
2468 ntfs_error(vol
->sb
, "Truncate would cause the "
2469 "inode 0x%lx to %simum size "
2470 "for its attribute type "
2471 "(0x%x). Aborting truncate.",
2473 new_size
> old_size
? "exceed "
2474 "the max" : "go under the min",
2475 le32_to_cpu(ni
->type
));
2478 ntfs_error(vol
->sb
, "Inode 0x%lx has unknown "
2479 "attribute type 0x%x. "
2480 "Aborting truncate.",
2482 le32_to_cpu(ni
->type
));
2485 /* Reset the vfs inode size to the old size. */
2486 i_size_write(vi
, old_size
);
2490 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2491 ntfs_warning(vi
->i_sb
, "Changes in inode size are not "
2492 "supported yet for %s files, ignoring.",
2493 NInoCompressed(ni
) ? "compressed" :
2498 if (a
->non_resident
)
2499 goto do_non_resident_truncate
;
2500 BUG_ON(NInoNonResident(ni
));
2501 /* Resize the attribute record to best fit the new attribute size. */
2502 if (new_size
< vol
->mft_record_size
&&
2503 !ntfs_resident_attr_value_resize(m
, a
, new_size
)) {
2504 unsigned long flags
;
2506 /* The resize succeeded! */
2507 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2508 mark_mft_record_dirty(ctx
->ntfs_ino
);
2509 write_lock_irqsave(&ni
->size_lock
, flags
);
2510 /* Update the sizes in the ntfs inode and all is done. */
2511 ni
->allocated_size
= le32_to_cpu(a
->length
) -
2512 le16_to_cpu(a
->data
.resident
.value_offset
);
2514 * Note ntfs_resident_attr_value_resize() has already done any
2515 * necessary data clearing in the attribute record. When the
2516 * file is being shrunk vmtruncate() will already have cleared
2517 * the top part of the last partial page, i.e. since this is
2518 * the resident case this is the page with index 0. However,
2519 * when the file is being expanded, the page cache page data
2520 * between the old data_size, i.e. old_size, and the new_size
2521 * has not been zeroed. Fortunately, we do not need to zero it
2522 * either since on one hand it will either already be zero due
2523 * to both readpage and writepage clearing partial page data
2524 * beyond i_size in which case there is nothing to do or in the
2525 * case of the file being mmap()ped at the same time, POSIX
2526 * specifies that the behaviour is unspecified thus we do not
2527 * have to do anything. This means that in our implementation
2528 * in the rare case that the file is mmap()ped and a write
2529 * occured into the mmap()ped region just beyond the file size
2530 * and writepage has not yet been called to write out the page
2531 * (which would clear the area beyond the file size) and we now
2532 * extend the file size to incorporate this dirty region
2533 * outside the file size, a write of the page would result in
2534 * this data being written to disk instead of being cleared.
2535 * Given both POSIX and the Linux mmap(2) man page specify that
2536 * this corner case is undefined, we choose to leave it like
2537 * that as this is much simpler for us as we cannot lock the
2538 * relevant page now since we are holding too many ntfs locks
2539 * which would result in a lock reversal deadlock.
2541 ni
->initialized_size
= new_size
;
2542 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2545 /* If the above resize failed, this must be an attribute extension. */
2546 BUG_ON(size_change
< 0);
2548 * We have to drop all the locks so we can call
2549 * ntfs_attr_make_non_resident(). This could be optimised by try-
2550 * locking the first page cache page and only if that fails dropping
2551 * the locks, locking the page, and redoing all the locking and
2552 * lookups. While this would be a huge optimisation, it is not worth
2553 * it as this is definitely a slow code path as it only ever can happen
2554 * once for any given file.
2556 ntfs_attr_put_search_ctx(ctx
);
2557 unmap_mft_record(base_ni
);
2558 up_write(&ni
->runlist
.lock
);
2560 * Not enough space in the mft record, try to make the attribute
2561 * non-resident and if successful restart the truncation process.
2563 err
= ntfs_attr_make_non_resident(ni
, old_size
);
2565 goto retry_truncate
;
2567 * Could not make non-resident. If this is due to this not being
2568 * permitted for this attribute type or there not being enough space,
2569 * try to make other attributes non-resident. Otherwise fail.
2571 if (unlikely(err
!= -EPERM
&& err
!= -ENOSPC
)) {
2572 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, attribute "
2573 "type 0x%x, because the conversion from "
2574 "resident to non-resident attribute failed "
2575 "with error code %i.", vi
->i_ino
,
2576 (unsigned)le32_to_cpu(ni
->type
), err
);
2581 /* TODO: Not implemented from here, abort. */
2583 ntfs_error(vol
->sb
, "Not enough space in the mft record/on "
2584 "disk for the non-resident attribute value. "
2585 "This case is not implemented yet.");
2586 else /* if (err == -EPERM) */
2587 ntfs_error(vol
->sb
, "This attribute type may not be "
2588 "non-resident. This case is not implemented "
2593 // TODO: Attempt to make other attributes non-resident.
2595 goto do_resident_extend
;
2597 * Both the attribute list attribute and the standard information
2598 * attribute must remain in the base inode. Thus, if this is one of
2599 * these attributes, we have to try to move other attributes out into
2600 * extent mft records instead.
2602 if (ni
->type
== AT_ATTRIBUTE_LIST
||
2603 ni
->type
== AT_STANDARD_INFORMATION
) {
2604 // TODO: Attempt to move other attributes into extent mft
2608 goto do_resident_extend
;
2611 // TODO: Attempt to move this attribute to an extent mft record, but
2612 // only if it is not already the only attribute in an mft record in
2613 // which case there would be nothing to gain.
2616 goto do_resident_extend
;
2617 /* There is nothing we can do to make enough space. )-: */
2620 do_non_resident_truncate
:
2621 BUG_ON(!NInoNonResident(ni
));
2622 if (alloc_change
< 0) {
2623 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
2624 if (highest_vcn
> 0 &&
2625 old_alloc_size
>> vol
->cluster_size_bits
>
2628 * This attribute has multiple extents. Not yet
2631 ntfs_error(vol
->sb
, "Cannot truncate inode 0x%lx, "
2632 "attribute type 0x%x, because the "
2633 "attribute is highly fragmented (it "
2634 "consists of multiple extents) and "
2635 "this case is not implemented yet.",
2637 (unsigned)le32_to_cpu(ni
->type
));
2643 * If the size is shrinking, need to reduce the initialized_size and
2644 * the data_size before reducing the allocation.
2646 if (size_change
< 0) {
2648 * Make the valid size smaller (i_size is already up-to-date).
2650 write_lock_irqsave(&ni
->size_lock
, flags
);
2651 if (new_size
< ni
->initialized_size
) {
2652 ni
->initialized_size
= new_size
;
2653 a
->data
.non_resident
.initialized_size
=
2654 cpu_to_sle64(new_size
);
2656 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2657 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2658 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2659 mark_mft_record_dirty(ctx
->ntfs_ino
);
2660 /* If the allocated size is not changing, we are done. */
2664 * If the size is shrinking it makes no sense for the
2665 * allocation to be growing.
2667 BUG_ON(alloc_change
> 0);
2668 } else /* if (size_change >= 0) */ {
2670 * The file size is growing or staying the same but the
2671 * allocation can be shrinking, growing or staying the same.
2673 if (alloc_change
> 0) {
2675 * We need to extend the allocation and possibly update
2676 * the data size. If we are updating the data size,
2677 * since we are not touching the initialized_size we do
2678 * not need to worry about the actual data on disk.
2679 * And as far as the page cache is concerned, there
2680 * will be no pages beyond the old data size and any
2681 * partial region in the last page between the old and
2682 * new data size (or the end of the page if the new
2683 * data size is outside the page) does not need to be
2684 * modified as explained above for the resident
2685 * attribute truncate case. To do this, we simply drop
2686 * the locks we hold and leave all the work to our
2687 * friendly helper ntfs_attr_extend_allocation().
2689 ntfs_attr_put_search_ctx(ctx
);
2690 unmap_mft_record(base_ni
);
2691 up_write(&ni
->runlist
.lock
);
2692 err
= ntfs_attr_extend_allocation(ni
, new_size
,
2693 size_change
> 0 ? new_size
: -1, -1);
2695 * ntfs_attr_extend_allocation() will have done error
2703 /* alloc_change < 0 */
2704 /* Free the clusters. */
2705 nr_freed
= ntfs_cluster_free(ni
, new_alloc_size
>>
2706 vol
->cluster_size_bits
, -1, ctx
);
2709 if (unlikely(nr_freed
< 0)) {
2710 ntfs_error(vol
->sb
, "Failed to release cluster(s) (error code "
2711 "%lli). Unmount and run chkdsk to recover "
2712 "the lost cluster(s).", (long long)nr_freed
);
2716 /* Truncate the runlist. */
2717 err
= ntfs_rl_truncate_nolock(vol
, &ni
->runlist
,
2718 new_alloc_size
>> vol
->cluster_size_bits
);
2720 * If the runlist truncation failed and/or the search context is no
2721 * longer valid, we cannot resize the attribute record or build the
2722 * mapping pairs array thus we mark the inode bad so that no access to
2723 * the freed clusters can happen.
2725 if (unlikely(err
|| IS_ERR(m
))) {
2726 ntfs_error(vol
->sb
, "Failed to %s (error code %li).%s",
2728 "restore attribute search context" :
2729 "truncate attribute runlist",
2730 IS_ERR(m
) ? PTR_ERR(m
) : err
, es
);
2734 /* Get the size for the shrunk mapping pairs array for the runlist. */
2735 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, ni
->runlist
.rl
, 0, -1);
2736 if (unlikely(mp_size
<= 0)) {
2737 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2738 "attribute type 0x%x, because determining the "
2739 "size for the mapping pairs failed with error "
2740 "code %i.%s", vi
->i_ino
,
2741 (unsigned)le32_to_cpu(ni
->type
), mp_size
, es
);
2746 * Shrink the attribute record for the new mapping pairs array. Note,
2747 * this cannot fail since we are making the attribute smaller thus by
2748 * definition there is enough space to do so.
2750 attr_len
= le32_to_cpu(a
->length
);
2751 err
= ntfs_attr_record_resize(m
, a
, mp_size
+
2752 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
));
2755 * Generate the mapping pairs array directly into the attribute record.
2757 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+
2758 le16_to_cpu(a
->data
.non_resident
.mapping_pairs_offset
),
2759 mp_size
, ni
->runlist
.rl
, 0, -1, NULL
);
2760 if (unlikely(err
)) {
2761 ntfs_error(vol
->sb
, "Cannot shrink allocation of inode 0x%lx, "
2762 "attribute type 0x%x, because building the "
2763 "mapping pairs failed with error code %i.%s",
2764 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
2769 /* Update the allocated/compressed size as well as the highest vcn. */
2770 a
->data
.non_resident
.highest_vcn
= cpu_to_sle64((new_alloc_size
>>
2771 vol
->cluster_size_bits
) - 1);
2772 write_lock_irqsave(&ni
->size_lock
, flags
);
2773 ni
->allocated_size
= new_alloc_size
;
2774 a
->data
.non_resident
.allocated_size
= cpu_to_sle64(new_alloc_size
);
2775 if (NInoSparse(ni
) || NInoCompressed(ni
)) {
2777 ni
->itype
.compressed
.size
-= nr_freed
<<
2778 vol
->cluster_size_bits
;
2779 BUG_ON(ni
->itype
.compressed
.size
< 0);
2780 a
->data
.non_resident
.compressed_size
= cpu_to_sle64(
2781 ni
->itype
.compressed
.size
);
2782 vi
->i_blocks
= ni
->itype
.compressed
.size
>> 9;
2785 vi
->i_blocks
= new_alloc_size
>> 9;
2786 write_unlock_irqrestore(&ni
->size_lock
, flags
);
2788 * We have shrunk the allocation. If this is a shrinking truncate we
2789 * have already dealt with the initialized_size and the data_size above
2790 * and we are done. If the truncate is only changing the allocation
2791 * and not the data_size, we are also done. If this is an extending
2792 * truncate, need to extend the data_size now which is ensured by the
2793 * fact that @size_change is positive.
2797 * If the size is growing, need to update it now. If it is shrinking,
2798 * we have already updated it above (before the allocation change).
2800 if (size_change
> 0)
2801 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_size
);
2802 /* Ensure the modified mft record is written out. */
2803 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
2804 mark_mft_record_dirty(ctx
->ntfs_ino
);
2806 ntfs_attr_put_search_ctx(ctx
);
2807 unmap_mft_record(base_ni
);
2808 up_write(&ni
->runlist
.lock
);
2810 /* Update the mtime and ctime on the base inode. */
2811 /* normally ->truncate shouldn't update ctime or mtime,
2812 * but ntfs did before so it got a copy & paste version
2813 * of file_update_time. one day someone should fix this
2816 if (!IS_NOCMTIME(VFS_I(base_ni
)) && !IS_RDONLY(VFS_I(base_ni
))) {
2817 struct timespec now
= current_fs_time(VFS_I(base_ni
)->i_sb
);
2820 if (!timespec_equal(&VFS_I(base_ni
)->i_mtime
, &now
) ||
2821 !timespec_equal(&VFS_I(base_ni
)->i_ctime
, &now
))
2823 VFS_I(base_ni
)->i_mtime
= now
;
2824 VFS_I(base_ni
)->i_ctime
= now
;
2827 mark_inode_dirty_sync(VFS_I(base_ni
));
2831 NInoClearTruncateFailed(ni
);
2832 ntfs_debug("Done.");
2838 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2840 if (err
!= -EOPNOTSUPP
)
2841 NInoSetTruncateFailed(ni
);
2842 else if (old_size
>= 0)
2843 i_size_write(vi
, old_size
);
2846 ntfs_attr_put_search_ctx(ctx
);
2848 unmap_mft_record(base_ni
);
2849 up_write(&ni
->runlist
.lock
);
2851 ntfs_debug("Failed. Returning error code %i.", err
);
2854 if (err
!= -ENOMEM
&& err
!= -EOPNOTSUPP
)
2856 if (err
!= -EOPNOTSUPP
)
2857 NInoSetTruncateFailed(ni
);
2859 i_size_write(vi
, old_size
);
2864 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2865 * @vi: inode for which the i_size was changed
2867 * Wrapper for ntfs_truncate() that has no return value.
2869 * See ntfs_truncate() description above for details.
2871 void ntfs_truncate_vfs(struct inode
*vi
) {
2876 * ntfs_setattr - called from notify_change() when an attribute is being changed
2877 * @dentry: dentry whose attributes to change
2878 * @attr: structure describing the attributes and the changes
2880 * We have to trap VFS attempts to truncate the file described by @dentry as
2881 * soon as possible, because we do not implement changes in i_size yet. So we
2882 * abort all i_size changes here.
2884 * We also abort all changes of user, group, and mode as we do not implement
2885 * the NTFS ACLs yet.
2887 * Called with ->i_mutex held. For the ATTR_SIZE (i.e. ->truncate) case, also
2888 * called with ->i_alloc_sem held for writing.
2890 * Basically this is a copy of generic notify_change() and inode_setattr()
2891 * functionality, except we intercept and abort changes in i_size.
2893 int ntfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2895 struct inode
*vi
= dentry
->d_inode
;
2897 unsigned int ia_valid
= attr
->ia_valid
;
2899 err
= inode_change_ok(vi
, attr
);
2902 /* We do not support NTFS ACLs yet. */
2903 if (ia_valid
& (ATTR_UID
| ATTR_GID
| ATTR_MODE
)) {
2904 ntfs_warning(vi
->i_sb
, "Changes in user/group/mode are not "
2905 "supported yet, ignoring.");
2909 if (ia_valid
& ATTR_SIZE
) {
2910 if (attr
->ia_size
!= i_size_read(vi
)) {
2911 ntfs_inode
*ni
= NTFS_I(vi
);
2913 * FIXME: For now we do not support resizing of
2914 * compressed or encrypted files yet.
2916 if (NInoCompressed(ni
) || NInoEncrypted(ni
)) {
2917 ntfs_warning(vi
->i_sb
, "Changes in inode size "
2918 "are not supported yet for "
2919 "%s files, ignoring.",
2920 NInoCompressed(ni
) ?
2921 "compressed" : "encrypted");
2924 err
= vmtruncate(vi
, attr
->ia_size
);
2925 if (err
|| ia_valid
== ATTR_SIZE
)
2929 * We skipped the truncate but must still update
2932 ia_valid
|= ATTR_MTIME
| ATTR_CTIME
;
2935 if (ia_valid
& ATTR_ATIME
)
2936 vi
->i_atime
= timespec_trunc(attr
->ia_atime
,
2937 vi
->i_sb
->s_time_gran
);
2938 if (ia_valid
& ATTR_MTIME
)
2939 vi
->i_mtime
= timespec_trunc(attr
->ia_mtime
,
2940 vi
->i_sb
->s_time_gran
);
2941 if (ia_valid
& ATTR_CTIME
)
2942 vi
->i_ctime
= timespec_trunc(attr
->ia_ctime
,
2943 vi
->i_sb
->s_time_gran
);
2944 mark_inode_dirty(vi
);
2950 * ntfs_write_inode - write out a dirty inode
2951 * @vi: inode to write out
2952 * @sync: if true, write out synchronously
2954 * Write out a dirty inode to disk including any extent inodes if present.
2956 * If @sync is true, commit the inode to disk and wait for io completion. This
2957 * is done using write_mft_record().
2959 * If @sync is false, just schedule the write to happen but do not wait for i/o
2960 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2961 * marking the page (and in this case mft record) dirty but we do not implement
2962 * this yet as write_mft_record() largely ignores the @sync parameter and
2963 * always performs synchronous writes.
2965 * Return 0 on success and -errno on error.
2967 int ntfs_write_inode(struct inode
*vi
, int sync
)
2970 ntfs_inode
*ni
= NTFS_I(vi
);
2971 ntfs_attr_search_ctx
*ctx
;
2973 STANDARD_INFORMATION
*si
;
2975 bool modified
= false;
2977 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni
) ? "attr " : "",
2980 * Dirty attribute inodes are written via their real inodes so just
2981 * clean them here. Access time updates are taken care off when the
2982 * real inode is written.
2986 ntfs_debug("Done.");
2989 /* Map, pin, and lock the mft record belonging to the inode. */
2990 m
= map_mft_record(ni
);
2995 /* Update the access times in the standard information attribute. */
2996 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
2997 if (unlikely(!ctx
)) {
3001 err
= ntfs_attr_lookup(AT_STANDARD_INFORMATION
, NULL
, 0,
3002 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
3003 if (unlikely(err
)) {
3004 ntfs_attr_put_search_ctx(ctx
);
3007 si
= (STANDARD_INFORMATION
*)((u8
*)ctx
->attr
+
3008 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
3009 /* Update the access times if they have changed. */
3010 nt
= utc2ntfs(vi
->i_mtime
);
3011 if (si
->last_data_change_time
!= nt
) {
3012 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3013 "new = 0x%llx", vi
->i_ino
, (long long)
3014 sle64_to_cpu(si
->last_data_change_time
),
3015 (long long)sle64_to_cpu(nt
));
3016 si
->last_data_change_time
= nt
;
3019 nt
= utc2ntfs(vi
->i_ctime
);
3020 if (si
->last_mft_change_time
!= nt
) {
3021 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3022 "new = 0x%llx", vi
->i_ino
, (long long)
3023 sle64_to_cpu(si
->last_mft_change_time
),
3024 (long long)sle64_to_cpu(nt
));
3025 si
->last_mft_change_time
= nt
;
3028 nt
= utc2ntfs(vi
->i_atime
);
3029 if (si
->last_access_time
!= nt
) {
3030 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3031 "new = 0x%llx", vi
->i_ino
,
3032 (long long)sle64_to_cpu(si
->last_access_time
),
3033 (long long)sle64_to_cpu(nt
));
3034 si
->last_access_time
= nt
;
3038 * If we just modified the standard information attribute we need to
3039 * mark the mft record it is in dirty. We do this manually so that
3040 * mark_inode_dirty() is not called which would redirty the inode and
3041 * hence result in an infinite loop of trying to write the inode.
3042 * There is no need to mark the base inode nor the base mft record
3043 * dirty, since we are going to write this mft record below in any case
3044 * and the base mft record may actually not have been modified so it
3045 * might not need to be written out.
3046 * NOTE: It is not a problem when the inode for $MFT itself is being
3047 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3048 * on the $MFT inode and hence ntfs_write_inode() will not be
3049 * re-invoked because of it which in turn is ok since the dirtied mft
3050 * record will be cleaned and written out to disk below, i.e. before
3051 * this function returns.
3054 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
3055 if (!NInoTestSetDirty(ctx
->ntfs_ino
))
3056 mark_ntfs_record_dirty(ctx
->ntfs_ino
->page
,
3057 ctx
->ntfs_ino
->page_ofs
);
3059 ntfs_attr_put_search_ctx(ctx
);
3060 /* Now the access times are updated, write the base mft record. */
3062 err
= write_mft_record(ni
, m
, sync
);
3063 /* Write all attached extent mft records. */
3064 mutex_lock(&ni
->extent_lock
);
3065 if (ni
->nr_extents
> 0) {
3066 ntfs_inode
**extent_nis
= ni
->ext
.extent_ntfs_inos
;
3069 ntfs_debug("Writing %i extent inodes.", ni
->nr_extents
);
3070 for (i
= 0; i
< ni
->nr_extents
; i
++) {
3071 ntfs_inode
*tni
= extent_nis
[i
];
3073 if (NInoDirty(tni
)) {
3074 MFT_RECORD
*tm
= map_mft_record(tni
);
3078 if (!err
|| err
== -ENOMEM
)
3082 ret
= write_mft_record(tni
, tm
, sync
);
3083 unmap_mft_record(tni
);
3084 if (unlikely(ret
)) {
3085 if (!err
|| err
== -ENOMEM
)
3091 mutex_unlock(&ni
->extent_lock
);
3092 unmap_mft_record(ni
);
3095 ntfs_debug("Done.");
3098 unmap_mft_record(ni
);
3100 if (err
== -ENOMEM
) {
3101 ntfs_warning(vi
->i_sb
, "Not enough memory to write inode. "
3102 "Marking the inode dirty again, so the VFS "
3104 mark_inode_dirty(vi
);
3106 ntfs_error(vi
->i_sb
, "Failed (error %i): Run chkdsk.", -err
);
3107 NVolSetErrors(ni
->vol
);
3112 #endif /* NTFS_RW */