ARM: mach-shmobile: mackerel: Add mackerel defconfig
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / um / kernel / process.c
blobfab4371184f6e49affeba13f3fc0965ec7f29727
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Licensed under the GPL
5 */
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <asm/current.h>
22 #include <asm/pgtable.h>
23 #include <asm/uaccess.h>
24 #include "as-layout.h"
25 #include "kern_util.h"
26 #include "os.h"
27 #include "skas.h"
28 #include "tlb.h"
31 * This is a per-cpu array. A processor only modifies its entry and it only
32 * cares about its entry, so it's OK if another processor is modifying its
33 * entry.
35 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
37 static inline int external_pid(void)
39 /* FIXME: Need to look up userspace_pid by cpu */
40 return userspace_pid[0];
43 int pid_to_processor_id(int pid)
45 int i;
47 for (i = 0; i < ncpus; i++) {
48 if (cpu_tasks[i].pid == pid)
49 return i;
51 return -1;
54 void free_stack(unsigned long stack, int order)
56 free_pages(stack, order);
59 unsigned long alloc_stack(int order, int atomic)
61 unsigned long page;
62 gfp_t flags = GFP_KERNEL;
64 if (atomic)
65 flags = GFP_ATOMIC;
66 page = __get_free_pages(flags, order);
68 return page;
71 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
73 int pid;
75 current->thread.request.u.thread.proc = fn;
76 current->thread.request.u.thread.arg = arg;
77 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
78 &current->thread.regs, 0, NULL, NULL);
79 return pid;
82 static inline void set_current(struct task_struct *task)
84 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
85 { external_pid(), task });
88 extern void arch_switch_to(struct task_struct *to);
90 void *_switch_to(void *prev, void *next, void *last)
92 struct task_struct *from = prev;
93 struct task_struct *to = next;
95 to->thread.prev_sched = from;
96 set_current(to);
98 do {
99 current->thread.saved_task = NULL;
101 switch_threads(&from->thread.switch_buf,
102 &to->thread.switch_buf);
104 arch_switch_to(current);
106 if (current->thread.saved_task)
107 show_regs(&(current->thread.regs));
108 to = current->thread.saved_task;
109 from = current;
110 } while (current->thread.saved_task);
112 return current->thread.prev_sched;
116 void interrupt_end(void)
118 if (need_resched())
119 schedule();
120 if (test_tsk_thread_flag(current, TIF_SIGPENDING))
121 do_signal();
124 void exit_thread(void)
128 void *get_current(void)
130 return current;
134 * This is called magically, by its address being stuffed in a jmp_buf
135 * and being longjmp-d to.
137 void new_thread_handler(void)
139 int (*fn)(void *), n;
140 void *arg;
142 if (current->thread.prev_sched != NULL)
143 schedule_tail(current->thread.prev_sched);
144 current->thread.prev_sched = NULL;
146 fn = current->thread.request.u.thread.proc;
147 arg = current->thread.request.u.thread.arg;
150 * The return value is 1 if the kernel thread execs a process,
151 * 0 if it just exits
153 n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
154 if (n == 1) {
155 /* Handle any immediate reschedules or signals */
156 interrupt_end();
157 userspace(&current->thread.regs.regs);
159 else do_exit(0);
162 /* Called magically, see new_thread_handler above */
163 void fork_handler(void)
165 force_flush_all();
167 schedule_tail(current->thread.prev_sched);
170 * XXX: if interrupt_end() calls schedule, this call to
171 * arch_switch_to isn't needed. We could want to apply this to
172 * improve performance. -bb
174 arch_switch_to(current);
176 current->thread.prev_sched = NULL;
178 /* Handle any immediate reschedules or signals */
179 interrupt_end();
181 userspace(&current->thread.regs.regs);
184 int copy_thread(unsigned long clone_flags, unsigned long sp,
185 unsigned long stack_top, struct task_struct * p,
186 struct pt_regs *regs)
188 void (*handler)(void);
189 int ret = 0;
191 p->thread = (struct thread_struct) INIT_THREAD;
193 if (current->thread.forking) {
194 memcpy(&p->thread.regs.regs, &regs->regs,
195 sizeof(p->thread.regs.regs));
196 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
197 if (sp != 0)
198 REGS_SP(p->thread.regs.regs.gp) = sp;
200 handler = fork_handler;
202 arch_copy_thread(&current->thread.arch, &p->thread.arch);
204 else {
205 get_safe_registers(p->thread.regs.regs.gp);
206 p->thread.request.u.thread = current->thread.request.u.thread;
207 handler = new_thread_handler;
210 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
212 if (current->thread.forking) {
213 clear_flushed_tls(p);
216 * Set a new TLS for the child thread?
218 if (clone_flags & CLONE_SETTLS)
219 ret = arch_copy_tls(p);
222 return ret;
225 void initial_thread_cb(void (*proc)(void *), void *arg)
227 int save_kmalloc_ok = kmalloc_ok;
229 kmalloc_ok = 0;
230 initial_thread_cb_skas(proc, arg);
231 kmalloc_ok = save_kmalloc_ok;
234 void default_idle(void)
236 unsigned long long nsecs;
238 while (1) {
239 /* endless idle loop with no priority at all */
242 * although we are an idle CPU, we do not want to
243 * get into the scheduler unnecessarily.
245 if (need_resched())
246 schedule();
248 tick_nohz_stop_sched_tick(1);
249 nsecs = disable_timer();
250 idle_sleep(nsecs);
251 tick_nohz_restart_sched_tick();
255 void cpu_idle(void)
257 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
258 default_idle();
261 int __cant_sleep(void) {
262 return in_atomic() || irqs_disabled() || in_interrupt();
263 /* Is in_interrupt() really needed? */
266 int user_context(unsigned long sp)
268 unsigned long stack;
270 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
271 return stack != (unsigned long) current_thread_info();
274 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
276 void do_uml_exitcalls(void)
278 exitcall_t *call;
280 call = &__uml_exitcall_end;
281 while (--call >= &__uml_exitcall_begin)
282 (*call)();
285 char *uml_strdup(const char *string)
287 return kstrdup(string, GFP_KERNEL);
290 int copy_to_user_proc(void __user *to, void *from, int size)
292 return copy_to_user(to, from, size);
295 int copy_from_user_proc(void *to, void __user *from, int size)
297 return copy_from_user(to, from, size);
300 int clear_user_proc(void __user *buf, int size)
302 return clear_user(buf, size);
305 int strlen_user_proc(char __user *str)
307 return strlen_user(str);
310 int smp_sigio_handler(void)
312 #ifdef CONFIG_SMP
313 int cpu = current_thread_info()->cpu;
314 IPI_handler(cpu);
315 if (cpu != 0)
316 return 1;
317 #endif
318 return 0;
321 int cpu(void)
323 return current_thread_info()->cpu;
326 static atomic_t using_sysemu = ATOMIC_INIT(0);
327 int sysemu_supported;
329 void set_using_sysemu(int value)
331 if (value > sysemu_supported)
332 return;
333 atomic_set(&using_sysemu, value);
336 int get_using_sysemu(void)
338 return atomic_read(&using_sysemu);
341 static int sysemu_proc_show(struct seq_file *m, void *v)
343 seq_printf(m, "%d\n", get_using_sysemu());
344 return 0;
347 static int sysemu_proc_open(struct inode *inode, struct file *file)
349 return single_open(file, sysemu_proc_show, NULL);
352 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
353 size_t count, loff_t *pos)
355 char tmp[2];
357 if (copy_from_user(tmp, buf, 1))
358 return -EFAULT;
360 if (tmp[0] >= '0' && tmp[0] <= '2')
361 set_using_sysemu(tmp[0] - '0');
362 /* We use the first char, but pretend to write everything */
363 return count;
366 static const struct file_operations sysemu_proc_fops = {
367 .owner = THIS_MODULE,
368 .open = sysemu_proc_open,
369 .read = seq_read,
370 .llseek = seq_lseek,
371 .release = single_release,
372 .write = sysemu_proc_write,
375 int __init make_proc_sysemu(void)
377 struct proc_dir_entry *ent;
378 if (!sysemu_supported)
379 return 0;
381 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
383 if (ent == NULL)
385 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
386 return 0;
389 return 0;
392 late_initcall(make_proc_sysemu);
394 int singlestepping(void * t)
396 struct task_struct *task = t ? t : current;
398 if (!(task->ptrace & PT_DTRACE))
399 return 0;
401 if (task->thread.singlestep_syscall)
402 return 1;
404 return 2;
408 * Only x86 and x86_64 have an arch_align_stack().
409 * All other arches have "#define arch_align_stack(x) (x)"
410 * in their asm/system.h
411 * As this is included in UML from asm-um/system-generic.h,
412 * we can use it to behave as the subarch does.
414 #ifndef arch_align_stack
415 unsigned long arch_align_stack(unsigned long sp)
417 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
418 sp -= get_random_int() % 8192;
419 return sp & ~0xf;
421 #endif
423 unsigned long get_wchan(struct task_struct *p)
425 unsigned long stack_page, sp, ip;
426 bool seen_sched = 0;
428 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
429 return 0;
431 stack_page = (unsigned long) task_stack_page(p);
432 /* Bail if the process has no kernel stack for some reason */
433 if (stack_page == 0)
434 return 0;
436 sp = p->thread.switch_buf->JB_SP;
438 * Bail if the stack pointer is below the bottom of the kernel
439 * stack for some reason
441 if (sp < stack_page)
442 return 0;
444 while (sp < stack_page + THREAD_SIZE) {
445 ip = *((unsigned long *) sp);
446 if (in_sched_functions(ip))
447 /* Ignore everything until we're above the scheduler */
448 seen_sched = 1;
449 else if (kernel_text_address(ip) && seen_sched)
450 return ip;
452 sp += sizeof(unsigned long);
455 return 0;
458 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
460 int cpu = current_thread_info()->cpu;
462 return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);