2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
26 #include <asm/pgtable.h>
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
33 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
34 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
35 unsigned long hugepages_treat_as_movable
;
37 static int max_hstate
;
38 unsigned int default_hstate_idx
;
39 struct hstate hstates
[HUGE_MAX_HSTATE
];
41 __initdata
LIST_HEAD(huge_boot_pages
);
43 /* for command line parsing */
44 static struct hstate
* __initdata parsed_hstate
;
45 static unsigned long __initdata default_hstate_max_huge_pages
;
46 static unsigned long __initdata default_hstate_size
;
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
54 static DEFINE_SPINLOCK(hugetlb_lock
);
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
65 * down_write(&mm->mmap_sem);
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
71 struct list_head link
;
76 static long region_add(struct list_head
*head
, long f
, long t
)
78 struct file_region
*rg
, *nrg
, *trg
;
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg
, head
, link
)
85 /* Round our left edge to the current segment if it encloses us. */
89 /* Check for and consume any regions we now overlap with. */
91 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
92 if (&rg
->link
== head
)
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
112 static long region_chg(struct list_head
*head
, long f
, long t
)
114 struct file_region
*rg
, *nrg
;
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg
, head
, link
)
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg
->link
== head
|| t
< rg
->from
) {
126 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
131 INIT_LIST_HEAD(&nrg
->link
);
132 list_add(&nrg
->link
, rg
->link
.prev
);
137 /* Round our left edge to the current segment if it encloses us. */
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
144 if (&rg
->link
== head
)
149 /* We overlap with this area, if it extends further than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
156 chg
-= rg
->to
- rg
->from
;
161 static long region_truncate(struct list_head
*head
, long end
)
163 struct file_region
*rg
, *trg
;
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg
, head
, link
)
170 if (&rg
->link
== head
)
173 /* If we are in the middle of a region then adjust it. */
174 if (end
> rg
->from
) {
177 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
182 if (&rg
->link
== head
)
184 chg
+= rg
->to
- rg
->from
;
191 static long region_count(struct list_head
*head
, long f
, long t
)
193 struct file_region
*rg
;
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg
, head
, link
) {
206 seg_from
= max(rg
->from
, f
);
207 seg_to
= min(rg
->to
, t
);
209 chg
+= seg_to
- seg_from
;
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
219 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
220 struct vm_area_struct
*vma
, unsigned long address
)
222 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
223 (vma
->vm_pgoff
>> huge_page_order(h
));
226 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
227 unsigned long address
)
229 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
236 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
238 struct hstate
*hstate
;
240 if (!is_vm_hugetlb_page(vma
))
243 hstate
= hstate_vma(vma
);
245 return 1UL << (hstate
->order
+ PAGE_SHIFT
);
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
258 return vma_kernel_pagesize(vma
);
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
290 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
292 return (unsigned long)vma
->vm_private_data
;
295 static void set_vma_private_data(struct vm_area_struct
*vma
,
298 vma
->vm_private_data
= (void *)value
;
303 struct list_head regions
;
306 static struct resv_map
*resv_map_alloc(void)
308 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
312 kref_init(&resv_map
->refs
);
313 INIT_LIST_HEAD(&resv_map
->regions
);
318 static void resv_map_release(struct kref
*ref
)
320 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map
->regions
, 0);
327 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
329 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
330 if (!(vma
->vm_flags
& VM_MAYSHARE
))
331 return (struct resv_map
*)(get_vma_private_data(vma
) &
336 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
338 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
339 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
341 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
342 HPAGE_RESV_MASK
) | (unsigned long)map
);
345 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
347 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
348 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
350 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
353 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
355 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
357 return (get_vma_private_data(vma
) & flag
) != 0;
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate
*h
,
362 struct vm_area_struct
*vma
)
364 if (vma
->vm_flags
& VM_NORESERVE
)
367 if (vma
->vm_flags
& VM_MAYSHARE
) {
368 /* Shared mappings always use reserves */
369 h
->resv_huge_pages
--;
370 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
372 * Only the process that called mmap() has reserves for
375 h
->resv_huge_pages
--;
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
382 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
383 if (!(vma
->vm_flags
& VM_MAYSHARE
))
384 vma
->vm_private_data
= (void *)0;
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct
*vma
)
390 if (vma
->vm_flags
& VM_MAYSHARE
)
392 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
397 static void copy_gigantic_page(struct page
*dst
, struct page
*src
)
400 struct hstate
*h
= page_hstate(src
);
401 struct page
*dst_base
= dst
;
402 struct page
*src_base
= src
;
404 for (i
= 0; i
< pages_per_huge_page(h
); ) {
406 copy_highpage(dst
, src
);
409 dst
= mem_map_next(dst
, dst_base
, i
);
410 src
= mem_map_next(src
, src_base
, i
);
414 void copy_huge_page(struct page
*dst
, struct page
*src
)
417 struct hstate
*h
= page_hstate(src
);
419 if (unlikely(pages_per_huge_page(h
) > MAX_ORDER_NR_PAGES
)) {
420 copy_gigantic_page(dst
, src
);
425 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
427 copy_highpage(dst
+ i
, src
+ i
);
431 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
433 int nid
= page_to_nid(page
);
434 list_add(&page
->lru
, &h
->hugepage_freelists
[nid
]);
435 h
->free_huge_pages
++;
436 h
->free_huge_pages_node
[nid
]++;
439 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
443 if (list_empty(&h
->hugepage_freelists
[nid
]))
445 page
= list_entry(h
->hugepage_freelists
[nid
].next
, struct page
, lru
);
446 list_del(&page
->lru
);
447 set_page_refcounted(page
);
448 h
->free_huge_pages
--;
449 h
->free_huge_pages_node
[nid
]--;
453 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
454 struct vm_area_struct
*vma
,
455 unsigned long address
, int avoid_reserve
)
457 struct page
*page
= NULL
;
458 struct mempolicy
*mpol
;
459 nodemask_t
*nodemask
;
460 struct zonelist
*zonelist
;
465 zonelist
= huge_zonelist(vma
, address
,
466 htlb_alloc_mask
, &mpol
, &nodemask
);
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
472 if (!vma_has_reserves(vma
) &&
473 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
476 /* If reserves cannot be used, ensure enough pages are in the pool */
477 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
480 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
481 MAX_NR_ZONES
- 1, nodemask
) {
482 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask
)) {
483 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
486 decrement_hugepage_resv_vma(h
, vma
);
497 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
501 VM_BUG_ON(h
->order
>= MAX_ORDER
);
504 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
505 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
506 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
507 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
508 1 << PG_private
| 1<< PG_writeback
);
510 set_compound_page_dtor(page
, NULL
);
511 set_page_refcounted(page
);
512 arch_release_hugepage(page
);
513 __free_pages(page
, huge_page_order(h
));
516 struct hstate
*size_to_hstate(unsigned long size
)
521 if (huge_page_size(h
) == size
)
527 static void free_huge_page(struct page
*page
)
530 * Can't pass hstate in here because it is called from the
531 * compound page destructor.
533 struct hstate
*h
= page_hstate(page
);
534 int nid
= page_to_nid(page
);
535 struct address_space
*mapping
;
537 mapping
= (struct address_space
*) page_private(page
);
538 set_page_private(page
, 0);
539 page
->mapping
= NULL
;
540 BUG_ON(page_count(page
));
541 BUG_ON(page_mapcount(page
));
542 INIT_LIST_HEAD(&page
->lru
);
544 spin_lock(&hugetlb_lock
);
545 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
546 update_and_free_page(h
, page
);
547 h
->surplus_huge_pages
--;
548 h
->surplus_huge_pages_node
[nid
]--;
550 enqueue_huge_page(h
, page
);
552 spin_unlock(&hugetlb_lock
);
554 hugetlb_put_quota(mapping
, 1);
557 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
559 set_compound_page_dtor(page
, free_huge_page
);
560 spin_lock(&hugetlb_lock
);
562 h
->nr_huge_pages_node
[nid
]++;
563 spin_unlock(&hugetlb_lock
);
564 put_page(page
); /* free it into the hugepage allocator */
567 static void prep_compound_gigantic_page(struct page
*page
, unsigned long order
)
570 int nr_pages
= 1 << order
;
571 struct page
*p
= page
+ 1;
573 /* we rely on prep_new_huge_page to set the destructor */
574 set_compound_order(page
, order
);
576 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
578 p
->first_page
= page
;
582 int PageHuge(struct page
*page
)
584 compound_page_dtor
*dtor
;
586 if (!PageCompound(page
))
589 page
= compound_head(page
);
590 dtor
= get_compound_page_dtor(page
);
592 return dtor
== free_huge_page
;
595 EXPORT_SYMBOL_GPL(PageHuge
);
597 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
601 if (h
->order
>= MAX_ORDER
)
604 page
= alloc_pages_exact_node(nid
,
605 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
606 __GFP_REPEAT
|__GFP_NOWARN
,
609 if (arch_prepare_hugepage(page
)) {
610 __free_pages(page
, huge_page_order(h
));
613 prep_new_huge_page(h
, page
, nid
);
620 * common helper functions for hstate_next_node_to_{alloc|free}.
621 * We may have allocated or freed a huge page based on a different
622 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
623 * be outside of *nodes_allowed. Ensure that we use an allowed
624 * node for alloc or free.
626 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
628 nid
= next_node(nid
, *nodes_allowed
);
629 if (nid
== MAX_NUMNODES
)
630 nid
= first_node(*nodes_allowed
);
631 VM_BUG_ON(nid
>= MAX_NUMNODES
);
636 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
638 if (!node_isset(nid
, *nodes_allowed
))
639 nid
= next_node_allowed(nid
, nodes_allowed
);
644 * returns the previously saved node ["this node"] from which to
645 * allocate a persistent huge page for the pool and advance the
646 * next node from which to allocate, handling wrap at end of node
649 static int hstate_next_node_to_alloc(struct hstate
*h
,
650 nodemask_t
*nodes_allowed
)
654 VM_BUG_ON(!nodes_allowed
);
656 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
657 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
662 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
669 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
670 next_nid
= start_nid
;
673 page
= alloc_fresh_huge_page_node(h
, next_nid
);
678 next_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
679 } while (next_nid
!= start_nid
);
682 count_vm_event(HTLB_BUDDY_PGALLOC
);
684 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
690 * helper for free_pool_huge_page() - return the previously saved
691 * node ["this node"] from which to free a huge page. Advance the
692 * next node id whether or not we find a free huge page to free so
693 * that the next attempt to free addresses the next node.
695 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
699 VM_BUG_ON(!nodes_allowed
);
701 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
702 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
708 * Free huge page from pool from next node to free.
709 * Attempt to keep persistent huge pages more or less
710 * balanced over allowed nodes.
711 * Called with hugetlb_lock locked.
713 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
720 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
721 next_nid
= start_nid
;
725 * If we're returning unused surplus pages, only examine
726 * nodes with surplus pages.
728 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[next_nid
]) &&
729 !list_empty(&h
->hugepage_freelists
[next_nid
])) {
731 list_entry(h
->hugepage_freelists
[next_nid
].next
,
733 list_del(&page
->lru
);
734 h
->free_huge_pages
--;
735 h
->free_huge_pages_node
[next_nid
]--;
737 h
->surplus_huge_pages
--;
738 h
->surplus_huge_pages_node
[next_nid
]--;
740 update_and_free_page(h
, page
);
744 next_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
745 } while (next_nid
!= start_nid
);
750 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
755 if (h
->order
>= MAX_ORDER
)
759 * Assume we will successfully allocate the surplus page to
760 * prevent racing processes from causing the surplus to exceed
763 * This however introduces a different race, where a process B
764 * tries to grow the static hugepage pool while alloc_pages() is
765 * called by process A. B will only examine the per-node
766 * counters in determining if surplus huge pages can be
767 * converted to normal huge pages in adjust_pool_surplus(). A
768 * won't be able to increment the per-node counter, until the
769 * lock is dropped by B, but B doesn't drop hugetlb_lock until
770 * no more huge pages can be converted from surplus to normal
771 * state (and doesn't try to convert again). Thus, we have a
772 * case where a surplus huge page exists, the pool is grown, and
773 * the surplus huge page still exists after, even though it
774 * should just have been converted to a normal huge page. This
775 * does not leak memory, though, as the hugepage will be freed
776 * once it is out of use. It also does not allow the counters to
777 * go out of whack in adjust_pool_surplus() as we don't modify
778 * the node values until we've gotten the hugepage and only the
779 * per-node value is checked there.
781 spin_lock(&hugetlb_lock
);
782 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
783 spin_unlock(&hugetlb_lock
);
787 h
->surplus_huge_pages
++;
789 spin_unlock(&hugetlb_lock
);
791 if (nid
== NUMA_NO_NODE
)
792 page
= alloc_pages(htlb_alloc_mask
|__GFP_COMP
|
793 __GFP_REPEAT
|__GFP_NOWARN
,
796 page
= alloc_pages_exact_node(nid
,
797 htlb_alloc_mask
|__GFP_COMP
|__GFP_THISNODE
|
798 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
800 if (page
&& arch_prepare_hugepage(page
)) {
801 __free_pages(page
, huge_page_order(h
));
805 spin_lock(&hugetlb_lock
);
807 r_nid
= page_to_nid(page
);
808 set_compound_page_dtor(page
, free_huge_page
);
810 * We incremented the global counters already
812 h
->nr_huge_pages_node
[r_nid
]++;
813 h
->surplus_huge_pages_node
[r_nid
]++;
814 __count_vm_event(HTLB_BUDDY_PGALLOC
);
817 h
->surplus_huge_pages
--;
818 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
820 spin_unlock(&hugetlb_lock
);
826 * This allocation function is useful in the context where vma is irrelevant.
827 * E.g. soft-offlining uses this function because it only cares physical
828 * address of error page.
830 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
834 spin_lock(&hugetlb_lock
);
835 page
= dequeue_huge_page_node(h
, nid
);
836 spin_unlock(&hugetlb_lock
);
839 page
= alloc_buddy_huge_page(h
, nid
);
845 * Increase the hugetlb pool such that it can accommodate a reservation
848 static int gather_surplus_pages(struct hstate
*h
, int delta
)
850 struct list_head surplus_list
;
851 struct page
*page
, *tmp
;
853 int needed
, allocated
;
855 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
857 h
->resv_huge_pages
+= delta
;
862 INIT_LIST_HEAD(&surplus_list
);
866 spin_unlock(&hugetlb_lock
);
867 for (i
= 0; i
< needed
; i
++) {
868 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
871 * We were not able to allocate enough pages to
872 * satisfy the entire reservation so we free what
873 * we've allocated so far.
877 list_add(&page
->lru
, &surplus_list
);
882 * After retaking hugetlb_lock, we need to recalculate 'needed'
883 * because either resv_huge_pages or free_huge_pages may have changed.
885 spin_lock(&hugetlb_lock
);
886 needed
= (h
->resv_huge_pages
+ delta
) -
887 (h
->free_huge_pages
+ allocated
);
892 * The surplus_list now contains _at_least_ the number of extra pages
893 * needed to accommodate the reservation. Add the appropriate number
894 * of pages to the hugetlb pool and free the extras back to the buddy
895 * allocator. Commit the entire reservation here to prevent another
896 * process from stealing the pages as they are added to the pool but
897 * before they are reserved.
900 h
->resv_huge_pages
+= delta
;
903 spin_unlock(&hugetlb_lock
);
904 /* Free the needed pages to the hugetlb pool */
905 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
908 list_del(&page
->lru
);
910 * This page is now managed by the hugetlb allocator and has
911 * no users -- drop the buddy allocator's reference.
913 put_page_testzero(page
);
914 VM_BUG_ON(page_count(page
));
915 enqueue_huge_page(h
, page
);
918 /* Free unnecessary surplus pages to the buddy allocator */
920 if (!list_empty(&surplus_list
)) {
921 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
922 list_del(&page
->lru
);
926 spin_lock(&hugetlb_lock
);
932 * When releasing a hugetlb pool reservation, any surplus pages that were
933 * allocated to satisfy the reservation must be explicitly freed if they were
935 * Called with hugetlb_lock held.
937 static void return_unused_surplus_pages(struct hstate
*h
,
938 unsigned long unused_resv_pages
)
940 unsigned long nr_pages
;
942 /* Uncommit the reservation */
943 h
->resv_huge_pages
-= unused_resv_pages
;
945 /* Cannot return gigantic pages currently */
946 if (h
->order
>= MAX_ORDER
)
949 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
952 * We want to release as many surplus pages as possible, spread
953 * evenly across all nodes with memory. Iterate across these nodes
954 * until we can no longer free unreserved surplus pages. This occurs
955 * when the nodes with surplus pages have no free pages.
956 * free_pool_huge_page() will balance the the freed pages across the
957 * on-line nodes with memory and will handle the hstate accounting.
960 if (!free_pool_huge_page(h
, &node_states
[N_HIGH_MEMORY
], 1))
966 * Determine if the huge page at addr within the vma has an associated
967 * reservation. Where it does not we will need to logically increase
968 * reservation and actually increase quota before an allocation can occur.
969 * Where any new reservation would be required the reservation change is
970 * prepared, but not committed. Once the page has been quota'd allocated
971 * an instantiated the change should be committed via vma_commit_reservation.
972 * No action is required on failure.
974 static long vma_needs_reservation(struct hstate
*h
,
975 struct vm_area_struct
*vma
, unsigned long addr
)
977 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
978 struct inode
*inode
= mapping
->host
;
980 if (vma
->vm_flags
& VM_MAYSHARE
) {
981 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
982 return region_chg(&inode
->i_mapping
->private_list
,
985 } else if (!is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
990 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
991 struct resv_map
*reservations
= vma_resv_map(vma
);
993 err
= region_chg(&reservations
->regions
, idx
, idx
+ 1);
999 static void vma_commit_reservation(struct hstate
*h
,
1000 struct vm_area_struct
*vma
, unsigned long addr
)
1002 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1003 struct inode
*inode
= mapping
->host
;
1005 if (vma
->vm_flags
& VM_MAYSHARE
) {
1006 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1007 region_add(&inode
->i_mapping
->private_list
, idx
, idx
+ 1);
1009 } else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1010 pgoff_t idx
= vma_hugecache_offset(h
, vma
, addr
);
1011 struct resv_map
*reservations
= vma_resv_map(vma
);
1013 /* Mark this page used in the map. */
1014 region_add(&reservations
->regions
, idx
, idx
+ 1);
1018 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1019 unsigned long addr
, int avoid_reserve
)
1021 struct hstate
*h
= hstate_vma(vma
);
1023 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
1024 struct inode
*inode
= mapping
->host
;
1028 * Processes that did not create the mapping will have no reserves and
1029 * will not have accounted against quota. Check that the quota can be
1030 * made before satisfying the allocation
1031 * MAP_NORESERVE mappings may also need pages and quota allocated
1032 * if no reserve mapping overlaps.
1034 chg
= vma_needs_reservation(h
, vma
, addr
);
1036 return ERR_PTR(-VM_FAULT_OOM
);
1038 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
1039 return ERR_PTR(-VM_FAULT_SIGBUS
);
1041 spin_lock(&hugetlb_lock
);
1042 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
);
1043 spin_unlock(&hugetlb_lock
);
1046 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1048 hugetlb_put_quota(inode
->i_mapping
, chg
);
1049 return ERR_PTR(-VM_FAULT_SIGBUS
);
1053 set_page_private(page
, (unsigned long) mapping
);
1055 vma_commit_reservation(h
, vma
, addr
);
1060 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1062 struct huge_bootmem_page
*m
;
1063 int nr_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
1068 addr
= __alloc_bootmem_node_nopanic(
1069 NODE_DATA(hstate_next_node_to_alloc(h
,
1070 &node_states
[N_HIGH_MEMORY
])),
1071 huge_page_size(h
), huge_page_size(h
), 0);
1075 * Use the beginning of the huge page to store the
1076 * huge_bootmem_page struct (until gather_bootmem
1077 * puts them into the mem_map).
1087 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1088 /* Put them into a private list first because mem_map is not up yet */
1089 list_add(&m
->list
, &huge_boot_pages
);
1094 static void prep_compound_huge_page(struct page
*page
, int order
)
1096 if (unlikely(order
> (MAX_ORDER
- 1)))
1097 prep_compound_gigantic_page(page
, order
);
1099 prep_compound_page(page
, order
);
1102 /* Put bootmem huge pages into the standard lists after mem_map is up */
1103 static void __init
gather_bootmem_prealloc(void)
1105 struct huge_bootmem_page
*m
;
1107 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1108 struct page
*page
= virt_to_page(m
);
1109 struct hstate
*h
= m
->hstate
;
1110 __ClearPageReserved(page
);
1111 WARN_ON(page_count(page
) != 1);
1112 prep_compound_huge_page(page
, h
->order
);
1113 prep_new_huge_page(h
, page
, page_to_nid(page
));
1115 * If we had gigantic hugepages allocated at boot time, we need
1116 * to restore the 'stolen' pages to totalram_pages in order to
1117 * fix confusing memory reports from free(1) and another
1118 * side-effects, like CommitLimit going negative.
1120 if (h
->order
> (MAX_ORDER
- 1))
1121 totalram_pages
+= 1 << h
->order
;
1125 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1129 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1130 if (h
->order
>= MAX_ORDER
) {
1131 if (!alloc_bootmem_huge_page(h
))
1133 } else if (!alloc_fresh_huge_page(h
,
1134 &node_states
[N_HIGH_MEMORY
]))
1137 h
->max_huge_pages
= i
;
1140 static void __init
hugetlb_init_hstates(void)
1144 for_each_hstate(h
) {
1145 /* oversize hugepages were init'ed in early boot */
1146 if (h
->order
< MAX_ORDER
)
1147 hugetlb_hstate_alloc_pages(h
);
1151 static char * __init
memfmt(char *buf
, unsigned long n
)
1153 if (n
>= (1UL << 30))
1154 sprintf(buf
, "%lu GB", n
>> 30);
1155 else if (n
>= (1UL << 20))
1156 sprintf(buf
, "%lu MB", n
>> 20);
1158 sprintf(buf
, "%lu KB", n
>> 10);
1162 static void __init
report_hugepages(void)
1166 for_each_hstate(h
) {
1168 printk(KERN_INFO
"HugeTLB registered %s page size, "
1169 "pre-allocated %ld pages\n",
1170 memfmt(buf
, huge_page_size(h
)),
1171 h
->free_huge_pages
);
1175 #ifdef CONFIG_HIGHMEM
1176 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1177 nodemask_t
*nodes_allowed
)
1181 if (h
->order
>= MAX_ORDER
)
1184 for_each_node_mask(i
, *nodes_allowed
) {
1185 struct page
*page
, *next
;
1186 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1187 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1188 if (count
>= h
->nr_huge_pages
)
1190 if (PageHighMem(page
))
1192 list_del(&page
->lru
);
1193 update_and_free_page(h
, page
);
1194 h
->free_huge_pages
--;
1195 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1200 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1201 nodemask_t
*nodes_allowed
)
1207 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1208 * balanced by operating on them in a round-robin fashion.
1209 * Returns 1 if an adjustment was made.
1211 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1214 int start_nid
, next_nid
;
1217 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1220 start_nid
= hstate_next_node_to_alloc(h
, nodes_allowed
);
1222 start_nid
= hstate_next_node_to_free(h
, nodes_allowed
);
1223 next_nid
= start_nid
;
1229 * To shrink on this node, there must be a surplus page
1231 if (!h
->surplus_huge_pages_node
[nid
]) {
1232 next_nid
= hstate_next_node_to_alloc(h
,
1239 * Surplus cannot exceed the total number of pages
1241 if (h
->surplus_huge_pages_node
[nid
] >=
1242 h
->nr_huge_pages_node
[nid
]) {
1243 next_nid
= hstate_next_node_to_free(h
,
1249 h
->surplus_huge_pages
+= delta
;
1250 h
->surplus_huge_pages_node
[nid
] += delta
;
1253 } while (next_nid
!= start_nid
);
1258 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1259 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1260 nodemask_t
*nodes_allowed
)
1262 unsigned long min_count
, ret
;
1264 if (h
->order
>= MAX_ORDER
)
1265 return h
->max_huge_pages
;
1268 * Increase the pool size
1269 * First take pages out of surplus state. Then make up the
1270 * remaining difference by allocating fresh huge pages.
1272 * We might race with alloc_buddy_huge_page() here and be unable
1273 * to convert a surplus huge page to a normal huge page. That is
1274 * not critical, though, it just means the overall size of the
1275 * pool might be one hugepage larger than it needs to be, but
1276 * within all the constraints specified by the sysctls.
1278 spin_lock(&hugetlb_lock
);
1279 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1280 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1284 while (count
> persistent_huge_pages(h
)) {
1286 * If this allocation races such that we no longer need the
1287 * page, free_huge_page will handle it by freeing the page
1288 * and reducing the surplus.
1290 spin_unlock(&hugetlb_lock
);
1291 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1292 spin_lock(&hugetlb_lock
);
1296 /* Bail for signals. Probably ctrl-c from user */
1297 if (signal_pending(current
))
1302 * Decrease the pool size
1303 * First return free pages to the buddy allocator (being careful
1304 * to keep enough around to satisfy reservations). Then place
1305 * pages into surplus state as needed so the pool will shrink
1306 * to the desired size as pages become free.
1308 * By placing pages into the surplus state independent of the
1309 * overcommit value, we are allowing the surplus pool size to
1310 * exceed overcommit. There are few sane options here. Since
1311 * alloc_buddy_huge_page() is checking the global counter,
1312 * though, we'll note that we're not allowed to exceed surplus
1313 * and won't grow the pool anywhere else. Not until one of the
1314 * sysctls are changed, or the surplus pages go out of use.
1316 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1317 min_count
= max(count
, min_count
);
1318 try_to_free_low(h
, min_count
, nodes_allowed
);
1319 while (min_count
< persistent_huge_pages(h
)) {
1320 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1323 while (count
< persistent_huge_pages(h
)) {
1324 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1328 ret
= persistent_huge_pages(h
);
1329 spin_unlock(&hugetlb_lock
);
1333 #define HSTATE_ATTR_RO(_name) \
1334 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1336 #define HSTATE_ATTR(_name) \
1337 static struct kobj_attribute _name##_attr = \
1338 __ATTR(_name, 0644, _name##_show, _name##_store)
1340 static struct kobject
*hugepages_kobj
;
1341 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1343 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1345 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1349 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1350 if (hstate_kobjs
[i
] == kobj
) {
1352 *nidp
= NUMA_NO_NODE
;
1356 return kobj_to_node_hstate(kobj
, nidp
);
1359 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1360 struct kobj_attribute
*attr
, char *buf
)
1363 unsigned long nr_huge_pages
;
1366 h
= kobj_to_hstate(kobj
, &nid
);
1367 if (nid
== NUMA_NO_NODE
)
1368 nr_huge_pages
= h
->nr_huge_pages
;
1370 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1372 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1375 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1376 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1377 const char *buf
, size_t len
)
1381 unsigned long count
;
1383 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1385 err
= strict_strtoul(buf
, 10, &count
);
1389 h
= kobj_to_hstate(kobj
, &nid
);
1390 if (h
->order
>= MAX_ORDER
) {
1395 if (nid
== NUMA_NO_NODE
) {
1397 * global hstate attribute
1399 if (!(obey_mempolicy
&&
1400 init_nodemask_of_mempolicy(nodes_allowed
))) {
1401 NODEMASK_FREE(nodes_allowed
);
1402 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1404 } else if (nodes_allowed
) {
1406 * per node hstate attribute: adjust count to global,
1407 * but restrict alloc/free to the specified node.
1409 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1410 init_nodemask_of_node(nodes_allowed
, nid
);
1412 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1414 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1416 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1417 NODEMASK_FREE(nodes_allowed
);
1421 NODEMASK_FREE(nodes_allowed
);
1425 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1426 struct kobj_attribute
*attr
, char *buf
)
1428 return nr_hugepages_show_common(kobj
, attr
, buf
);
1431 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1432 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1434 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1436 HSTATE_ATTR(nr_hugepages
);
1441 * hstate attribute for optionally mempolicy-based constraint on persistent
1442 * huge page alloc/free.
1444 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1445 struct kobj_attribute
*attr
, char *buf
)
1447 return nr_hugepages_show_common(kobj
, attr
, buf
);
1450 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1451 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1453 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1455 HSTATE_ATTR(nr_hugepages_mempolicy
);
1459 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1460 struct kobj_attribute
*attr
, char *buf
)
1462 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1463 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1466 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1467 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1470 unsigned long input
;
1471 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1473 if (h
->order
>= MAX_ORDER
)
1476 err
= strict_strtoul(buf
, 10, &input
);
1480 spin_lock(&hugetlb_lock
);
1481 h
->nr_overcommit_huge_pages
= input
;
1482 spin_unlock(&hugetlb_lock
);
1486 HSTATE_ATTR(nr_overcommit_hugepages
);
1488 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1489 struct kobj_attribute
*attr
, char *buf
)
1492 unsigned long free_huge_pages
;
1495 h
= kobj_to_hstate(kobj
, &nid
);
1496 if (nid
== NUMA_NO_NODE
)
1497 free_huge_pages
= h
->free_huge_pages
;
1499 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1501 return sprintf(buf
, "%lu\n", free_huge_pages
);
1503 HSTATE_ATTR_RO(free_hugepages
);
1505 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1506 struct kobj_attribute
*attr
, char *buf
)
1508 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1509 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1511 HSTATE_ATTR_RO(resv_hugepages
);
1513 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1514 struct kobj_attribute
*attr
, char *buf
)
1517 unsigned long surplus_huge_pages
;
1520 h
= kobj_to_hstate(kobj
, &nid
);
1521 if (nid
== NUMA_NO_NODE
)
1522 surplus_huge_pages
= h
->surplus_huge_pages
;
1524 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1526 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1528 HSTATE_ATTR_RO(surplus_hugepages
);
1530 static struct attribute
*hstate_attrs
[] = {
1531 &nr_hugepages_attr
.attr
,
1532 &nr_overcommit_hugepages_attr
.attr
,
1533 &free_hugepages_attr
.attr
,
1534 &resv_hugepages_attr
.attr
,
1535 &surplus_hugepages_attr
.attr
,
1537 &nr_hugepages_mempolicy_attr
.attr
,
1542 static struct attribute_group hstate_attr_group
= {
1543 .attrs
= hstate_attrs
,
1546 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1547 struct kobject
**hstate_kobjs
,
1548 struct attribute_group
*hstate_attr_group
)
1551 int hi
= h
- hstates
;
1553 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1554 if (!hstate_kobjs
[hi
])
1557 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1559 kobject_put(hstate_kobjs
[hi
]);
1564 static void __init
hugetlb_sysfs_init(void)
1569 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1570 if (!hugepages_kobj
)
1573 for_each_hstate(h
) {
1574 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1575 hstate_kobjs
, &hstate_attr_group
);
1577 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s",
1585 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1586 * with node sysdevs in node_devices[] using a parallel array. The array
1587 * index of a node sysdev or _hstate == node id.
1588 * This is here to avoid any static dependency of the node sysdev driver, in
1589 * the base kernel, on the hugetlb module.
1591 struct node_hstate
{
1592 struct kobject
*hugepages_kobj
;
1593 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1595 struct node_hstate node_hstates
[MAX_NUMNODES
];
1598 * A subset of global hstate attributes for node sysdevs
1600 static struct attribute
*per_node_hstate_attrs
[] = {
1601 &nr_hugepages_attr
.attr
,
1602 &free_hugepages_attr
.attr
,
1603 &surplus_hugepages_attr
.attr
,
1607 static struct attribute_group per_node_hstate_attr_group
= {
1608 .attrs
= per_node_hstate_attrs
,
1612 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1613 * Returns node id via non-NULL nidp.
1615 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1619 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1620 struct node_hstate
*nhs
= &node_hstates
[nid
];
1622 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1623 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1635 * Unregister hstate attributes from a single node sysdev.
1636 * No-op if no hstate attributes attached.
1638 void hugetlb_unregister_node(struct node
*node
)
1641 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1643 if (!nhs
->hugepages_kobj
)
1644 return; /* no hstate attributes */
1647 if (nhs
->hstate_kobjs
[h
- hstates
]) {
1648 kobject_put(nhs
->hstate_kobjs
[h
- hstates
]);
1649 nhs
->hstate_kobjs
[h
- hstates
] = NULL
;
1652 kobject_put(nhs
->hugepages_kobj
);
1653 nhs
->hugepages_kobj
= NULL
;
1657 * hugetlb module exit: unregister hstate attributes from node sysdevs
1660 static void hugetlb_unregister_all_nodes(void)
1665 * disable node sysdev registrations.
1667 register_hugetlbfs_with_node(NULL
, NULL
);
1670 * remove hstate attributes from any nodes that have them.
1672 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1673 hugetlb_unregister_node(&node_devices
[nid
]);
1677 * Register hstate attributes for a single node sysdev.
1678 * No-op if attributes already registered.
1680 void hugetlb_register_node(struct node
*node
)
1683 struct node_hstate
*nhs
= &node_hstates
[node
->sysdev
.id
];
1686 if (nhs
->hugepages_kobj
)
1687 return; /* already allocated */
1689 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1690 &node
->sysdev
.kobj
);
1691 if (!nhs
->hugepages_kobj
)
1694 for_each_hstate(h
) {
1695 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1697 &per_node_hstate_attr_group
);
1699 printk(KERN_ERR
"Hugetlb: Unable to add hstate %s"
1701 h
->name
, node
->sysdev
.id
);
1702 hugetlb_unregister_node(node
);
1709 * hugetlb init time: register hstate attributes for all registered node
1710 * sysdevs of nodes that have memory. All on-line nodes should have
1711 * registered their associated sysdev by this time.
1713 static void hugetlb_register_all_nodes(void)
1717 for_each_node_state(nid
, N_HIGH_MEMORY
) {
1718 struct node
*node
= &node_devices
[nid
];
1719 if (node
->sysdev
.id
== nid
)
1720 hugetlb_register_node(node
);
1724 * Let the node sysdev driver know we're here so it can
1725 * [un]register hstate attributes on node hotplug.
1727 register_hugetlbfs_with_node(hugetlb_register_node
,
1728 hugetlb_unregister_node
);
1730 #else /* !CONFIG_NUMA */
1732 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1740 static void hugetlb_unregister_all_nodes(void) { }
1742 static void hugetlb_register_all_nodes(void) { }
1746 static void __exit
hugetlb_exit(void)
1750 hugetlb_unregister_all_nodes();
1752 for_each_hstate(h
) {
1753 kobject_put(hstate_kobjs
[h
- hstates
]);
1756 kobject_put(hugepages_kobj
);
1758 module_exit(hugetlb_exit
);
1760 static int __init
hugetlb_init(void)
1762 /* Some platform decide whether they support huge pages at boot
1763 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1764 * there is no such support
1766 if (HPAGE_SHIFT
== 0)
1769 if (!size_to_hstate(default_hstate_size
)) {
1770 default_hstate_size
= HPAGE_SIZE
;
1771 if (!size_to_hstate(default_hstate_size
))
1772 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1774 default_hstate_idx
= size_to_hstate(default_hstate_size
) - hstates
;
1775 if (default_hstate_max_huge_pages
)
1776 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1778 hugetlb_init_hstates();
1780 gather_bootmem_prealloc();
1784 hugetlb_sysfs_init();
1786 hugetlb_register_all_nodes();
1790 module_init(hugetlb_init
);
1792 /* Should be called on processing a hugepagesz=... option */
1793 void __init
hugetlb_add_hstate(unsigned order
)
1798 if (size_to_hstate(PAGE_SIZE
<< order
)) {
1799 printk(KERN_WARNING
"hugepagesz= specified twice, ignoring\n");
1802 BUG_ON(max_hstate
>= HUGE_MAX_HSTATE
);
1804 h
= &hstates
[max_hstate
++];
1806 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
1807 h
->nr_huge_pages
= 0;
1808 h
->free_huge_pages
= 0;
1809 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
1810 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
1811 h
->next_nid_to_alloc
= first_node(node_states
[N_HIGH_MEMORY
]);
1812 h
->next_nid_to_free
= first_node(node_states
[N_HIGH_MEMORY
]);
1813 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
1814 huge_page_size(h
)/1024);
1819 static int __init
hugetlb_nrpages_setup(char *s
)
1822 static unsigned long *last_mhp
;
1825 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1826 * so this hugepages= parameter goes to the "default hstate".
1829 mhp
= &default_hstate_max_huge_pages
;
1831 mhp
= &parsed_hstate
->max_huge_pages
;
1833 if (mhp
== last_mhp
) {
1834 printk(KERN_WARNING
"hugepages= specified twice without "
1835 "interleaving hugepagesz=, ignoring\n");
1839 if (sscanf(s
, "%lu", mhp
) <= 0)
1843 * Global state is always initialized later in hugetlb_init.
1844 * But we need to allocate >= MAX_ORDER hstates here early to still
1845 * use the bootmem allocator.
1847 if (max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
1848 hugetlb_hstate_alloc_pages(parsed_hstate
);
1854 __setup("hugepages=", hugetlb_nrpages_setup
);
1856 static int __init
hugetlb_default_setup(char *s
)
1858 default_hstate_size
= memparse(s
, &s
);
1861 __setup("default_hugepagesz=", hugetlb_default_setup
);
1863 static unsigned int cpuset_mems_nr(unsigned int *array
)
1866 unsigned int nr
= 0;
1868 for_each_node_mask(node
, cpuset_current_mems_allowed
)
1874 #ifdef CONFIG_SYSCTL
1875 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
1876 struct ctl_table
*table
, int write
,
1877 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1879 struct hstate
*h
= &default_hstate
;
1883 tmp
= h
->max_huge_pages
;
1885 if (write
&& h
->order
>= MAX_ORDER
)
1889 table
->maxlen
= sizeof(unsigned long);
1890 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1895 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
1896 GFP_KERNEL
| __GFP_NORETRY
);
1897 if (!(obey_mempolicy
&&
1898 init_nodemask_of_mempolicy(nodes_allowed
))) {
1899 NODEMASK_FREE(nodes_allowed
);
1900 nodes_allowed
= &node_states
[N_HIGH_MEMORY
];
1902 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
1904 if (nodes_allowed
!= &node_states
[N_HIGH_MEMORY
])
1905 NODEMASK_FREE(nodes_allowed
);
1911 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
1912 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1915 return hugetlb_sysctl_handler_common(false, table
, write
,
1916 buffer
, length
, ppos
);
1920 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
1921 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1923 return hugetlb_sysctl_handler_common(true, table
, write
,
1924 buffer
, length
, ppos
);
1926 #endif /* CONFIG_NUMA */
1928 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
1929 void __user
*buffer
,
1930 size_t *length
, loff_t
*ppos
)
1932 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1933 if (hugepages_treat_as_movable
)
1934 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
1936 htlb_alloc_mask
= GFP_HIGHUSER
;
1940 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
1941 void __user
*buffer
,
1942 size_t *length
, loff_t
*ppos
)
1944 struct hstate
*h
= &default_hstate
;
1948 tmp
= h
->nr_overcommit_huge_pages
;
1950 if (write
&& h
->order
>= MAX_ORDER
)
1954 table
->maxlen
= sizeof(unsigned long);
1955 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
1960 spin_lock(&hugetlb_lock
);
1961 h
->nr_overcommit_huge_pages
= tmp
;
1962 spin_unlock(&hugetlb_lock
);
1968 #endif /* CONFIG_SYSCTL */
1970 void hugetlb_report_meminfo(struct seq_file
*m
)
1972 struct hstate
*h
= &default_hstate
;
1974 "HugePages_Total: %5lu\n"
1975 "HugePages_Free: %5lu\n"
1976 "HugePages_Rsvd: %5lu\n"
1977 "HugePages_Surp: %5lu\n"
1978 "Hugepagesize: %8lu kB\n",
1982 h
->surplus_huge_pages
,
1983 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
1986 int hugetlb_report_node_meminfo(int nid
, char *buf
)
1988 struct hstate
*h
= &default_hstate
;
1990 "Node %d HugePages_Total: %5u\n"
1991 "Node %d HugePages_Free: %5u\n"
1992 "Node %d HugePages_Surp: %5u\n",
1993 nid
, h
->nr_huge_pages_node
[nid
],
1994 nid
, h
->free_huge_pages_node
[nid
],
1995 nid
, h
->surplus_huge_pages_node
[nid
]);
1998 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1999 unsigned long hugetlb_total_pages(void)
2001 struct hstate
*h
= &default_hstate
;
2002 return h
->nr_huge_pages
* pages_per_huge_page(h
);
2005 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2009 spin_lock(&hugetlb_lock
);
2011 * When cpuset is configured, it breaks the strict hugetlb page
2012 * reservation as the accounting is done on a global variable. Such
2013 * reservation is completely rubbish in the presence of cpuset because
2014 * the reservation is not checked against page availability for the
2015 * current cpuset. Application can still potentially OOM'ed by kernel
2016 * with lack of free htlb page in cpuset that the task is in.
2017 * Attempt to enforce strict accounting with cpuset is almost
2018 * impossible (or too ugly) because cpuset is too fluid that
2019 * task or memory node can be dynamically moved between cpusets.
2021 * The change of semantics for shared hugetlb mapping with cpuset is
2022 * undesirable. However, in order to preserve some of the semantics,
2023 * we fall back to check against current free page availability as
2024 * a best attempt and hopefully to minimize the impact of changing
2025 * semantics that cpuset has.
2028 if (gather_surplus_pages(h
, delta
) < 0)
2031 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2032 return_unused_surplus_pages(h
, delta
);
2039 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2042 spin_unlock(&hugetlb_lock
);
2046 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2048 struct resv_map
*reservations
= vma_resv_map(vma
);
2051 * This new VMA should share its siblings reservation map if present.
2052 * The VMA will only ever have a valid reservation map pointer where
2053 * it is being copied for another still existing VMA. As that VMA
2054 * has a reference to the reservation map it cannot disappear until
2055 * after this open call completes. It is therefore safe to take a
2056 * new reference here without additional locking.
2059 kref_get(&reservations
->refs
);
2062 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2064 struct hstate
*h
= hstate_vma(vma
);
2065 struct resv_map
*reservations
= vma_resv_map(vma
);
2066 unsigned long reserve
;
2067 unsigned long start
;
2071 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2072 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2074 reserve
= (end
- start
) -
2075 region_count(&reservations
->regions
, start
, end
);
2077 kref_put(&reservations
->refs
, resv_map_release
);
2080 hugetlb_acct_memory(h
, -reserve
);
2081 hugetlb_put_quota(vma
->vm_file
->f_mapping
, reserve
);
2087 * We cannot handle pagefaults against hugetlb pages at all. They cause
2088 * handle_mm_fault() to try to instantiate regular-sized pages in the
2089 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2092 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2098 const struct vm_operations_struct hugetlb_vm_ops
= {
2099 .fault
= hugetlb_vm_op_fault
,
2100 .open
= hugetlb_vm_op_open
,
2101 .close
= hugetlb_vm_op_close
,
2104 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2111 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
2113 entry
= huge_pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
2115 entry
= pte_mkyoung(entry
);
2116 entry
= pte_mkhuge(entry
);
2121 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2122 unsigned long address
, pte_t
*ptep
)
2126 entry
= pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep
)));
2127 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
2128 update_mmu_cache(vma
, address
, ptep
);
2133 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2134 struct vm_area_struct
*vma
)
2136 pte_t
*src_pte
, *dst_pte
, entry
;
2137 struct page
*ptepage
;
2140 struct hstate
*h
= hstate_vma(vma
);
2141 unsigned long sz
= huge_page_size(h
);
2143 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2145 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2146 src_pte
= huge_pte_offset(src
, addr
);
2149 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2153 /* If the pagetables are shared don't copy or take references */
2154 if (dst_pte
== src_pte
)
2157 spin_lock(&dst
->page_table_lock
);
2158 spin_lock_nested(&src
->page_table_lock
, SINGLE_DEPTH_NESTING
);
2159 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2161 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2162 entry
= huge_ptep_get(src_pte
);
2163 ptepage
= pte_page(entry
);
2165 page_dup_rmap(ptepage
);
2166 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2168 spin_unlock(&src
->page_table_lock
);
2169 spin_unlock(&dst
->page_table_lock
);
2177 static int is_hugetlb_entry_migration(pte_t pte
)
2181 if (huge_pte_none(pte
) || pte_present(pte
))
2183 swp
= pte_to_swp_entry(pte
);
2184 if (non_swap_entry(swp
) && is_migration_entry(swp
)) {
2190 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2194 if (huge_pte_none(pte
) || pte_present(pte
))
2196 swp
= pte_to_swp_entry(pte
);
2197 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
)) {
2203 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2204 unsigned long end
, struct page
*ref_page
)
2206 struct mm_struct
*mm
= vma
->vm_mm
;
2207 unsigned long address
;
2212 struct hstate
*h
= hstate_vma(vma
);
2213 unsigned long sz
= huge_page_size(h
);
2216 * A page gathering list, protected by per file i_mmap_mutex. The
2217 * lock is used to avoid list corruption from multiple unmapping
2218 * of the same page since we are using page->lru.
2220 LIST_HEAD(page_list
);
2222 WARN_ON(!is_vm_hugetlb_page(vma
));
2223 BUG_ON(start
& ~huge_page_mask(h
));
2224 BUG_ON(end
& ~huge_page_mask(h
));
2226 mmu_notifier_invalidate_range_start(mm
, start
, end
);
2227 spin_lock(&mm
->page_table_lock
);
2228 for (address
= start
; address
< end
; address
+= sz
) {
2229 ptep
= huge_pte_offset(mm
, address
);
2233 if (huge_pmd_unshare(mm
, &address
, ptep
))
2237 * If a reference page is supplied, it is because a specific
2238 * page is being unmapped, not a range. Ensure the page we
2239 * are about to unmap is the actual page of interest.
2242 pte
= huge_ptep_get(ptep
);
2243 if (huge_pte_none(pte
))
2245 page
= pte_page(pte
);
2246 if (page
!= ref_page
)
2250 * Mark the VMA as having unmapped its page so that
2251 * future faults in this VMA will fail rather than
2252 * looking like data was lost
2254 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2257 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2258 if (huge_pte_none(pte
))
2262 * HWPoisoned hugepage is already unmapped and dropped reference
2264 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
)))
2267 page
= pte_page(pte
);
2269 set_page_dirty(page
);
2270 list_add(&page
->lru
, &page_list
);
2272 spin_unlock(&mm
->page_table_lock
);
2273 flush_tlb_range(vma
, start
, end
);
2274 mmu_notifier_invalidate_range_end(mm
, start
, end
);
2275 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
2276 page_remove_rmap(page
);
2277 list_del(&page
->lru
);
2282 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2283 unsigned long end
, struct page
*ref_page
)
2285 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2286 __unmap_hugepage_range(vma
, start
, end
, ref_page
);
2287 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2291 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2292 * mappping it owns the reserve page for. The intention is to unmap the page
2293 * from other VMAs and let the children be SIGKILLed if they are faulting the
2296 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2297 struct page
*page
, unsigned long address
)
2299 struct hstate
*h
= hstate_vma(vma
);
2300 struct vm_area_struct
*iter_vma
;
2301 struct address_space
*mapping
;
2302 struct prio_tree_iter iter
;
2306 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2307 * from page cache lookup which is in HPAGE_SIZE units.
2309 address
= address
& huge_page_mask(h
);
2310 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
)
2311 + (vma
->vm_pgoff
>> PAGE_SHIFT
);
2312 mapping
= (struct address_space
*)page_private(page
);
2315 * Take the mapping lock for the duration of the table walk. As
2316 * this mapping should be shared between all the VMAs,
2317 * __unmap_hugepage_range() is called as the lock is already held
2319 mutex_lock(&mapping
->i_mmap_mutex
);
2320 vma_prio_tree_foreach(iter_vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2321 /* Do not unmap the current VMA */
2322 if (iter_vma
== vma
)
2326 * Unmap the page from other VMAs without their own reserves.
2327 * They get marked to be SIGKILLed if they fault in these
2328 * areas. This is because a future no-page fault on this VMA
2329 * could insert a zeroed page instead of the data existing
2330 * from the time of fork. This would look like data corruption
2332 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2333 __unmap_hugepage_range(iter_vma
,
2334 address
, address
+ huge_page_size(h
),
2337 mutex_unlock(&mapping
->i_mmap_mutex
);
2343 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2345 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2346 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2347 struct page
*pagecache_page
)
2349 struct hstate
*h
= hstate_vma(vma
);
2350 struct page
*old_page
, *new_page
;
2352 int outside_reserve
= 0;
2354 old_page
= pte_page(pte
);
2357 /* If no-one else is actually using this page, avoid the copy
2358 * and just make the page writable */
2359 avoidcopy
= (page_mapcount(old_page
) == 1);
2361 if (PageAnon(old_page
))
2362 page_move_anon_rmap(old_page
, vma
, address
);
2363 set_huge_ptep_writable(vma
, address
, ptep
);
2368 * If the process that created a MAP_PRIVATE mapping is about to
2369 * perform a COW due to a shared page count, attempt to satisfy
2370 * the allocation without using the existing reserves. The pagecache
2371 * page is used to determine if the reserve at this address was
2372 * consumed or not. If reserves were used, a partial faulted mapping
2373 * at the time of fork() could consume its reserves on COW instead
2374 * of the full address range.
2376 if (!(vma
->vm_flags
& VM_MAYSHARE
) &&
2377 is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2378 old_page
!= pagecache_page
)
2379 outside_reserve
= 1;
2381 page_cache_get(old_page
);
2383 /* Drop page_table_lock as buddy allocator may be called */
2384 spin_unlock(&mm
->page_table_lock
);
2385 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2387 if (IS_ERR(new_page
)) {
2388 page_cache_release(old_page
);
2391 * If a process owning a MAP_PRIVATE mapping fails to COW,
2392 * it is due to references held by a child and an insufficient
2393 * huge page pool. To guarantee the original mappers
2394 * reliability, unmap the page from child processes. The child
2395 * may get SIGKILLed if it later faults.
2397 if (outside_reserve
) {
2398 BUG_ON(huge_pte_none(pte
));
2399 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2400 BUG_ON(page_count(old_page
) != 1);
2401 BUG_ON(huge_pte_none(pte
));
2402 spin_lock(&mm
->page_table_lock
);
2403 goto retry_avoidcopy
;
2408 /* Caller expects lock to be held */
2409 spin_lock(&mm
->page_table_lock
);
2410 return -PTR_ERR(new_page
);
2414 * When the original hugepage is shared one, it does not have
2415 * anon_vma prepared.
2417 if (unlikely(anon_vma_prepare(vma
))) {
2418 /* Caller expects lock to be held */
2419 spin_lock(&mm
->page_table_lock
);
2420 return VM_FAULT_OOM
;
2423 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2424 pages_per_huge_page(h
));
2425 __SetPageUptodate(new_page
);
2428 * Retake the page_table_lock to check for racing updates
2429 * before the page tables are altered
2431 spin_lock(&mm
->page_table_lock
);
2432 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2433 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2435 mmu_notifier_invalidate_range_start(mm
,
2436 address
& huge_page_mask(h
),
2437 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2438 huge_ptep_clear_flush(vma
, address
, ptep
);
2439 set_huge_pte_at(mm
, address
, ptep
,
2440 make_huge_pte(vma
, new_page
, 1));
2441 page_remove_rmap(old_page
);
2442 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2443 /* Make the old page be freed below */
2444 new_page
= old_page
;
2445 mmu_notifier_invalidate_range_end(mm
,
2446 address
& huge_page_mask(h
),
2447 (address
& huge_page_mask(h
)) + huge_page_size(h
));
2449 page_cache_release(new_page
);
2450 page_cache_release(old_page
);
2454 /* Return the pagecache page at a given address within a VMA */
2455 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2456 struct vm_area_struct
*vma
, unsigned long address
)
2458 struct address_space
*mapping
;
2461 mapping
= vma
->vm_file
->f_mapping
;
2462 idx
= vma_hugecache_offset(h
, vma
, address
);
2464 return find_lock_page(mapping
, idx
);
2468 * Return whether there is a pagecache page to back given address within VMA.
2469 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2471 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2472 struct vm_area_struct
*vma
, unsigned long address
)
2474 struct address_space
*mapping
;
2478 mapping
= vma
->vm_file
->f_mapping
;
2479 idx
= vma_hugecache_offset(h
, vma
, address
);
2481 page
= find_get_page(mapping
, idx
);
2484 return page
!= NULL
;
2487 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2488 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2490 struct hstate
*h
= hstate_vma(vma
);
2491 int ret
= VM_FAULT_SIGBUS
;
2495 struct address_space
*mapping
;
2499 * Currently, we are forced to kill the process in the event the
2500 * original mapper has unmapped pages from the child due to a failed
2501 * COW. Warn that such a situation has occurred as it may not be obvious
2503 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2505 "PID %d killed due to inadequate hugepage pool\n",
2510 mapping
= vma
->vm_file
->f_mapping
;
2511 idx
= vma_hugecache_offset(h
, vma
, address
);
2514 * Use page lock to guard against racing truncation
2515 * before we get page_table_lock.
2518 page
= find_lock_page(mapping
, idx
);
2520 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2523 page
= alloc_huge_page(vma
, address
, 0);
2525 ret
= -PTR_ERR(page
);
2528 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2529 __SetPageUptodate(page
);
2531 if (vma
->vm_flags
& VM_MAYSHARE
) {
2533 struct inode
*inode
= mapping
->host
;
2535 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2543 spin_lock(&inode
->i_lock
);
2544 inode
->i_blocks
+= blocks_per_huge_page(h
);
2545 spin_unlock(&inode
->i_lock
);
2546 page_dup_rmap(page
);
2549 if (unlikely(anon_vma_prepare(vma
))) {
2551 goto backout_unlocked
;
2553 hugepage_add_new_anon_rmap(page
, vma
, address
);
2557 * If memory error occurs between mmap() and fault, some process
2558 * don't have hwpoisoned swap entry for errored virtual address.
2559 * So we need to block hugepage fault by PG_hwpoison bit check.
2561 if (unlikely(PageHWPoison(page
))) {
2562 ret
= VM_FAULT_HWPOISON
|
2563 VM_FAULT_SET_HINDEX(h
- hstates
);
2564 goto backout_unlocked
;
2566 page_dup_rmap(page
);
2570 * If we are going to COW a private mapping later, we examine the
2571 * pending reservations for this page now. This will ensure that
2572 * any allocations necessary to record that reservation occur outside
2575 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2576 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2578 goto backout_unlocked
;
2581 spin_lock(&mm
->page_table_lock
);
2582 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2587 if (!huge_pte_none(huge_ptep_get(ptep
)))
2590 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2591 && (vma
->vm_flags
& VM_SHARED
)));
2592 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2594 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2595 /* Optimization, do the COW without a second fault */
2596 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
);
2599 spin_unlock(&mm
->page_table_lock
);
2605 spin_unlock(&mm
->page_table_lock
);
2612 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2613 unsigned long address
, unsigned int flags
)
2618 struct page
*page
= NULL
;
2619 struct page
*pagecache_page
= NULL
;
2620 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
2621 struct hstate
*h
= hstate_vma(vma
);
2623 ptep
= huge_pte_offset(mm
, address
);
2625 entry
= huge_ptep_get(ptep
);
2626 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2627 migration_entry_wait(mm
, (pmd_t
*)ptep
, address
);
2629 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2630 return VM_FAULT_HWPOISON_LARGE
|
2631 VM_FAULT_SET_HINDEX(h
- hstates
);
2634 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2636 return VM_FAULT_OOM
;
2639 * Serialize hugepage allocation and instantiation, so that we don't
2640 * get spurious allocation failures if two CPUs race to instantiate
2641 * the same page in the page cache.
2643 mutex_lock(&hugetlb_instantiation_mutex
);
2644 entry
= huge_ptep_get(ptep
);
2645 if (huge_pte_none(entry
)) {
2646 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, flags
);
2653 * If we are going to COW the mapping later, we examine the pending
2654 * reservations for this page now. This will ensure that any
2655 * allocations necessary to record that reservation occur outside the
2656 * spinlock. For private mappings, we also lookup the pagecache
2657 * page now as it is used to determine if a reservation has been
2660 if ((flags
& FAULT_FLAG_WRITE
) && !pte_write(entry
)) {
2661 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2666 if (!(vma
->vm_flags
& VM_MAYSHARE
))
2667 pagecache_page
= hugetlbfs_pagecache_page(h
,
2672 * hugetlb_cow() requires page locks of pte_page(entry) and
2673 * pagecache_page, so here we need take the former one
2674 * when page != pagecache_page or !pagecache_page.
2675 * Note that locking order is always pagecache_page -> page,
2676 * so no worry about deadlock.
2678 page
= pte_page(entry
);
2679 if (page
!= pagecache_page
)
2682 spin_lock(&mm
->page_table_lock
);
2683 /* Check for a racing update before calling hugetlb_cow */
2684 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
2685 goto out_page_table_lock
;
2688 if (flags
& FAULT_FLAG_WRITE
) {
2689 if (!pte_write(entry
)) {
2690 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
2692 goto out_page_table_lock
;
2694 entry
= pte_mkdirty(entry
);
2696 entry
= pte_mkyoung(entry
);
2697 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
2698 flags
& FAULT_FLAG_WRITE
))
2699 update_mmu_cache(vma
, address
, ptep
);
2701 out_page_table_lock
:
2702 spin_unlock(&mm
->page_table_lock
);
2704 if (pagecache_page
) {
2705 unlock_page(pagecache_page
);
2706 put_page(pagecache_page
);
2708 if (page
!= pagecache_page
)
2712 mutex_unlock(&hugetlb_instantiation_mutex
);
2717 /* Can be overriden by architectures */
2718 __attribute__((weak
)) struct page
*
2719 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
2720 pud_t
*pud
, int write
)
2726 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2727 struct page
**pages
, struct vm_area_struct
**vmas
,
2728 unsigned long *position
, int *length
, int i
,
2731 unsigned long pfn_offset
;
2732 unsigned long vaddr
= *position
;
2733 int remainder
= *length
;
2734 struct hstate
*h
= hstate_vma(vma
);
2736 spin_lock(&mm
->page_table_lock
);
2737 while (vaddr
< vma
->vm_end
&& remainder
) {
2743 * Some archs (sparc64, sh*) have multiple pte_ts to
2744 * each hugepage. We have to make sure we get the
2745 * first, for the page indexing below to work.
2747 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
2748 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
2751 * When coredumping, it suits get_dump_page if we just return
2752 * an error where there's an empty slot with no huge pagecache
2753 * to back it. This way, we avoid allocating a hugepage, and
2754 * the sparse dumpfile avoids allocating disk blocks, but its
2755 * huge holes still show up with zeroes where they need to be.
2757 if (absent
&& (flags
& FOLL_DUMP
) &&
2758 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
2764 ((flags
& FOLL_WRITE
) && !pte_write(huge_ptep_get(pte
)))) {
2767 spin_unlock(&mm
->page_table_lock
);
2768 ret
= hugetlb_fault(mm
, vma
, vaddr
,
2769 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
2770 spin_lock(&mm
->page_table_lock
);
2771 if (!(ret
& VM_FAULT_ERROR
))
2778 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
2779 page
= pte_page(huge_ptep_get(pte
));
2782 pages
[i
] = mem_map_offset(page
, pfn_offset
);
2793 if (vaddr
< vma
->vm_end
&& remainder
&&
2794 pfn_offset
< pages_per_huge_page(h
)) {
2796 * We use pfn_offset to avoid touching the pageframes
2797 * of this compound page.
2802 spin_unlock(&mm
->page_table_lock
);
2803 *length
= remainder
;
2806 return i
? i
: -EFAULT
;
2809 void hugetlb_change_protection(struct vm_area_struct
*vma
,
2810 unsigned long address
, unsigned long end
, pgprot_t newprot
)
2812 struct mm_struct
*mm
= vma
->vm_mm
;
2813 unsigned long start
= address
;
2816 struct hstate
*h
= hstate_vma(vma
);
2818 BUG_ON(address
>= end
);
2819 flush_cache_range(vma
, address
, end
);
2821 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2822 spin_lock(&mm
->page_table_lock
);
2823 for (; address
< end
; address
+= huge_page_size(h
)) {
2824 ptep
= huge_pte_offset(mm
, address
);
2827 if (huge_pmd_unshare(mm
, &address
, ptep
))
2829 if (!huge_pte_none(huge_ptep_get(ptep
))) {
2830 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2831 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
2832 set_huge_pte_at(mm
, address
, ptep
, pte
);
2835 spin_unlock(&mm
->page_table_lock
);
2836 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
2838 flush_tlb_range(vma
, start
, end
);
2841 int hugetlb_reserve_pages(struct inode
*inode
,
2843 struct vm_area_struct
*vma
,
2844 vm_flags_t vm_flags
)
2847 struct hstate
*h
= hstate_inode(inode
);
2850 * Only apply hugepage reservation if asked. At fault time, an
2851 * attempt will be made for VM_NORESERVE to allocate a page
2852 * and filesystem quota without using reserves
2854 if (vm_flags
& VM_NORESERVE
)
2858 * Shared mappings base their reservation on the number of pages that
2859 * are already allocated on behalf of the file. Private mappings need
2860 * to reserve the full area even if read-only as mprotect() may be
2861 * called to make the mapping read-write. Assume !vma is a shm mapping
2863 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2864 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
2866 struct resv_map
*resv_map
= resv_map_alloc();
2872 set_vma_resv_map(vma
, resv_map
);
2873 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
2879 /* There must be enough filesystem quota for the mapping */
2880 if (hugetlb_get_quota(inode
->i_mapping
, chg
))
2884 * Check enough hugepages are available for the reservation.
2885 * Hand back the quota if there are not
2887 ret
= hugetlb_acct_memory(h
, chg
);
2889 hugetlb_put_quota(inode
->i_mapping
, chg
);
2894 * Account for the reservations made. Shared mappings record regions
2895 * that have reservations as they are shared by multiple VMAs.
2896 * When the last VMA disappears, the region map says how much
2897 * the reservation was and the page cache tells how much of
2898 * the reservation was consumed. Private mappings are per-VMA and
2899 * only the consumed reservations are tracked. When the VMA
2900 * disappears, the original reservation is the VMA size and the
2901 * consumed reservations are stored in the map. Hence, nothing
2902 * else has to be done for private mappings here
2904 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
2905 region_add(&inode
->i_mapping
->private_list
, from
, to
);
2909 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
2911 struct hstate
*h
= hstate_inode(inode
);
2912 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
2914 spin_lock(&inode
->i_lock
);
2915 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
2916 spin_unlock(&inode
->i_lock
);
2918 hugetlb_put_quota(inode
->i_mapping
, (chg
- freed
));
2919 hugetlb_acct_memory(h
, -(chg
- freed
));
2922 #ifdef CONFIG_MEMORY_FAILURE
2924 /* Should be called in hugetlb_lock */
2925 static int is_hugepage_on_freelist(struct page
*hpage
)
2929 struct hstate
*h
= page_hstate(hpage
);
2930 int nid
= page_to_nid(hpage
);
2932 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
2939 * This function is called from memory failure code.
2940 * Assume the caller holds page lock of the head page.
2942 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
2944 struct hstate
*h
= page_hstate(hpage
);
2945 int nid
= page_to_nid(hpage
);
2948 spin_lock(&hugetlb_lock
);
2949 if (is_hugepage_on_freelist(hpage
)) {
2950 list_del(&hpage
->lru
);
2951 set_page_refcounted(hpage
);
2952 h
->free_huge_pages
--;
2953 h
->free_huge_pages_node
[nid
]--;
2956 spin_unlock(&hugetlb_lock
);