perf_counter: Standardize event names
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / perf_counter.h
blob887df88a9c2aef9101a84afc78df65d767aad5d5
1 /*
2 * Performance counters:
4 * Copyright(C) 2008, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008, Red Hat, Inc., Ingo Molnar
7 * Data type definitions, declarations, prototypes.
9 * Started by: Thomas Gleixner and Ingo Molnar
11 * For licencing details see kernel-base/COPYING
13 #ifndef _LINUX_PERF_COUNTER_H
14 #define _LINUX_PERF_COUNTER_H
16 #include <linux/types.h>
17 #include <linux/ioctl.h>
18 #include <asm/byteorder.h>
21 * User-space ABI bits:
25 * attr.type
27 enum perf_type_id {
28 PERF_TYPE_HARDWARE = 0,
29 PERF_TYPE_SOFTWARE = 1,
30 PERF_TYPE_TRACEPOINT = 2,
31 PERF_TYPE_HW_CACHE = 3,
32 PERF_TYPE_RAW = 4,
34 PERF_TYPE_MAX, /* non ABI */
38 * Generalized performance counter event types, used by the attr.event_id
39 * parameter of the sys_perf_counter_open() syscall:
41 enum perf_hw_id {
43 * Common hardware events, generalized by the kernel:
45 PERF_COUNT_HW_CPU_CYCLES = 0,
46 PERF_COUNT_HW_INSTRUCTIONS = 1,
47 PERF_COUNT_HW_CACHE_REFERENCES = 2,
48 PERF_COUNT_HW_CACHE_MISSES = 3,
49 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
50 PERF_COUNT_HW_BRANCH_MISSES = 5,
51 PERF_COUNT_HW_BUS_CYCLES = 6,
53 PERF_COUNT_HW_MAX, /* non ABI */
57 * Generalized hardware cache counters:
59 * { L1-D, L1-I, L2, LLC, ITLB, DTLB, BPU } x
60 * { read, write, prefetch } x
61 * { accesses, misses }
63 enum perf_hw_cache_id {
64 PERF_COUNT_HW_CACHE_L1D = 0,
65 PERF_COUNT_HW_CACHE_L1I = 1,
66 PERF_COUNT_HW_CACHE_L2 = 2,
67 PERF_COUNT_HW_CACHE_DTLB = 3,
68 PERF_COUNT_HW_CACHE_ITLB = 4,
69 PERF_COUNT_HW_CACHE_BPU = 5,
71 PERF_COUNT_HW_CACHE_MAX, /* non ABI */
74 enum perf_hw_cache_op_id {
75 PERF_COUNT_HW_CACHE_OP_READ = 0,
76 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
77 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
79 PERF_COUNT_HW_CACHE_OP_MAX, /* non ABI */
82 enum perf_hw_cache_op_result_id {
83 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
84 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
86 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non ABI */
90 * Special "software" counters provided by the kernel, even if the hardware
91 * does not support performance counters. These counters measure various
92 * physical and sw events of the kernel (and allow the profiling of them as
93 * well):
95 enum perf_sw_ids {
96 PERF_COUNT_SW_CPU_CLOCK = 0,
97 PERF_COUNT_SW_TASK_CLOCK = 1,
98 PERF_COUNT_SW_PAGE_FAULTS = 2,
99 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
100 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
101 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
102 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
104 PERF_COUNT_SW_MAX, /* non ABI */
108 * Bits that can be set in attr.sample_type to request information
109 * in the overflow packets.
111 enum perf_counter_sample_format {
112 PERF_SAMPLE_IP = 1U << 0,
113 PERF_SAMPLE_TID = 1U << 1,
114 PERF_SAMPLE_TIME = 1U << 2,
115 PERF_SAMPLE_ADDR = 1U << 3,
116 PERF_SAMPLE_GROUP = 1U << 4,
117 PERF_SAMPLE_CALLCHAIN = 1U << 5,
118 PERF_SAMPLE_ID = 1U << 6,
119 PERF_SAMPLE_CPU = 1U << 7,
120 PERF_SAMPLE_PERIOD = 1U << 8,
124 * Bits that can be set in attr.read_format to request that
125 * reads on the counter should return the indicated quantities,
126 * in increasing order of bit value, after the counter value.
128 enum perf_counter_read_format {
129 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
130 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
131 PERF_FORMAT_ID = 1U << 2,
135 * Hardware event to monitor via a performance monitoring counter:
137 struct perf_counter_attr {
139 * Major type: hardware/software/tracepoint/etc.
141 __u32 type;
142 __u32 __reserved_1;
145 * Type specific configuration information.
147 __u64 config;
149 union {
150 __u64 sample_period;
151 __u64 sample_freq;
154 __u64 sample_type;
155 __u64 read_format;
157 __u64 disabled : 1, /* off by default */
158 inherit : 1, /* children inherit it */
159 pinned : 1, /* must always be on PMU */
160 exclusive : 1, /* only group on PMU */
161 exclude_user : 1, /* don't count user */
162 exclude_kernel : 1, /* ditto kernel */
163 exclude_hv : 1, /* ditto hypervisor */
164 exclude_idle : 1, /* don't count when idle */
165 mmap : 1, /* include mmap data */
166 comm : 1, /* include comm data */
167 freq : 1, /* use freq, not period */
169 __reserved_2 : 53;
171 __u32 wakeup_events; /* wakeup every n events */
172 __u32 __reserved_3;
174 __u64 __reserved_4;
178 * Ioctls that can be done on a perf counter fd:
180 #define PERF_COUNTER_IOC_ENABLE _IO ('$', 0)
181 #define PERF_COUNTER_IOC_DISABLE _IO ('$', 1)
182 #define PERF_COUNTER_IOC_REFRESH _IO ('$', 2)
183 #define PERF_COUNTER_IOC_RESET _IO ('$', 3)
184 #define PERF_COUNTER_IOC_PERIOD _IOW('$', 4, u64)
186 enum perf_counter_ioc_flags {
187 PERF_IOC_FLAG_GROUP = 1U << 0,
191 * Structure of the page that can be mapped via mmap
193 struct perf_counter_mmap_page {
194 __u32 version; /* version number of this structure */
195 __u32 compat_version; /* lowest version this is compat with */
198 * Bits needed to read the hw counters in user-space.
200 * u32 seq;
201 * s64 count;
203 * do {
204 * seq = pc->lock;
206 * barrier()
207 * if (pc->index) {
208 * count = pmc_read(pc->index - 1);
209 * count += pc->offset;
210 * } else
211 * goto regular_read;
213 * barrier();
214 * } while (pc->lock != seq);
216 * NOTE: for obvious reason this only works on self-monitoring
217 * processes.
219 __u32 lock; /* seqlock for synchronization */
220 __u32 index; /* hardware counter identifier */
221 __s64 offset; /* add to hardware counter value */
224 * Control data for the mmap() data buffer.
226 * User-space reading this value should issue an rmb(), on SMP capable
227 * platforms, after reading this value -- see perf_counter_wakeup().
229 __u64 data_head; /* head in the data section */
232 #define PERF_EVENT_MISC_CPUMODE_MASK (3 << 0)
233 #define PERF_EVENT_MISC_CPUMODE_UNKNOWN (0 << 0)
234 #define PERF_EVENT_MISC_KERNEL (1 << 0)
235 #define PERF_EVENT_MISC_USER (2 << 0)
236 #define PERF_EVENT_MISC_HYPERVISOR (3 << 0)
237 #define PERF_EVENT_MISC_OVERFLOW (1 << 2)
239 struct perf_event_header {
240 __u32 type;
241 __u16 misc;
242 __u16 size;
245 enum perf_event_type {
248 * The MMAP events record the PROT_EXEC mappings so that we can
249 * correlate userspace IPs to code. They have the following structure:
251 * struct {
252 * struct perf_event_header header;
254 * u32 pid, tid;
255 * u64 addr;
256 * u64 len;
257 * u64 pgoff;
258 * char filename[];
259 * };
261 PERF_EVENT_MMAP = 1,
264 * struct {
265 * struct perf_event_header header;
267 * u32 pid, tid;
268 * char comm[];
269 * };
271 PERF_EVENT_COMM = 3,
274 * struct {
275 * struct perf_event_header header;
276 * u64 time;
277 * u64 id;
278 * u64 sample_period;
279 * };
281 PERF_EVENT_PERIOD = 4,
284 * struct {
285 * struct perf_event_header header;
286 * u64 time;
287 * };
289 PERF_EVENT_THROTTLE = 5,
290 PERF_EVENT_UNTHROTTLE = 6,
293 * struct {
294 * struct perf_event_header header;
295 * u32 pid, ppid;
296 * };
298 PERF_EVENT_FORK = 7,
301 * When header.misc & PERF_EVENT_MISC_OVERFLOW the event_type field
302 * will be PERF_RECORD_*
304 * struct {
305 * struct perf_event_header header;
307 * { u64 ip; } && PERF_RECORD_IP
308 * { u32 pid, tid; } && PERF_RECORD_TID
309 * { u64 time; } && PERF_RECORD_TIME
310 * { u64 addr; } && PERF_RECORD_ADDR
311 * { u64 config; } && PERF_RECORD_CONFIG
312 * { u32 cpu, res; } && PERF_RECORD_CPU
314 * { u64 nr;
315 * { u64 id, val; } cnt[nr]; } && PERF_RECORD_GROUP
317 * { u16 nr,
318 * hv,
319 * kernel,
320 * user;
321 * u64 ips[nr]; } && PERF_RECORD_CALLCHAIN
322 * };
326 #ifdef __KERNEL__
328 * Kernel-internal data types and definitions:
331 #ifdef CONFIG_PERF_COUNTERS
332 # include <asm/perf_counter.h>
333 #endif
335 #include <linux/list.h>
336 #include <linux/mutex.h>
337 #include <linux/rculist.h>
338 #include <linux/rcupdate.h>
339 #include <linux/spinlock.h>
340 #include <linux/hrtimer.h>
341 #include <linux/fs.h>
342 #include <linux/pid_namespace.h>
343 #include <asm/atomic.h>
345 struct task_struct;
348 * struct hw_perf_counter - performance counter hardware details:
350 struct hw_perf_counter {
351 #ifdef CONFIG_PERF_COUNTERS
352 union {
353 struct { /* hardware */
354 u64 config;
355 unsigned long config_base;
356 unsigned long counter_base;
357 int idx;
359 union { /* software */
360 atomic64_t count;
361 struct hrtimer hrtimer;
364 atomic64_t prev_count;
365 u64 sample_period;
366 u64 last_period;
367 atomic64_t period_left;
368 u64 interrupts;
370 u64 freq_count;
371 u64 freq_interrupts;
372 u64 freq_stamp;
373 #endif
376 struct perf_counter;
379 * struct pmu - generic performance monitoring unit
381 struct pmu {
382 int (*enable) (struct perf_counter *counter);
383 void (*disable) (struct perf_counter *counter);
384 void (*read) (struct perf_counter *counter);
385 void (*unthrottle) (struct perf_counter *counter);
389 * enum perf_counter_active_state - the states of a counter
391 enum perf_counter_active_state {
392 PERF_COUNTER_STATE_ERROR = -2,
393 PERF_COUNTER_STATE_OFF = -1,
394 PERF_COUNTER_STATE_INACTIVE = 0,
395 PERF_COUNTER_STATE_ACTIVE = 1,
398 struct file;
400 struct perf_mmap_data {
401 struct rcu_head rcu_head;
402 int nr_pages; /* nr of data pages */
403 int nr_locked; /* nr pages mlocked */
405 atomic_t poll; /* POLL_ for wakeups */
406 atomic_t events; /* event limit */
408 atomic_long_t head; /* write position */
409 atomic_long_t done_head; /* completed head */
411 atomic_t lock; /* concurrent writes */
413 atomic_t wakeup; /* needs a wakeup */
415 struct perf_counter_mmap_page *user_page;
416 void *data_pages[0];
419 struct perf_pending_entry {
420 struct perf_pending_entry *next;
421 void (*func)(struct perf_pending_entry *);
425 * struct perf_counter - performance counter kernel representation:
427 struct perf_counter {
428 #ifdef CONFIG_PERF_COUNTERS
429 struct list_head list_entry;
430 struct list_head event_entry;
431 struct list_head sibling_list;
432 int nr_siblings;
433 struct perf_counter *group_leader;
434 const struct pmu *pmu;
436 enum perf_counter_active_state state;
437 atomic64_t count;
440 * These are the total time in nanoseconds that the counter
441 * has been enabled (i.e. eligible to run, and the task has
442 * been scheduled in, if this is a per-task counter)
443 * and running (scheduled onto the CPU), respectively.
445 * They are computed from tstamp_enabled, tstamp_running and
446 * tstamp_stopped when the counter is in INACTIVE or ACTIVE state.
448 u64 total_time_enabled;
449 u64 total_time_running;
452 * These are timestamps used for computing total_time_enabled
453 * and total_time_running when the counter is in INACTIVE or
454 * ACTIVE state, measured in nanoseconds from an arbitrary point
455 * in time.
456 * tstamp_enabled: the notional time when the counter was enabled
457 * tstamp_running: the notional time when the counter was scheduled on
458 * tstamp_stopped: in INACTIVE state, the notional time when the
459 * counter was scheduled off.
461 u64 tstamp_enabled;
462 u64 tstamp_running;
463 u64 tstamp_stopped;
465 struct perf_counter_attr attr;
466 struct hw_perf_counter hw;
468 struct perf_counter_context *ctx;
469 struct file *filp;
472 * These accumulate total time (in nanoseconds) that children
473 * counters have been enabled and running, respectively.
475 atomic64_t child_total_time_enabled;
476 atomic64_t child_total_time_running;
479 * Protect attach/detach and child_list:
481 struct mutex child_mutex;
482 struct list_head child_list;
483 struct perf_counter *parent;
485 int oncpu;
486 int cpu;
488 struct list_head owner_entry;
489 struct task_struct *owner;
491 /* mmap bits */
492 struct mutex mmap_mutex;
493 atomic_t mmap_count;
494 struct perf_mmap_data *data;
496 /* poll related */
497 wait_queue_head_t waitq;
498 struct fasync_struct *fasync;
500 /* delayed work for NMIs and such */
501 int pending_wakeup;
502 int pending_kill;
503 int pending_disable;
504 struct perf_pending_entry pending;
506 atomic_t event_limit;
508 void (*destroy)(struct perf_counter *);
509 struct rcu_head rcu_head;
511 struct pid_namespace *ns;
512 u64 id;
513 #endif
517 * struct perf_counter_context - counter context structure
519 * Used as a container for task counters and CPU counters as well:
521 struct perf_counter_context {
523 * Protect the states of the counters in the list,
524 * nr_active, and the list:
526 spinlock_t lock;
528 * Protect the list of counters. Locking either mutex or lock
529 * is sufficient to ensure the list doesn't change; to change
530 * the list you need to lock both the mutex and the spinlock.
532 struct mutex mutex;
534 struct list_head counter_list;
535 struct list_head event_list;
536 int nr_counters;
537 int nr_active;
538 int is_active;
539 atomic_t refcount;
540 struct task_struct *task;
543 * Context clock, runs when context enabled.
545 u64 time;
546 u64 timestamp;
549 * These fields let us detect when two contexts have both
550 * been cloned (inherited) from a common ancestor.
552 struct perf_counter_context *parent_ctx;
553 u64 parent_gen;
554 u64 generation;
555 int pin_count;
556 struct rcu_head rcu_head;
560 * struct perf_counter_cpu_context - per cpu counter context structure
562 struct perf_cpu_context {
563 struct perf_counter_context ctx;
564 struct perf_counter_context *task_ctx;
565 int active_oncpu;
566 int max_pertask;
567 int exclusive;
570 * Recursion avoidance:
572 * task, softirq, irq, nmi context
574 int recursion[4];
577 #ifdef CONFIG_PERF_COUNTERS
580 * Set by architecture code:
582 extern int perf_max_counters;
584 extern const struct pmu *hw_perf_counter_init(struct perf_counter *counter);
586 extern void perf_counter_task_sched_in(struct task_struct *task, int cpu);
587 extern void perf_counter_task_sched_out(struct task_struct *task,
588 struct task_struct *next, int cpu);
589 extern void perf_counter_task_tick(struct task_struct *task, int cpu);
590 extern int perf_counter_init_task(struct task_struct *child);
591 extern void perf_counter_exit_task(struct task_struct *child);
592 extern void perf_counter_free_task(struct task_struct *task);
593 extern void perf_counter_do_pending(void);
594 extern void perf_counter_print_debug(void);
595 extern void __perf_disable(void);
596 extern bool __perf_enable(void);
597 extern void perf_disable(void);
598 extern void perf_enable(void);
599 extern int perf_counter_task_disable(void);
600 extern int perf_counter_task_enable(void);
601 extern int hw_perf_group_sched_in(struct perf_counter *group_leader,
602 struct perf_cpu_context *cpuctx,
603 struct perf_counter_context *ctx, int cpu);
604 extern void perf_counter_update_userpage(struct perf_counter *counter);
606 struct perf_sample_data {
607 struct pt_regs *regs;
608 u64 addr;
609 u64 period;
612 extern int perf_counter_overflow(struct perf_counter *counter, int nmi,
613 struct perf_sample_data *data);
616 * Return 1 for a software counter, 0 for a hardware counter
618 static inline int is_software_counter(struct perf_counter *counter)
620 return (counter->attr.type != PERF_TYPE_RAW) &&
621 (counter->attr.type != PERF_TYPE_HARDWARE);
624 extern void perf_swcounter_event(u32, u64, int, struct pt_regs *, u64);
626 extern void __perf_counter_mmap(struct vm_area_struct *vma);
628 static inline void perf_counter_mmap(struct vm_area_struct *vma)
630 if (vma->vm_flags & VM_EXEC)
631 __perf_counter_mmap(vma);
634 extern void perf_counter_comm(struct task_struct *tsk);
635 extern void perf_counter_fork(struct task_struct *tsk);
637 extern void perf_counter_task_migration(struct task_struct *task, int cpu);
639 #define MAX_STACK_DEPTH 255
641 struct perf_callchain_entry {
642 u16 nr, hv, kernel, user;
643 u64 ip[MAX_STACK_DEPTH];
646 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
648 extern int sysctl_perf_counter_paranoid;
649 extern int sysctl_perf_counter_mlock;
650 extern int sysctl_perf_counter_sample_rate;
652 extern void perf_counter_init(void);
654 #ifndef perf_misc_flags
655 #define perf_misc_flags(regs) (user_mode(regs) ? PERF_EVENT_MISC_USER : \
656 PERF_EVENT_MISC_KERNEL)
657 #define perf_instruction_pointer(regs) instruction_pointer(regs)
658 #endif
660 #else
661 static inline void
662 perf_counter_task_sched_in(struct task_struct *task, int cpu) { }
663 static inline void
664 perf_counter_task_sched_out(struct task_struct *task,
665 struct task_struct *next, int cpu) { }
666 static inline void
667 perf_counter_task_tick(struct task_struct *task, int cpu) { }
668 static inline int perf_counter_init_task(struct task_struct *child) { return 0; }
669 static inline void perf_counter_exit_task(struct task_struct *child) { }
670 static inline void perf_counter_free_task(struct task_struct *task) { }
671 static inline void perf_counter_do_pending(void) { }
672 static inline void perf_counter_print_debug(void) { }
673 static inline void perf_disable(void) { }
674 static inline void perf_enable(void) { }
675 static inline int perf_counter_task_disable(void) { return -EINVAL; }
676 static inline int perf_counter_task_enable(void) { return -EINVAL; }
678 static inline void
679 perf_swcounter_event(u32 event, u64 nr, int nmi,
680 struct pt_regs *regs, u64 addr) { }
682 static inline void perf_counter_mmap(struct vm_area_struct *vma) { }
683 static inline void perf_counter_comm(struct task_struct *tsk) { }
684 static inline void perf_counter_fork(struct task_struct *tsk) { }
685 static inline void perf_counter_init(void) { }
686 static inline void perf_counter_task_migration(struct task_struct *task,
687 int cpu) { }
688 #endif
690 #endif /* __KERNEL__ */
691 #endif /* _LINUX_PERF_COUNTER_H */