[PATCH] SELinux: default labeling of MLS field
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / security / selinux / ss / services.c
blob014120474e69915f48aee0d99243b8817e7aed9d
1 /*
2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
11 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 * Added conditional policy language extensions
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
17 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation, version 2.
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/in.h>
28 #include <linux/sched.h>
29 #include <linux/audit.h>
30 #include <asm/semaphore.h>
31 #include "flask.h"
32 #include "avc.h"
33 #include "avc_ss.h"
34 #include "security.h"
35 #include "context.h"
36 #include "policydb.h"
37 #include "sidtab.h"
38 #include "services.h"
39 #include "conditional.h"
40 #include "mls.h"
42 extern void selnl_notify_policyload(u32 seqno);
43 unsigned int policydb_loaded_version;
45 static DEFINE_RWLOCK(policy_rwlock);
46 #define POLICY_RDLOCK read_lock(&policy_rwlock)
47 #define POLICY_WRLOCK write_lock_irq(&policy_rwlock)
48 #define POLICY_RDUNLOCK read_unlock(&policy_rwlock)
49 #define POLICY_WRUNLOCK write_unlock_irq(&policy_rwlock)
51 static DECLARE_MUTEX(load_sem);
52 #define LOAD_LOCK down(&load_sem)
53 #define LOAD_UNLOCK up(&load_sem)
55 static struct sidtab sidtab;
56 struct policydb policydb;
57 int ss_initialized = 0;
60 * The largest sequence number that has been used when
61 * providing an access decision to the access vector cache.
62 * The sequence number only changes when a policy change
63 * occurs.
65 static u32 latest_granting = 0;
67 /* Forward declaration. */
68 static int context_struct_to_string(struct context *context, char **scontext,
69 u32 *scontext_len);
72 * Return the boolean value of a constraint expression
73 * when it is applied to the specified source and target
74 * security contexts.
76 * xcontext is a special beast... It is used by the validatetrans rules
77 * only. For these rules, scontext is the context before the transition,
78 * tcontext is the context after the transition, and xcontext is the context
79 * of the process performing the transition. All other callers of
80 * constraint_expr_eval should pass in NULL for xcontext.
82 static int constraint_expr_eval(struct context *scontext,
83 struct context *tcontext,
84 struct context *xcontext,
85 struct constraint_expr *cexpr)
87 u32 val1, val2;
88 struct context *c;
89 struct role_datum *r1, *r2;
90 struct mls_level *l1, *l2;
91 struct constraint_expr *e;
92 int s[CEXPR_MAXDEPTH];
93 int sp = -1;
95 for (e = cexpr; e; e = e->next) {
96 switch (e->expr_type) {
97 case CEXPR_NOT:
98 BUG_ON(sp < 0);
99 s[sp] = !s[sp];
100 break;
101 case CEXPR_AND:
102 BUG_ON(sp < 1);
103 sp--;
104 s[sp] &= s[sp+1];
105 break;
106 case CEXPR_OR:
107 BUG_ON(sp < 1);
108 sp--;
109 s[sp] |= s[sp+1];
110 break;
111 case CEXPR_ATTR:
112 if (sp == (CEXPR_MAXDEPTH-1))
113 return 0;
114 switch (e->attr) {
115 case CEXPR_USER:
116 val1 = scontext->user;
117 val2 = tcontext->user;
118 break;
119 case CEXPR_TYPE:
120 val1 = scontext->type;
121 val2 = tcontext->type;
122 break;
123 case CEXPR_ROLE:
124 val1 = scontext->role;
125 val2 = tcontext->role;
126 r1 = policydb.role_val_to_struct[val1 - 1];
127 r2 = policydb.role_val_to_struct[val2 - 1];
128 switch (e->op) {
129 case CEXPR_DOM:
130 s[++sp] = ebitmap_get_bit(&r1->dominates,
131 val2 - 1);
132 continue;
133 case CEXPR_DOMBY:
134 s[++sp] = ebitmap_get_bit(&r2->dominates,
135 val1 - 1);
136 continue;
137 case CEXPR_INCOMP:
138 s[++sp] = ( !ebitmap_get_bit(&r1->dominates,
139 val2 - 1) &&
140 !ebitmap_get_bit(&r2->dominates,
141 val1 - 1) );
142 continue;
143 default:
144 break;
146 break;
147 case CEXPR_L1L2:
148 l1 = &(scontext->range.level[0]);
149 l2 = &(tcontext->range.level[0]);
150 goto mls_ops;
151 case CEXPR_L1H2:
152 l1 = &(scontext->range.level[0]);
153 l2 = &(tcontext->range.level[1]);
154 goto mls_ops;
155 case CEXPR_H1L2:
156 l1 = &(scontext->range.level[1]);
157 l2 = &(tcontext->range.level[0]);
158 goto mls_ops;
159 case CEXPR_H1H2:
160 l1 = &(scontext->range.level[1]);
161 l2 = &(tcontext->range.level[1]);
162 goto mls_ops;
163 case CEXPR_L1H1:
164 l1 = &(scontext->range.level[0]);
165 l2 = &(scontext->range.level[1]);
166 goto mls_ops;
167 case CEXPR_L2H2:
168 l1 = &(tcontext->range.level[0]);
169 l2 = &(tcontext->range.level[1]);
170 goto mls_ops;
171 mls_ops:
172 switch (e->op) {
173 case CEXPR_EQ:
174 s[++sp] = mls_level_eq(l1, l2);
175 continue;
176 case CEXPR_NEQ:
177 s[++sp] = !mls_level_eq(l1, l2);
178 continue;
179 case CEXPR_DOM:
180 s[++sp] = mls_level_dom(l1, l2);
181 continue;
182 case CEXPR_DOMBY:
183 s[++sp] = mls_level_dom(l2, l1);
184 continue;
185 case CEXPR_INCOMP:
186 s[++sp] = mls_level_incomp(l2, l1);
187 continue;
188 default:
189 BUG();
190 return 0;
192 break;
193 default:
194 BUG();
195 return 0;
198 switch (e->op) {
199 case CEXPR_EQ:
200 s[++sp] = (val1 == val2);
201 break;
202 case CEXPR_NEQ:
203 s[++sp] = (val1 != val2);
204 break;
205 default:
206 BUG();
207 return 0;
209 break;
210 case CEXPR_NAMES:
211 if (sp == (CEXPR_MAXDEPTH-1))
212 return 0;
213 c = scontext;
214 if (e->attr & CEXPR_TARGET)
215 c = tcontext;
216 else if (e->attr & CEXPR_XTARGET) {
217 c = xcontext;
218 if (!c) {
219 BUG();
220 return 0;
223 if (e->attr & CEXPR_USER)
224 val1 = c->user;
225 else if (e->attr & CEXPR_ROLE)
226 val1 = c->role;
227 else if (e->attr & CEXPR_TYPE)
228 val1 = c->type;
229 else {
230 BUG();
231 return 0;
234 switch (e->op) {
235 case CEXPR_EQ:
236 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
237 break;
238 case CEXPR_NEQ:
239 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
240 break;
241 default:
242 BUG();
243 return 0;
245 break;
246 default:
247 BUG();
248 return 0;
252 BUG_ON(sp != 0);
253 return s[0];
257 * Compute access vectors based on a context structure pair for
258 * the permissions in a particular class.
260 static int context_struct_compute_av(struct context *scontext,
261 struct context *tcontext,
262 u16 tclass,
263 u32 requested,
264 struct av_decision *avd)
266 struct constraint_node *constraint;
267 struct role_allow *ra;
268 struct avtab_key avkey;
269 struct avtab_datum *avdatum;
270 struct class_datum *tclass_datum;
273 * Remap extended Netlink classes for old policy versions.
274 * Do this here rather than socket_type_to_security_class()
275 * in case a newer policy version is loaded, allowing sockets
276 * to remain in the correct class.
278 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
279 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
280 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
281 tclass = SECCLASS_NETLINK_SOCKET;
283 if (!tclass || tclass > policydb.p_classes.nprim) {
284 printk(KERN_ERR "security_compute_av: unrecognized class %d\n",
285 tclass);
286 return -EINVAL;
288 tclass_datum = policydb.class_val_to_struct[tclass - 1];
291 * Initialize the access vectors to the default values.
293 avd->allowed = 0;
294 avd->decided = 0xffffffff;
295 avd->auditallow = 0;
296 avd->auditdeny = 0xffffffff;
297 avd->seqno = latest_granting;
300 * If a specific type enforcement rule was defined for
301 * this permission check, then use it.
303 avkey.source_type = scontext->type;
304 avkey.target_type = tcontext->type;
305 avkey.target_class = tclass;
306 avdatum = avtab_search(&policydb.te_avtab, &avkey, AVTAB_AV);
307 if (avdatum) {
308 if (avdatum->specified & AVTAB_ALLOWED)
309 avd->allowed = avtab_allowed(avdatum);
310 if (avdatum->specified & AVTAB_AUDITDENY)
311 avd->auditdeny = avtab_auditdeny(avdatum);
312 if (avdatum->specified & AVTAB_AUDITALLOW)
313 avd->auditallow = avtab_auditallow(avdatum);
316 /* Check conditional av table for additional permissions */
317 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
320 * Remove any permissions prohibited by a constraint (this includes
321 * the MLS policy).
323 constraint = tclass_datum->constraints;
324 while (constraint) {
325 if ((constraint->permissions & (avd->allowed)) &&
326 !constraint_expr_eval(scontext, tcontext, NULL,
327 constraint->expr)) {
328 avd->allowed = (avd->allowed) & ~(constraint->permissions);
330 constraint = constraint->next;
334 * If checking process transition permission and the
335 * role is changing, then check the (current_role, new_role)
336 * pair.
338 if (tclass == SECCLASS_PROCESS &&
339 (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
340 scontext->role != tcontext->role) {
341 for (ra = policydb.role_allow; ra; ra = ra->next) {
342 if (scontext->role == ra->role &&
343 tcontext->role == ra->new_role)
344 break;
346 if (!ra)
347 avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
348 PROCESS__DYNTRANSITION);
351 return 0;
354 static int security_validtrans_handle_fail(struct context *ocontext,
355 struct context *ncontext,
356 struct context *tcontext,
357 u16 tclass)
359 char *o = NULL, *n = NULL, *t = NULL;
360 u32 olen, nlen, tlen;
362 if (context_struct_to_string(ocontext, &o, &olen) < 0)
363 goto out;
364 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
365 goto out;
366 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
367 goto out;
368 audit_log(current->audit_context, AUDIT_SELINUX_ERR,
369 "security_validate_transition: denied for"
370 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
371 o, n, t, policydb.p_class_val_to_name[tclass-1]);
372 out:
373 kfree(o);
374 kfree(n);
375 kfree(t);
377 if (!selinux_enforcing)
378 return 0;
379 return -EPERM;
382 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
383 u16 tclass)
385 struct context *ocontext;
386 struct context *ncontext;
387 struct context *tcontext;
388 struct class_datum *tclass_datum;
389 struct constraint_node *constraint;
390 int rc = 0;
392 if (!ss_initialized)
393 return 0;
395 POLICY_RDLOCK;
398 * Remap extended Netlink classes for old policy versions.
399 * Do this here rather than socket_type_to_security_class()
400 * in case a newer policy version is loaded, allowing sockets
401 * to remain in the correct class.
403 if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
404 if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
405 tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
406 tclass = SECCLASS_NETLINK_SOCKET;
408 if (!tclass || tclass > policydb.p_classes.nprim) {
409 printk(KERN_ERR "security_validate_transition: "
410 "unrecognized class %d\n", tclass);
411 rc = -EINVAL;
412 goto out;
414 tclass_datum = policydb.class_val_to_struct[tclass - 1];
416 ocontext = sidtab_search(&sidtab, oldsid);
417 if (!ocontext) {
418 printk(KERN_ERR "security_validate_transition: "
419 " unrecognized SID %d\n", oldsid);
420 rc = -EINVAL;
421 goto out;
424 ncontext = sidtab_search(&sidtab, newsid);
425 if (!ncontext) {
426 printk(KERN_ERR "security_validate_transition: "
427 " unrecognized SID %d\n", newsid);
428 rc = -EINVAL;
429 goto out;
432 tcontext = sidtab_search(&sidtab, tasksid);
433 if (!tcontext) {
434 printk(KERN_ERR "security_validate_transition: "
435 " unrecognized SID %d\n", tasksid);
436 rc = -EINVAL;
437 goto out;
440 constraint = tclass_datum->validatetrans;
441 while (constraint) {
442 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
443 constraint->expr)) {
444 rc = security_validtrans_handle_fail(ocontext, ncontext,
445 tcontext, tclass);
446 goto out;
448 constraint = constraint->next;
451 out:
452 POLICY_RDUNLOCK;
453 return rc;
457 * security_compute_av - Compute access vector decisions.
458 * @ssid: source security identifier
459 * @tsid: target security identifier
460 * @tclass: target security class
461 * @requested: requested permissions
462 * @avd: access vector decisions
464 * Compute a set of access vector decisions based on the
465 * SID pair (@ssid, @tsid) for the permissions in @tclass.
466 * Return -%EINVAL if any of the parameters are invalid or %0
467 * if the access vector decisions were computed successfully.
469 int security_compute_av(u32 ssid,
470 u32 tsid,
471 u16 tclass,
472 u32 requested,
473 struct av_decision *avd)
475 struct context *scontext = NULL, *tcontext = NULL;
476 int rc = 0;
478 if (!ss_initialized) {
479 avd->allowed = 0xffffffff;
480 avd->decided = 0xffffffff;
481 avd->auditallow = 0;
482 avd->auditdeny = 0xffffffff;
483 avd->seqno = latest_granting;
484 return 0;
487 POLICY_RDLOCK;
489 scontext = sidtab_search(&sidtab, ssid);
490 if (!scontext) {
491 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
492 ssid);
493 rc = -EINVAL;
494 goto out;
496 tcontext = sidtab_search(&sidtab, tsid);
497 if (!tcontext) {
498 printk(KERN_ERR "security_compute_av: unrecognized SID %d\n",
499 tsid);
500 rc = -EINVAL;
501 goto out;
504 rc = context_struct_compute_av(scontext, tcontext, tclass,
505 requested, avd);
506 out:
507 POLICY_RDUNLOCK;
508 return rc;
512 * Write the security context string representation of
513 * the context structure `context' into a dynamically
514 * allocated string of the correct size. Set `*scontext'
515 * to point to this string and set `*scontext_len' to
516 * the length of the string.
518 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
520 char *scontextp;
522 *scontext = NULL;
523 *scontext_len = 0;
525 /* Compute the size of the context. */
526 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
527 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
528 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
529 *scontext_len += mls_compute_context_len(context);
531 /* Allocate space for the context; caller must free this space. */
532 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
533 if (!scontextp) {
534 return -ENOMEM;
536 *scontext = scontextp;
539 * Copy the user name, role name and type name into the context.
541 sprintf(scontextp, "%s:%s:%s",
542 policydb.p_user_val_to_name[context->user - 1],
543 policydb.p_role_val_to_name[context->role - 1],
544 policydb.p_type_val_to_name[context->type - 1]);
545 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
546 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
547 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
549 mls_sid_to_context(context, &scontextp);
551 *scontextp = 0;
553 return 0;
556 #include "initial_sid_to_string.h"
559 * security_sid_to_context - Obtain a context for a given SID.
560 * @sid: security identifier, SID
561 * @scontext: security context
562 * @scontext_len: length in bytes
564 * Write the string representation of the context associated with @sid
565 * into a dynamically allocated string of the correct size. Set @scontext
566 * to point to this string and set @scontext_len to the length of the string.
568 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
570 struct context *context;
571 int rc = 0;
573 if (!ss_initialized) {
574 if (sid <= SECINITSID_NUM) {
575 char *scontextp;
577 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
578 scontextp = kmalloc(*scontext_len,GFP_ATOMIC);
579 strcpy(scontextp, initial_sid_to_string[sid]);
580 *scontext = scontextp;
581 goto out;
583 printk(KERN_ERR "security_sid_to_context: called before initial "
584 "load_policy on unknown SID %d\n", sid);
585 rc = -EINVAL;
586 goto out;
588 POLICY_RDLOCK;
589 context = sidtab_search(&sidtab, sid);
590 if (!context) {
591 printk(KERN_ERR "security_sid_to_context: unrecognized SID "
592 "%d\n", sid);
593 rc = -EINVAL;
594 goto out_unlock;
596 rc = context_struct_to_string(context, scontext, scontext_len);
597 out_unlock:
598 POLICY_RDUNLOCK;
599 out:
600 return rc;
604 static int security_context_to_sid_core(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
606 char *scontext2;
607 struct context context;
608 struct role_datum *role;
609 struct type_datum *typdatum;
610 struct user_datum *usrdatum;
611 char *scontextp, *p, oldc;
612 int rc = 0;
614 if (!ss_initialized) {
615 int i;
617 for (i = 1; i < SECINITSID_NUM; i++) {
618 if (!strcmp(initial_sid_to_string[i], scontext)) {
619 *sid = i;
620 goto out;
623 *sid = SECINITSID_KERNEL;
624 goto out;
626 *sid = SECSID_NULL;
628 /* Copy the string so that we can modify the copy as we parse it.
629 The string should already by null terminated, but we append a
630 null suffix to the copy to avoid problems with the existing
631 attr package, which doesn't view the null terminator as part
632 of the attribute value. */
633 scontext2 = kmalloc(scontext_len+1,GFP_KERNEL);
634 if (!scontext2) {
635 rc = -ENOMEM;
636 goto out;
638 memcpy(scontext2, scontext, scontext_len);
639 scontext2[scontext_len] = 0;
641 context_init(&context);
642 *sid = SECSID_NULL;
644 POLICY_RDLOCK;
646 /* Parse the security context. */
648 rc = -EINVAL;
649 scontextp = (char *) scontext2;
651 /* Extract the user. */
652 p = scontextp;
653 while (*p && *p != ':')
654 p++;
656 if (*p == 0)
657 goto out_unlock;
659 *p++ = 0;
661 usrdatum = hashtab_search(policydb.p_users.table, scontextp);
662 if (!usrdatum)
663 goto out_unlock;
665 context.user = usrdatum->value;
667 /* Extract role. */
668 scontextp = p;
669 while (*p && *p != ':')
670 p++;
672 if (*p == 0)
673 goto out_unlock;
675 *p++ = 0;
677 role = hashtab_search(policydb.p_roles.table, scontextp);
678 if (!role)
679 goto out_unlock;
680 context.role = role->value;
682 /* Extract type. */
683 scontextp = p;
684 while (*p && *p != ':')
685 p++;
686 oldc = *p;
687 *p++ = 0;
689 typdatum = hashtab_search(policydb.p_types.table, scontextp);
690 if (!typdatum)
691 goto out_unlock;
693 context.type = typdatum->value;
695 rc = mls_context_to_sid(oldc, &p, &context, &sidtab, def_sid);
696 if (rc)
697 goto out_unlock;
699 if ((p - scontext2) < scontext_len) {
700 rc = -EINVAL;
701 goto out_unlock;
704 /* Check the validity of the new context. */
705 if (!policydb_context_isvalid(&policydb, &context)) {
706 rc = -EINVAL;
707 goto out_unlock;
709 /* Obtain the new sid. */
710 rc = sidtab_context_to_sid(&sidtab, &context, sid);
711 out_unlock:
712 POLICY_RDUNLOCK;
713 context_destroy(&context);
714 kfree(scontext2);
715 out:
716 return rc;
720 * security_context_to_sid - Obtain a SID for a given security context.
721 * @scontext: security context
722 * @scontext_len: length in bytes
723 * @sid: security identifier, SID
725 * Obtains a SID associated with the security context that
726 * has the string representation specified by @scontext.
727 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
728 * memory is available, or 0 on success.
730 int security_context_to_sid(char *scontext, u32 scontext_len, u32 *sid)
732 return security_context_to_sid_core(scontext, scontext_len,
733 sid, SECSID_NULL);
737 * security_context_to_sid_default - Obtain a SID for a given security context,
738 * falling back to specified default if needed.
740 * @scontext: security context
741 * @scontext_len: length in bytes
742 * @sid: security identifier, SID
743 * @def_sid: default SID to assign on errror
745 * Obtains a SID associated with the security context that
746 * has the string representation specified by @scontext.
747 * The default SID is passed to the MLS layer to be used to allow
748 * kernel labeling of the MLS field if the MLS field is not present
749 * (for upgrading to MLS without full relabel).
750 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
751 * memory is available, or 0 on success.
753 int security_context_to_sid_default(char *scontext, u32 scontext_len, u32 *sid, u32 def_sid)
755 return security_context_to_sid_core(scontext, scontext_len,
756 sid, def_sid);
759 static int compute_sid_handle_invalid_context(
760 struct context *scontext,
761 struct context *tcontext,
762 u16 tclass,
763 struct context *newcontext)
765 char *s = NULL, *t = NULL, *n = NULL;
766 u32 slen, tlen, nlen;
768 if (context_struct_to_string(scontext, &s, &slen) < 0)
769 goto out;
770 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
771 goto out;
772 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
773 goto out;
774 audit_log(current->audit_context, AUDIT_SELINUX_ERR,
775 "security_compute_sid: invalid context %s"
776 " for scontext=%s"
777 " tcontext=%s"
778 " tclass=%s",
779 n, s, t, policydb.p_class_val_to_name[tclass-1]);
780 out:
781 kfree(s);
782 kfree(t);
783 kfree(n);
784 if (!selinux_enforcing)
785 return 0;
786 return -EACCES;
789 static int security_compute_sid(u32 ssid,
790 u32 tsid,
791 u16 tclass,
792 u32 specified,
793 u32 *out_sid)
795 struct context *scontext = NULL, *tcontext = NULL, newcontext;
796 struct role_trans *roletr = NULL;
797 struct avtab_key avkey;
798 struct avtab_datum *avdatum;
799 struct avtab_node *node;
800 unsigned int type_change = 0;
801 int rc = 0;
803 if (!ss_initialized) {
804 switch (tclass) {
805 case SECCLASS_PROCESS:
806 *out_sid = ssid;
807 break;
808 default:
809 *out_sid = tsid;
810 break;
812 goto out;
815 POLICY_RDLOCK;
817 scontext = sidtab_search(&sidtab, ssid);
818 if (!scontext) {
819 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
820 ssid);
821 rc = -EINVAL;
822 goto out_unlock;
824 tcontext = sidtab_search(&sidtab, tsid);
825 if (!tcontext) {
826 printk(KERN_ERR "security_compute_sid: unrecognized SID %d\n",
827 tsid);
828 rc = -EINVAL;
829 goto out_unlock;
832 context_init(&newcontext);
834 /* Set the user identity. */
835 switch (specified) {
836 case AVTAB_TRANSITION:
837 case AVTAB_CHANGE:
838 /* Use the process user identity. */
839 newcontext.user = scontext->user;
840 break;
841 case AVTAB_MEMBER:
842 /* Use the related object owner. */
843 newcontext.user = tcontext->user;
844 break;
847 /* Set the role and type to default values. */
848 switch (tclass) {
849 case SECCLASS_PROCESS:
850 /* Use the current role and type of process. */
851 newcontext.role = scontext->role;
852 newcontext.type = scontext->type;
853 break;
854 default:
855 /* Use the well-defined object role. */
856 newcontext.role = OBJECT_R_VAL;
857 /* Use the type of the related object. */
858 newcontext.type = tcontext->type;
861 /* Look for a type transition/member/change rule. */
862 avkey.source_type = scontext->type;
863 avkey.target_type = tcontext->type;
864 avkey.target_class = tclass;
865 avdatum = avtab_search(&policydb.te_avtab, &avkey, AVTAB_TYPE);
867 /* If no permanent rule, also check for enabled conditional rules */
868 if(!avdatum) {
869 node = avtab_search_node(&policydb.te_cond_avtab, &avkey, specified);
870 for (; node != NULL; node = avtab_search_node_next(node, specified)) {
871 if (node->datum.specified & AVTAB_ENABLED) {
872 avdatum = &node->datum;
873 break;
878 type_change = (avdatum && (avdatum->specified & specified));
879 if (type_change) {
880 /* Use the type from the type transition/member/change rule. */
881 switch (specified) {
882 case AVTAB_TRANSITION:
883 newcontext.type = avtab_transition(avdatum);
884 break;
885 case AVTAB_MEMBER:
886 newcontext.type = avtab_member(avdatum);
887 break;
888 case AVTAB_CHANGE:
889 newcontext.type = avtab_change(avdatum);
890 break;
894 /* Check for class-specific changes. */
895 switch (tclass) {
896 case SECCLASS_PROCESS:
897 if (specified & AVTAB_TRANSITION) {
898 /* Look for a role transition rule. */
899 for (roletr = policydb.role_tr; roletr;
900 roletr = roletr->next) {
901 if (roletr->role == scontext->role &&
902 roletr->type == tcontext->type) {
903 /* Use the role transition rule. */
904 newcontext.role = roletr->new_role;
905 break;
909 break;
910 default:
911 break;
914 /* Set the MLS attributes.
915 This is done last because it may allocate memory. */
916 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
917 if (rc)
918 goto out_unlock;
920 /* Check the validity of the context. */
921 if (!policydb_context_isvalid(&policydb, &newcontext)) {
922 rc = compute_sid_handle_invalid_context(scontext,
923 tcontext,
924 tclass,
925 &newcontext);
926 if (rc)
927 goto out_unlock;
929 /* Obtain the sid for the context. */
930 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
931 out_unlock:
932 POLICY_RDUNLOCK;
933 context_destroy(&newcontext);
934 out:
935 return rc;
939 * security_transition_sid - Compute the SID for a new subject/object.
940 * @ssid: source security identifier
941 * @tsid: target security identifier
942 * @tclass: target security class
943 * @out_sid: security identifier for new subject/object
945 * Compute a SID to use for labeling a new subject or object in the
946 * class @tclass based on a SID pair (@ssid, @tsid).
947 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
948 * if insufficient memory is available, or %0 if the new SID was
949 * computed successfully.
951 int security_transition_sid(u32 ssid,
952 u32 tsid,
953 u16 tclass,
954 u32 *out_sid)
956 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
960 * security_member_sid - Compute the SID for member selection.
961 * @ssid: source security identifier
962 * @tsid: target security identifier
963 * @tclass: target security class
964 * @out_sid: security identifier for selected member
966 * Compute a SID to use when selecting a member of a polyinstantiated
967 * object of class @tclass based on a SID pair (@ssid, @tsid).
968 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
969 * if insufficient memory is available, or %0 if the SID was
970 * computed successfully.
972 int security_member_sid(u32 ssid,
973 u32 tsid,
974 u16 tclass,
975 u32 *out_sid)
977 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
981 * security_change_sid - Compute the SID for object relabeling.
982 * @ssid: source security identifier
983 * @tsid: target security identifier
984 * @tclass: target security class
985 * @out_sid: security identifier for selected member
987 * Compute a SID to use for relabeling an object of class @tclass
988 * based on a SID pair (@ssid, @tsid).
989 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
990 * if insufficient memory is available, or %0 if the SID was
991 * computed successfully.
993 int security_change_sid(u32 ssid,
994 u32 tsid,
995 u16 tclass,
996 u32 *out_sid)
998 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1002 * Verify that each permission that is defined under the
1003 * existing policy is still defined with the same value
1004 * in the new policy.
1006 static int validate_perm(void *key, void *datum, void *p)
1008 struct hashtab *h;
1009 struct perm_datum *perdatum, *perdatum2;
1010 int rc = 0;
1013 h = p;
1014 perdatum = datum;
1016 perdatum2 = hashtab_search(h, key);
1017 if (!perdatum2) {
1018 printk(KERN_ERR "security: permission %s disappeared",
1019 (char *)key);
1020 rc = -ENOENT;
1021 goto out;
1023 if (perdatum->value != perdatum2->value) {
1024 printk(KERN_ERR "security: the value of permission %s changed",
1025 (char *)key);
1026 rc = -EINVAL;
1028 out:
1029 return rc;
1033 * Verify that each class that is defined under the
1034 * existing policy is still defined with the same
1035 * attributes in the new policy.
1037 static int validate_class(void *key, void *datum, void *p)
1039 struct policydb *newp;
1040 struct class_datum *cladatum, *cladatum2;
1041 int rc;
1043 newp = p;
1044 cladatum = datum;
1046 cladatum2 = hashtab_search(newp->p_classes.table, key);
1047 if (!cladatum2) {
1048 printk(KERN_ERR "security: class %s disappeared\n",
1049 (char *)key);
1050 rc = -ENOENT;
1051 goto out;
1053 if (cladatum->value != cladatum2->value) {
1054 printk(KERN_ERR "security: the value of class %s changed\n",
1055 (char *)key);
1056 rc = -EINVAL;
1057 goto out;
1059 if ((cladatum->comdatum && !cladatum2->comdatum) ||
1060 (!cladatum->comdatum && cladatum2->comdatum)) {
1061 printk(KERN_ERR "security: the inherits clause for the access "
1062 "vector definition for class %s changed\n", (char *)key);
1063 rc = -EINVAL;
1064 goto out;
1066 if (cladatum->comdatum) {
1067 rc = hashtab_map(cladatum->comdatum->permissions.table, validate_perm,
1068 cladatum2->comdatum->permissions.table);
1069 if (rc) {
1070 printk(" in the access vector definition for class "
1071 "%s\n", (char *)key);
1072 goto out;
1075 rc = hashtab_map(cladatum->permissions.table, validate_perm,
1076 cladatum2->permissions.table);
1077 if (rc)
1078 printk(" in access vector definition for class %s\n",
1079 (char *)key);
1080 out:
1081 return rc;
1084 /* Clone the SID into the new SID table. */
1085 static int clone_sid(u32 sid,
1086 struct context *context,
1087 void *arg)
1089 struct sidtab *s = arg;
1091 return sidtab_insert(s, sid, context);
1094 static inline int convert_context_handle_invalid_context(struct context *context)
1096 int rc = 0;
1098 if (selinux_enforcing) {
1099 rc = -EINVAL;
1100 } else {
1101 char *s;
1102 u32 len;
1104 context_struct_to_string(context, &s, &len);
1105 printk(KERN_ERR "security: context %s is invalid\n", s);
1106 kfree(s);
1108 return rc;
1111 struct convert_context_args {
1112 struct policydb *oldp;
1113 struct policydb *newp;
1117 * Convert the values in the security context
1118 * structure `c' from the values specified
1119 * in the policy `p->oldp' to the values specified
1120 * in the policy `p->newp'. Verify that the
1121 * context is valid under the new policy.
1123 static int convert_context(u32 key,
1124 struct context *c,
1125 void *p)
1127 struct convert_context_args *args;
1128 struct context oldc;
1129 struct role_datum *role;
1130 struct type_datum *typdatum;
1131 struct user_datum *usrdatum;
1132 char *s;
1133 u32 len;
1134 int rc;
1136 args = p;
1138 rc = context_cpy(&oldc, c);
1139 if (rc)
1140 goto out;
1142 rc = -EINVAL;
1144 /* Convert the user. */
1145 usrdatum = hashtab_search(args->newp->p_users.table,
1146 args->oldp->p_user_val_to_name[c->user - 1]);
1147 if (!usrdatum) {
1148 goto bad;
1150 c->user = usrdatum->value;
1152 /* Convert the role. */
1153 role = hashtab_search(args->newp->p_roles.table,
1154 args->oldp->p_role_val_to_name[c->role - 1]);
1155 if (!role) {
1156 goto bad;
1158 c->role = role->value;
1160 /* Convert the type. */
1161 typdatum = hashtab_search(args->newp->p_types.table,
1162 args->oldp->p_type_val_to_name[c->type - 1]);
1163 if (!typdatum) {
1164 goto bad;
1166 c->type = typdatum->value;
1168 rc = mls_convert_context(args->oldp, args->newp, c);
1169 if (rc)
1170 goto bad;
1172 /* Check the validity of the new context. */
1173 if (!policydb_context_isvalid(args->newp, c)) {
1174 rc = convert_context_handle_invalid_context(&oldc);
1175 if (rc)
1176 goto bad;
1179 context_destroy(&oldc);
1180 out:
1181 return rc;
1182 bad:
1183 context_struct_to_string(&oldc, &s, &len);
1184 context_destroy(&oldc);
1185 printk(KERN_ERR "security: invalidating context %s\n", s);
1186 kfree(s);
1187 goto out;
1190 extern void selinux_complete_init(void);
1193 * security_load_policy - Load a security policy configuration.
1194 * @data: binary policy data
1195 * @len: length of data in bytes
1197 * Load a new set of security policy configuration data,
1198 * validate it and convert the SID table as necessary.
1199 * This function will flush the access vector cache after
1200 * loading the new policy.
1202 int security_load_policy(void *data, size_t len)
1204 struct policydb oldpolicydb, newpolicydb;
1205 struct sidtab oldsidtab, newsidtab;
1206 struct convert_context_args args;
1207 u32 seqno;
1208 int rc = 0;
1209 struct policy_file file = { data, len }, *fp = &file;
1211 LOAD_LOCK;
1213 if (!ss_initialized) {
1214 avtab_cache_init();
1215 if (policydb_read(&policydb, fp)) {
1216 LOAD_UNLOCK;
1217 avtab_cache_destroy();
1218 return -EINVAL;
1220 if (policydb_load_isids(&policydb, &sidtab)) {
1221 LOAD_UNLOCK;
1222 policydb_destroy(&policydb);
1223 avtab_cache_destroy();
1224 return -EINVAL;
1226 policydb_loaded_version = policydb.policyvers;
1227 ss_initialized = 1;
1228 seqno = ++latest_granting;
1229 LOAD_UNLOCK;
1230 selinux_complete_init();
1231 avc_ss_reset(seqno);
1232 selnl_notify_policyload(seqno);
1233 return 0;
1236 #if 0
1237 sidtab_hash_eval(&sidtab, "sids");
1238 #endif
1240 if (policydb_read(&newpolicydb, fp)) {
1241 LOAD_UNLOCK;
1242 return -EINVAL;
1245 sidtab_init(&newsidtab);
1247 /* Verify that the existing classes did not change. */
1248 if (hashtab_map(policydb.p_classes.table, validate_class, &newpolicydb)) {
1249 printk(KERN_ERR "security: the definition of an existing "
1250 "class changed\n");
1251 rc = -EINVAL;
1252 goto err;
1255 /* Clone the SID table. */
1256 sidtab_shutdown(&sidtab);
1257 if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
1258 rc = -ENOMEM;
1259 goto err;
1262 /* Convert the internal representations of contexts
1263 in the new SID table and remove invalid SIDs. */
1264 args.oldp = &policydb;
1265 args.newp = &newpolicydb;
1266 sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1268 /* Save the old policydb and SID table to free later. */
1269 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1270 sidtab_set(&oldsidtab, &sidtab);
1272 /* Install the new policydb and SID table. */
1273 POLICY_WRLOCK;
1274 memcpy(&policydb, &newpolicydb, sizeof policydb);
1275 sidtab_set(&sidtab, &newsidtab);
1276 seqno = ++latest_granting;
1277 policydb_loaded_version = policydb.policyvers;
1278 POLICY_WRUNLOCK;
1279 LOAD_UNLOCK;
1281 /* Free the old policydb and SID table. */
1282 policydb_destroy(&oldpolicydb);
1283 sidtab_destroy(&oldsidtab);
1285 avc_ss_reset(seqno);
1286 selnl_notify_policyload(seqno);
1288 return 0;
1290 err:
1291 LOAD_UNLOCK;
1292 sidtab_destroy(&newsidtab);
1293 policydb_destroy(&newpolicydb);
1294 return rc;
1299 * security_port_sid - Obtain the SID for a port.
1300 * @domain: communication domain aka address family
1301 * @type: socket type
1302 * @protocol: protocol number
1303 * @port: port number
1304 * @out_sid: security identifier
1306 int security_port_sid(u16 domain,
1307 u16 type,
1308 u8 protocol,
1309 u16 port,
1310 u32 *out_sid)
1312 struct ocontext *c;
1313 int rc = 0;
1315 POLICY_RDLOCK;
1317 c = policydb.ocontexts[OCON_PORT];
1318 while (c) {
1319 if (c->u.port.protocol == protocol &&
1320 c->u.port.low_port <= port &&
1321 c->u.port.high_port >= port)
1322 break;
1323 c = c->next;
1326 if (c) {
1327 if (!c->sid[0]) {
1328 rc = sidtab_context_to_sid(&sidtab,
1329 &c->context[0],
1330 &c->sid[0]);
1331 if (rc)
1332 goto out;
1334 *out_sid = c->sid[0];
1335 } else {
1336 *out_sid = SECINITSID_PORT;
1339 out:
1340 POLICY_RDUNLOCK;
1341 return rc;
1345 * security_netif_sid - Obtain the SID for a network interface.
1346 * @name: interface name
1347 * @if_sid: interface SID
1348 * @msg_sid: default SID for received packets
1350 int security_netif_sid(char *name,
1351 u32 *if_sid,
1352 u32 *msg_sid)
1354 int rc = 0;
1355 struct ocontext *c;
1357 POLICY_RDLOCK;
1359 c = policydb.ocontexts[OCON_NETIF];
1360 while (c) {
1361 if (strcmp(name, c->u.name) == 0)
1362 break;
1363 c = c->next;
1366 if (c) {
1367 if (!c->sid[0] || !c->sid[1]) {
1368 rc = sidtab_context_to_sid(&sidtab,
1369 &c->context[0],
1370 &c->sid[0]);
1371 if (rc)
1372 goto out;
1373 rc = sidtab_context_to_sid(&sidtab,
1374 &c->context[1],
1375 &c->sid[1]);
1376 if (rc)
1377 goto out;
1379 *if_sid = c->sid[0];
1380 *msg_sid = c->sid[1];
1381 } else {
1382 *if_sid = SECINITSID_NETIF;
1383 *msg_sid = SECINITSID_NETMSG;
1386 out:
1387 POLICY_RDUNLOCK;
1388 return rc;
1391 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1393 int i, fail = 0;
1395 for(i = 0; i < 4; i++)
1396 if(addr[i] != (input[i] & mask[i])) {
1397 fail = 1;
1398 break;
1401 return !fail;
1405 * security_node_sid - Obtain the SID for a node (host).
1406 * @domain: communication domain aka address family
1407 * @addrp: address
1408 * @addrlen: address length in bytes
1409 * @out_sid: security identifier
1411 int security_node_sid(u16 domain,
1412 void *addrp,
1413 u32 addrlen,
1414 u32 *out_sid)
1416 int rc = 0;
1417 struct ocontext *c;
1419 POLICY_RDLOCK;
1421 switch (domain) {
1422 case AF_INET: {
1423 u32 addr;
1425 if (addrlen != sizeof(u32)) {
1426 rc = -EINVAL;
1427 goto out;
1430 addr = *((u32 *)addrp);
1432 c = policydb.ocontexts[OCON_NODE];
1433 while (c) {
1434 if (c->u.node.addr == (addr & c->u.node.mask))
1435 break;
1436 c = c->next;
1438 break;
1441 case AF_INET6:
1442 if (addrlen != sizeof(u64) * 2) {
1443 rc = -EINVAL;
1444 goto out;
1446 c = policydb.ocontexts[OCON_NODE6];
1447 while (c) {
1448 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1449 c->u.node6.mask))
1450 break;
1451 c = c->next;
1453 break;
1455 default:
1456 *out_sid = SECINITSID_NODE;
1457 goto out;
1460 if (c) {
1461 if (!c->sid[0]) {
1462 rc = sidtab_context_to_sid(&sidtab,
1463 &c->context[0],
1464 &c->sid[0]);
1465 if (rc)
1466 goto out;
1468 *out_sid = c->sid[0];
1469 } else {
1470 *out_sid = SECINITSID_NODE;
1473 out:
1474 POLICY_RDUNLOCK;
1475 return rc;
1478 #define SIDS_NEL 25
1481 * security_get_user_sids - Obtain reachable SIDs for a user.
1482 * @fromsid: starting SID
1483 * @username: username
1484 * @sids: array of reachable SIDs for user
1485 * @nel: number of elements in @sids
1487 * Generate the set of SIDs for legal security contexts
1488 * for a given user that can be reached by @fromsid.
1489 * Set *@sids to point to a dynamically allocated
1490 * array containing the set of SIDs. Set *@nel to the
1491 * number of elements in the array.
1494 int security_get_user_sids(u32 fromsid,
1495 char *username,
1496 u32 **sids,
1497 u32 *nel)
1499 struct context *fromcon, usercon;
1500 u32 *mysids, *mysids2, sid;
1501 u32 mynel = 0, maxnel = SIDS_NEL;
1502 struct user_datum *user;
1503 struct role_datum *role;
1504 struct av_decision avd;
1505 int rc = 0, i, j;
1507 if (!ss_initialized) {
1508 *sids = NULL;
1509 *nel = 0;
1510 goto out;
1513 POLICY_RDLOCK;
1515 fromcon = sidtab_search(&sidtab, fromsid);
1516 if (!fromcon) {
1517 rc = -EINVAL;
1518 goto out_unlock;
1521 user = hashtab_search(policydb.p_users.table, username);
1522 if (!user) {
1523 rc = -EINVAL;
1524 goto out_unlock;
1526 usercon.user = user->value;
1528 mysids = kmalloc(maxnel*sizeof(*mysids), GFP_ATOMIC);
1529 if (!mysids) {
1530 rc = -ENOMEM;
1531 goto out_unlock;
1533 memset(mysids, 0, maxnel*sizeof(*mysids));
1535 for (i = ebitmap_startbit(&user->roles); i < ebitmap_length(&user->roles); i++) {
1536 if (!ebitmap_get_bit(&user->roles, i))
1537 continue;
1538 role = policydb.role_val_to_struct[i];
1539 usercon.role = i+1;
1540 for (j = ebitmap_startbit(&role->types); j < ebitmap_length(&role->types); j++) {
1541 if (!ebitmap_get_bit(&role->types, j))
1542 continue;
1543 usercon.type = j+1;
1545 if (mls_setup_user_range(fromcon, user, &usercon))
1546 continue;
1548 rc = context_struct_compute_av(fromcon, &usercon,
1549 SECCLASS_PROCESS,
1550 PROCESS__TRANSITION,
1551 &avd);
1552 if (rc || !(avd.allowed & PROCESS__TRANSITION))
1553 continue;
1554 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
1555 if (rc) {
1556 kfree(mysids);
1557 goto out_unlock;
1559 if (mynel < maxnel) {
1560 mysids[mynel++] = sid;
1561 } else {
1562 maxnel += SIDS_NEL;
1563 mysids2 = kmalloc(maxnel*sizeof(*mysids2), GFP_ATOMIC);
1564 if (!mysids2) {
1565 rc = -ENOMEM;
1566 kfree(mysids);
1567 goto out_unlock;
1569 memset(mysids2, 0, maxnel*sizeof(*mysids2));
1570 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
1571 kfree(mysids);
1572 mysids = mysids2;
1573 mysids[mynel++] = sid;
1578 *sids = mysids;
1579 *nel = mynel;
1581 out_unlock:
1582 POLICY_RDUNLOCK;
1583 out:
1584 return rc;
1588 * security_genfs_sid - Obtain a SID for a file in a filesystem
1589 * @fstype: filesystem type
1590 * @path: path from root of mount
1591 * @sclass: file security class
1592 * @sid: SID for path
1594 * Obtain a SID to use for a file in a filesystem that
1595 * cannot support xattr or use a fixed labeling behavior like
1596 * transition SIDs or task SIDs.
1598 int security_genfs_sid(const char *fstype,
1599 char *path,
1600 u16 sclass,
1601 u32 *sid)
1603 int len;
1604 struct genfs *genfs;
1605 struct ocontext *c;
1606 int rc = 0, cmp = 0;
1608 POLICY_RDLOCK;
1610 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
1611 cmp = strcmp(fstype, genfs->fstype);
1612 if (cmp <= 0)
1613 break;
1616 if (!genfs || cmp) {
1617 *sid = SECINITSID_UNLABELED;
1618 rc = -ENOENT;
1619 goto out;
1622 for (c = genfs->head; c; c = c->next) {
1623 len = strlen(c->u.name);
1624 if ((!c->v.sclass || sclass == c->v.sclass) &&
1625 (strncmp(c->u.name, path, len) == 0))
1626 break;
1629 if (!c) {
1630 *sid = SECINITSID_UNLABELED;
1631 rc = -ENOENT;
1632 goto out;
1635 if (!c->sid[0]) {
1636 rc = sidtab_context_to_sid(&sidtab,
1637 &c->context[0],
1638 &c->sid[0]);
1639 if (rc)
1640 goto out;
1643 *sid = c->sid[0];
1644 out:
1645 POLICY_RDUNLOCK;
1646 return rc;
1650 * security_fs_use - Determine how to handle labeling for a filesystem.
1651 * @fstype: filesystem type
1652 * @behavior: labeling behavior
1653 * @sid: SID for filesystem (superblock)
1655 int security_fs_use(
1656 const char *fstype,
1657 unsigned int *behavior,
1658 u32 *sid)
1660 int rc = 0;
1661 struct ocontext *c;
1663 POLICY_RDLOCK;
1665 c = policydb.ocontexts[OCON_FSUSE];
1666 while (c) {
1667 if (strcmp(fstype, c->u.name) == 0)
1668 break;
1669 c = c->next;
1672 if (c) {
1673 *behavior = c->v.behavior;
1674 if (!c->sid[0]) {
1675 rc = sidtab_context_to_sid(&sidtab,
1676 &c->context[0],
1677 &c->sid[0]);
1678 if (rc)
1679 goto out;
1681 *sid = c->sid[0];
1682 } else {
1683 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
1684 if (rc) {
1685 *behavior = SECURITY_FS_USE_NONE;
1686 rc = 0;
1687 } else {
1688 *behavior = SECURITY_FS_USE_GENFS;
1692 out:
1693 POLICY_RDUNLOCK;
1694 return rc;
1697 int security_get_bools(int *len, char ***names, int **values)
1699 int i, rc = -ENOMEM;
1701 POLICY_RDLOCK;
1702 *names = NULL;
1703 *values = NULL;
1705 *len = policydb.p_bools.nprim;
1706 if (!*len) {
1707 rc = 0;
1708 goto out;
1711 *names = (char**)kmalloc(sizeof(char*) * *len, GFP_ATOMIC);
1712 if (!*names)
1713 goto err;
1714 memset(*names, 0, sizeof(char*) * *len);
1716 *values = (int*)kmalloc(sizeof(int) * *len, GFP_ATOMIC);
1717 if (!*values)
1718 goto err;
1720 for (i = 0; i < *len; i++) {
1721 size_t name_len;
1722 (*values)[i] = policydb.bool_val_to_struct[i]->state;
1723 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
1724 (*names)[i] = (char*)kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1725 if (!(*names)[i])
1726 goto err;
1727 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
1728 (*names)[i][name_len - 1] = 0;
1730 rc = 0;
1731 out:
1732 POLICY_RDUNLOCK;
1733 return rc;
1734 err:
1735 if (*names) {
1736 for (i = 0; i < *len; i++)
1737 kfree((*names)[i]);
1739 kfree(*values);
1740 goto out;
1744 int security_set_bools(int len, int *values)
1746 int i, rc = 0;
1747 int lenp, seqno = 0;
1748 struct cond_node *cur;
1750 POLICY_WRLOCK;
1752 lenp = policydb.p_bools.nprim;
1753 if (len != lenp) {
1754 rc = -EFAULT;
1755 goto out;
1758 printk(KERN_INFO "security: committed booleans { ");
1759 for (i = 0; i < len; i++) {
1760 if (values[i]) {
1761 policydb.bool_val_to_struct[i]->state = 1;
1762 } else {
1763 policydb.bool_val_to_struct[i]->state = 0;
1765 if (i != 0)
1766 printk(", ");
1767 printk("%s:%d", policydb.p_bool_val_to_name[i],
1768 policydb.bool_val_to_struct[i]->state);
1770 printk(" }\n");
1772 for (cur = policydb.cond_list; cur != NULL; cur = cur->next) {
1773 rc = evaluate_cond_node(&policydb, cur);
1774 if (rc)
1775 goto out;
1778 seqno = ++latest_granting;
1780 out:
1781 POLICY_WRUNLOCK;
1782 if (!rc) {
1783 avc_ss_reset(seqno);
1784 selnl_notify_policyload(seqno);
1786 return rc;
1789 int security_get_bool_value(int bool)
1791 int rc = 0;
1792 int len;
1794 POLICY_RDLOCK;
1796 len = policydb.p_bools.nprim;
1797 if (bool >= len) {
1798 rc = -EFAULT;
1799 goto out;
1802 rc = policydb.bool_val_to_struct[bool]->state;
1803 out:
1804 POLICY_RDUNLOCK;
1805 return rc;