3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/mempolicy.h>
110 #include <linux/mutex.h>
111 #include <linux/fault-inject.h>
112 #include <linux/rtmutex.h>
113 #include <linux/reciprocal_div.h>
114 #include <linux/debugobjects.h>
116 #include <asm/cacheflush.h>
117 #include <asm/tlbflush.h>
118 #include <asm/page.h>
121 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
122 * 0 for faster, smaller code (especially in the critical paths).
124 * STATS - 1 to collect stats for /proc/slabinfo.
125 * 0 for faster, smaller code (especially in the critical paths).
127 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
130 #ifdef CONFIG_DEBUG_SLAB
133 #define FORCED_DEBUG 1
137 #define FORCED_DEBUG 0
140 /* Shouldn't this be in a header file somewhere? */
141 #define BYTES_PER_WORD sizeof(void *)
142 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
144 #ifndef ARCH_KMALLOC_MINALIGN
146 * Enforce a minimum alignment for the kmalloc caches.
147 * Usually, the kmalloc caches are cache_line_size() aligned, except when
148 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
150 * alignment larger than the alignment of a 64-bit integer.
151 * ARCH_KMALLOC_MINALIGN allows that.
152 * Note that increasing this value may disable some debug features.
154 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
157 #ifndef ARCH_SLAB_MINALIGN
159 * Enforce a minimum alignment for all caches.
160 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
161 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
162 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
163 * some debug features.
165 #define ARCH_SLAB_MINALIGN 0
168 #ifndef ARCH_KMALLOC_FLAGS
169 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172 /* Legal flag mask for kmem_cache_create(). */
174 # define CREATE_MASK (SLAB_RED_ZONE | \
175 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
178 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
182 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
192 * Bufctl's are used for linking objs within a slab
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 typedef unsigned int kmem_bufctl_t
;
209 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
211 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 struct list_head list
;
223 unsigned long colouroff
;
224 void *s_mem
; /* including colour offset */
225 unsigned int inuse
; /* num of objs active in slab */
227 unsigned short nodeid
;
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
244 * We assume struct slab_rcu can overlay struct slab when destroying.
247 struct rcu_head head
;
248 struct kmem_cache
*cachep
;
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
260 * The limit is stored in the per-cpu structure to reduce the data cache
267 unsigned int batchcount
;
268 unsigned int touched
;
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init
{
283 struct array_cache cache
;
284 void *entries
[BOOT_CPUCACHE_ENTRIES
];
288 * The slab lists for all objects.
291 struct list_head slabs_partial
; /* partial list first, better asm code */
292 struct list_head slabs_full
;
293 struct list_head slabs_free
;
294 unsigned long free_objects
;
295 unsigned int free_limit
;
296 unsigned int colour_next
; /* Per-node cache coloring */
297 spinlock_t list_lock
;
298 struct array_cache
*shared
; /* shared per node */
299 struct array_cache
**alien
; /* on other nodes */
300 unsigned long next_reap
; /* updated without locking */
301 int free_touched
; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
309 #define CACHE_CACHE 0
310 #define SIZE_AC MAX_NUMNODES
311 #define SIZE_L3 (2 * MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache
*cache
,
314 struct kmem_list3
*l3
, int tofree
);
315 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
317 static int enable_cpucache(struct kmem_cache
*cachep
);
318 static void cache_reap(struct work_struct
*unused
);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline
int index_of(const size_t size
)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size
)) {
336 #include <linux/kmalloc_sizes.h>
344 static int slab_early_init
= 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3
*parent
)
351 INIT_LIST_HEAD(&parent
->slabs_full
);
352 INIT_LIST_HEAD(&parent
->slabs_partial
);
353 INIT_LIST_HEAD(&parent
->slabs_free
);
354 parent
->shared
= NULL
;
355 parent
->alien
= NULL
;
356 parent
->colour_next
= 0;
357 spin_lock_init(&parent
->list_lock
);
358 parent
->free_objects
= 0;
359 parent
->free_touched
= 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
382 /* 1) per-cpu data, touched during every alloc/free */
383 struct array_cache
*array
[NR_CPUS
];
384 /* 2) Cache tunables. Protected by cache_chain_mutex */
385 unsigned int batchcount
;
389 unsigned int buffer_size
;
390 u32 reciprocal_buffer_size
;
391 /* 3) touched by every alloc & free from the backend */
393 unsigned int flags
; /* constant flags */
394 unsigned int num
; /* # of objs per slab */
396 /* 4) cache_grow/shrink */
397 /* order of pgs per slab (2^n) */
398 unsigned int gfporder
;
400 /* force GFP flags, e.g. GFP_DMA */
403 size_t colour
; /* cache colouring range */
404 unsigned int colour_off
; /* colour offset */
405 struct kmem_cache
*slabp_cache
;
406 unsigned int slab_size
;
407 unsigned int dflags
; /* dynamic flags */
409 /* constructor func */
410 void (*ctor
)(void *obj
);
412 /* 5) cache creation/removal */
414 struct list_head next
;
418 unsigned long num_active
;
419 unsigned long num_allocations
;
420 unsigned long high_mark
;
422 unsigned long reaped
;
423 unsigned long errors
;
424 unsigned long max_freeable
;
425 unsigned long node_allocs
;
426 unsigned long node_frees
;
427 unsigned long node_overflow
;
435 * If debugging is enabled, then the allocator can add additional
436 * fields and/or padding to every object. buffer_size contains the total
437 * object size including these internal fields, the following two
438 * variables contain the offset to the user object and its size.
444 * We put nodelists[] at the end of kmem_cache, because we want to size
445 * this array to nr_node_ids slots instead of MAX_NUMNODES
446 * (see kmem_cache_init())
447 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
448 * is statically defined, so we reserve the max number of nodes.
450 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
452 * Do not add fields after nodelists[]
456 #define CFLGS_OFF_SLAB (0x80000000UL)
457 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
459 #define BATCHREFILL_LIMIT 16
461 * Optimization question: fewer reaps means less probability for unnessary
462 * cpucache drain/refill cycles.
464 * OTOH the cpuarrays can contain lots of objects,
465 * which could lock up otherwise freeable slabs.
467 #define REAPTIMEOUT_CPUC (2*HZ)
468 #define REAPTIMEOUT_LIST3 (4*HZ)
471 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
472 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
473 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
474 #define STATS_INC_GROWN(x) ((x)->grown++)
475 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
476 #define STATS_SET_HIGH(x) \
478 if ((x)->num_active > (x)->high_mark) \
479 (x)->high_mark = (x)->num_active; \
481 #define STATS_INC_ERR(x) ((x)->errors++)
482 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
483 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
484 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
485 #define STATS_SET_FREEABLE(x, i) \
487 if ((x)->max_freeable < i) \
488 (x)->max_freeable = i; \
490 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
491 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
492 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
493 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
495 #define STATS_INC_ACTIVE(x) do { } while (0)
496 #define STATS_DEC_ACTIVE(x) do { } while (0)
497 #define STATS_INC_ALLOCED(x) do { } while (0)
498 #define STATS_INC_GROWN(x) do { } while (0)
499 #define STATS_ADD_REAPED(x,y) do { } while (0)
500 #define STATS_SET_HIGH(x) do { } while (0)
501 #define STATS_INC_ERR(x) do { } while (0)
502 #define STATS_INC_NODEALLOCS(x) do { } while (0)
503 #define STATS_INC_NODEFREES(x) do { } while (0)
504 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
505 #define STATS_SET_FREEABLE(x, i) do { } while (0)
506 #define STATS_INC_ALLOCHIT(x) do { } while (0)
507 #define STATS_INC_ALLOCMISS(x) do { } while (0)
508 #define STATS_INC_FREEHIT(x) do { } while (0)
509 #define STATS_INC_FREEMISS(x) do { } while (0)
515 * memory layout of objects:
517 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
518 * the end of an object is aligned with the end of the real
519 * allocation. Catches writes behind the end of the allocation.
520 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
522 * cachep->obj_offset: The real object.
523 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
524 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
525 * [BYTES_PER_WORD long]
527 static int obj_offset(struct kmem_cache
*cachep
)
529 return cachep
->obj_offset
;
532 static int obj_size(struct kmem_cache
*cachep
)
534 return cachep
->obj_size
;
537 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
539 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
540 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
541 sizeof(unsigned long long));
544 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
546 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
547 if (cachep
->flags
& SLAB_STORE_USER
)
548 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
549 sizeof(unsigned long long) -
551 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
552 sizeof(unsigned long long));
555 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
557 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
558 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
563 #define obj_offset(x) 0
564 #define obj_size(cachep) (cachep->buffer_size)
565 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
566 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
572 * Do not go above this order unless 0 objects fit into the slab.
574 #define BREAK_GFP_ORDER_HI 1
575 #define BREAK_GFP_ORDER_LO 0
576 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
579 * Functions for storing/retrieving the cachep and or slab from the page
580 * allocator. These are used to find the slab an obj belongs to. With kfree(),
581 * these are used to find the cache which an obj belongs to.
583 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
585 page
->lru
.next
= (struct list_head
*)cache
;
588 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
590 page
= compound_head(page
);
591 BUG_ON(!PageSlab(page
));
592 return (struct kmem_cache
*)page
->lru
.next
;
595 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
597 page
->lru
.prev
= (struct list_head
*)slab
;
600 static inline struct slab
*page_get_slab(struct page
*page
)
602 BUG_ON(!PageSlab(page
));
603 return (struct slab
*)page
->lru
.prev
;
606 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
608 struct page
*page
= virt_to_head_page(obj
);
609 return page_get_cache(page
);
612 static inline struct slab
*virt_to_slab(const void *obj
)
614 struct page
*page
= virt_to_head_page(obj
);
615 return page_get_slab(page
);
618 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
621 return slab
->s_mem
+ cache
->buffer_size
* idx
;
625 * We want to avoid an expensive divide : (offset / cache->buffer_size)
626 * Using the fact that buffer_size is a constant for a particular cache,
627 * we can replace (offset / cache->buffer_size) by
628 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
630 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
631 const struct slab
*slab
, void *obj
)
633 u32 offset
= (obj
- slab
->s_mem
);
634 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
638 * These are the default caches for kmalloc. Custom caches can have other sizes.
640 struct cache_sizes malloc_sizes
[] = {
641 #define CACHE(x) { .cs_size = (x) },
642 #include <linux/kmalloc_sizes.h>
646 EXPORT_SYMBOL(malloc_sizes
);
648 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
654 static struct cache_names __initdata cache_names
[] = {
655 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
656 #include <linux/kmalloc_sizes.h>
661 static struct arraycache_init initarray_cache __initdata
=
662 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
663 static struct arraycache_init initarray_generic
=
664 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
666 /* internal cache of cache description objs */
667 static struct kmem_cache cache_cache
= {
669 .limit
= BOOT_CPUCACHE_ENTRIES
,
671 .buffer_size
= sizeof(struct kmem_cache
),
672 .name
= "kmem_cache",
675 #define BAD_ALIEN_MAGIC 0x01020304ul
677 #ifdef CONFIG_LOCKDEP
680 * Slab sometimes uses the kmalloc slabs to store the slab headers
681 * for other slabs "off slab".
682 * The locking for this is tricky in that it nests within the locks
683 * of all other slabs in a few places; to deal with this special
684 * locking we put on-slab caches into a separate lock-class.
686 * We set lock class for alien array caches which are up during init.
687 * The lock annotation will be lost if all cpus of a node goes down and
688 * then comes back up during hotplug
690 static struct lock_class_key on_slab_l3_key
;
691 static struct lock_class_key on_slab_alc_key
;
693 static inline void init_lock_keys(void)
697 struct cache_sizes
*s
= malloc_sizes
;
699 while (s
->cs_size
!= ULONG_MAX
) {
701 struct array_cache
**alc
;
703 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
704 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
706 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
709 * FIXME: This check for BAD_ALIEN_MAGIC
710 * should go away when common slab code is taught to
711 * work even without alien caches.
712 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
713 * for alloc_alien_cache,
715 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
719 lockdep_set_class(&alc
[r
]->lock
,
727 static inline void init_lock_keys(void)
733 * Guard access to the cache-chain.
735 static DEFINE_MUTEX(cache_chain_mutex
);
736 static struct list_head cache_chain
;
739 * chicken and egg problem: delay the per-cpu array allocation
740 * until the general caches are up.
750 * used by boot code to determine if it can use slab based allocator
752 int slab_is_available(void)
754 return g_cpucache_up
== FULL
;
757 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
759 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
761 return cachep
->array
[smp_processor_id()];
764 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
767 struct cache_sizes
*csizep
= malloc_sizes
;
770 /* This happens if someone tries to call
771 * kmem_cache_create(), or __kmalloc(), before
772 * the generic caches are initialized.
774 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
777 return ZERO_SIZE_PTR
;
779 while (size
> csizep
->cs_size
)
783 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
784 * has cs_{dma,}cachep==NULL. Thus no special case
785 * for large kmalloc calls required.
787 #ifdef CONFIG_ZONE_DMA
788 if (unlikely(gfpflags
& GFP_DMA
))
789 return csizep
->cs_dmacachep
;
791 return csizep
->cs_cachep
;
794 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
796 return __find_general_cachep(size
, gfpflags
);
799 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
801 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
805 * Calculate the number of objects and left-over bytes for a given buffer size.
807 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
808 size_t align
, int flags
, size_t *left_over
,
813 size_t slab_size
= PAGE_SIZE
<< gfporder
;
816 * The slab management structure can be either off the slab or
817 * on it. For the latter case, the memory allocated for a
821 * - One kmem_bufctl_t for each object
822 * - Padding to respect alignment of @align
823 * - @buffer_size bytes for each object
825 * If the slab management structure is off the slab, then the
826 * alignment will already be calculated into the size. Because
827 * the slabs are all pages aligned, the objects will be at the
828 * correct alignment when allocated.
830 if (flags
& CFLGS_OFF_SLAB
) {
832 nr_objs
= slab_size
/ buffer_size
;
834 if (nr_objs
> SLAB_LIMIT
)
835 nr_objs
= SLAB_LIMIT
;
838 * Ignore padding for the initial guess. The padding
839 * is at most @align-1 bytes, and @buffer_size is at
840 * least @align. In the worst case, this result will
841 * be one greater than the number of objects that fit
842 * into the memory allocation when taking the padding
845 nr_objs
= (slab_size
- sizeof(struct slab
)) /
846 (buffer_size
+ sizeof(kmem_bufctl_t
));
849 * This calculated number will be either the right
850 * amount, or one greater than what we want.
852 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
856 if (nr_objs
> SLAB_LIMIT
)
857 nr_objs
= SLAB_LIMIT
;
859 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
862 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
865 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
867 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
870 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
871 function
, cachep
->name
, msg
);
876 * By default on NUMA we use alien caches to stage the freeing of
877 * objects allocated from other nodes. This causes massive memory
878 * inefficiencies when using fake NUMA setup to split memory into a
879 * large number of small nodes, so it can be disabled on the command
883 static int use_alien_caches __read_mostly
= 1;
884 static int numa_platform __read_mostly
= 1;
885 static int __init
noaliencache_setup(char *s
)
887 use_alien_caches
= 0;
890 __setup("noaliencache", noaliencache_setup
);
894 * Special reaping functions for NUMA systems called from cache_reap().
895 * These take care of doing round robin flushing of alien caches (containing
896 * objects freed on different nodes from which they were allocated) and the
897 * flushing of remote pcps by calling drain_node_pages.
899 static DEFINE_PER_CPU(unsigned long, reap_node
);
901 static void init_reap_node(int cpu
)
905 node
= next_node(cpu_to_node(cpu
), node_online_map
);
906 if (node
== MAX_NUMNODES
)
907 node
= first_node(node_online_map
);
909 per_cpu(reap_node
, cpu
) = node
;
912 static void next_reap_node(void)
914 int node
= __get_cpu_var(reap_node
);
916 node
= next_node(node
, node_online_map
);
917 if (unlikely(node
>= MAX_NUMNODES
))
918 node
= first_node(node_online_map
);
919 __get_cpu_var(reap_node
) = node
;
923 #define init_reap_node(cpu) do { } while (0)
924 #define next_reap_node(void) do { } while (0)
928 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
929 * via the workqueue/eventd.
930 * Add the CPU number into the expiration time to minimize the possibility of
931 * the CPUs getting into lockstep and contending for the global cache chain
934 static void __cpuinit
start_cpu_timer(int cpu
)
936 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
939 * When this gets called from do_initcalls via cpucache_init(),
940 * init_workqueues() has already run, so keventd will be setup
943 if (keventd_up() && reap_work
->work
.func
== NULL
) {
945 INIT_DELAYED_WORK(reap_work
, cache_reap
);
946 schedule_delayed_work_on(cpu
, reap_work
,
947 __round_jiffies_relative(HZ
, cpu
));
951 static struct array_cache
*alloc_arraycache(int node
, int entries
,
954 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
955 struct array_cache
*nc
= NULL
;
957 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
961 nc
->batchcount
= batchcount
;
963 spin_lock_init(&nc
->lock
);
969 * Transfer objects in one arraycache to another.
970 * Locking must be handled by the caller.
972 * Return the number of entries transferred.
974 static int transfer_objects(struct array_cache
*to
,
975 struct array_cache
*from
, unsigned int max
)
977 /* Figure out how many entries to transfer */
978 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
983 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
994 #define drain_alien_cache(cachep, alien) do { } while (0)
995 #define reap_alien(cachep, l3) do { } while (0)
997 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
999 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1002 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1006 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1011 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1017 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1018 gfp_t flags
, int nodeid
)
1023 #else /* CONFIG_NUMA */
1025 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1026 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1028 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1030 struct array_cache
**ac_ptr
;
1031 int memsize
= sizeof(void *) * nr_node_ids
;
1036 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1039 if (i
== node
|| !node_online(i
)) {
1043 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1045 for (i
--; i
>= 0; i
--)
1055 static void free_alien_cache(struct array_cache
**ac_ptr
)
1066 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1067 struct array_cache
*ac
, int node
)
1069 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1072 spin_lock(&rl3
->list_lock
);
1074 * Stuff objects into the remote nodes shared array first.
1075 * That way we could avoid the overhead of putting the objects
1076 * into the free lists and getting them back later.
1079 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1081 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1083 spin_unlock(&rl3
->list_lock
);
1088 * Called from cache_reap() to regularly drain alien caches round robin.
1090 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1092 int node
= __get_cpu_var(reap_node
);
1095 struct array_cache
*ac
= l3
->alien
[node
];
1097 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1098 __drain_alien_cache(cachep
, ac
, node
);
1099 spin_unlock_irq(&ac
->lock
);
1104 static void drain_alien_cache(struct kmem_cache
*cachep
,
1105 struct array_cache
**alien
)
1108 struct array_cache
*ac
;
1109 unsigned long flags
;
1111 for_each_online_node(i
) {
1114 spin_lock_irqsave(&ac
->lock
, flags
);
1115 __drain_alien_cache(cachep
, ac
, i
);
1116 spin_unlock_irqrestore(&ac
->lock
, flags
);
1121 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1123 struct slab
*slabp
= virt_to_slab(objp
);
1124 int nodeid
= slabp
->nodeid
;
1125 struct kmem_list3
*l3
;
1126 struct array_cache
*alien
= NULL
;
1129 node
= numa_node_id();
1132 * Make sure we are not freeing a object from another node to the array
1133 * cache on this cpu.
1135 if (likely(slabp
->nodeid
== node
))
1138 l3
= cachep
->nodelists
[node
];
1139 STATS_INC_NODEFREES(cachep
);
1140 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1141 alien
= l3
->alien
[nodeid
];
1142 spin_lock(&alien
->lock
);
1143 if (unlikely(alien
->avail
== alien
->limit
)) {
1144 STATS_INC_ACOVERFLOW(cachep
);
1145 __drain_alien_cache(cachep
, alien
, nodeid
);
1147 alien
->entry
[alien
->avail
++] = objp
;
1148 spin_unlock(&alien
->lock
);
1150 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1151 free_block(cachep
, &objp
, 1, nodeid
);
1152 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1158 static void __cpuinit
cpuup_canceled(long cpu
)
1160 struct kmem_cache
*cachep
;
1161 struct kmem_list3
*l3
= NULL
;
1162 int node
= cpu_to_node(cpu
);
1163 node_to_cpumask_ptr(mask
, node
);
1165 list_for_each_entry(cachep
, &cache_chain
, next
) {
1166 struct array_cache
*nc
;
1167 struct array_cache
*shared
;
1168 struct array_cache
**alien
;
1170 /* cpu is dead; no one can alloc from it. */
1171 nc
= cachep
->array
[cpu
];
1172 cachep
->array
[cpu
] = NULL
;
1173 l3
= cachep
->nodelists
[node
];
1176 goto free_array_cache
;
1178 spin_lock_irq(&l3
->list_lock
);
1180 /* Free limit for this kmem_list3 */
1181 l3
->free_limit
-= cachep
->batchcount
;
1183 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1185 if (!cpus_empty(*mask
)) {
1186 spin_unlock_irq(&l3
->list_lock
);
1187 goto free_array_cache
;
1190 shared
= l3
->shared
;
1192 free_block(cachep
, shared
->entry
,
1193 shared
->avail
, node
);
1200 spin_unlock_irq(&l3
->list_lock
);
1204 drain_alien_cache(cachep
, alien
);
1205 free_alien_cache(alien
);
1211 * In the previous loop, all the objects were freed to
1212 * the respective cache's slabs, now we can go ahead and
1213 * shrink each nodelist to its limit.
1215 list_for_each_entry(cachep
, &cache_chain
, next
) {
1216 l3
= cachep
->nodelists
[node
];
1219 drain_freelist(cachep
, l3
, l3
->free_objects
);
1223 static int __cpuinit
cpuup_prepare(long cpu
)
1225 struct kmem_cache
*cachep
;
1226 struct kmem_list3
*l3
= NULL
;
1227 int node
= cpu_to_node(cpu
);
1228 const int memsize
= sizeof(struct kmem_list3
);
1231 * We need to do this right in the beginning since
1232 * alloc_arraycache's are going to use this list.
1233 * kmalloc_node allows us to add the slab to the right
1234 * kmem_list3 and not this cpu's kmem_list3
1237 list_for_each_entry(cachep
, &cache_chain
, next
) {
1239 * Set up the size64 kmemlist for cpu before we can
1240 * begin anything. Make sure some other cpu on this
1241 * node has not already allocated this
1243 if (!cachep
->nodelists
[node
]) {
1244 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1247 kmem_list3_init(l3
);
1248 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1249 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1252 * The l3s don't come and go as CPUs come and
1253 * go. cache_chain_mutex is sufficient
1256 cachep
->nodelists
[node
] = l3
;
1259 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1260 cachep
->nodelists
[node
]->free_limit
=
1261 (1 + nr_cpus_node(node
)) *
1262 cachep
->batchcount
+ cachep
->num
;
1263 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1267 * Now we can go ahead with allocating the shared arrays and
1270 list_for_each_entry(cachep
, &cache_chain
, next
) {
1271 struct array_cache
*nc
;
1272 struct array_cache
*shared
= NULL
;
1273 struct array_cache
**alien
= NULL
;
1275 nc
= alloc_arraycache(node
, cachep
->limit
,
1276 cachep
->batchcount
);
1279 if (cachep
->shared
) {
1280 shared
= alloc_arraycache(node
,
1281 cachep
->shared
* cachep
->batchcount
,
1288 if (use_alien_caches
) {
1289 alien
= alloc_alien_cache(node
, cachep
->limit
);
1296 cachep
->array
[cpu
] = nc
;
1297 l3
= cachep
->nodelists
[node
];
1300 spin_lock_irq(&l3
->list_lock
);
1303 * We are serialised from CPU_DEAD or
1304 * CPU_UP_CANCELLED by the cpucontrol lock
1306 l3
->shared
= shared
;
1315 spin_unlock_irq(&l3
->list_lock
);
1317 free_alien_cache(alien
);
1321 cpuup_canceled(cpu
);
1325 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1326 unsigned long action
, void *hcpu
)
1328 long cpu
= (long)hcpu
;
1332 case CPU_UP_PREPARE
:
1333 case CPU_UP_PREPARE_FROZEN
:
1334 mutex_lock(&cache_chain_mutex
);
1335 err
= cpuup_prepare(cpu
);
1336 mutex_unlock(&cache_chain_mutex
);
1339 case CPU_ONLINE_FROZEN
:
1340 start_cpu_timer(cpu
);
1342 #ifdef CONFIG_HOTPLUG_CPU
1343 case CPU_DOWN_PREPARE
:
1344 case CPU_DOWN_PREPARE_FROZEN
:
1346 * Shutdown cache reaper. Note that the cache_chain_mutex is
1347 * held so that if cache_reap() is invoked it cannot do
1348 * anything expensive but will only modify reap_work
1349 * and reschedule the timer.
1351 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1352 /* Now the cache_reaper is guaranteed to be not running. */
1353 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1355 case CPU_DOWN_FAILED
:
1356 case CPU_DOWN_FAILED_FROZEN
:
1357 start_cpu_timer(cpu
);
1360 case CPU_DEAD_FROZEN
:
1362 * Even if all the cpus of a node are down, we don't free the
1363 * kmem_list3 of any cache. This to avoid a race between
1364 * cpu_down, and a kmalloc allocation from another cpu for
1365 * memory from the node of the cpu going down. The list3
1366 * structure is usually allocated from kmem_cache_create() and
1367 * gets destroyed at kmem_cache_destroy().
1371 case CPU_UP_CANCELED
:
1372 case CPU_UP_CANCELED_FROZEN
:
1373 mutex_lock(&cache_chain_mutex
);
1374 cpuup_canceled(cpu
);
1375 mutex_unlock(&cache_chain_mutex
);
1378 return err
? NOTIFY_BAD
: NOTIFY_OK
;
1381 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1382 &cpuup_callback
, NULL
, 0
1386 * swap the static kmem_list3 with kmalloced memory
1388 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1391 struct kmem_list3
*ptr
;
1393 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1396 local_irq_disable();
1397 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1399 * Do not assume that spinlocks can be initialized via memcpy:
1401 spin_lock_init(&ptr
->list_lock
);
1403 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1404 cachep
->nodelists
[nodeid
] = ptr
;
1409 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1410 * size of kmem_list3.
1412 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1416 for_each_online_node(node
) {
1417 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1418 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1420 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1425 * Initialisation. Called after the page allocator have been initialised and
1426 * before smp_init().
1428 void __init
kmem_cache_init(void)
1431 struct cache_sizes
*sizes
;
1432 struct cache_names
*names
;
1437 if (num_possible_nodes() == 1) {
1438 use_alien_caches
= 0;
1442 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1443 kmem_list3_init(&initkmem_list3
[i
]);
1444 if (i
< MAX_NUMNODES
)
1445 cache_cache
.nodelists
[i
] = NULL
;
1447 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1450 * Fragmentation resistance on low memory - only use bigger
1451 * page orders on machines with more than 32MB of memory.
1453 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1454 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1456 /* Bootstrap is tricky, because several objects are allocated
1457 * from caches that do not exist yet:
1458 * 1) initialize the cache_cache cache: it contains the struct
1459 * kmem_cache structures of all caches, except cache_cache itself:
1460 * cache_cache is statically allocated.
1461 * Initially an __init data area is used for the head array and the
1462 * kmem_list3 structures, it's replaced with a kmalloc allocated
1463 * array at the end of the bootstrap.
1464 * 2) Create the first kmalloc cache.
1465 * The struct kmem_cache for the new cache is allocated normally.
1466 * An __init data area is used for the head array.
1467 * 3) Create the remaining kmalloc caches, with minimally sized
1469 * 4) Replace the __init data head arrays for cache_cache and the first
1470 * kmalloc cache with kmalloc allocated arrays.
1471 * 5) Replace the __init data for kmem_list3 for cache_cache and
1472 * the other cache's with kmalloc allocated memory.
1473 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1476 node
= numa_node_id();
1478 /* 1) create the cache_cache */
1479 INIT_LIST_HEAD(&cache_chain
);
1480 list_add(&cache_cache
.next
, &cache_chain
);
1481 cache_cache
.colour_off
= cache_line_size();
1482 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1483 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1486 * struct kmem_cache size depends on nr_node_ids, which
1487 * can be less than MAX_NUMNODES.
1489 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1490 nr_node_ids
* sizeof(struct kmem_list3
*);
1492 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1494 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1496 cache_cache
.reciprocal_buffer_size
=
1497 reciprocal_value(cache_cache
.buffer_size
);
1499 for (order
= 0; order
< MAX_ORDER
; order
++) {
1500 cache_estimate(order
, cache_cache
.buffer_size
,
1501 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1502 if (cache_cache
.num
)
1505 BUG_ON(!cache_cache
.num
);
1506 cache_cache
.gfporder
= order
;
1507 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1508 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1509 sizeof(struct slab
), cache_line_size());
1511 /* 2+3) create the kmalloc caches */
1512 sizes
= malloc_sizes
;
1513 names
= cache_names
;
1516 * Initialize the caches that provide memory for the array cache and the
1517 * kmem_list3 structures first. Without this, further allocations will
1521 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1522 sizes
[INDEX_AC
].cs_size
,
1523 ARCH_KMALLOC_MINALIGN
,
1524 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1527 if (INDEX_AC
!= INDEX_L3
) {
1528 sizes
[INDEX_L3
].cs_cachep
=
1529 kmem_cache_create(names
[INDEX_L3
].name
,
1530 sizes
[INDEX_L3
].cs_size
,
1531 ARCH_KMALLOC_MINALIGN
,
1532 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1536 slab_early_init
= 0;
1538 while (sizes
->cs_size
!= ULONG_MAX
) {
1540 * For performance, all the general caches are L1 aligned.
1541 * This should be particularly beneficial on SMP boxes, as it
1542 * eliminates "false sharing".
1543 * Note for systems short on memory removing the alignment will
1544 * allow tighter packing of the smaller caches.
1546 if (!sizes
->cs_cachep
) {
1547 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1549 ARCH_KMALLOC_MINALIGN
,
1550 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1553 #ifdef CONFIG_ZONE_DMA
1554 sizes
->cs_dmacachep
= kmem_cache_create(
1557 ARCH_KMALLOC_MINALIGN
,
1558 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1565 /* 4) Replace the bootstrap head arrays */
1567 struct array_cache
*ptr
;
1569 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1571 local_irq_disable();
1572 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1573 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1574 sizeof(struct arraycache_init
));
1576 * Do not assume that spinlocks can be initialized via memcpy:
1578 spin_lock_init(&ptr
->lock
);
1580 cache_cache
.array
[smp_processor_id()] = ptr
;
1583 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1585 local_irq_disable();
1586 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1587 != &initarray_generic
.cache
);
1588 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1589 sizeof(struct arraycache_init
));
1591 * Do not assume that spinlocks can be initialized via memcpy:
1593 spin_lock_init(&ptr
->lock
);
1595 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1599 /* 5) Replace the bootstrap kmem_list3's */
1603 for_each_online_node(nid
) {
1604 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1606 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1607 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1609 if (INDEX_AC
!= INDEX_L3
) {
1610 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1611 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1616 /* 6) resize the head arrays to their final sizes */
1618 struct kmem_cache
*cachep
;
1619 mutex_lock(&cache_chain_mutex
);
1620 list_for_each_entry(cachep
, &cache_chain
, next
)
1621 if (enable_cpucache(cachep
))
1623 mutex_unlock(&cache_chain_mutex
);
1626 /* Annotate slab for lockdep -- annotate the malloc caches */
1631 g_cpucache_up
= FULL
;
1634 * Register a cpu startup notifier callback that initializes
1635 * cpu_cache_get for all new cpus
1637 register_cpu_notifier(&cpucache_notifier
);
1640 * The reap timers are started later, with a module init call: That part
1641 * of the kernel is not yet operational.
1645 static int __init
cpucache_init(void)
1650 * Register the timers that return unneeded pages to the page allocator
1652 for_each_online_cpu(cpu
)
1653 start_cpu_timer(cpu
);
1656 __initcall(cpucache_init
);
1659 * Interface to system's page allocator. No need to hold the cache-lock.
1661 * If we requested dmaable memory, we will get it. Even if we
1662 * did not request dmaable memory, we might get it, but that
1663 * would be relatively rare and ignorable.
1665 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1673 * Nommu uses slab's for process anonymous memory allocations, and thus
1674 * requires __GFP_COMP to properly refcount higher order allocations
1676 flags
|= __GFP_COMP
;
1679 flags
|= cachep
->gfpflags
;
1680 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1681 flags
|= __GFP_RECLAIMABLE
;
1683 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1687 nr_pages
= (1 << cachep
->gfporder
);
1688 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1689 add_zone_page_state(page_zone(page
),
1690 NR_SLAB_RECLAIMABLE
, nr_pages
);
1692 add_zone_page_state(page_zone(page
),
1693 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1694 for (i
= 0; i
< nr_pages
; i
++)
1695 __SetPageSlab(page
+ i
);
1696 return page_address(page
);
1700 * Interface to system's page release.
1702 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1704 unsigned long i
= (1 << cachep
->gfporder
);
1705 struct page
*page
= virt_to_page(addr
);
1706 const unsigned long nr_freed
= i
;
1708 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1709 sub_zone_page_state(page_zone(page
),
1710 NR_SLAB_RECLAIMABLE
, nr_freed
);
1712 sub_zone_page_state(page_zone(page
),
1713 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1715 BUG_ON(!PageSlab(page
));
1716 __ClearPageSlab(page
);
1719 if (current
->reclaim_state
)
1720 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1721 free_pages((unsigned long)addr
, cachep
->gfporder
);
1724 static void kmem_rcu_free(struct rcu_head
*head
)
1726 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1727 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1729 kmem_freepages(cachep
, slab_rcu
->addr
);
1730 if (OFF_SLAB(cachep
))
1731 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1736 #ifdef CONFIG_DEBUG_PAGEALLOC
1737 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1738 unsigned long caller
)
1740 int size
= obj_size(cachep
);
1742 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1744 if (size
< 5 * sizeof(unsigned long))
1747 *addr
++ = 0x12345678;
1749 *addr
++ = smp_processor_id();
1750 size
-= 3 * sizeof(unsigned long);
1752 unsigned long *sptr
= &caller
;
1753 unsigned long svalue
;
1755 while (!kstack_end(sptr
)) {
1757 if (kernel_text_address(svalue
)) {
1759 size
-= sizeof(unsigned long);
1760 if (size
<= sizeof(unsigned long))
1766 *addr
++ = 0x87654321;
1770 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1772 int size
= obj_size(cachep
);
1773 addr
= &((char *)addr
)[obj_offset(cachep
)];
1775 memset(addr
, val
, size
);
1776 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1779 static void dump_line(char *data
, int offset
, int limit
)
1782 unsigned char error
= 0;
1785 printk(KERN_ERR
"%03x:", offset
);
1786 for (i
= 0; i
< limit
; i
++) {
1787 if (data
[offset
+ i
] != POISON_FREE
) {
1788 error
= data
[offset
+ i
];
1791 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1795 if (bad_count
== 1) {
1796 error
^= POISON_FREE
;
1797 if (!(error
& (error
- 1))) {
1798 printk(KERN_ERR
"Single bit error detected. Probably "
1801 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1804 printk(KERN_ERR
"Run a memory test tool.\n");
1813 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1818 if (cachep
->flags
& SLAB_RED_ZONE
) {
1819 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1820 *dbg_redzone1(cachep
, objp
),
1821 *dbg_redzone2(cachep
, objp
));
1824 if (cachep
->flags
& SLAB_STORE_USER
) {
1825 printk(KERN_ERR
"Last user: [<%p>]",
1826 *dbg_userword(cachep
, objp
));
1827 print_symbol("(%s)",
1828 (unsigned long)*dbg_userword(cachep
, objp
));
1831 realobj
= (char *)objp
+ obj_offset(cachep
);
1832 size
= obj_size(cachep
);
1833 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1836 if (i
+ limit
> size
)
1838 dump_line(realobj
, i
, limit
);
1842 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1848 realobj
= (char *)objp
+ obj_offset(cachep
);
1849 size
= obj_size(cachep
);
1851 for (i
= 0; i
< size
; i
++) {
1852 char exp
= POISON_FREE
;
1855 if (realobj
[i
] != exp
) {
1861 "Slab corruption: %s start=%p, len=%d\n",
1862 cachep
->name
, realobj
, size
);
1863 print_objinfo(cachep
, objp
, 0);
1865 /* Hexdump the affected line */
1868 if (i
+ limit
> size
)
1870 dump_line(realobj
, i
, limit
);
1873 /* Limit to 5 lines */
1879 /* Print some data about the neighboring objects, if they
1882 struct slab
*slabp
= virt_to_slab(objp
);
1885 objnr
= obj_to_index(cachep
, slabp
, objp
);
1887 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1888 realobj
= (char *)objp
+ obj_offset(cachep
);
1889 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1891 print_objinfo(cachep
, objp
, 2);
1893 if (objnr
+ 1 < cachep
->num
) {
1894 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1895 realobj
= (char *)objp
+ obj_offset(cachep
);
1896 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1898 print_objinfo(cachep
, objp
, 2);
1905 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1908 for (i
= 0; i
< cachep
->num
; i
++) {
1909 void *objp
= index_to_obj(cachep
, slabp
, i
);
1911 if (cachep
->flags
& SLAB_POISON
) {
1912 #ifdef CONFIG_DEBUG_PAGEALLOC
1913 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1915 kernel_map_pages(virt_to_page(objp
),
1916 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1918 check_poison_obj(cachep
, objp
);
1920 check_poison_obj(cachep
, objp
);
1923 if (cachep
->flags
& SLAB_RED_ZONE
) {
1924 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1925 slab_error(cachep
, "start of a freed object "
1927 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1928 slab_error(cachep
, "end of a freed object "
1934 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1940 * slab_destroy - destroy and release all objects in a slab
1941 * @cachep: cache pointer being destroyed
1942 * @slabp: slab pointer being destroyed
1944 * Destroy all the objs in a slab, and release the mem back to the system.
1945 * Before calling the slab must have been unlinked from the cache. The
1946 * cache-lock is not held/needed.
1948 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1950 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1952 slab_destroy_debugcheck(cachep
, slabp
);
1953 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1954 struct slab_rcu
*slab_rcu
;
1956 slab_rcu
= (struct slab_rcu
*)slabp
;
1957 slab_rcu
->cachep
= cachep
;
1958 slab_rcu
->addr
= addr
;
1959 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1961 kmem_freepages(cachep
, addr
);
1962 if (OFF_SLAB(cachep
))
1963 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1967 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1970 struct kmem_list3
*l3
;
1972 for_each_online_cpu(i
)
1973 kfree(cachep
->array
[i
]);
1975 /* NUMA: free the list3 structures */
1976 for_each_online_node(i
) {
1977 l3
= cachep
->nodelists
[i
];
1980 free_alien_cache(l3
->alien
);
1984 kmem_cache_free(&cache_cache
, cachep
);
1989 * calculate_slab_order - calculate size (page order) of slabs
1990 * @cachep: pointer to the cache that is being created
1991 * @size: size of objects to be created in this cache.
1992 * @align: required alignment for the objects.
1993 * @flags: slab allocation flags
1995 * Also calculates the number of objects per slab.
1997 * This could be made much more intelligent. For now, try to avoid using
1998 * high order pages for slabs. When the gfp() functions are more friendly
1999 * towards high-order requests, this should be changed.
2001 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2002 size_t size
, size_t align
, unsigned long flags
)
2004 unsigned long offslab_limit
;
2005 size_t left_over
= 0;
2008 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2012 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2016 if (flags
& CFLGS_OFF_SLAB
) {
2018 * Max number of objs-per-slab for caches which
2019 * use off-slab slabs. Needed to avoid a possible
2020 * looping condition in cache_grow().
2022 offslab_limit
= size
- sizeof(struct slab
);
2023 offslab_limit
/= sizeof(kmem_bufctl_t
);
2025 if (num
> offslab_limit
)
2029 /* Found something acceptable - save it away */
2031 cachep
->gfporder
= gfporder
;
2032 left_over
= remainder
;
2035 * A VFS-reclaimable slab tends to have most allocations
2036 * as GFP_NOFS and we really don't want to have to be allocating
2037 * higher-order pages when we are unable to shrink dcache.
2039 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2043 * Large number of objects is good, but very large slabs are
2044 * currently bad for the gfp()s.
2046 if (gfporder
>= slab_break_gfp_order
)
2050 * Acceptable internal fragmentation?
2052 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2058 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
)
2060 if (g_cpucache_up
== FULL
)
2061 return enable_cpucache(cachep
);
2063 if (g_cpucache_up
== NONE
) {
2065 * Note: the first kmem_cache_create must create the cache
2066 * that's used by kmalloc(24), otherwise the creation of
2067 * further caches will BUG().
2069 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2072 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2073 * the first cache, then we need to set up all its list3s,
2074 * otherwise the creation of further caches will BUG().
2076 set_up_list3s(cachep
, SIZE_AC
);
2077 if (INDEX_AC
== INDEX_L3
)
2078 g_cpucache_up
= PARTIAL_L3
;
2080 g_cpucache_up
= PARTIAL_AC
;
2082 cachep
->array
[smp_processor_id()] =
2083 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2085 if (g_cpucache_up
== PARTIAL_AC
) {
2086 set_up_list3s(cachep
, SIZE_L3
);
2087 g_cpucache_up
= PARTIAL_L3
;
2090 for_each_online_node(node
) {
2091 cachep
->nodelists
[node
] =
2092 kmalloc_node(sizeof(struct kmem_list3
),
2094 BUG_ON(!cachep
->nodelists
[node
]);
2095 kmem_list3_init(cachep
->nodelists
[node
]);
2099 cachep
->nodelists
[numa_node_id()]->next_reap
=
2100 jiffies
+ REAPTIMEOUT_LIST3
+
2101 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2103 cpu_cache_get(cachep
)->avail
= 0;
2104 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2105 cpu_cache_get(cachep
)->batchcount
= 1;
2106 cpu_cache_get(cachep
)->touched
= 0;
2107 cachep
->batchcount
= 1;
2108 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2113 * kmem_cache_create - Create a cache.
2114 * @name: A string which is used in /proc/slabinfo to identify this cache.
2115 * @size: The size of objects to be created in this cache.
2116 * @align: The required alignment for the objects.
2117 * @flags: SLAB flags
2118 * @ctor: A constructor for the objects.
2120 * Returns a ptr to the cache on success, NULL on failure.
2121 * Cannot be called within a int, but can be interrupted.
2122 * The @ctor is run when new pages are allocated by the cache.
2124 * @name must be valid until the cache is destroyed. This implies that
2125 * the module calling this has to destroy the cache before getting unloaded.
2126 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2127 * therefore applications must manage it themselves.
2131 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2132 * to catch references to uninitialised memory.
2134 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2135 * for buffer overruns.
2137 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2138 * cacheline. This can be beneficial if you're counting cycles as closely
2142 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2143 unsigned long flags
, void (*ctor
)(void *))
2145 size_t left_over
, slab_size
, ralign
;
2146 struct kmem_cache
*cachep
= NULL
, *pc
;
2149 * Sanity checks... these are all serious usage bugs.
2151 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2152 size
> KMALLOC_MAX_SIZE
) {
2153 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2159 * We use cache_chain_mutex to ensure a consistent view of
2160 * cpu_online_mask as well. Please see cpuup_callback
2163 mutex_lock(&cache_chain_mutex
);
2165 list_for_each_entry(pc
, &cache_chain
, next
) {
2170 * This happens when the module gets unloaded and doesn't
2171 * destroy its slab cache and no-one else reuses the vmalloc
2172 * area of the module. Print a warning.
2174 res
= probe_kernel_address(pc
->name
, tmp
);
2177 "SLAB: cache with size %d has lost its name\n",
2182 if (!strcmp(pc
->name
, name
)) {
2184 "kmem_cache_create: duplicate cache %s\n", name
);
2191 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2194 * Enable redzoning and last user accounting, except for caches with
2195 * large objects, if the increased size would increase the object size
2196 * above the next power of two: caches with object sizes just above a
2197 * power of two have a significant amount of internal fragmentation.
2199 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2200 2 * sizeof(unsigned long long)))
2201 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2202 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2203 flags
|= SLAB_POISON
;
2205 if (flags
& SLAB_DESTROY_BY_RCU
)
2206 BUG_ON(flags
& SLAB_POISON
);
2209 * Always checks flags, a caller might be expecting debug support which
2212 BUG_ON(flags
& ~CREATE_MASK
);
2215 * Check that size is in terms of words. This is needed to avoid
2216 * unaligned accesses for some archs when redzoning is used, and makes
2217 * sure any on-slab bufctl's are also correctly aligned.
2219 if (size
& (BYTES_PER_WORD
- 1)) {
2220 size
+= (BYTES_PER_WORD
- 1);
2221 size
&= ~(BYTES_PER_WORD
- 1);
2224 /* calculate the final buffer alignment: */
2226 /* 1) arch recommendation: can be overridden for debug */
2227 if (flags
& SLAB_HWCACHE_ALIGN
) {
2229 * Default alignment: as specified by the arch code. Except if
2230 * an object is really small, then squeeze multiple objects into
2233 ralign
= cache_line_size();
2234 while (size
<= ralign
/ 2)
2237 ralign
= BYTES_PER_WORD
;
2241 * Redzoning and user store require word alignment or possibly larger.
2242 * Note this will be overridden by architecture or caller mandated
2243 * alignment if either is greater than BYTES_PER_WORD.
2245 if (flags
& SLAB_STORE_USER
)
2246 ralign
= BYTES_PER_WORD
;
2248 if (flags
& SLAB_RED_ZONE
) {
2249 ralign
= REDZONE_ALIGN
;
2250 /* If redzoning, ensure that the second redzone is suitably
2251 * aligned, by adjusting the object size accordingly. */
2252 size
+= REDZONE_ALIGN
- 1;
2253 size
&= ~(REDZONE_ALIGN
- 1);
2256 /* 2) arch mandated alignment */
2257 if (ralign
< ARCH_SLAB_MINALIGN
) {
2258 ralign
= ARCH_SLAB_MINALIGN
;
2260 /* 3) caller mandated alignment */
2261 if (ralign
< align
) {
2264 /* disable debug if necessary */
2265 if (ralign
> __alignof__(unsigned long long))
2266 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2272 /* Get cache's description obj. */
2273 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2278 cachep
->obj_size
= size
;
2281 * Both debugging options require word-alignment which is calculated
2284 if (flags
& SLAB_RED_ZONE
) {
2285 /* add space for red zone words */
2286 cachep
->obj_offset
+= sizeof(unsigned long long);
2287 size
+= 2 * sizeof(unsigned long long);
2289 if (flags
& SLAB_STORE_USER
) {
2290 /* user store requires one word storage behind the end of
2291 * the real object. But if the second red zone needs to be
2292 * aligned to 64 bits, we must allow that much space.
2294 if (flags
& SLAB_RED_ZONE
)
2295 size
+= REDZONE_ALIGN
;
2297 size
+= BYTES_PER_WORD
;
2299 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2300 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2301 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2302 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2309 * Determine if the slab management is 'on' or 'off' slab.
2310 * (bootstrapping cannot cope with offslab caches so don't do
2313 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2315 * Size is large, assume best to place the slab management obj
2316 * off-slab (should allow better packing of objs).
2318 flags
|= CFLGS_OFF_SLAB
;
2320 size
= ALIGN(size
, align
);
2322 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2326 "kmem_cache_create: couldn't create cache %s.\n", name
);
2327 kmem_cache_free(&cache_cache
, cachep
);
2331 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2332 + sizeof(struct slab
), align
);
2335 * If the slab has been placed off-slab, and we have enough space then
2336 * move it on-slab. This is at the expense of any extra colouring.
2338 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2339 flags
&= ~CFLGS_OFF_SLAB
;
2340 left_over
-= slab_size
;
2343 if (flags
& CFLGS_OFF_SLAB
) {
2344 /* really off slab. No need for manual alignment */
2346 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2349 cachep
->colour_off
= cache_line_size();
2350 /* Offset must be a multiple of the alignment. */
2351 if (cachep
->colour_off
< align
)
2352 cachep
->colour_off
= align
;
2353 cachep
->colour
= left_over
/ cachep
->colour_off
;
2354 cachep
->slab_size
= slab_size
;
2355 cachep
->flags
= flags
;
2356 cachep
->gfpflags
= 0;
2357 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2358 cachep
->gfpflags
|= GFP_DMA
;
2359 cachep
->buffer_size
= size
;
2360 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2362 if (flags
& CFLGS_OFF_SLAB
) {
2363 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2365 * This is a possibility for one of the malloc_sizes caches.
2366 * But since we go off slab only for object size greater than
2367 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2368 * this should not happen at all.
2369 * But leave a BUG_ON for some lucky dude.
2371 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2373 cachep
->ctor
= ctor
;
2374 cachep
->name
= name
;
2376 if (setup_cpu_cache(cachep
)) {
2377 __kmem_cache_destroy(cachep
);
2382 /* cache setup completed, link it into the list */
2383 list_add(&cachep
->next
, &cache_chain
);
2385 if (!cachep
&& (flags
& SLAB_PANIC
))
2386 panic("kmem_cache_create(): failed to create slab `%s'\n",
2388 mutex_unlock(&cache_chain_mutex
);
2392 EXPORT_SYMBOL(kmem_cache_create
);
2395 static void check_irq_off(void)
2397 BUG_ON(!irqs_disabled());
2400 static void check_irq_on(void)
2402 BUG_ON(irqs_disabled());
2405 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2409 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2413 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2417 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2422 #define check_irq_off() do { } while(0)
2423 #define check_irq_on() do { } while(0)
2424 #define check_spinlock_acquired(x) do { } while(0)
2425 #define check_spinlock_acquired_node(x, y) do { } while(0)
2428 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2429 struct array_cache
*ac
,
2430 int force
, int node
);
2432 static void do_drain(void *arg
)
2434 struct kmem_cache
*cachep
= arg
;
2435 struct array_cache
*ac
;
2436 int node
= numa_node_id();
2439 ac
= cpu_cache_get(cachep
);
2440 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2441 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2442 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2446 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2448 struct kmem_list3
*l3
;
2451 on_each_cpu(do_drain
, cachep
, 1);
2453 for_each_online_node(node
) {
2454 l3
= cachep
->nodelists
[node
];
2455 if (l3
&& l3
->alien
)
2456 drain_alien_cache(cachep
, l3
->alien
);
2459 for_each_online_node(node
) {
2460 l3
= cachep
->nodelists
[node
];
2462 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2467 * Remove slabs from the list of free slabs.
2468 * Specify the number of slabs to drain in tofree.
2470 * Returns the actual number of slabs released.
2472 static int drain_freelist(struct kmem_cache
*cache
,
2473 struct kmem_list3
*l3
, int tofree
)
2475 struct list_head
*p
;
2480 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2482 spin_lock_irq(&l3
->list_lock
);
2483 p
= l3
->slabs_free
.prev
;
2484 if (p
== &l3
->slabs_free
) {
2485 spin_unlock_irq(&l3
->list_lock
);
2489 slabp
= list_entry(p
, struct slab
, list
);
2491 BUG_ON(slabp
->inuse
);
2493 list_del(&slabp
->list
);
2495 * Safe to drop the lock. The slab is no longer linked
2498 l3
->free_objects
-= cache
->num
;
2499 spin_unlock_irq(&l3
->list_lock
);
2500 slab_destroy(cache
, slabp
);
2507 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2508 static int __cache_shrink(struct kmem_cache
*cachep
)
2511 struct kmem_list3
*l3
;
2513 drain_cpu_caches(cachep
);
2516 for_each_online_node(i
) {
2517 l3
= cachep
->nodelists
[i
];
2521 drain_freelist(cachep
, l3
, l3
->free_objects
);
2523 ret
+= !list_empty(&l3
->slabs_full
) ||
2524 !list_empty(&l3
->slabs_partial
);
2526 return (ret
? 1 : 0);
2530 * kmem_cache_shrink - Shrink a cache.
2531 * @cachep: The cache to shrink.
2533 * Releases as many slabs as possible for a cache.
2534 * To help debugging, a zero exit status indicates all slabs were released.
2536 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2539 BUG_ON(!cachep
|| in_interrupt());
2542 mutex_lock(&cache_chain_mutex
);
2543 ret
= __cache_shrink(cachep
);
2544 mutex_unlock(&cache_chain_mutex
);
2548 EXPORT_SYMBOL(kmem_cache_shrink
);
2551 * kmem_cache_destroy - delete a cache
2552 * @cachep: the cache to destroy
2554 * Remove a &struct kmem_cache object from the slab cache.
2556 * It is expected this function will be called by a module when it is
2557 * unloaded. This will remove the cache completely, and avoid a duplicate
2558 * cache being allocated each time a module is loaded and unloaded, if the
2559 * module doesn't have persistent in-kernel storage across loads and unloads.
2561 * The cache must be empty before calling this function.
2563 * The caller must guarantee that noone will allocate memory from the cache
2564 * during the kmem_cache_destroy().
2566 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2568 BUG_ON(!cachep
|| in_interrupt());
2570 /* Find the cache in the chain of caches. */
2572 mutex_lock(&cache_chain_mutex
);
2574 * the chain is never empty, cache_cache is never destroyed
2576 list_del(&cachep
->next
);
2577 if (__cache_shrink(cachep
)) {
2578 slab_error(cachep
, "Can't free all objects");
2579 list_add(&cachep
->next
, &cache_chain
);
2580 mutex_unlock(&cache_chain_mutex
);
2585 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2588 __kmem_cache_destroy(cachep
);
2589 mutex_unlock(&cache_chain_mutex
);
2592 EXPORT_SYMBOL(kmem_cache_destroy
);
2595 * Get the memory for a slab management obj.
2596 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2597 * always come from malloc_sizes caches. The slab descriptor cannot
2598 * come from the same cache which is getting created because,
2599 * when we are searching for an appropriate cache for these
2600 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2601 * If we are creating a malloc_sizes cache here it would not be visible to
2602 * kmem_find_general_cachep till the initialization is complete.
2603 * Hence we cannot have slabp_cache same as the original cache.
2605 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2606 int colour_off
, gfp_t local_flags
,
2611 if (OFF_SLAB(cachep
)) {
2612 /* Slab management obj is off-slab. */
2613 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2614 local_flags
, nodeid
);
2618 slabp
= objp
+ colour_off
;
2619 colour_off
+= cachep
->slab_size
;
2622 slabp
->colouroff
= colour_off
;
2623 slabp
->s_mem
= objp
+ colour_off
;
2624 slabp
->nodeid
= nodeid
;
2629 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2631 return (kmem_bufctl_t
*) (slabp
+ 1);
2634 static void cache_init_objs(struct kmem_cache
*cachep
,
2639 for (i
= 0; i
< cachep
->num
; i
++) {
2640 void *objp
= index_to_obj(cachep
, slabp
, i
);
2642 /* need to poison the objs? */
2643 if (cachep
->flags
& SLAB_POISON
)
2644 poison_obj(cachep
, objp
, POISON_FREE
);
2645 if (cachep
->flags
& SLAB_STORE_USER
)
2646 *dbg_userword(cachep
, objp
) = NULL
;
2648 if (cachep
->flags
& SLAB_RED_ZONE
) {
2649 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2650 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2653 * Constructors are not allowed to allocate memory from the same
2654 * cache which they are a constructor for. Otherwise, deadlock.
2655 * They must also be threaded.
2657 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2658 cachep
->ctor(objp
+ obj_offset(cachep
));
2660 if (cachep
->flags
& SLAB_RED_ZONE
) {
2661 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2662 slab_error(cachep
, "constructor overwrote the"
2663 " end of an object");
2664 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2665 slab_error(cachep
, "constructor overwrote the"
2666 " start of an object");
2668 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2669 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2670 kernel_map_pages(virt_to_page(objp
),
2671 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2676 slab_bufctl(slabp
)[i
] = i
+ 1;
2678 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2681 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2683 if (CONFIG_ZONE_DMA_FLAG
) {
2684 if (flags
& GFP_DMA
)
2685 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2687 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2691 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2694 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2698 next
= slab_bufctl(slabp
)[slabp
->free
];
2700 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2701 WARN_ON(slabp
->nodeid
!= nodeid
);
2708 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2709 void *objp
, int nodeid
)
2711 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2714 /* Verify that the slab belongs to the intended node */
2715 WARN_ON(slabp
->nodeid
!= nodeid
);
2717 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2718 printk(KERN_ERR
"slab: double free detected in cache "
2719 "'%s', objp %p\n", cachep
->name
, objp
);
2723 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2724 slabp
->free
= objnr
;
2729 * Map pages beginning at addr to the given cache and slab. This is required
2730 * for the slab allocator to be able to lookup the cache and slab of a
2731 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2733 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2739 page
= virt_to_page(addr
);
2742 if (likely(!PageCompound(page
)))
2743 nr_pages
<<= cache
->gfporder
;
2746 page_set_cache(page
, cache
);
2747 page_set_slab(page
, slab
);
2749 } while (--nr_pages
);
2753 * Grow (by 1) the number of slabs within a cache. This is called by
2754 * kmem_cache_alloc() when there are no active objs left in a cache.
2756 static int cache_grow(struct kmem_cache
*cachep
,
2757 gfp_t flags
, int nodeid
, void *objp
)
2762 struct kmem_list3
*l3
;
2765 * Be lazy and only check for valid flags here, keeping it out of the
2766 * critical path in kmem_cache_alloc().
2768 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2769 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2771 /* Take the l3 list lock to change the colour_next on this node */
2773 l3
= cachep
->nodelists
[nodeid
];
2774 spin_lock(&l3
->list_lock
);
2776 /* Get colour for the slab, and cal the next value. */
2777 offset
= l3
->colour_next
;
2779 if (l3
->colour_next
>= cachep
->colour
)
2780 l3
->colour_next
= 0;
2781 spin_unlock(&l3
->list_lock
);
2783 offset
*= cachep
->colour_off
;
2785 if (local_flags
& __GFP_WAIT
)
2789 * The test for missing atomic flag is performed here, rather than
2790 * the more obvious place, simply to reduce the critical path length
2791 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2792 * will eventually be caught here (where it matters).
2794 kmem_flagcheck(cachep
, flags
);
2797 * Get mem for the objs. Attempt to allocate a physical page from
2801 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2805 /* Get slab management. */
2806 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2807 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2811 slab_map_pages(cachep
, slabp
, objp
);
2813 cache_init_objs(cachep
, slabp
);
2815 if (local_flags
& __GFP_WAIT
)
2816 local_irq_disable();
2818 spin_lock(&l3
->list_lock
);
2820 /* Make slab active. */
2821 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2822 STATS_INC_GROWN(cachep
);
2823 l3
->free_objects
+= cachep
->num
;
2824 spin_unlock(&l3
->list_lock
);
2827 kmem_freepages(cachep
, objp
);
2829 if (local_flags
& __GFP_WAIT
)
2830 local_irq_disable();
2837 * Perform extra freeing checks:
2838 * - detect bad pointers.
2839 * - POISON/RED_ZONE checking
2841 static void kfree_debugcheck(const void *objp
)
2843 if (!virt_addr_valid(objp
)) {
2844 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2845 (unsigned long)objp
);
2850 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2852 unsigned long long redzone1
, redzone2
;
2854 redzone1
= *dbg_redzone1(cache
, obj
);
2855 redzone2
= *dbg_redzone2(cache
, obj
);
2860 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2863 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2864 slab_error(cache
, "double free detected");
2866 slab_error(cache
, "memory outside object was overwritten");
2868 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2869 obj
, redzone1
, redzone2
);
2872 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2879 BUG_ON(virt_to_cache(objp
) != cachep
);
2881 objp
-= obj_offset(cachep
);
2882 kfree_debugcheck(objp
);
2883 page
= virt_to_head_page(objp
);
2885 slabp
= page_get_slab(page
);
2887 if (cachep
->flags
& SLAB_RED_ZONE
) {
2888 verify_redzone_free(cachep
, objp
);
2889 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2890 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2892 if (cachep
->flags
& SLAB_STORE_USER
)
2893 *dbg_userword(cachep
, objp
) = caller
;
2895 objnr
= obj_to_index(cachep
, slabp
, objp
);
2897 BUG_ON(objnr
>= cachep
->num
);
2898 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2900 #ifdef CONFIG_DEBUG_SLAB_LEAK
2901 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2903 if (cachep
->flags
& SLAB_POISON
) {
2904 #ifdef CONFIG_DEBUG_PAGEALLOC
2905 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2906 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2907 kernel_map_pages(virt_to_page(objp
),
2908 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2910 poison_obj(cachep
, objp
, POISON_FREE
);
2913 poison_obj(cachep
, objp
, POISON_FREE
);
2919 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2924 /* Check slab's freelist to see if this obj is there. */
2925 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2927 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2930 if (entries
!= cachep
->num
- slabp
->inuse
) {
2932 printk(KERN_ERR
"slab: Internal list corruption detected in "
2933 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2934 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2936 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2939 printk("\n%03x:", i
);
2940 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2947 #define kfree_debugcheck(x) do { } while(0)
2948 #define cache_free_debugcheck(x,objp,z) (objp)
2949 #define check_slabp(x,y) do { } while(0)
2952 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2955 struct kmem_list3
*l3
;
2956 struct array_cache
*ac
;
2961 node
= numa_node_id();
2962 ac
= cpu_cache_get(cachep
);
2963 batchcount
= ac
->batchcount
;
2964 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2966 * If there was little recent activity on this cache, then
2967 * perform only a partial refill. Otherwise we could generate
2970 batchcount
= BATCHREFILL_LIMIT
;
2972 l3
= cachep
->nodelists
[node
];
2974 BUG_ON(ac
->avail
> 0 || !l3
);
2975 spin_lock(&l3
->list_lock
);
2977 /* See if we can refill from the shared array */
2978 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2981 while (batchcount
> 0) {
2982 struct list_head
*entry
;
2984 /* Get slab alloc is to come from. */
2985 entry
= l3
->slabs_partial
.next
;
2986 if (entry
== &l3
->slabs_partial
) {
2987 l3
->free_touched
= 1;
2988 entry
= l3
->slabs_free
.next
;
2989 if (entry
== &l3
->slabs_free
)
2993 slabp
= list_entry(entry
, struct slab
, list
);
2994 check_slabp(cachep
, slabp
);
2995 check_spinlock_acquired(cachep
);
2998 * The slab was either on partial or free list so
2999 * there must be at least one object available for
3002 BUG_ON(slabp
->inuse
>= cachep
->num
);
3004 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3005 STATS_INC_ALLOCED(cachep
);
3006 STATS_INC_ACTIVE(cachep
);
3007 STATS_SET_HIGH(cachep
);
3009 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3012 check_slabp(cachep
, slabp
);
3014 /* move slabp to correct slabp list: */
3015 list_del(&slabp
->list
);
3016 if (slabp
->free
== BUFCTL_END
)
3017 list_add(&slabp
->list
, &l3
->slabs_full
);
3019 list_add(&slabp
->list
, &l3
->slabs_partial
);
3023 l3
->free_objects
-= ac
->avail
;
3025 spin_unlock(&l3
->list_lock
);
3027 if (unlikely(!ac
->avail
)) {
3029 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3031 /* cache_grow can reenable interrupts, then ac could change. */
3032 ac
= cpu_cache_get(cachep
);
3033 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3036 if (!ac
->avail
) /* objects refilled by interrupt? */
3040 return ac
->entry
[--ac
->avail
];
3043 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3046 might_sleep_if(flags
& __GFP_WAIT
);
3048 kmem_flagcheck(cachep
, flags
);
3053 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3054 gfp_t flags
, void *objp
, void *caller
)
3058 if (cachep
->flags
& SLAB_POISON
) {
3059 #ifdef CONFIG_DEBUG_PAGEALLOC
3060 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3061 kernel_map_pages(virt_to_page(objp
),
3062 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3064 check_poison_obj(cachep
, objp
);
3066 check_poison_obj(cachep
, objp
);
3068 poison_obj(cachep
, objp
, POISON_INUSE
);
3070 if (cachep
->flags
& SLAB_STORE_USER
)
3071 *dbg_userword(cachep
, objp
) = caller
;
3073 if (cachep
->flags
& SLAB_RED_ZONE
) {
3074 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3075 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3076 slab_error(cachep
, "double free, or memory outside"
3077 " object was overwritten");
3079 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3080 objp
, *dbg_redzone1(cachep
, objp
),
3081 *dbg_redzone2(cachep
, objp
));
3083 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3084 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3086 #ifdef CONFIG_DEBUG_SLAB_LEAK
3091 slabp
= page_get_slab(virt_to_head_page(objp
));
3092 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3093 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3096 objp
+= obj_offset(cachep
);
3097 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3099 #if ARCH_SLAB_MINALIGN
3100 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3101 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3102 objp
, ARCH_SLAB_MINALIGN
);
3108 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3111 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3113 if (cachep
== &cache_cache
)
3116 return should_failslab(obj_size(cachep
), flags
);
3119 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3122 struct array_cache
*ac
;
3126 ac
= cpu_cache_get(cachep
);
3127 if (likely(ac
->avail
)) {
3128 STATS_INC_ALLOCHIT(cachep
);
3130 objp
= ac
->entry
[--ac
->avail
];
3132 STATS_INC_ALLOCMISS(cachep
);
3133 objp
= cache_alloc_refill(cachep
, flags
);
3140 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3142 * If we are in_interrupt, then process context, including cpusets and
3143 * mempolicy, may not apply and should not be used for allocation policy.
3145 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3147 int nid_alloc
, nid_here
;
3149 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3151 nid_alloc
= nid_here
= numa_node_id();
3152 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3153 nid_alloc
= cpuset_mem_spread_node();
3154 else if (current
->mempolicy
)
3155 nid_alloc
= slab_node(current
->mempolicy
);
3156 if (nid_alloc
!= nid_here
)
3157 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3162 * Fallback function if there was no memory available and no objects on a
3163 * certain node and fall back is permitted. First we scan all the
3164 * available nodelists for available objects. If that fails then we
3165 * perform an allocation without specifying a node. This allows the page
3166 * allocator to do its reclaim / fallback magic. We then insert the
3167 * slab into the proper nodelist and then allocate from it.
3169 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3171 struct zonelist
*zonelist
;
3175 enum zone_type high_zoneidx
= gfp_zone(flags
);
3179 if (flags
& __GFP_THISNODE
)
3182 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3183 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3187 * Look through allowed nodes for objects available
3188 * from existing per node queues.
3190 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3191 nid
= zone_to_nid(zone
);
3193 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3194 cache
->nodelists
[nid
] &&
3195 cache
->nodelists
[nid
]->free_objects
) {
3196 obj
= ____cache_alloc_node(cache
,
3197 flags
| GFP_THISNODE
, nid
);
3205 * This allocation will be performed within the constraints
3206 * of the current cpuset / memory policy requirements.
3207 * We may trigger various forms of reclaim on the allowed
3208 * set and go into memory reserves if necessary.
3210 if (local_flags
& __GFP_WAIT
)
3212 kmem_flagcheck(cache
, flags
);
3213 obj
= kmem_getpages(cache
, local_flags
, -1);
3214 if (local_flags
& __GFP_WAIT
)
3215 local_irq_disable();
3218 * Insert into the appropriate per node queues
3220 nid
= page_to_nid(virt_to_page(obj
));
3221 if (cache_grow(cache
, flags
, nid
, obj
)) {
3222 obj
= ____cache_alloc_node(cache
,
3223 flags
| GFP_THISNODE
, nid
);
3226 * Another processor may allocate the
3227 * objects in the slab since we are
3228 * not holding any locks.
3232 /* cache_grow already freed obj */
3241 * A interface to enable slab creation on nodeid
3243 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3246 struct list_head
*entry
;
3248 struct kmem_list3
*l3
;
3252 l3
= cachep
->nodelists
[nodeid
];
3257 spin_lock(&l3
->list_lock
);
3258 entry
= l3
->slabs_partial
.next
;
3259 if (entry
== &l3
->slabs_partial
) {
3260 l3
->free_touched
= 1;
3261 entry
= l3
->slabs_free
.next
;
3262 if (entry
== &l3
->slabs_free
)
3266 slabp
= list_entry(entry
, struct slab
, list
);
3267 check_spinlock_acquired_node(cachep
, nodeid
);
3268 check_slabp(cachep
, slabp
);
3270 STATS_INC_NODEALLOCS(cachep
);
3271 STATS_INC_ACTIVE(cachep
);
3272 STATS_SET_HIGH(cachep
);
3274 BUG_ON(slabp
->inuse
== cachep
->num
);
3276 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3277 check_slabp(cachep
, slabp
);
3279 /* move slabp to correct slabp list: */
3280 list_del(&slabp
->list
);
3282 if (slabp
->free
== BUFCTL_END
)
3283 list_add(&slabp
->list
, &l3
->slabs_full
);
3285 list_add(&slabp
->list
, &l3
->slabs_partial
);
3287 spin_unlock(&l3
->list_lock
);
3291 spin_unlock(&l3
->list_lock
);
3292 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3296 return fallback_alloc(cachep
, flags
);
3303 * kmem_cache_alloc_node - Allocate an object on the specified node
3304 * @cachep: The cache to allocate from.
3305 * @flags: See kmalloc().
3306 * @nodeid: node number of the target node.
3307 * @caller: return address of caller, used for debug information
3309 * Identical to kmem_cache_alloc but it will allocate memory on the given
3310 * node, which can improve the performance for cpu bound structures.
3312 * Fallback to other node is possible if __GFP_THISNODE is not set.
3314 static __always_inline
void *
3315 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3318 unsigned long save_flags
;
3321 lockdep_trace_alloc(flags
);
3323 if (slab_should_failslab(cachep
, flags
))
3326 cache_alloc_debugcheck_before(cachep
, flags
);
3327 local_irq_save(save_flags
);
3329 if (unlikely(nodeid
== -1))
3330 nodeid
= numa_node_id();
3332 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3333 /* Node not bootstrapped yet */
3334 ptr
= fallback_alloc(cachep
, flags
);
3338 if (nodeid
== numa_node_id()) {
3340 * Use the locally cached objects if possible.
3341 * However ____cache_alloc does not allow fallback
3342 * to other nodes. It may fail while we still have
3343 * objects on other nodes available.
3345 ptr
= ____cache_alloc(cachep
, flags
);
3349 /* ___cache_alloc_node can fall back to other nodes */
3350 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3352 local_irq_restore(save_flags
);
3353 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3355 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3356 memset(ptr
, 0, obj_size(cachep
));
3361 static __always_inline
void *
3362 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3366 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3367 objp
= alternate_node_alloc(cache
, flags
);
3371 objp
= ____cache_alloc(cache
, flags
);
3374 * We may just have run out of memory on the local node.
3375 * ____cache_alloc_node() knows how to locate memory on other nodes
3378 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3385 static __always_inline
void *
3386 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3388 return ____cache_alloc(cachep
, flags
);
3391 #endif /* CONFIG_NUMA */
3393 static __always_inline
void *
3394 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3396 unsigned long save_flags
;
3399 lockdep_trace_alloc(flags
);
3401 if (slab_should_failslab(cachep
, flags
))
3404 cache_alloc_debugcheck_before(cachep
, flags
);
3405 local_irq_save(save_flags
);
3406 objp
= __do_cache_alloc(cachep
, flags
);
3407 local_irq_restore(save_flags
);
3408 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3411 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3412 memset(objp
, 0, obj_size(cachep
));
3418 * Caller needs to acquire correct kmem_list's list_lock
3420 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3424 struct kmem_list3
*l3
;
3426 for (i
= 0; i
< nr_objects
; i
++) {
3427 void *objp
= objpp
[i
];
3430 slabp
= virt_to_slab(objp
);
3431 l3
= cachep
->nodelists
[node
];
3432 list_del(&slabp
->list
);
3433 check_spinlock_acquired_node(cachep
, node
);
3434 check_slabp(cachep
, slabp
);
3435 slab_put_obj(cachep
, slabp
, objp
, node
);
3436 STATS_DEC_ACTIVE(cachep
);
3438 check_slabp(cachep
, slabp
);
3440 /* fixup slab chains */
3441 if (slabp
->inuse
== 0) {
3442 if (l3
->free_objects
> l3
->free_limit
) {
3443 l3
->free_objects
-= cachep
->num
;
3444 /* No need to drop any previously held
3445 * lock here, even if we have a off-slab slab
3446 * descriptor it is guaranteed to come from
3447 * a different cache, refer to comments before
3450 slab_destroy(cachep
, slabp
);
3452 list_add(&slabp
->list
, &l3
->slabs_free
);
3455 /* Unconditionally move a slab to the end of the
3456 * partial list on free - maximum time for the
3457 * other objects to be freed, too.
3459 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3464 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3467 struct kmem_list3
*l3
;
3468 int node
= numa_node_id();
3470 batchcount
= ac
->batchcount
;
3472 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3475 l3
= cachep
->nodelists
[node
];
3476 spin_lock(&l3
->list_lock
);
3478 struct array_cache
*shared_array
= l3
->shared
;
3479 int max
= shared_array
->limit
- shared_array
->avail
;
3481 if (batchcount
> max
)
3483 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3484 ac
->entry
, sizeof(void *) * batchcount
);
3485 shared_array
->avail
+= batchcount
;
3490 free_block(cachep
, ac
->entry
, batchcount
, node
);
3495 struct list_head
*p
;
3497 p
= l3
->slabs_free
.next
;
3498 while (p
!= &(l3
->slabs_free
)) {
3501 slabp
= list_entry(p
, struct slab
, list
);
3502 BUG_ON(slabp
->inuse
);
3507 STATS_SET_FREEABLE(cachep
, i
);
3510 spin_unlock(&l3
->list_lock
);
3511 ac
->avail
-= batchcount
;
3512 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3516 * Release an obj back to its cache. If the obj has a constructed state, it must
3517 * be in this state _before_ it is released. Called with disabled ints.
3519 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3521 struct array_cache
*ac
= cpu_cache_get(cachep
);
3524 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3527 * Skip calling cache_free_alien() when the platform is not numa.
3528 * This will avoid cache misses that happen while accessing slabp (which
3529 * is per page memory reference) to get nodeid. Instead use a global
3530 * variable to skip the call, which is mostly likely to be present in
3533 if (numa_platform
&& cache_free_alien(cachep
, objp
))
3536 if (likely(ac
->avail
< ac
->limit
)) {
3537 STATS_INC_FREEHIT(cachep
);
3538 ac
->entry
[ac
->avail
++] = objp
;
3541 STATS_INC_FREEMISS(cachep
);
3542 cache_flusharray(cachep
, ac
);
3543 ac
->entry
[ac
->avail
++] = objp
;
3548 * kmem_cache_alloc - Allocate an object
3549 * @cachep: The cache to allocate from.
3550 * @flags: See kmalloc().
3552 * Allocate an object from this cache. The flags are only relevant
3553 * if the cache has no available objects.
3555 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3557 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3559 EXPORT_SYMBOL(kmem_cache_alloc
);
3562 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3563 * @cachep: the cache we're checking against
3564 * @ptr: pointer to validate
3566 * This verifies that the untrusted pointer looks sane;
3567 * it is _not_ a guarantee that the pointer is actually
3568 * part of the slab cache in question, but it at least
3569 * validates that the pointer can be dereferenced and
3570 * looks half-way sane.
3572 * Currently only used for dentry validation.
3574 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3576 unsigned long addr
= (unsigned long)ptr
;
3577 unsigned long min_addr
= PAGE_OFFSET
;
3578 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3579 unsigned long size
= cachep
->buffer_size
;
3582 if (unlikely(addr
< min_addr
))
3584 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3586 if (unlikely(addr
& align_mask
))
3588 if (unlikely(!kern_addr_valid(addr
)))
3590 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3592 page
= virt_to_page(ptr
);
3593 if (unlikely(!PageSlab(page
)))
3595 if (unlikely(page_get_cache(page
) != cachep
))
3603 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3605 return __cache_alloc_node(cachep
, flags
, nodeid
,
3606 __builtin_return_address(0));
3608 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3610 static __always_inline
void *
3611 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3613 struct kmem_cache
*cachep
;
3615 cachep
= kmem_find_general_cachep(size
, flags
);
3616 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3618 return kmem_cache_alloc_node(cachep
, flags
, node
);
3621 #ifdef CONFIG_DEBUG_SLAB
3622 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3624 return __do_kmalloc_node(size
, flags
, node
,
3625 __builtin_return_address(0));
3627 EXPORT_SYMBOL(__kmalloc_node
);
3629 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3630 int node
, unsigned long caller
)
3632 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3634 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3636 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3638 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3640 EXPORT_SYMBOL(__kmalloc_node
);
3641 #endif /* CONFIG_DEBUG_SLAB */
3642 #endif /* CONFIG_NUMA */
3645 * __do_kmalloc - allocate memory
3646 * @size: how many bytes of memory are required.
3647 * @flags: the type of memory to allocate (see kmalloc).
3648 * @caller: function caller for debug tracking of the caller
3650 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3653 struct kmem_cache
*cachep
;
3655 /* If you want to save a few bytes .text space: replace
3657 * Then kmalloc uses the uninlined functions instead of the inline
3660 cachep
= __find_general_cachep(size
, flags
);
3661 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3663 return __cache_alloc(cachep
, flags
, caller
);
3667 #ifdef CONFIG_DEBUG_SLAB
3668 void *__kmalloc(size_t size
, gfp_t flags
)
3670 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3672 EXPORT_SYMBOL(__kmalloc
);
3674 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3676 return __do_kmalloc(size
, flags
, (void *)caller
);
3678 EXPORT_SYMBOL(__kmalloc_track_caller
);
3681 void *__kmalloc(size_t size
, gfp_t flags
)
3683 return __do_kmalloc(size
, flags
, NULL
);
3685 EXPORT_SYMBOL(__kmalloc
);
3689 * kmem_cache_free - Deallocate an object
3690 * @cachep: The cache the allocation was from.
3691 * @objp: The previously allocated object.
3693 * Free an object which was previously allocated from this
3696 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3698 unsigned long flags
;
3700 local_irq_save(flags
);
3701 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3702 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3703 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3704 __cache_free(cachep
, objp
);
3705 local_irq_restore(flags
);
3707 EXPORT_SYMBOL(kmem_cache_free
);
3710 * kfree - free previously allocated memory
3711 * @objp: pointer returned by kmalloc.
3713 * If @objp is NULL, no operation is performed.
3715 * Don't free memory not originally allocated by kmalloc()
3716 * or you will run into trouble.
3718 void kfree(const void *objp
)
3720 struct kmem_cache
*c
;
3721 unsigned long flags
;
3723 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3725 local_irq_save(flags
);
3726 kfree_debugcheck(objp
);
3727 c
= virt_to_cache(objp
);
3728 debug_check_no_locks_freed(objp
, obj_size(c
));
3729 debug_check_no_obj_freed(objp
, obj_size(c
));
3730 __cache_free(c
, (void *)objp
);
3731 local_irq_restore(flags
);
3733 EXPORT_SYMBOL(kfree
);
3735 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3737 return obj_size(cachep
);
3739 EXPORT_SYMBOL(kmem_cache_size
);
3741 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3743 return cachep
->name
;
3745 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3748 * This initializes kmem_list3 or resizes various caches for all nodes.
3750 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3753 struct kmem_list3
*l3
;
3754 struct array_cache
*new_shared
;
3755 struct array_cache
**new_alien
= NULL
;
3757 for_each_online_node(node
) {
3759 if (use_alien_caches
) {
3760 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3766 if (cachep
->shared
) {
3767 new_shared
= alloc_arraycache(node
,
3768 cachep
->shared
*cachep
->batchcount
,
3771 free_alien_cache(new_alien
);
3776 l3
= cachep
->nodelists
[node
];
3778 struct array_cache
*shared
= l3
->shared
;
3780 spin_lock_irq(&l3
->list_lock
);
3783 free_block(cachep
, shared
->entry
,
3784 shared
->avail
, node
);
3786 l3
->shared
= new_shared
;
3788 l3
->alien
= new_alien
;
3791 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3792 cachep
->batchcount
+ cachep
->num
;
3793 spin_unlock_irq(&l3
->list_lock
);
3795 free_alien_cache(new_alien
);
3798 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3800 free_alien_cache(new_alien
);
3805 kmem_list3_init(l3
);
3806 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3807 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3808 l3
->shared
= new_shared
;
3809 l3
->alien
= new_alien
;
3810 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3811 cachep
->batchcount
+ cachep
->num
;
3812 cachep
->nodelists
[node
] = l3
;
3817 if (!cachep
->next
.next
) {
3818 /* Cache is not active yet. Roll back what we did */
3821 if (cachep
->nodelists
[node
]) {
3822 l3
= cachep
->nodelists
[node
];
3825 free_alien_cache(l3
->alien
);
3827 cachep
->nodelists
[node
] = NULL
;
3835 struct ccupdate_struct
{
3836 struct kmem_cache
*cachep
;
3837 struct array_cache
*new[NR_CPUS
];
3840 static void do_ccupdate_local(void *info
)
3842 struct ccupdate_struct
*new = info
;
3843 struct array_cache
*old
;
3846 old
= cpu_cache_get(new->cachep
);
3848 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3849 new->new[smp_processor_id()] = old
;
3852 /* Always called with the cache_chain_mutex held */
3853 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3854 int batchcount
, int shared
)
3856 struct ccupdate_struct
*new;
3859 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3863 for_each_online_cpu(i
) {
3864 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3867 for (i
--; i
>= 0; i
--)
3873 new->cachep
= cachep
;
3875 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3878 cachep
->batchcount
= batchcount
;
3879 cachep
->limit
= limit
;
3880 cachep
->shared
= shared
;
3882 for_each_online_cpu(i
) {
3883 struct array_cache
*ccold
= new->new[i
];
3886 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3887 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3888 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3892 return alloc_kmemlist(cachep
);
3895 /* Called with cache_chain_mutex held always */
3896 static int enable_cpucache(struct kmem_cache
*cachep
)
3902 * The head array serves three purposes:
3903 * - create a LIFO ordering, i.e. return objects that are cache-warm
3904 * - reduce the number of spinlock operations.
3905 * - reduce the number of linked list operations on the slab and
3906 * bufctl chains: array operations are cheaper.
3907 * The numbers are guessed, we should auto-tune as described by
3910 if (cachep
->buffer_size
> 131072)
3912 else if (cachep
->buffer_size
> PAGE_SIZE
)
3914 else if (cachep
->buffer_size
> 1024)
3916 else if (cachep
->buffer_size
> 256)
3922 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3923 * allocation behaviour: Most allocs on one cpu, most free operations
3924 * on another cpu. For these cases, an efficient object passing between
3925 * cpus is necessary. This is provided by a shared array. The array
3926 * replaces Bonwick's magazine layer.
3927 * On uniprocessor, it's functionally equivalent (but less efficient)
3928 * to a larger limit. Thus disabled by default.
3931 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3936 * With debugging enabled, large batchcount lead to excessively long
3937 * periods with disabled local interrupts. Limit the batchcount
3942 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
3944 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3945 cachep
->name
, -err
);
3950 * Drain an array if it contains any elements taking the l3 lock only if
3951 * necessary. Note that the l3 listlock also protects the array_cache
3952 * if drain_array() is used on the shared array.
3954 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
3955 struct array_cache
*ac
, int force
, int node
)
3959 if (!ac
|| !ac
->avail
)
3961 if (ac
->touched
&& !force
) {
3964 spin_lock_irq(&l3
->list_lock
);
3966 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3967 if (tofree
> ac
->avail
)
3968 tofree
= (ac
->avail
+ 1) / 2;
3969 free_block(cachep
, ac
->entry
, tofree
, node
);
3970 ac
->avail
-= tofree
;
3971 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3972 sizeof(void *) * ac
->avail
);
3974 spin_unlock_irq(&l3
->list_lock
);
3979 * cache_reap - Reclaim memory from caches.
3980 * @w: work descriptor
3982 * Called from workqueue/eventd every few seconds.
3984 * - clear the per-cpu caches for this CPU.
3985 * - return freeable pages to the main free memory pool.
3987 * If we cannot acquire the cache chain mutex then just give up - we'll try
3988 * again on the next iteration.
3990 static void cache_reap(struct work_struct
*w
)
3992 struct kmem_cache
*searchp
;
3993 struct kmem_list3
*l3
;
3994 int node
= numa_node_id();
3995 struct delayed_work
*work
= to_delayed_work(w
);
3997 if (!mutex_trylock(&cache_chain_mutex
))
3998 /* Give up. Setup the next iteration. */
4001 list_for_each_entry(searchp
, &cache_chain
, next
) {
4005 * We only take the l3 lock if absolutely necessary and we
4006 * have established with reasonable certainty that
4007 * we can do some work if the lock was obtained.
4009 l3
= searchp
->nodelists
[node
];
4011 reap_alien(searchp
, l3
);
4013 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4016 * These are racy checks but it does not matter
4017 * if we skip one check or scan twice.
4019 if (time_after(l3
->next_reap
, jiffies
))
4022 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4024 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4026 if (l3
->free_touched
)
4027 l3
->free_touched
= 0;
4031 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4032 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4033 STATS_ADD_REAPED(searchp
, freed
);
4039 mutex_unlock(&cache_chain_mutex
);
4042 /* Set up the next iteration */
4043 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4046 #ifdef CONFIG_SLABINFO
4048 static void print_slabinfo_header(struct seq_file
*m
)
4051 * Output format version, so at least we can change it
4052 * without _too_ many complaints.
4055 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4057 seq_puts(m
, "slabinfo - version: 2.1\n");
4059 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4060 "<objperslab> <pagesperslab>");
4061 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4062 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4064 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4065 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4066 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4071 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4075 mutex_lock(&cache_chain_mutex
);
4077 print_slabinfo_header(m
);
4079 return seq_list_start(&cache_chain
, *pos
);
4082 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4084 return seq_list_next(p
, &cache_chain
, pos
);
4087 static void s_stop(struct seq_file
*m
, void *p
)
4089 mutex_unlock(&cache_chain_mutex
);
4092 static int s_show(struct seq_file
*m
, void *p
)
4094 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4096 unsigned long active_objs
;
4097 unsigned long num_objs
;
4098 unsigned long active_slabs
= 0;
4099 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4103 struct kmem_list3
*l3
;
4107 for_each_online_node(node
) {
4108 l3
= cachep
->nodelists
[node
];
4113 spin_lock_irq(&l3
->list_lock
);
4115 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4116 if (slabp
->inuse
!= cachep
->num
&& !error
)
4117 error
= "slabs_full accounting error";
4118 active_objs
+= cachep
->num
;
4121 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4122 if (slabp
->inuse
== cachep
->num
&& !error
)
4123 error
= "slabs_partial inuse accounting error";
4124 if (!slabp
->inuse
&& !error
)
4125 error
= "slabs_partial/inuse accounting error";
4126 active_objs
+= slabp
->inuse
;
4129 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4130 if (slabp
->inuse
&& !error
)
4131 error
= "slabs_free/inuse accounting error";
4134 free_objects
+= l3
->free_objects
;
4136 shared_avail
+= l3
->shared
->avail
;
4138 spin_unlock_irq(&l3
->list_lock
);
4140 num_slabs
+= active_slabs
;
4141 num_objs
= num_slabs
* cachep
->num
;
4142 if (num_objs
- active_objs
!= free_objects
&& !error
)
4143 error
= "free_objects accounting error";
4145 name
= cachep
->name
;
4147 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4149 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4150 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4151 cachep
->num
, (1 << cachep
->gfporder
));
4152 seq_printf(m
, " : tunables %4u %4u %4u",
4153 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4154 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4155 active_slabs
, num_slabs
, shared_avail
);
4158 unsigned long high
= cachep
->high_mark
;
4159 unsigned long allocs
= cachep
->num_allocations
;
4160 unsigned long grown
= cachep
->grown
;
4161 unsigned long reaped
= cachep
->reaped
;
4162 unsigned long errors
= cachep
->errors
;
4163 unsigned long max_freeable
= cachep
->max_freeable
;
4164 unsigned long node_allocs
= cachep
->node_allocs
;
4165 unsigned long node_frees
= cachep
->node_frees
;
4166 unsigned long overflows
= cachep
->node_overflow
;
4168 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4169 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4170 reaped
, errors
, max_freeable
, node_allocs
,
4171 node_frees
, overflows
);
4175 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4176 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4177 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4178 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4180 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4181 allochit
, allocmiss
, freehit
, freemiss
);
4189 * slabinfo_op - iterator that generates /proc/slabinfo
4198 * num-pages-per-slab
4199 * + further values on SMP and with statistics enabled
4202 static const struct seq_operations slabinfo_op
= {
4209 #define MAX_SLABINFO_WRITE 128
4211 * slabinfo_write - Tuning for the slab allocator
4213 * @buffer: user buffer
4214 * @count: data length
4217 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4218 size_t count
, loff_t
*ppos
)
4220 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4221 int limit
, batchcount
, shared
, res
;
4222 struct kmem_cache
*cachep
;
4224 if (count
> MAX_SLABINFO_WRITE
)
4226 if (copy_from_user(&kbuf
, buffer
, count
))
4228 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4230 tmp
= strchr(kbuf
, ' ');
4235 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4238 /* Find the cache in the chain of caches. */
4239 mutex_lock(&cache_chain_mutex
);
4241 list_for_each_entry(cachep
, &cache_chain
, next
) {
4242 if (!strcmp(cachep
->name
, kbuf
)) {
4243 if (limit
< 1 || batchcount
< 1 ||
4244 batchcount
> limit
|| shared
< 0) {
4247 res
= do_tune_cpucache(cachep
, limit
,
4248 batchcount
, shared
);
4253 mutex_unlock(&cache_chain_mutex
);
4259 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4261 return seq_open(file
, &slabinfo_op
);
4264 static const struct file_operations proc_slabinfo_operations
= {
4265 .open
= slabinfo_open
,
4267 .write
= slabinfo_write
,
4268 .llseek
= seq_lseek
,
4269 .release
= seq_release
,
4272 #ifdef CONFIG_DEBUG_SLAB_LEAK
4274 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4276 mutex_lock(&cache_chain_mutex
);
4277 return seq_list_start(&cache_chain
, *pos
);
4280 static inline int add_caller(unsigned long *n
, unsigned long v
)
4290 unsigned long *q
= p
+ 2 * i
;
4304 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4310 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4316 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4317 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4319 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4324 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4326 #ifdef CONFIG_KALLSYMS
4327 unsigned long offset
, size
;
4328 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4330 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4331 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4333 seq_printf(m
, " [%s]", modname
);
4337 seq_printf(m
, "%p", (void *)address
);
4340 static int leaks_show(struct seq_file
*m
, void *p
)
4342 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4344 struct kmem_list3
*l3
;
4346 unsigned long *n
= m
->private;
4350 if (!(cachep
->flags
& SLAB_STORE_USER
))
4352 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4355 /* OK, we can do it */
4359 for_each_online_node(node
) {
4360 l3
= cachep
->nodelists
[node
];
4365 spin_lock_irq(&l3
->list_lock
);
4367 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4368 handle_slab(n
, cachep
, slabp
);
4369 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4370 handle_slab(n
, cachep
, slabp
);
4371 spin_unlock_irq(&l3
->list_lock
);
4373 name
= cachep
->name
;
4375 /* Increase the buffer size */
4376 mutex_unlock(&cache_chain_mutex
);
4377 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4379 /* Too bad, we are really out */
4381 mutex_lock(&cache_chain_mutex
);
4384 *(unsigned long *)m
->private = n
[0] * 2;
4386 mutex_lock(&cache_chain_mutex
);
4387 /* Now make sure this entry will be retried */
4391 for (i
= 0; i
< n
[1]; i
++) {
4392 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4393 show_symbol(m
, n
[2*i
+2]);
4400 static const struct seq_operations slabstats_op
= {
4401 .start
= leaks_start
,
4407 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4409 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4412 ret
= seq_open(file
, &slabstats_op
);
4414 struct seq_file
*m
= file
->private_data
;
4415 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4424 static const struct file_operations proc_slabstats_operations
= {
4425 .open
= slabstats_open
,
4427 .llseek
= seq_lseek
,
4428 .release
= seq_release_private
,
4432 static int __init
slab_proc_init(void)
4434 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4435 #ifdef CONFIG_DEBUG_SLAB_LEAK
4436 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4440 module_init(slab_proc_init
);
4444 * ksize - get the actual amount of memory allocated for a given object
4445 * @objp: Pointer to the object
4447 * kmalloc may internally round up allocations and return more memory
4448 * than requested. ksize() can be used to determine the actual amount of
4449 * memory allocated. The caller may use this additional memory, even though
4450 * a smaller amount of memory was initially specified with the kmalloc call.
4451 * The caller must guarantee that objp points to a valid object previously
4452 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4453 * must not be freed during the duration of the call.
4455 size_t ksize(const void *objp
)
4458 if (unlikely(objp
== ZERO_SIZE_PTR
))
4461 return obj_size(virt_to_cache(objp
));
4463 EXPORT_SYMBOL(ksize
);