cciss: Use kernel provided PCI state save and restore functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / cciss.c
blob2e547bddc5a721f6cad14b5c3b7f1457635f96ca
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/jiffies.h>
39 #include <linux/hdreg.h>
40 #include <linux/spinlock.h>
41 #include <linux/compat.h>
42 #include <linux/mutex.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/blkdev.h>
48 #include <linux/genhd.h>
49 #include <linux/completion.h>
50 #include <scsi/scsi.h>
51 #include <scsi/sg.h>
52 #include <scsi/scsi_ioctl.h>
53 #include <linux/cdrom.h>
54 #include <linux/scatterlist.h>
55 #include <linux/kthread.h>
57 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
58 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
59 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61 /* Embedded module documentation macros - see modules.h */
62 MODULE_AUTHOR("Hewlett-Packard Company");
63 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
64 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
65 MODULE_VERSION("3.6.26");
66 MODULE_LICENSE("GPL");
68 static DEFINE_MUTEX(cciss_mutex);
69 static int cciss_allow_hpsa;
70 module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
71 MODULE_PARM_DESC(cciss_allow_hpsa,
72 "Prevent cciss driver from accessing hardware known to be "
73 " supported by the hpsa driver");
75 #include "cciss_cmd.h"
76 #include "cciss.h"
77 #include <linux/cciss_ioctl.h>
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id[] = {
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
83 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
84 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
85 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
86 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
87 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
88 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
89 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
114 {0,}
117 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
119 /* board_id = Subsystem Device ID & Vendor ID
120 * product = Marketing Name for the board
121 * access = Address of the struct of function pointers
123 static struct board_type products[] = {
124 {0x40700E11, "Smart Array 5300", &SA5_access},
125 {0x40800E11, "Smart Array 5i", &SA5B_access},
126 {0x40820E11, "Smart Array 532", &SA5B_access},
127 {0x40830E11, "Smart Array 5312", &SA5B_access},
128 {0x409A0E11, "Smart Array 641", &SA5_access},
129 {0x409B0E11, "Smart Array 642", &SA5_access},
130 {0x409C0E11, "Smart Array 6400", &SA5_access},
131 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
132 {0x40910E11, "Smart Array 6i", &SA5_access},
133 {0x3225103C, "Smart Array P600", &SA5_access},
134 {0x3235103C, "Smart Array P400i", &SA5_access},
135 {0x3211103C, "Smart Array E200i", &SA5_access},
136 {0x3212103C, "Smart Array E200", &SA5_access},
137 {0x3213103C, "Smart Array E200i", &SA5_access},
138 {0x3214103C, "Smart Array E200i", &SA5_access},
139 {0x3215103C, "Smart Array E200i", &SA5_access},
140 {0x3237103C, "Smart Array E500", &SA5_access},
141 /* controllers below this line are also supported by the hpsa driver. */
142 #define HPSA_BOUNDARY 0x3223103C
143 {0x3223103C, "Smart Array P800", &SA5_access},
144 {0x3234103C, "Smart Array P400", &SA5_access},
145 {0x323D103C, "Smart Array P700m", &SA5_access},
146 {0x3241103C, "Smart Array P212", &SA5_access},
147 {0x3243103C, "Smart Array P410", &SA5_access},
148 {0x3245103C, "Smart Array P410i", &SA5_access},
149 {0x3247103C, "Smart Array P411", &SA5_access},
150 {0x3249103C, "Smart Array P812", &SA5_access},
151 {0x324A103C, "Smart Array P712m", &SA5_access},
152 {0x324B103C, "Smart Array P711m", &SA5_access},
153 {0x3350103C, "Smart Array", &SA5_access},
154 {0x3351103C, "Smart Array", &SA5_access},
155 {0x3352103C, "Smart Array", &SA5_access},
156 {0x3353103C, "Smart Array", &SA5_access},
157 {0x3354103C, "Smart Array", &SA5_access},
158 {0x3355103C, "Smart Array", &SA5_access},
161 /* How long to wait (in milliseconds) for board to go into simple mode */
162 #define MAX_CONFIG_WAIT 30000
163 #define MAX_IOCTL_CONFIG_WAIT 1000
165 /*define how many times we will try a command because of bus resets */
166 #define MAX_CMD_RETRIES 3
168 #define MAX_CTLR 32
170 /* Originally cciss driver only supports 8 major numbers */
171 #define MAX_CTLR_ORIG 8
173 static ctlr_info_t *hba[MAX_CTLR];
175 static struct task_struct *cciss_scan_thread;
176 static DEFINE_MUTEX(scan_mutex);
177 static LIST_HEAD(scan_q);
179 static void do_cciss_request(struct request_queue *q);
180 static irqreturn_t do_cciss_intx(int irq, void *dev_id);
181 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
182 static int cciss_open(struct block_device *bdev, fmode_t mode);
183 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
184 static int cciss_release(struct gendisk *disk, fmode_t mode);
185 static int do_ioctl(struct block_device *bdev, fmode_t mode,
186 unsigned int cmd, unsigned long arg);
187 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
188 unsigned int cmd, unsigned long arg);
189 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
191 static int cciss_revalidate(struct gendisk *disk);
192 static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
193 static int deregister_disk(ctlr_info_t *h, int drv_index,
194 int clear_all, int via_ioctl);
196 static void cciss_read_capacity(ctlr_info_t *h, int logvol,
197 sector_t *total_size, unsigned int *block_size);
198 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
199 sector_t *total_size, unsigned int *block_size);
200 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
201 sector_t total_size,
202 unsigned int block_size, InquiryData_struct *inq_buff,
203 drive_info_struct *drv);
204 static void __devinit cciss_interrupt_mode(ctlr_info_t *);
205 static void start_io(ctlr_info_t *h);
206 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
207 __u8 page_code, unsigned char scsi3addr[],
208 int cmd_type);
209 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
210 int attempt_retry);
211 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
213 static int add_to_scan_list(struct ctlr_info *h);
214 static int scan_thread(void *data);
215 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
216 static void cciss_hba_release(struct device *dev);
217 static void cciss_device_release(struct device *dev);
218 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
219 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
220 static inline u32 next_command(ctlr_info_t *h);
221 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
222 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
223 u64 *cfg_offset);
224 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
225 unsigned long *memory_bar);
228 /* performant mode helper functions */
229 static void calc_bucket_map(int *bucket, int num_buckets, int nsgs,
230 int *bucket_map);
231 static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
233 #ifdef CONFIG_PROC_FS
234 static void cciss_procinit(ctlr_info_t *h);
235 #else
236 static void cciss_procinit(ctlr_info_t *h)
239 #endif /* CONFIG_PROC_FS */
241 #ifdef CONFIG_COMPAT
242 static int cciss_compat_ioctl(struct block_device *, fmode_t,
243 unsigned, unsigned long);
244 #endif
246 static const struct block_device_operations cciss_fops = {
247 .owner = THIS_MODULE,
248 .open = cciss_unlocked_open,
249 .release = cciss_release,
250 .ioctl = do_ioctl,
251 .getgeo = cciss_getgeo,
252 #ifdef CONFIG_COMPAT
253 .compat_ioctl = cciss_compat_ioctl,
254 #endif
255 .revalidate_disk = cciss_revalidate,
258 /* set_performant_mode: Modify the tag for cciss performant
259 * set bit 0 for pull model, bits 3-1 for block fetch
260 * register number
262 static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
264 if (likely(h->transMethod == CFGTBL_Trans_Performant))
265 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
269 * Enqueuing and dequeuing functions for cmdlists.
271 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
273 hlist_add_head(&c->list, list);
276 static inline void removeQ(CommandList_struct *c)
279 * After kexec/dump some commands might still
280 * be in flight, which the firmware will try
281 * to complete. Resetting the firmware doesn't work
282 * with old fw revisions, so we have to mark
283 * them off as 'stale' to prevent the driver from
284 * falling over.
286 if (WARN_ON(hlist_unhashed(&c->list))) {
287 c->cmd_type = CMD_MSG_STALE;
288 return;
291 hlist_del_init(&c->list);
294 static void enqueue_cmd_and_start_io(ctlr_info_t *h,
295 CommandList_struct *c)
297 unsigned long flags;
298 set_performant_mode(h, c);
299 spin_lock_irqsave(&h->lock, flags);
300 addQ(&h->reqQ, c);
301 h->Qdepth++;
302 if (h->Qdepth > h->maxQsinceinit)
303 h->maxQsinceinit = h->Qdepth;
304 start_io(h);
305 spin_unlock_irqrestore(&h->lock, flags);
308 static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
309 int nr_cmds)
311 int i;
313 if (!cmd_sg_list)
314 return;
315 for (i = 0; i < nr_cmds; i++) {
316 kfree(cmd_sg_list[i]);
317 cmd_sg_list[i] = NULL;
319 kfree(cmd_sg_list);
322 static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
323 ctlr_info_t *h, int chainsize, int nr_cmds)
325 int j;
326 SGDescriptor_struct **cmd_sg_list;
328 if (chainsize <= 0)
329 return NULL;
331 cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
332 if (!cmd_sg_list)
333 return NULL;
335 /* Build up chain blocks for each command */
336 for (j = 0; j < nr_cmds; j++) {
337 /* Need a block of chainsized s/g elements. */
338 cmd_sg_list[j] = kmalloc((chainsize *
339 sizeof(*cmd_sg_list[j])), GFP_KERNEL);
340 if (!cmd_sg_list[j]) {
341 dev_err(&h->pdev->dev, "Cannot get memory "
342 "for s/g chains.\n");
343 goto clean;
346 return cmd_sg_list;
347 clean:
348 cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
349 return NULL;
352 static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
354 SGDescriptor_struct *chain_sg;
355 u64bit temp64;
357 if (c->Header.SGTotal <= h->max_cmd_sgentries)
358 return;
360 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
361 temp64.val32.lower = chain_sg->Addr.lower;
362 temp64.val32.upper = chain_sg->Addr.upper;
363 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
366 static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
367 SGDescriptor_struct *chain_block, int len)
369 SGDescriptor_struct *chain_sg;
370 u64bit temp64;
372 chain_sg = &c->SG[h->max_cmd_sgentries - 1];
373 chain_sg->Ext = CCISS_SG_CHAIN;
374 chain_sg->Len = len;
375 temp64.val = pci_map_single(h->pdev, chain_block, len,
376 PCI_DMA_TODEVICE);
377 chain_sg->Addr.lower = temp64.val32.lower;
378 chain_sg->Addr.upper = temp64.val32.upper;
381 #include "cciss_scsi.c" /* For SCSI tape support */
383 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
384 "UNKNOWN"
386 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
388 #ifdef CONFIG_PROC_FS
391 * Report information about this controller.
393 #define ENG_GIG 1000000000
394 #define ENG_GIG_FACTOR (ENG_GIG/512)
395 #define ENGAGE_SCSI "engage scsi"
397 static struct proc_dir_entry *proc_cciss;
399 static void cciss_seq_show_header(struct seq_file *seq)
401 ctlr_info_t *h = seq->private;
403 seq_printf(seq, "%s: HP %s Controller\n"
404 "Board ID: 0x%08lx\n"
405 "Firmware Version: %c%c%c%c\n"
406 "IRQ: %d\n"
407 "Logical drives: %d\n"
408 "Current Q depth: %d\n"
409 "Current # commands on controller: %d\n"
410 "Max Q depth since init: %d\n"
411 "Max # commands on controller since init: %d\n"
412 "Max SG entries since init: %d\n",
413 h->devname,
414 h->product_name,
415 (unsigned long)h->board_id,
416 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
417 h->firm_ver[3], (unsigned int)h->intr[PERF_MODE_INT],
418 h->num_luns,
419 h->Qdepth, h->commands_outstanding,
420 h->maxQsinceinit, h->max_outstanding, h->maxSG);
422 #ifdef CONFIG_CISS_SCSI_TAPE
423 cciss_seq_tape_report(seq, h);
424 #endif /* CONFIG_CISS_SCSI_TAPE */
427 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
429 ctlr_info_t *h = seq->private;
430 unsigned long flags;
432 /* prevent displaying bogus info during configuration
433 * or deconfiguration of a logical volume
435 spin_lock_irqsave(&h->lock, flags);
436 if (h->busy_configuring) {
437 spin_unlock_irqrestore(&h->lock, flags);
438 return ERR_PTR(-EBUSY);
440 h->busy_configuring = 1;
441 spin_unlock_irqrestore(&h->lock, flags);
443 if (*pos == 0)
444 cciss_seq_show_header(seq);
446 return pos;
449 static int cciss_seq_show(struct seq_file *seq, void *v)
451 sector_t vol_sz, vol_sz_frac;
452 ctlr_info_t *h = seq->private;
453 unsigned ctlr = h->ctlr;
454 loff_t *pos = v;
455 drive_info_struct *drv = h->drv[*pos];
457 if (*pos > h->highest_lun)
458 return 0;
460 if (drv == NULL) /* it's possible for h->drv[] to have holes. */
461 return 0;
463 if (drv->heads == 0)
464 return 0;
466 vol_sz = drv->nr_blocks;
467 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
468 vol_sz_frac *= 100;
469 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
471 if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
472 drv->raid_level = RAID_UNKNOWN;
473 seq_printf(seq, "cciss/c%dd%d:"
474 "\t%4u.%02uGB\tRAID %s\n",
475 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
476 raid_label[drv->raid_level]);
477 return 0;
480 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
482 ctlr_info_t *h = seq->private;
484 if (*pos > h->highest_lun)
485 return NULL;
486 *pos += 1;
488 return pos;
491 static void cciss_seq_stop(struct seq_file *seq, void *v)
493 ctlr_info_t *h = seq->private;
495 /* Only reset h->busy_configuring if we succeeded in setting
496 * it during cciss_seq_start. */
497 if (v == ERR_PTR(-EBUSY))
498 return;
500 h->busy_configuring = 0;
503 static const struct seq_operations cciss_seq_ops = {
504 .start = cciss_seq_start,
505 .show = cciss_seq_show,
506 .next = cciss_seq_next,
507 .stop = cciss_seq_stop,
510 static int cciss_seq_open(struct inode *inode, struct file *file)
512 int ret = seq_open(file, &cciss_seq_ops);
513 struct seq_file *seq = file->private_data;
515 if (!ret)
516 seq->private = PDE(inode)->data;
518 return ret;
521 static ssize_t
522 cciss_proc_write(struct file *file, const char __user *buf,
523 size_t length, loff_t *ppos)
525 int err;
526 char *buffer;
528 #ifndef CONFIG_CISS_SCSI_TAPE
529 return -EINVAL;
530 #endif
532 if (!buf || length > PAGE_SIZE - 1)
533 return -EINVAL;
535 buffer = (char *)__get_free_page(GFP_KERNEL);
536 if (!buffer)
537 return -ENOMEM;
539 err = -EFAULT;
540 if (copy_from_user(buffer, buf, length))
541 goto out;
542 buffer[length] = '\0';
544 #ifdef CONFIG_CISS_SCSI_TAPE
545 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
546 struct seq_file *seq = file->private_data;
547 ctlr_info_t *h = seq->private;
549 err = cciss_engage_scsi(h);
550 if (err == 0)
551 err = length;
552 } else
553 #endif /* CONFIG_CISS_SCSI_TAPE */
554 err = -EINVAL;
555 /* might be nice to have "disengage" too, but it's not
556 safely possible. (only 1 module use count, lock issues.) */
558 out:
559 free_page((unsigned long)buffer);
560 return err;
563 static const struct file_operations cciss_proc_fops = {
564 .owner = THIS_MODULE,
565 .open = cciss_seq_open,
566 .read = seq_read,
567 .llseek = seq_lseek,
568 .release = seq_release,
569 .write = cciss_proc_write,
572 static void __devinit cciss_procinit(ctlr_info_t *h)
574 struct proc_dir_entry *pde;
576 if (proc_cciss == NULL)
577 proc_cciss = proc_mkdir("driver/cciss", NULL);
578 if (!proc_cciss)
579 return;
580 pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
581 S_IROTH, proc_cciss,
582 &cciss_proc_fops, h);
584 #endif /* CONFIG_PROC_FS */
586 #define MAX_PRODUCT_NAME_LEN 19
588 #define to_hba(n) container_of(n, struct ctlr_info, dev)
589 #define to_drv(n) container_of(n, drive_info_struct, dev)
591 static ssize_t host_store_rescan(struct device *dev,
592 struct device_attribute *attr,
593 const char *buf, size_t count)
595 struct ctlr_info *h = to_hba(dev);
597 add_to_scan_list(h);
598 wake_up_process(cciss_scan_thread);
599 wait_for_completion_interruptible(&h->scan_wait);
601 return count;
603 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
605 static ssize_t dev_show_unique_id(struct device *dev,
606 struct device_attribute *attr,
607 char *buf)
609 drive_info_struct *drv = to_drv(dev);
610 struct ctlr_info *h = to_hba(drv->dev.parent);
611 __u8 sn[16];
612 unsigned long flags;
613 int ret = 0;
615 spin_lock_irqsave(&h->lock, flags);
616 if (h->busy_configuring)
617 ret = -EBUSY;
618 else
619 memcpy(sn, drv->serial_no, sizeof(sn));
620 spin_unlock_irqrestore(&h->lock, flags);
622 if (ret)
623 return ret;
624 else
625 return snprintf(buf, 16 * 2 + 2,
626 "%02X%02X%02X%02X%02X%02X%02X%02X"
627 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
628 sn[0], sn[1], sn[2], sn[3],
629 sn[4], sn[5], sn[6], sn[7],
630 sn[8], sn[9], sn[10], sn[11],
631 sn[12], sn[13], sn[14], sn[15]);
633 static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
635 static ssize_t dev_show_vendor(struct device *dev,
636 struct device_attribute *attr,
637 char *buf)
639 drive_info_struct *drv = to_drv(dev);
640 struct ctlr_info *h = to_hba(drv->dev.parent);
641 char vendor[VENDOR_LEN + 1];
642 unsigned long flags;
643 int ret = 0;
645 spin_lock_irqsave(&h->lock, flags);
646 if (h->busy_configuring)
647 ret = -EBUSY;
648 else
649 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
650 spin_unlock_irqrestore(&h->lock, flags);
652 if (ret)
653 return ret;
654 else
655 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
657 static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
659 static ssize_t dev_show_model(struct device *dev,
660 struct device_attribute *attr,
661 char *buf)
663 drive_info_struct *drv = to_drv(dev);
664 struct ctlr_info *h = to_hba(drv->dev.parent);
665 char model[MODEL_LEN + 1];
666 unsigned long flags;
667 int ret = 0;
669 spin_lock_irqsave(&h->lock, flags);
670 if (h->busy_configuring)
671 ret = -EBUSY;
672 else
673 memcpy(model, drv->model, MODEL_LEN + 1);
674 spin_unlock_irqrestore(&h->lock, flags);
676 if (ret)
677 return ret;
678 else
679 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
681 static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
683 static ssize_t dev_show_rev(struct device *dev,
684 struct device_attribute *attr,
685 char *buf)
687 drive_info_struct *drv = to_drv(dev);
688 struct ctlr_info *h = to_hba(drv->dev.parent);
689 char rev[REV_LEN + 1];
690 unsigned long flags;
691 int ret = 0;
693 spin_lock_irqsave(&h->lock, flags);
694 if (h->busy_configuring)
695 ret = -EBUSY;
696 else
697 memcpy(rev, drv->rev, REV_LEN + 1);
698 spin_unlock_irqrestore(&h->lock, flags);
700 if (ret)
701 return ret;
702 else
703 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
705 static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
707 static ssize_t cciss_show_lunid(struct device *dev,
708 struct device_attribute *attr, char *buf)
710 drive_info_struct *drv = to_drv(dev);
711 struct ctlr_info *h = to_hba(drv->dev.parent);
712 unsigned long flags;
713 unsigned char lunid[8];
715 spin_lock_irqsave(&h->lock, flags);
716 if (h->busy_configuring) {
717 spin_unlock_irqrestore(&h->lock, flags);
718 return -EBUSY;
720 if (!drv->heads) {
721 spin_unlock_irqrestore(&h->lock, flags);
722 return -ENOTTY;
724 memcpy(lunid, drv->LunID, sizeof(lunid));
725 spin_unlock_irqrestore(&h->lock, flags);
726 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
727 lunid[0], lunid[1], lunid[2], lunid[3],
728 lunid[4], lunid[5], lunid[6], lunid[7]);
730 static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
732 static ssize_t cciss_show_raid_level(struct device *dev,
733 struct device_attribute *attr, char *buf)
735 drive_info_struct *drv = to_drv(dev);
736 struct ctlr_info *h = to_hba(drv->dev.parent);
737 int raid;
738 unsigned long flags;
740 spin_lock_irqsave(&h->lock, flags);
741 if (h->busy_configuring) {
742 spin_unlock_irqrestore(&h->lock, flags);
743 return -EBUSY;
745 raid = drv->raid_level;
746 spin_unlock_irqrestore(&h->lock, flags);
747 if (raid < 0 || raid > RAID_UNKNOWN)
748 raid = RAID_UNKNOWN;
750 return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
751 raid_label[raid]);
753 static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
755 static ssize_t cciss_show_usage_count(struct device *dev,
756 struct device_attribute *attr, char *buf)
758 drive_info_struct *drv = to_drv(dev);
759 struct ctlr_info *h = to_hba(drv->dev.parent);
760 unsigned long flags;
761 int count;
763 spin_lock_irqsave(&h->lock, flags);
764 if (h->busy_configuring) {
765 spin_unlock_irqrestore(&h->lock, flags);
766 return -EBUSY;
768 count = drv->usage_count;
769 spin_unlock_irqrestore(&h->lock, flags);
770 return snprintf(buf, 20, "%d\n", count);
772 static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
774 static struct attribute *cciss_host_attrs[] = {
775 &dev_attr_rescan.attr,
776 NULL
779 static struct attribute_group cciss_host_attr_group = {
780 .attrs = cciss_host_attrs,
783 static const struct attribute_group *cciss_host_attr_groups[] = {
784 &cciss_host_attr_group,
785 NULL
788 static struct device_type cciss_host_type = {
789 .name = "cciss_host",
790 .groups = cciss_host_attr_groups,
791 .release = cciss_hba_release,
794 static struct attribute *cciss_dev_attrs[] = {
795 &dev_attr_unique_id.attr,
796 &dev_attr_model.attr,
797 &dev_attr_vendor.attr,
798 &dev_attr_rev.attr,
799 &dev_attr_lunid.attr,
800 &dev_attr_raid_level.attr,
801 &dev_attr_usage_count.attr,
802 NULL
805 static struct attribute_group cciss_dev_attr_group = {
806 .attrs = cciss_dev_attrs,
809 static const struct attribute_group *cciss_dev_attr_groups[] = {
810 &cciss_dev_attr_group,
811 NULL
814 static struct device_type cciss_dev_type = {
815 .name = "cciss_device",
816 .groups = cciss_dev_attr_groups,
817 .release = cciss_device_release,
820 static struct bus_type cciss_bus_type = {
821 .name = "cciss",
825 * cciss_hba_release is called when the reference count
826 * of h->dev goes to zero.
828 static void cciss_hba_release(struct device *dev)
831 * nothing to do, but need this to avoid a warning
832 * about not having a release handler from lib/kref.c.
837 * Initialize sysfs entry for each controller. This sets up and registers
838 * the 'cciss#' directory for each individual controller under
839 * /sys/bus/pci/devices/<dev>/.
841 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
843 device_initialize(&h->dev);
844 h->dev.type = &cciss_host_type;
845 h->dev.bus = &cciss_bus_type;
846 dev_set_name(&h->dev, "%s", h->devname);
847 h->dev.parent = &h->pdev->dev;
849 return device_add(&h->dev);
853 * Remove sysfs entries for an hba.
855 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
857 device_del(&h->dev);
858 put_device(&h->dev); /* final put. */
861 /* cciss_device_release is called when the reference count
862 * of h->drv[x]dev goes to zero.
864 static void cciss_device_release(struct device *dev)
866 drive_info_struct *drv = to_drv(dev);
867 kfree(drv);
871 * Initialize sysfs for each logical drive. This sets up and registers
872 * the 'c#d#' directory for each individual logical drive under
873 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
874 * /sys/block/cciss!c#d# to this entry.
876 static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
877 int drv_index)
879 struct device *dev;
881 if (h->drv[drv_index]->device_initialized)
882 return 0;
884 dev = &h->drv[drv_index]->dev;
885 device_initialize(dev);
886 dev->type = &cciss_dev_type;
887 dev->bus = &cciss_bus_type;
888 dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
889 dev->parent = &h->dev;
890 h->drv[drv_index]->device_initialized = 1;
891 return device_add(dev);
895 * Remove sysfs entries for a logical drive.
897 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
898 int ctlr_exiting)
900 struct device *dev = &h->drv[drv_index]->dev;
902 /* special case for c*d0, we only destroy it on controller exit */
903 if (drv_index == 0 && !ctlr_exiting)
904 return;
906 device_del(dev);
907 put_device(dev); /* the "final" put. */
908 h->drv[drv_index] = NULL;
912 * For operations that cannot sleep, a command block is allocated at init,
913 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
914 * which ones are free or in use.
916 static CommandList_struct *cmd_alloc(ctlr_info_t *h)
918 CommandList_struct *c;
919 int i;
920 u64bit temp64;
921 dma_addr_t cmd_dma_handle, err_dma_handle;
923 do {
924 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
925 if (i == h->nr_cmds)
926 return NULL;
927 } while (test_and_set_bit(i & (BITS_PER_LONG - 1),
928 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
929 c = h->cmd_pool + i;
930 memset(c, 0, sizeof(CommandList_struct));
931 cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
932 c->err_info = h->errinfo_pool + i;
933 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
934 err_dma_handle = h->errinfo_pool_dhandle
935 + i * sizeof(ErrorInfo_struct);
936 h->nr_allocs++;
938 c->cmdindex = i;
940 INIT_HLIST_NODE(&c->list);
941 c->busaddr = (__u32) cmd_dma_handle;
942 temp64.val = (__u64) err_dma_handle;
943 c->ErrDesc.Addr.lower = temp64.val32.lower;
944 c->ErrDesc.Addr.upper = temp64.val32.upper;
945 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
947 c->ctlr = h->ctlr;
948 return c;
951 /* allocate a command using pci_alloc_consistent, used for ioctls,
952 * etc., not for the main i/o path.
954 static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
956 CommandList_struct *c;
957 u64bit temp64;
958 dma_addr_t cmd_dma_handle, err_dma_handle;
960 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
961 sizeof(CommandList_struct), &cmd_dma_handle);
962 if (c == NULL)
963 return NULL;
964 memset(c, 0, sizeof(CommandList_struct));
966 c->cmdindex = -1;
968 c->err_info = (ErrorInfo_struct *)
969 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
970 &err_dma_handle);
972 if (c->err_info == NULL) {
973 pci_free_consistent(h->pdev,
974 sizeof(CommandList_struct), c, cmd_dma_handle);
975 return NULL;
977 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
979 INIT_HLIST_NODE(&c->list);
980 c->busaddr = (__u32) cmd_dma_handle;
981 temp64.val = (__u64) err_dma_handle;
982 c->ErrDesc.Addr.lower = temp64.val32.lower;
983 c->ErrDesc.Addr.upper = temp64.val32.upper;
984 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
986 c->ctlr = h->ctlr;
987 return c;
990 static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
992 int i;
994 i = c - h->cmd_pool;
995 clear_bit(i & (BITS_PER_LONG - 1),
996 h->cmd_pool_bits + (i / BITS_PER_LONG));
997 h->nr_frees++;
1000 static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1002 u64bit temp64;
1004 temp64.val32.lower = c->ErrDesc.Addr.lower;
1005 temp64.val32.upper = c->ErrDesc.Addr.upper;
1006 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1007 c->err_info, (dma_addr_t) temp64.val);
1008 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
1009 c, (dma_addr_t) c->busaddr);
1012 static inline ctlr_info_t *get_host(struct gendisk *disk)
1014 return disk->queue->queuedata;
1017 static inline drive_info_struct *get_drv(struct gendisk *disk)
1019 return disk->private_data;
1023 * Open. Make sure the device is really there.
1025 static int cciss_open(struct block_device *bdev, fmode_t mode)
1027 ctlr_info_t *h = get_host(bdev->bd_disk);
1028 drive_info_struct *drv = get_drv(bdev->bd_disk);
1030 dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1031 if (drv->busy_configuring)
1032 return -EBUSY;
1034 * Root is allowed to open raw volume zero even if it's not configured
1035 * so array config can still work. Root is also allowed to open any
1036 * volume that has a LUN ID, so it can issue IOCTL to reread the
1037 * disk information. I don't think I really like this
1038 * but I'm already using way to many device nodes to claim another one
1039 * for "raw controller".
1041 if (drv->heads == 0) {
1042 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1043 /* if not node 0 make sure it is a partition = 0 */
1044 if (MINOR(bdev->bd_dev) & 0x0f) {
1045 return -ENXIO;
1046 /* if it is, make sure we have a LUN ID */
1047 } else if (memcmp(drv->LunID, CTLR_LUNID,
1048 sizeof(drv->LunID))) {
1049 return -ENXIO;
1052 if (!capable(CAP_SYS_ADMIN))
1053 return -EPERM;
1055 drv->usage_count++;
1056 h->usage_count++;
1057 return 0;
1060 static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1062 int ret;
1064 mutex_lock(&cciss_mutex);
1065 ret = cciss_open(bdev, mode);
1066 mutex_unlock(&cciss_mutex);
1068 return ret;
1072 * Close. Sync first.
1074 static int cciss_release(struct gendisk *disk, fmode_t mode)
1076 ctlr_info_t *h;
1077 drive_info_struct *drv;
1079 mutex_lock(&cciss_mutex);
1080 h = get_host(disk);
1081 drv = get_drv(disk);
1082 dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1083 drv->usage_count--;
1084 h->usage_count--;
1085 mutex_unlock(&cciss_mutex);
1086 return 0;
1089 static int do_ioctl(struct block_device *bdev, fmode_t mode,
1090 unsigned cmd, unsigned long arg)
1092 int ret;
1093 mutex_lock(&cciss_mutex);
1094 ret = cciss_ioctl(bdev, mode, cmd, arg);
1095 mutex_unlock(&cciss_mutex);
1096 return ret;
1099 #ifdef CONFIG_COMPAT
1101 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1102 unsigned cmd, unsigned long arg);
1103 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1104 unsigned cmd, unsigned long arg);
1106 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1107 unsigned cmd, unsigned long arg)
1109 switch (cmd) {
1110 case CCISS_GETPCIINFO:
1111 case CCISS_GETINTINFO:
1112 case CCISS_SETINTINFO:
1113 case CCISS_GETNODENAME:
1114 case CCISS_SETNODENAME:
1115 case CCISS_GETHEARTBEAT:
1116 case CCISS_GETBUSTYPES:
1117 case CCISS_GETFIRMVER:
1118 case CCISS_GETDRIVVER:
1119 case CCISS_REVALIDVOLS:
1120 case CCISS_DEREGDISK:
1121 case CCISS_REGNEWDISK:
1122 case CCISS_REGNEWD:
1123 case CCISS_RESCANDISK:
1124 case CCISS_GETLUNINFO:
1125 return do_ioctl(bdev, mode, cmd, arg);
1127 case CCISS_PASSTHRU32:
1128 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1129 case CCISS_BIG_PASSTHRU32:
1130 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1132 default:
1133 return -ENOIOCTLCMD;
1137 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1138 unsigned cmd, unsigned long arg)
1140 IOCTL32_Command_struct __user *arg32 =
1141 (IOCTL32_Command_struct __user *) arg;
1142 IOCTL_Command_struct arg64;
1143 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1144 int err;
1145 u32 cp;
1147 err = 0;
1148 err |=
1149 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1150 sizeof(arg64.LUN_info));
1151 err |=
1152 copy_from_user(&arg64.Request, &arg32->Request,
1153 sizeof(arg64.Request));
1154 err |=
1155 copy_from_user(&arg64.error_info, &arg32->error_info,
1156 sizeof(arg64.error_info));
1157 err |= get_user(arg64.buf_size, &arg32->buf_size);
1158 err |= get_user(cp, &arg32->buf);
1159 arg64.buf = compat_ptr(cp);
1160 err |= copy_to_user(p, &arg64, sizeof(arg64));
1162 if (err)
1163 return -EFAULT;
1165 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1166 if (err)
1167 return err;
1168 err |=
1169 copy_in_user(&arg32->error_info, &p->error_info,
1170 sizeof(arg32->error_info));
1171 if (err)
1172 return -EFAULT;
1173 return err;
1176 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1177 unsigned cmd, unsigned long arg)
1179 BIG_IOCTL32_Command_struct __user *arg32 =
1180 (BIG_IOCTL32_Command_struct __user *) arg;
1181 BIG_IOCTL_Command_struct arg64;
1182 BIG_IOCTL_Command_struct __user *p =
1183 compat_alloc_user_space(sizeof(arg64));
1184 int err;
1185 u32 cp;
1187 err = 0;
1188 err |=
1189 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1190 sizeof(arg64.LUN_info));
1191 err |=
1192 copy_from_user(&arg64.Request, &arg32->Request,
1193 sizeof(arg64.Request));
1194 err |=
1195 copy_from_user(&arg64.error_info, &arg32->error_info,
1196 sizeof(arg64.error_info));
1197 err |= get_user(arg64.buf_size, &arg32->buf_size);
1198 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1199 err |= get_user(cp, &arg32->buf);
1200 arg64.buf = compat_ptr(cp);
1201 err |= copy_to_user(p, &arg64, sizeof(arg64));
1203 if (err)
1204 return -EFAULT;
1206 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1207 if (err)
1208 return err;
1209 err |=
1210 copy_in_user(&arg32->error_info, &p->error_info,
1211 sizeof(arg32->error_info));
1212 if (err)
1213 return -EFAULT;
1214 return err;
1216 #endif
1218 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1220 drive_info_struct *drv = get_drv(bdev->bd_disk);
1222 if (!drv->cylinders)
1223 return -ENXIO;
1225 geo->heads = drv->heads;
1226 geo->sectors = drv->sectors;
1227 geo->cylinders = drv->cylinders;
1228 return 0;
1231 static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1233 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1234 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1235 (void)check_for_unit_attention(h, c);
1238 static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1240 cciss_pci_info_struct pciinfo;
1242 if (!argp)
1243 return -EINVAL;
1244 pciinfo.domain = pci_domain_nr(h->pdev->bus);
1245 pciinfo.bus = h->pdev->bus->number;
1246 pciinfo.dev_fn = h->pdev->devfn;
1247 pciinfo.board_id = h->board_id;
1248 if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1249 return -EFAULT;
1250 return 0;
1253 static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1255 cciss_coalint_struct intinfo;
1257 if (!argp)
1258 return -EINVAL;
1259 intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1260 intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1261 if (copy_to_user
1262 (argp, &intinfo, sizeof(cciss_coalint_struct)))
1263 return -EFAULT;
1264 return 0;
1267 static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1269 cciss_coalint_struct intinfo;
1270 unsigned long flags;
1271 int i;
1273 if (!argp)
1274 return -EINVAL;
1275 if (!capable(CAP_SYS_ADMIN))
1276 return -EPERM;
1277 if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1278 return -EFAULT;
1279 if ((intinfo.delay == 0) && (intinfo.count == 0))
1280 return -EINVAL;
1281 spin_lock_irqsave(&h->lock, flags);
1282 /* Update the field, and then ring the doorbell */
1283 writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1284 writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1285 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1287 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1288 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1289 break;
1290 udelay(1000); /* delay and try again */
1292 spin_unlock_irqrestore(&h->lock, flags);
1293 if (i >= MAX_IOCTL_CONFIG_WAIT)
1294 return -EAGAIN;
1295 return 0;
1298 static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1300 NodeName_type NodeName;
1301 int i;
1303 if (!argp)
1304 return -EINVAL;
1305 for (i = 0; i < 16; i++)
1306 NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1307 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1308 return -EFAULT;
1309 return 0;
1312 static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1314 NodeName_type NodeName;
1315 unsigned long flags;
1316 int i;
1318 if (!argp)
1319 return -EINVAL;
1320 if (!capable(CAP_SYS_ADMIN))
1321 return -EPERM;
1322 if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1323 return -EFAULT;
1324 spin_lock_irqsave(&h->lock, flags);
1325 /* Update the field, and then ring the doorbell */
1326 for (i = 0; i < 16; i++)
1327 writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1328 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1329 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1330 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1331 break;
1332 udelay(1000); /* delay and try again */
1334 spin_unlock_irqrestore(&h->lock, flags);
1335 if (i >= MAX_IOCTL_CONFIG_WAIT)
1336 return -EAGAIN;
1337 return 0;
1340 static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1342 Heartbeat_type heartbeat;
1344 if (!argp)
1345 return -EINVAL;
1346 heartbeat = readl(&h->cfgtable->HeartBeat);
1347 if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1348 return -EFAULT;
1349 return 0;
1352 static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1354 BusTypes_type BusTypes;
1356 if (!argp)
1357 return -EINVAL;
1358 BusTypes = readl(&h->cfgtable->BusTypes);
1359 if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1360 return -EFAULT;
1361 return 0;
1364 static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1366 FirmwareVer_type firmware;
1368 if (!argp)
1369 return -EINVAL;
1370 memcpy(firmware, h->firm_ver, 4);
1372 if (copy_to_user
1373 (argp, firmware, sizeof(FirmwareVer_type)))
1374 return -EFAULT;
1375 return 0;
1378 static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1380 DriverVer_type DriverVer = DRIVER_VERSION;
1382 if (!argp)
1383 return -EINVAL;
1384 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1385 return -EFAULT;
1386 return 0;
1389 static int cciss_getluninfo(ctlr_info_t *h,
1390 struct gendisk *disk, void __user *argp)
1392 LogvolInfo_struct luninfo;
1393 drive_info_struct *drv = get_drv(disk);
1395 if (!argp)
1396 return -EINVAL;
1397 memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1398 luninfo.num_opens = drv->usage_count;
1399 luninfo.num_parts = 0;
1400 if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1401 return -EFAULT;
1402 return 0;
1405 static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1407 IOCTL_Command_struct iocommand;
1408 CommandList_struct *c;
1409 char *buff = NULL;
1410 u64bit temp64;
1411 DECLARE_COMPLETION_ONSTACK(wait);
1413 if (!argp)
1414 return -EINVAL;
1416 if (!capable(CAP_SYS_RAWIO))
1417 return -EPERM;
1419 if (copy_from_user
1420 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1421 return -EFAULT;
1422 if ((iocommand.buf_size < 1) &&
1423 (iocommand.Request.Type.Direction != XFER_NONE)) {
1424 return -EINVAL;
1426 if (iocommand.buf_size > 0) {
1427 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1428 if (buff == NULL)
1429 return -EFAULT;
1431 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1432 /* Copy the data into the buffer we created */
1433 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1434 kfree(buff);
1435 return -EFAULT;
1437 } else {
1438 memset(buff, 0, iocommand.buf_size);
1440 c = cmd_special_alloc(h);
1441 if (!c) {
1442 kfree(buff);
1443 return -ENOMEM;
1445 /* Fill in the command type */
1446 c->cmd_type = CMD_IOCTL_PEND;
1447 /* Fill in Command Header */
1448 c->Header.ReplyQueue = 0; /* unused in simple mode */
1449 if (iocommand.buf_size > 0) { /* buffer to fill */
1450 c->Header.SGList = 1;
1451 c->Header.SGTotal = 1;
1452 } else { /* no buffers to fill */
1453 c->Header.SGList = 0;
1454 c->Header.SGTotal = 0;
1456 c->Header.LUN = iocommand.LUN_info;
1457 /* use the kernel address the cmd block for tag */
1458 c->Header.Tag.lower = c->busaddr;
1460 /* Fill in Request block */
1461 c->Request = iocommand.Request;
1463 /* Fill in the scatter gather information */
1464 if (iocommand.buf_size > 0) {
1465 temp64.val = pci_map_single(h->pdev, buff,
1466 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1467 c->SG[0].Addr.lower = temp64.val32.lower;
1468 c->SG[0].Addr.upper = temp64.val32.upper;
1469 c->SG[0].Len = iocommand.buf_size;
1470 c->SG[0].Ext = 0; /* we are not chaining */
1472 c->waiting = &wait;
1474 enqueue_cmd_and_start_io(h, c);
1475 wait_for_completion(&wait);
1477 /* unlock the buffers from DMA */
1478 temp64.val32.lower = c->SG[0].Addr.lower;
1479 temp64.val32.upper = c->SG[0].Addr.upper;
1480 pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1481 PCI_DMA_BIDIRECTIONAL);
1482 check_ioctl_unit_attention(h, c);
1484 /* Copy the error information out */
1485 iocommand.error_info = *(c->err_info);
1486 if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1487 kfree(buff);
1488 cmd_special_free(h, c);
1489 return -EFAULT;
1492 if (iocommand.Request.Type.Direction == XFER_READ) {
1493 /* Copy the data out of the buffer we created */
1494 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1495 kfree(buff);
1496 cmd_special_free(h, c);
1497 return -EFAULT;
1500 kfree(buff);
1501 cmd_special_free(h, c);
1502 return 0;
1505 static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1507 BIG_IOCTL_Command_struct *ioc;
1508 CommandList_struct *c;
1509 unsigned char **buff = NULL;
1510 int *buff_size = NULL;
1511 u64bit temp64;
1512 BYTE sg_used = 0;
1513 int status = 0;
1514 int i;
1515 DECLARE_COMPLETION_ONSTACK(wait);
1516 __u32 left;
1517 __u32 sz;
1518 BYTE __user *data_ptr;
1520 if (!argp)
1521 return -EINVAL;
1522 if (!capable(CAP_SYS_RAWIO))
1523 return -EPERM;
1524 ioc = (BIG_IOCTL_Command_struct *)
1525 kmalloc(sizeof(*ioc), GFP_KERNEL);
1526 if (!ioc) {
1527 status = -ENOMEM;
1528 goto cleanup1;
1530 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1531 status = -EFAULT;
1532 goto cleanup1;
1534 if ((ioc->buf_size < 1) &&
1535 (ioc->Request.Type.Direction != XFER_NONE)) {
1536 status = -EINVAL;
1537 goto cleanup1;
1539 /* Check kmalloc limits using all SGs */
1540 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1541 status = -EINVAL;
1542 goto cleanup1;
1544 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1545 status = -EINVAL;
1546 goto cleanup1;
1548 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1549 if (!buff) {
1550 status = -ENOMEM;
1551 goto cleanup1;
1553 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1554 if (!buff_size) {
1555 status = -ENOMEM;
1556 goto cleanup1;
1558 left = ioc->buf_size;
1559 data_ptr = ioc->buf;
1560 while (left) {
1561 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1562 buff_size[sg_used] = sz;
1563 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1564 if (buff[sg_used] == NULL) {
1565 status = -ENOMEM;
1566 goto cleanup1;
1568 if (ioc->Request.Type.Direction == XFER_WRITE) {
1569 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1570 status = -EFAULT;
1571 goto cleanup1;
1573 } else {
1574 memset(buff[sg_used], 0, sz);
1576 left -= sz;
1577 data_ptr += sz;
1578 sg_used++;
1580 c = cmd_special_alloc(h);
1581 if (!c) {
1582 status = -ENOMEM;
1583 goto cleanup1;
1585 c->cmd_type = CMD_IOCTL_PEND;
1586 c->Header.ReplyQueue = 0;
1587 c->Header.SGList = sg_used;
1588 c->Header.SGTotal = sg_used;
1589 c->Header.LUN = ioc->LUN_info;
1590 c->Header.Tag.lower = c->busaddr;
1592 c->Request = ioc->Request;
1593 for (i = 0; i < sg_used; i++) {
1594 temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1595 PCI_DMA_BIDIRECTIONAL);
1596 c->SG[i].Addr.lower = temp64.val32.lower;
1597 c->SG[i].Addr.upper = temp64.val32.upper;
1598 c->SG[i].Len = buff_size[i];
1599 c->SG[i].Ext = 0; /* we are not chaining */
1601 c->waiting = &wait;
1602 enqueue_cmd_and_start_io(h, c);
1603 wait_for_completion(&wait);
1604 /* unlock the buffers from DMA */
1605 for (i = 0; i < sg_used; i++) {
1606 temp64.val32.lower = c->SG[i].Addr.lower;
1607 temp64.val32.upper = c->SG[i].Addr.upper;
1608 pci_unmap_single(h->pdev,
1609 (dma_addr_t) temp64.val, buff_size[i],
1610 PCI_DMA_BIDIRECTIONAL);
1612 check_ioctl_unit_attention(h, c);
1613 /* Copy the error information out */
1614 ioc->error_info = *(c->err_info);
1615 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1616 cmd_special_free(h, c);
1617 status = -EFAULT;
1618 goto cleanup1;
1620 if (ioc->Request.Type.Direction == XFER_READ) {
1621 /* Copy the data out of the buffer we created */
1622 BYTE __user *ptr = ioc->buf;
1623 for (i = 0; i < sg_used; i++) {
1624 if (copy_to_user(ptr, buff[i], buff_size[i])) {
1625 cmd_special_free(h, c);
1626 status = -EFAULT;
1627 goto cleanup1;
1629 ptr += buff_size[i];
1632 cmd_special_free(h, c);
1633 status = 0;
1634 cleanup1:
1635 if (buff) {
1636 for (i = 0; i < sg_used; i++)
1637 kfree(buff[i]);
1638 kfree(buff);
1640 kfree(buff_size);
1641 kfree(ioc);
1642 return status;
1645 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1646 unsigned int cmd, unsigned long arg)
1648 struct gendisk *disk = bdev->bd_disk;
1649 ctlr_info_t *h = get_host(disk);
1650 void __user *argp = (void __user *)arg;
1652 dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1653 cmd, arg);
1654 switch (cmd) {
1655 case CCISS_GETPCIINFO:
1656 return cciss_getpciinfo(h, argp);
1657 case CCISS_GETINTINFO:
1658 return cciss_getintinfo(h, argp);
1659 case CCISS_SETINTINFO:
1660 return cciss_setintinfo(h, argp);
1661 case CCISS_GETNODENAME:
1662 return cciss_getnodename(h, argp);
1663 case CCISS_SETNODENAME:
1664 return cciss_setnodename(h, argp);
1665 case CCISS_GETHEARTBEAT:
1666 return cciss_getheartbeat(h, argp);
1667 case CCISS_GETBUSTYPES:
1668 return cciss_getbustypes(h, argp);
1669 case CCISS_GETFIRMVER:
1670 return cciss_getfirmver(h, argp);
1671 case CCISS_GETDRIVVER:
1672 return cciss_getdrivver(h, argp);
1673 case CCISS_DEREGDISK:
1674 case CCISS_REGNEWD:
1675 case CCISS_REVALIDVOLS:
1676 return rebuild_lun_table(h, 0, 1);
1677 case CCISS_GETLUNINFO:
1678 return cciss_getluninfo(h, disk, argp);
1679 case CCISS_PASSTHRU:
1680 return cciss_passthru(h, argp);
1681 case CCISS_BIG_PASSTHRU:
1682 return cciss_bigpassthru(h, argp);
1684 /* scsi_cmd_ioctl handles these, below, though some are not */
1685 /* very meaningful for cciss. SG_IO is the main one people want. */
1687 case SG_GET_VERSION_NUM:
1688 case SG_SET_TIMEOUT:
1689 case SG_GET_TIMEOUT:
1690 case SG_GET_RESERVED_SIZE:
1691 case SG_SET_RESERVED_SIZE:
1692 case SG_EMULATED_HOST:
1693 case SG_IO:
1694 case SCSI_IOCTL_SEND_COMMAND:
1695 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1697 /* scsi_cmd_ioctl would normally handle these, below, but */
1698 /* they aren't a good fit for cciss, as CD-ROMs are */
1699 /* not supported, and we don't have any bus/target/lun */
1700 /* which we present to the kernel. */
1702 case CDROM_SEND_PACKET:
1703 case CDROMCLOSETRAY:
1704 case CDROMEJECT:
1705 case SCSI_IOCTL_GET_IDLUN:
1706 case SCSI_IOCTL_GET_BUS_NUMBER:
1707 default:
1708 return -ENOTTY;
1712 static void cciss_check_queues(ctlr_info_t *h)
1714 int start_queue = h->next_to_run;
1715 int i;
1717 /* check to see if we have maxed out the number of commands that can
1718 * be placed on the queue. If so then exit. We do this check here
1719 * in case the interrupt we serviced was from an ioctl and did not
1720 * free any new commands.
1722 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1723 return;
1725 /* We have room on the queue for more commands. Now we need to queue
1726 * them up. We will also keep track of the next queue to run so
1727 * that every queue gets a chance to be started first.
1729 for (i = 0; i < h->highest_lun + 1; i++) {
1730 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1731 /* make sure the disk has been added and the drive is real
1732 * because this can be called from the middle of init_one.
1734 if (!h->drv[curr_queue])
1735 continue;
1736 if (!(h->drv[curr_queue]->queue) ||
1737 !(h->drv[curr_queue]->heads))
1738 continue;
1739 blk_start_queue(h->gendisk[curr_queue]->queue);
1741 /* check to see if we have maxed out the number of commands
1742 * that can be placed on the queue.
1744 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1745 if (curr_queue == start_queue) {
1746 h->next_to_run =
1747 (start_queue + 1) % (h->highest_lun + 1);
1748 break;
1749 } else {
1750 h->next_to_run = curr_queue;
1751 break;
1757 static void cciss_softirq_done(struct request *rq)
1759 CommandList_struct *c = rq->completion_data;
1760 ctlr_info_t *h = hba[c->ctlr];
1761 SGDescriptor_struct *curr_sg = c->SG;
1762 u64bit temp64;
1763 unsigned long flags;
1764 int i, ddir;
1765 int sg_index = 0;
1767 if (c->Request.Type.Direction == XFER_READ)
1768 ddir = PCI_DMA_FROMDEVICE;
1769 else
1770 ddir = PCI_DMA_TODEVICE;
1772 /* command did not need to be retried */
1773 /* unmap the DMA mapping for all the scatter gather elements */
1774 for (i = 0; i < c->Header.SGList; i++) {
1775 if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1776 cciss_unmap_sg_chain_block(h, c);
1777 /* Point to the next block */
1778 curr_sg = h->cmd_sg_list[c->cmdindex];
1779 sg_index = 0;
1781 temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1782 temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1783 pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1784 ddir);
1785 ++sg_index;
1788 dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1790 /* set the residual count for pc requests */
1791 if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1792 rq->resid_len = c->err_info->ResidualCnt;
1794 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1796 spin_lock_irqsave(&h->lock, flags);
1797 cmd_free(h, c);
1798 cciss_check_queues(h);
1799 spin_unlock_irqrestore(&h->lock, flags);
1802 static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1803 unsigned char scsi3addr[], uint32_t log_unit)
1805 memcpy(scsi3addr, h->drv[log_unit]->LunID,
1806 sizeof(h->drv[log_unit]->LunID));
1809 /* This function gets the SCSI vendor, model, and revision of a logical drive
1810 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1811 * they cannot be read.
1813 static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1814 char *vendor, char *model, char *rev)
1816 int rc;
1817 InquiryData_struct *inq_buf;
1818 unsigned char scsi3addr[8];
1820 *vendor = '\0';
1821 *model = '\0';
1822 *rev = '\0';
1824 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1825 if (!inq_buf)
1826 return;
1828 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1829 rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1830 scsi3addr, TYPE_CMD);
1831 if (rc == IO_OK) {
1832 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1833 vendor[VENDOR_LEN] = '\0';
1834 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1835 model[MODEL_LEN] = '\0';
1836 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1837 rev[REV_LEN] = '\0';
1840 kfree(inq_buf);
1841 return;
1844 /* This function gets the serial number of a logical drive via
1845 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1846 * number cannot be had, for whatever reason, 16 bytes of 0xff
1847 * are returned instead.
1849 static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1850 unsigned char *serial_no, int buflen)
1852 #define PAGE_83_INQ_BYTES 64
1853 int rc;
1854 unsigned char *buf;
1855 unsigned char scsi3addr[8];
1857 if (buflen > 16)
1858 buflen = 16;
1859 memset(serial_no, 0xff, buflen);
1860 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1861 if (!buf)
1862 return;
1863 memset(serial_no, 0, buflen);
1864 log_unit_to_scsi3addr(h, scsi3addr, logvol);
1865 rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1866 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1867 if (rc == IO_OK)
1868 memcpy(serial_no, &buf[8], buflen);
1869 kfree(buf);
1870 return;
1874 * cciss_add_disk sets up the block device queue for a logical drive
1876 static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1877 int drv_index)
1879 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1880 if (!disk->queue)
1881 goto init_queue_failure;
1882 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1883 disk->major = h->major;
1884 disk->first_minor = drv_index << NWD_SHIFT;
1885 disk->fops = &cciss_fops;
1886 if (cciss_create_ld_sysfs_entry(h, drv_index))
1887 goto cleanup_queue;
1888 disk->private_data = h->drv[drv_index];
1889 disk->driverfs_dev = &h->drv[drv_index]->dev;
1891 /* Set up queue information */
1892 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1894 /* This is a hardware imposed limit. */
1895 blk_queue_max_segments(disk->queue, h->maxsgentries);
1897 blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1899 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1901 disk->queue->queuedata = h;
1903 blk_queue_logical_block_size(disk->queue,
1904 h->drv[drv_index]->block_size);
1906 /* Make sure all queue data is written out before */
1907 /* setting h->drv[drv_index]->queue, as setting this */
1908 /* allows the interrupt handler to start the queue */
1909 wmb();
1910 h->drv[drv_index]->queue = disk->queue;
1911 add_disk(disk);
1912 return 0;
1914 cleanup_queue:
1915 blk_cleanup_queue(disk->queue);
1916 disk->queue = NULL;
1917 init_queue_failure:
1918 return -1;
1921 /* This function will check the usage_count of the drive to be updated/added.
1922 * If the usage_count is zero and it is a heretofore unknown drive, or,
1923 * the drive's capacity, geometry, or serial number has changed,
1924 * then the drive information will be updated and the disk will be
1925 * re-registered with the kernel. If these conditions don't hold,
1926 * then it will be left alone for the next reboot. The exception to this
1927 * is disk 0 which will always be left registered with the kernel since it
1928 * is also the controller node. Any changes to disk 0 will show up on
1929 * the next reboot.
1931 static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1932 int first_time, int via_ioctl)
1934 struct gendisk *disk;
1935 InquiryData_struct *inq_buff = NULL;
1936 unsigned int block_size;
1937 sector_t total_size;
1938 unsigned long flags = 0;
1939 int ret = 0;
1940 drive_info_struct *drvinfo;
1942 /* Get information about the disk and modify the driver structure */
1943 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1944 drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
1945 if (inq_buff == NULL || drvinfo == NULL)
1946 goto mem_msg;
1948 /* testing to see if 16-byte CDBs are already being used */
1949 if (h->cciss_read == CCISS_READ_16) {
1950 cciss_read_capacity_16(h, drv_index,
1951 &total_size, &block_size);
1953 } else {
1954 cciss_read_capacity(h, drv_index, &total_size, &block_size);
1955 /* if read_capacity returns all F's this volume is >2TB */
1956 /* in size so we switch to 16-byte CDB's for all */
1957 /* read/write ops */
1958 if (total_size == 0xFFFFFFFFULL) {
1959 cciss_read_capacity_16(h, drv_index,
1960 &total_size, &block_size);
1961 h->cciss_read = CCISS_READ_16;
1962 h->cciss_write = CCISS_WRITE_16;
1963 } else {
1964 h->cciss_read = CCISS_READ_10;
1965 h->cciss_write = CCISS_WRITE_10;
1969 cciss_geometry_inquiry(h, drv_index, total_size, block_size,
1970 inq_buff, drvinfo);
1971 drvinfo->block_size = block_size;
1972 drvinfo->nr_blocks = total_size + 1;
1974 cciss_get_device_descr(h, drv_index, drvinfo->vendor,
1975 drvinfo->model, drvinfo->rev);
1976 cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
1977 sizeof(drvinfo->serial_no));
1978 /* Save the lunid in case we deregister the disk, below. */
1979 memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
1980 sizeof(drvinfo->LunID));
1982 /* Is it the same disk we already know, and nothing's changed? */
1983 if (h->drv[drv_index]->raid_level != -1 &&
1984 ((memcmp(drvinfo->serial_no,
1985 h->drv[drv_index]->serial_no, 16) == 0) &&
1986 drvinfo->block_size == h->drv[drv_index]->block_size &&
1987 drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
1988 drvinfo->heads == h->drv[drv_index]->heads &&
1989 drvinfo->sectors == h->drv[drv_index]->sectors &&
1990 drvinfo->cylinders == h->drv[drv_index]->cylinders))
1991 /* The disk is unchanged, nothing to update */
1992 goto freeret;
1994 /* If we get here it's not the same disk, or something's changed,
1995 * so we need to * deregister it, and re-register it, if it's not
1996 * in use.
1997 * If the disk already exists then deregister it before proceeding
1998 * (unless it's the first disk (for the controller node).
2000 if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2001 dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2002 spin_lock_irqsave(&h->lock, flags);
2003 h->drv[drv_index]->busy_configuring = 1;
2004 spin_unlock_irqrestore(&h->lock, flags);
2006 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2007 * which keeps the interrupt handler from starting
2008 * the queue.
2010 ret = deregister_disk(h, drv_index, 0, via_ioctl);
2013 /* If the disk is in use return */
2014 if (ret)
2015 goto freeret;
2017 /* Save the new information from cciss_geometry_inquiry
2018 * and serial number inquiry. If the disk was deregistered
2019 * above, then h->drv[drv_index] will be NULL.
2021 if (h->drv[drv_index] == NULL) {
2022 drvinfo->device_initialized = 0;
2023 h->drv[drv_index] = drvinfo;
2024 drvinfo = NULL; /* so it won't be freed below. */
2025 } else {
2026 /* special case for cxd0 */
2027 h->drv[drv_index]->block_size = drvinfo->block_size;
2028 h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2029 h->drv[drv_index]->heads = drvinfo->heads;
2030 h->drv[drv_index]->sectors = drvinfo->sectors;
2031 h->drv[drv_index]->cylinders = drvinfo->cylinders;
2032 h->drv[drv_index]->raid_level = drvinfo->raid_level;
2033 memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2034 memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2035 VENDOR_LEN + 1);
2036 memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2037 memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2040 ++h->num_luns;
2041 disk = h->gendisk[drv_index];
2042 set_capacity(disk, h->drv[drv_index]->nr_blocks);
2044 /* If it's not disk 0 (drv_index != 0)
2045 * or if it was disk 0, but there was previously
2046 * no actual corresponding configured logical drive
2047 * (raid_leve == -1) then we want to update the
2048 * logical drive's information.
2050 if (drv_index || first_time) {
2051 if (cciss_add_disk(h, disk, drv_index) != 0) {
2052 cciss_free_gendisk(h, drv_index);
2053 cciss_free_drive_info(h, drv_index);
2054 dev_warn(&h->pdev->dev, "could not update disk %d\n",
2055 drv_index);
2056 --h->num_luns;
2060 freeret:
2061 kfree(inq_buff);
2062 kfree(drvinfo);
2063 return;
2064 mem_msg:
2065 dev_err(&h->pdev->dev, "out of memory\n");
2066 goto freeret;
2069 /* This function will find the first index of the controllers drive array
2070 * that has a null drv pointer and allocate the drive info struct and
2071 * will return that index This is where new drives will be added.
2072 * If the index to be returned is greater than the highest_lun index for
2073 * the controller then highest_lun is set * to this new index.
2074 * If there are no available indexes or if tha allocation fails, then -1
2075 * is returned. * "controller_node" is used to know if this is a real
2076 * logical drive, or just the controller node, which determines if this
2077 * counts towards highest_lun.
2079 static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2081 int i;
2082 drive_info_struct *drv;
2084 /* Search for an empty slot for our drive info */
2085 for (i = 0; i < CISS_MAX_LUN; i++) {
2087 /* if not cxd0 case, and it's occupied, skip it. */
2088 if (h->drv[i] && i != 0)
2089 continue;
2091 * If it's cxd0 case, and drv is alloc'ed already, and a
2092 * disk is configured there, skip it.
2094 if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2095 continue;
2098 * We've found an empty slot. Update highest_lun
2099 * provided this isn't just the fake cxd0 controller node.
2101 if (i > h->highest_lun && !controller_node)
2102 h->highest_lun = i;
2104 /* If adding a real disk at cxd0, and it's already alloc'ed */
2105 if (i == 0 && h->drv[i] != NULL)
2106 return i;
2109 * Found an empty slot, not already alloc'ed. Allocate it.
2110 * Mark it with raid_level == -1, so we know it's new later on.
2112 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2113 if (!drv)
2114 return -1;
2115 drv->raid_level = -1; /* so we know it's new */
2116 h->drv[i] = drv;
2117 return i;
2119 return -1;
2122 static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2124 kfree(h->drv[drv_index]);
2125 h->drv[drv_index] = NULL;
2128 static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2130 put_disk(h->gendisk[drv_index]);
2131 h->gendisk[drv_index] = NULL;
2134 /* cciss_add_gendisk finds a free hba[]->drv structure
2135 * and allocates a gendisk if needed, and sets the lunid
2136 * in the drvinfo structure. It returns the index into
2137 * the ->drv[] array, or -1 if none are free.
2138 * is_controller_node indicates whether highest_lun should
2139 * count this disk, or if it's only being added to provide
2140 * a means to talk to the controller in case no logical
2141 * drives have yet been configured.
2143 static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2144 int controller_node)
2146 int drv_index;
2148 drv_index = cciss_alloc_drive_info(h, controller_node);
2149 if (drv_index == -1)
2150 return -1;
2152 /*Check if the gendisk needs to be allocated */
2153 if (!h->gendisk[drv_index]) {
2154 h->gendisk[drv_index] =
2155 alloc_disk(1 << NWD_SHIFT);
2156 if (!h->gendisk[drv_index]) {
2157 dev_err(&h->pdev->dev,
2158 "could not allocate a new disk %d\n",
2159 drv_index);
2160 goto err_free_drive_info;
2163 memcpy(h->drv[drv_index]->LunID, lunid,
2164 sizeof(h->drv[drv_index]->LunID));
2165 if (cciss_create_ld_sysfs_entry(h, drv_index))
2166 goto err_free_disk;
2167 /* Don't need to mark this busy because nobody */
2168 /* else knows about this disk yet to contend */
2169 /* for access to it. */
2170 h->drv[drv_index]->busy_configuring = 0;
2171 wmb();
2172 return drv_index;
2174 err_free_disk:
2175 cciss_free_gendisk(h, drv_index);
2176 err_free_drive_info:
2177 cciss_free_drive_info(h, drv_index);
2178 return -1;
2181 /* This is for the special case of a controller which
2182 * has no logical drives. In this case, we still need
2183 * to register a disk so the controller can be accessed
2184 * by the Array Config Utility.
2186 static void cciss_add_controller_node(ctlr_info_t *h)
2188 struct gendisk *disk;
2189 int drv_index;
2191 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2192 return;
2194 drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2195 if (drv_index == -1)
2196 goto error;
2197 h->drv[drv_index]->block_size = 512;
2198 h->drv[drv_index]->nr_blocks = 0;
2199 h->drv[drv_index]->heads = 0;
2200 h->drv[drv_index]->sectors = 0;
2201 h->drv[drv_index]->cylinders = 0;
2202 h->drv[drv_index]->raid_level = -1;
2203 memset(h->drv[drv_index]->serial_no, 0, 16);
2204 disk = h->gendisk[drv_index];
2205 if (cciss_add_disk(h, disk, drv_index) == 0)
2206 return;
2207 cciss_free_gendisk(h, drv_index);
2208 cciss_free_drive_info(h, drv_index);
2209 error:
2210 dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2211 return;
2214 /* This function will add and remove logical drives from the Logical
2215 * drive array of the controller and maintain persistency of ordering
2216 * so that mount points are preserved until the next reboot. This allows
2217 * for the removal of logical drives in the middle of the drive array
2218 * without a re-ordering of those drives.
2219 * INPUT
2220 * h = The controller to perform the operations on
2222 static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2223 int via_ioctl)
2225 int num_luns;
2226 ReportLunData_struct *ld_buff = NULL;
2227 int return_code;
2228 int listlength = 0;
2229 int i;
2230 int drv_found;
2231 int drv_index = 0;
2232 unsigned char lunid[8] = CTLR_LUNID;
2233 unsigned long flags;
2235 if (!capable(CAP_SYS_RAWIO))
2236 return -EPERM;
2238 /* Set busy_configuring flag for this operation */
2239 spin_lock_irqsave(&h->lock, flags);
2240 if (h->busy_configuring) {
2241 spin_unlock_irqrestore(&h->lock, flags);
2242 return -EBUSY;
2244 h->busy_configuring = 1;
2245 spin_unlock_irqrestore(&h->lock, flags);
2247 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2248 if (ld_buff == NULL)
2249 goto mem_msg;
2251 return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2252 sizeof(ReportLunData_struct),
2253 0, CTLR_LUNID, TYPE_CMD);
2255 if (return_code == IO_OK)
2256 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2257 else { /* reading number of logical volumes failed */
2258 dev_warn(&h->pdev->dev,
2259 "report logical volume command failed\n");
2260 listlength = 0;
2261 goto freeret;
2264 num_luns = listlength / 8; /* 8 bytes per entry */
2265 if (num_luns > CISS_MAX_LUN) {
2266 num_luns = CISS_MAX_LUN;
2267 dev_warn(&h->pdev->dev, "more luns configured"
2268 " on controller than can be handled by"
2269 " this driver.\n");
2272 if (num_luns == 0)
2273 cciss_add_controller_node(h);
2275 /* Compare controller drive array to driver's drive array
2276 * to see if any drives are missing on the controller due
2277 * to action of Array Config Utility (user deletes drive)
2278 * and deregister logical drives which have disappeared.
2280 for (i = 0; i <= h->highest_lun; i++) {
2281 int j;
2282 drv_found = 0;
2284 /* skip holes in the array from already deleted drives */
2285 if (h->drv[i] == NULL)
2286 continue;
2288 for (j = 0; j < num_luns; j++) {
2289 memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2290 if (memcmp(h->drv[i]->LunID, lunid,
2291 sizeof(lunid)) == 0) {
2292 drv_found = 1;
2293 break;
2296 if (!drv_found) {
2297 /* Deregister it from the OS, it's gone. */
2298 spin_lock_irqsave(&h->lock, flags);
2299 h->drv[i]->busy_configuring = 1;
2300 spin_unlock_irqrestore(&h->lock, flags);
2301 return_code = deregister_disk(h, i, 1, via_ioctl);
2302 if (h->drv[i] != NULL)
2303 h->drv[i]->busy_configuring = 0;
2307 /* Compare controller drive array to driver's drive array.
2308 * Check for updates in the drive information and any new drives
2309 * on the controller due to ACU adding logical drives, or changing
2310 * a logical drive's size, etc. Reregister any new/changed drives
2312 for (i = 0; i < num_luns; i++) {
2313 int j;
2315 drv_found = 0;
2317 memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2318 /* Find if the LUN is already in the drive array
2319 * of the driver. If so then update its info
2320 * if not in use. If it does not exist then find
2321 * the first free index and add it.
2323 for (j = 0; j <= h->highest_lun; j++) {
2324 if (h->drv[j] != NULL &&
2325 memcmp(h->drv[j]->LunID, lunid,
2326 sizeof(h->drv[j]->LunID)) == 0) {
2327 drv_index = j;
2328 drv_found = 1;
2329 break;
2333 /* check if the drive was found already in the array */
2334 if (!drv_found) {
2335 drv_index = cciss_add_gendisk(h, lunid, 0);
2336 if (drv_index == -1)
2337 goto freeret;
2339 cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2340 } /* end for */
2342 freeret:
2343 kfree(ld_buff);
2344 h->busy_configuring = 0;
2345 /* We return -1 here to tell the ACU that we have registered/updated
2346 * all of the drives that we can and to keep it from calling us
2347 * additional times.
2349 return -1;
2350 mem_msg:
2351 dev_err(&h->pdev->dev, "out of memory\n");
2352 h->busy_configuring = 0;
2353 goto freeret;
2356 static void cciss_clear_drive_info(drive_info_struct *drive_info)
2358 /* zero out the disk size info */
2359 drive_info->nr_blocks = 0;
2360 drive_info->block_size = 0;
2361 drive_info->heads = 0;
2362 drive_info->sectors = 0;
2363 drive_info->cylinders = 0;
2364 drive_info->raid_level = -1;
2365 memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2366 memset(drive_info->model, 0, sizeof(drive_info->model));
2367 memset(drive_info->rev, 0, sizeof(drive_info->rev));
2368 memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2370 * don't clear the LUNID though, we need to remember which
2371 * one this one is.
2375 /* This function will deregister the disk and it's queue from the
2376 * kernel. It must be called with the controller lock held and the
2377 * drv structures busy_configuring flag set. It's parameters are:
2379 * disk = This is the disk to be deregistered
2380 * drv = This is the drive_info_struct associated with the disk to be
2381 * deregistered. It contains information about the disk used
2382 * by the driver.
2383 * clear_all = This flag determines whether or not the disk information
2384 * is going to be completely cleared out and the highest_lun
2385 * reset. Sometimes we want to clear out information about
2386 * the disk in preparation for re-adding it. In this case
2387 * the highest_lun should be left unchanged and the LunID
2388 * should not be cleared.
2389 * via_ioctl
2390 * This indicates whether we've reached this path via ioctl.
2391 * This affects the maximum usage count allowed for c0d0 to be messed with.
2392 * If this path is reached via ioctl(), then the max_usage_count will
2393 * be 1, as the process calling ioctl() has got to have the device open.
2394 * If we get here via sysfs, then the max usage count will be zero.
2396 static int deregister_disk(ctlr_info_t *h, int drv_index,
2397 int clear_all, int via_ioctl)
2399 int i;
2400 struct gendisk *disk;
2401 drive_info_struct *drv;
2402 int recalculate_highest_lun;
2404 if (!capable(CAP_SYS_RAWIO))
2405 return -EPERM;
2407 drv = h->drv[drv_index];
2408 disk = h->gendisk[drv_index];
2410 /* make sure logical volume is NOT is use */
2411 if (clear_all || (h->gendisk[0] == disk)) {
2412 if (drv->usage_count > via_ioctl)
2413 return -EBUSY;
2414 } else if (drv->usage_count > 0)
2415 return -EBUSY;
2417 recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2419 /* invalidate the devices and deregister the disk. If it is disk
2420 * zero do not deregister it but just zero out it's values. This
2421 * allows us to delete disk zero but keep the controller registered.
2423 if (h->gendisk[0] != disk) {
2424 struct request_queue *q = disk->queue;
2425 if (disk->flags & GENHD_FL_UP) {
2426 cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2427 del_gendisk(disk);
2429 if (q)
2430 blk_cleanup_queue(q);
2431 /* If clear_all is set then we are deleting the logical
2432 * drive, not just refreshing its info. For drives
2433 * other than disk 0 we will call put_disk. We do not
2434 * do this for disk 0 as we need it to be able to
2435 * configure the controller.
2437 if (clear_all){
2438 /* This isn't pretty, but we need to find the
2439 * disk in our array and NULL our the pointer.
2440 * This is so that we will call alloc_disk if
2441 * this index is used again later.
2443 for (i=0; i < CISS_MAX_LUN; i++){
2444 if (h->gendisk[i] == disk) {
2445 h->gendisk[i] = NULL;
2446 break;
2449 put_disk(disk);
2451 } else {
2452 set_capacity(disk, 0);
2453 cciss_clear_drive_info(drv);
2456 --h->num_luns;
2458 /* if it was the last disk, find the new hightest lun */
2459 if (clear_all && recalculate_highest_lun) {
2460 int newhighest = -1;
2461 for (i = 0; i <= h->highest_lun; i++) {
2462 /* if the disk has size > 0, it is available */
2463 if (h->drv[i] && h->drv[i]->heads)
2464 newhighest = i;
2466 h->highest_lun = newhighest;
2468 return 0;
2471 static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2472 size_t size, __u8 page_code, unsigned char *scsi3addr,
2473 int cmd_type)
2475 u64bit buff_dma_handle;
2476 int status = IO_OK;
2478 c->cmd_type = CMD_IOCTL_PEND;
2479 c->Header.ReplyQueue = 0;
2480 if (buff != NULL) {
2481 c->Header.SGList = 1;
2482 c->Header.SGTotal = 1;
2483 } else {
2484 c->Header.SGList = 0;
2485 c->Header.SGTotal = 0;
2487 c->Header.Tag.lower = c->busaddr;
2488 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2490 c->Request.Type.Type = cmd_type;
2491 if (cmd_type == TYPE_CMD) {
2492 switch (cmd) {
2493 case CISS_INQUIRY:
2494 /* are we trying to read a vital product page */
2495 if (page_code != 0) {
2496 c->Request.CDB[1] = 0x01;
2497 c->Request.CDB[2] = page_code;
2499 c->Request.CDBLen = 6;
2500 c->Request.Type.Attribute = ATTR_SIMPLE;
2501 c->Request.Type.Direction = XFER_READ;
2502 c->Request.Timeout = 0;
2503 c->Request.CDB[0] = CISS_INQUIRY;
2504 c->Request.CDB[4] = size & 0xFF;
2505 break;
2506 case CISS_REPORT_LOG:
2507 case CISS_REPORT_PHYS:
2508 /* Talking to controller so It's a physical command
2509 mode = 00 target = 0. Nothing to write.
2511 c->Request.CDBLen = 12;
2512 c->Request.Type.Attribute = ATTR_SIMPLE;
2513 c->Request.Type.Direction = XFER_READ;
2514 c->Request.Timeout = 0;
2515 c->Request.CDB[0] = cmd;
2516 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2517 c->Request.CDB[7] = (size >> 16) & 0xFF;
2518 c->Request.CDB[8] = (size >> 8) & 0xFF;
2519 c->Request.CDB[9] = size & 0xFF;
2520 break;
2522 case CCISS_READ_CAPACITY:
2523 c->Request.CDBLen = 10;
2524 c->Request.Type.Attribute = ATTR_SIMPLE;
2525 c->Request.Type.Direction = XFER_READ;
2526 c->Request.Timeout = 0;
2527 c->Request.CDB[0] = cmd;
2528 break;
2529 case CCISS_READ_CAPACITY_16:
2530 c->Request.CDBLen = 16;
2531 c->Request.Type.Attribute = ATTR_SIMPLE;
2532 c->Request.Type.Direction = XFER_READ;
2533 c->Request.Timeout = 0;
2534 c->Request.CDB[0] = cmd;
2535 c->Request.CDB[1] = 0x10;
2536 c->Request.CDB[10] = (size >> 24) & 0xFF;
2537 c->Request.CDB[11] = (size >> 16) & 0xFF;
2538 c->Request.CDB[12] = (size >> 8) & 0xFF;
2539 c->Request.CDB[13] = size & 0xFF;
2540 c->Request.Timeout = 0;
2541 c->Request.CDB[0] = cmd;
2542 break;
2543 case CCISS_CACHE_FLUSH:
2544 c->Request.CDBLen = 12;
2545 c->Request.Type.Attribute = ATTR_SIMPLE;
2546 c->Request.Type.Direction = XFER_WRITE;
2547 c->Request.Timeout = 0;
2548 c->Request.CDB[0] = BMIC_WRITE;
2549 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2550 break;
2551 case TEST_UNIT_READY:
2552 c->Request.CDBLen = 6;
2553 c->Request.Type.Attribute = ATTR_SIMPLE;
2554 c->Request.Type.Direction = XFER_NONE;
2555 c->Request.Timeout = 0;
2556 break;
2557 default:
2558 dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2559 return IO_ERROR;
2561 } else if (cmd_type == TYPE_MSG) {
2562 switch (cmd) {
2563 case 0: /* ABORT message */
2564 c->Request.CDBLen = 12;
2565 c->Request.Type.Attribute = ATTR_SIMPLE;
2566 c->Request.Type.Direction = XFER_WRITE;
2567 c->Request.Timeout = 0;
2568 c->Request.CDB[0] = cmd; /* abort */
2569 c->Request.CDB[1] = 0; /* abort a command */
2570 /* buff contains the tag of the command to abort */
2571 memcpy(&c->Request.CDB[4], buff, 8);
2572 break;
2573 case 1: /* RESET message */
2574 c->Request.CDBLen = 16;
2575 c->Request.Type.Attribute = ATTR_SIMPLE;
2576 c->Request.Type.Direction = XFER_NONE;
2577 c->Request.Timeout = 0;
2578 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2579 c->Request.CDB[0] = cmd; /* reset */
2580 c->Request.CDB[1] = 0x03; /* reset a target */
2581 break;
2582 case 3: /* No-Op message */
2583 c->Request.CDBLen = 1;
2584 c->Request.Type.Attribute = ATTR_SIMPLE;
2585 c->Request.Type.Direction = XFER_WRITE;
2586 c->Request.Timeout = 0;
2587 c->Request.CDB[0] = cmd;
2588 break;
2589 default:
2590 dev_warn(&h->pdev->dev,
2591 "unknown message type %d\n", cmd);
2592 return IO_ERROR;
2594 } else {
2595 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2596 return IO_ERROR;
2598 /* Fill in the scatter gather information */
2599 if (size > 0) {
2600 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2601 buff, size,
2602 PCI_DMA_BIDIRECTIONAL);
2603 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2604 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2605 c->SG[0].Len = size;
2606 c->SG[0].Ext = 0; /* we are not chaining */
2608 return status;
2611 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2613 switch (c->err_info->ScsiStatus) {
2614 case SAM_STAT_GOOD:
2615 return IO_OK;
2616 case SAM_STAT_CHECK_CONDITION:
2617 switch (0xf & c->err_info->SenseInfo[2]) {
2618 case 0: return IO_OK; /* no sense */
2619 case 1: return IO_OK; /* recovered error */
2620 default:
2621 if (check_for_unit_attention(h, c))
2622 return IO_NEEDS_RETRY;
2623 dev_warn(&h->pdev->dev, "cmd 0x%02x "
2624 "check condition, sense key = 0x%02x\n",
2625 c->Request.CDB[0], c->err_info->SenseInfo[2]);
2627 break;
2628 default:
2629 dev_warn(&h->pdev->dev, "cmd 0x%02x"
2630 "scsi status = 0x%02x\n",
2631 c->Request.CDB[0], c->err_info->ScsiStatus);
2632 break;
2634 return IO_ERROR;
2637 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2639 int return_status = IO_OK;
2641 if (c->err_info->CommandStatus == CMD_SUCCESS)
2642 return IO_OK;
2644 switch (c->err_info->CommandStatus) {
2645 case CMD_TARGET_STATUS:
2646 return_status = check_target_status(h, c);
2647 break;
2648 case CMD_DATA_UNDERRUN:
2649 case CMD_DATA_OVERRUN:
2650 /* expected for inquiry and report lun commands */
2651 break;
2652 case CMD_INVALID:
2653 dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2654 "reported invalid\n", c->Request.CDB[0]);
2655 return_status = IO_ERROR;
2656 break;
2657 case CMD_PROTOCOL_ERR:
2658 dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2659 "protocol error\n", c->Request.CDB[0]);
2660 return_status = IO_ERROR;
2661 break;
2662 case CMD_HARDWARE_ERR:
2663 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2664 " hardware error\n", c->Request.CDB[0]);
2665 return_status = IO_ERROR;
2666 break;
2667 case CMD_CONNECTION_LOST:
2668 dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2669 "connection lost\n", c->Request.CDB[0]);
2670 return_status = IO_ERROR;
2671 break;
2672 case CMD_ABORTED:
2673 dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2674 "aborted\n", c->Request.CDB[0]);
2675 return_status = IO_ERROR;
2676 break;
2677 case CMD_ABORT_FAILED:
2678 dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2679 "abort failed\n", c->Request.CDB[0]);
2680 return_status = IO_ERROR;
2681 break;
2682 case CMD_UNSOLICITED_ABORT:
2683 dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2684 c->Request.CDB[0]);
2685 return_status = IO_NEEDS_RETRY;
2686 break;
2687 default:
2688 dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2689 "unknown status %x\n", c->Request.CDB[0],
2690 c->err_info->CommandStatus);
2691 return_status = IO_ERROR;
2693 return return_status;
2696 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2697 int attempt_retry)
2699 DECLARE_COMPLETION_ONSTACK(wait);
2700 u64bit buff_dma_handle;
2701 int return_status = IO_OK;
2703 resend_cmd2:
2704 c->waiting = &wait;
2705 enqueue_cmd_and_start_io(h, c);
2707 wait_for_completion(&wait);
2709 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2710 goto command_done;
2712 return_status = process_sendcmd_error(h, c);
2714 if (return_status == IO_NEEDS_RETRY &&
2715 c->retry_count < MAX_CMD_RETRIES) {
2716 dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2717 c->Request.CDB[0]);
2718 c->retry_count++;
2719 /* erase the old error information */
2720 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2721 return_status = IO_OK;
2722 INIT_COMPLETION(wait);
2723 goto resend_cmd2;
2726 command_done:
2727 /* unlock the buffers from DMA */
2728 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2729 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2730 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2731 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2732 return return_status;
2735 static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2736 __u8 page_code, unsigned char scsi3addr[],
2737 int cmd_type)
2739 CommandList_struct *c;
2740 int return_status;
2742 c = cmd_special_alloc(h);
2743 if (!c)
2744 return -ENOMEM;
2745 return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2746 scsi3addr, cmd_type);
2747 if (return_status == IO_OK)
2748 return_status = sendcmd_withirq_core(h, c, 1);
2750 cmd_special_free(h, c);
2751 return return_status;
2754 static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2755 sector_t total_size,
2756 unsigned int block_size,
2757 InquiryData_struct *inq_buff,
2758 drive_info_struct *drv)
2760 int return_code;
2761 unsigned long t;
2762 unsigned char scsi3addr[8];
2764 memset(inq_buff, 0, sizeof(InquiryData_struct));
2765 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2766 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2767 sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2768 if (return_code == IO_OK) {
2769 if (inq_buff->data_byte[8] == 0xFF) {
2770 dev_warn(&h->pdev->dev,
2771 "reading geometry failed, volume "
2772 "does not support reading geometry\n");
2773 drv->heads = 255;
2774 drv->sectors = 32; /* Sectors per track */
2775 drv->cylinders = total_size + 1;
2776 drv->raid_level = RAID_UNKNOWN;
2777 } else {
2778 drv->heads = inq_buff->data_byte[6];
2779 drv->sectors = inq_buff->data_byte[7];
2780 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2781 drv->cylinders += inq_buff->data_byte[5];
2782 drv->raid_level = inq_buff->data_byte[8];
2784 drv->block_size = block_size;
2785 drv->nr_blocks = total_size + 1;
2786 t = drv->heads * drv->sectors;
2787 if (t > 1) {
2788 sector_t real_size = total_size + 1;
2789 unsigned long rem = sector_div(real_size, t);
2790 if (rem)
2791 real_size++;
2792 drv->cylinders = real_size;
2794 } else { /* Get geometry failed */
2795 dev_warn(&h->pdev->dev, "reading geometry failed\n");
2799 static void
2800 cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2801 unsigned int *block_size)
2803 ReadCapdata_struct *buf;
2804 int return_code;
2805 unsigned char scsi3addr[8];
2807 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2808 if (!buf) {
2809 dev_warn(&h->pdev->dev, "out of memory\n");
2810 return;
2813 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2814 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2815 sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2816 if (return_code == IO_OK) {
2817 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2818 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2819 } else { /* read capacity command failed */
2820 dev_warn(&h->pdev->dev, "read capacity failed\n");
2821 *total_size = 0;
2822 *block_size = BLOCK_SIZE;
2824 kfree(buf);
2827 static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2828 sector_t *total_size, unsigned int *block_size)
2830 ReadCapdata_struct_16 *buf;
2831 int return_code;
2832 unsigned char scsi3addr[8];
2834 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2835 if (!buf) {
2836 dev_warn(&h->pdev->dev, "out of memory\n");
2837 return;
2840 log_unit_to_scsi3addr(h, scsi3addr, logvol);
2841 return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2842 buf, sizeof(ReadCapdata_struct_16),
2843 0, scsi3addr, TYPE_CMD);
2844 if (return_code == IO_OK) {
2845 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2846 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2847 } else { /* read capacity command failed */
2848 dev_warn(&h->pdev->dev, "read capacity failed\n");
2849 *total_size = 0;
2850 *block_size = BLOCK_SIZE;
2852 dev_info(&h->pdev->dev, " blocks= %llu block_size= %d\n",
2853 (unsigned long long)*total_size+1, *block_size);
2854 kfree(buf);
2857 static int cciss_revalidate(struct gendisk *disk)
2859 ctlr_info_t *h = get_host(disk);
2860 drive_info_struct *drv = get_drv(disk);
2861 int logvol;
2862 int FOUND = 0;
2863 unsigned int block_size;
2864 sector_t total_size;
2865 InquiryData_struct *inq_buff = NULL;
2867 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2868 if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2869 sizeof(drv->LunID)) == 0) {
2870 FOUND = 1;
2871 break;
2875 if (!FOUND)
2876 return 1;
2878 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2879 if (inq_buff == NULL) {
2880 dev_warn(&h->pdev->dev, "out of memory\n");
2881 return 1;
2883 if (h->cciss_read == CCISS_READ_10) {
2884 cciss_read_capacity(h, logvol,
2885 &total_size, &block_size);
2886 } else {
2887 cciss_read_capacity_16(h, logvol,
2888 &total_size, &block_size);
2890 cciss_geometry_inquiry(h, logvol, total_size, block_size,
2891 inq_buff, drv);
2893 blk_queue_logical_block_size(drv->queue, drv->block_size);
2894 set_capacity(disk, drv->nr_blocks);
2896 kfree(inq_buff);
2897 return 0;
2901 * Map (physical) PCI mem into (virtual) kernel space
2903 static void __iomem *remap_pci_mem(ulong base, ulong size)
2905 ulong page_base = ((ulong) base) & PAGE_MASK;
2906 ulong page_offs = ((ulong) base) - page_base;
2907 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2909 return page_remapped ? (page_remapped + page_offs) : NULL;
2913 * Takes jobs of the Q and sends them to the hardware, then puts it on
2914 * the Q to wait for completion.
2916 static void start_io(ctlr_info_t *h)
2918 CommandList_struct *c;
2920 while (!hlist_empty(&h->reqQ)) {
2921 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2922 /* can't do anything if fifo is full */
2923 if ((h->access.fifo_full(h))) {
2924 dev_warn(&h->pdev->dev, "fifo full\n");
2925 break;
2928 /* Get the first entry from the Request Q */
2929 removeQ(c);
2930 h->Qdepth--;
2932 /* Tell the controller execute command */
2933 h->access.submit_command(h, c);
2935 /* Put job onto the completed Q */
2936 addQ(&h->cmpQ, c);
2940 /* Assumes that h->lock is held. */
2941 /* Zeros out the error record and then resends the command back */
2942 /* to the controller */
2943 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2945 /* erase the old error information */
2946 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2948 /* add it to software queue and then send it to the controller */
2949 addQ(&h->reqQ, c);
2950 h->Qdepth++;
2951 if (h->Qdepth > h->maxQsinceinit)
2952 h->maxQsinceinit = h->Qdepth;
2954 start_io(h);
2957 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2958 unsigned int msg_byte, unsigned int host_byte,
2959 unsigned int driver_byte)
2961 /* inverse of macros in scsi.h */
2962 return (scsi_status_byte & 0xff) |
2963 ((msg_byte & 0xff) << 8) |
2964 ((host_byte & 0xff) << 16) |
2965 ((driver_byte & 0xff) << 24);
2968 static inline int evaluate_target_status(ctlr_info_t *h,
2969 CommandList_struct *cmd, int *retry_cmd)
2971 unsigned char sense_key;
2972 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2973 int error_value;
2975 *retry_cmd = 0;
2976 /* If we get in here, it means we got "target status", that is, scsi status */
2977 status_byte = cmd->err_info->ScsiStatus;
2978 driver_byte = DRIVER_OK;
2979 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2981 if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
2982 host_byte = DID_PASSTHROUGH;
2983 else
2984 host_byte = DID_OK;
2986 error_value = make_status_bytes(status_byte, msg_byte,
2987 host_byte, driver_byte);
2989 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2990 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
2991 dev_warn(&h->pdev->dev, "cmd %p "
2992 "has SCSI Status 0x%x\n",
2993 cmd, cmd->err_info->ScsiStatus);
2994 return error_value;
2997 /* check the sense key */
2998 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2999 /* no status or recovered error */
3000 if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3001 (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3002 error_value = 0;
3004 if (check_for_unit_attention(h, cmd)) {
3005 *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3006 return 0;
3009 /* Not SG_IO or similar? */
3010 if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3011 if (error_value != 0)
3012 dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3013 " sense key = 0x%x\n", cmd, sense_key);
3014 return error_value;
3017 /* SG_IO or similar, copy sense data back */
3018 if (cmd->rq->sense) {
3019 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3020 cmd->rq->sense_len = cmd->err_info->SenseLen;
3021 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3022 cmd->rq->sense_len);
3023 } else
3024 cmd->rq->sense_len = 0;
3026 return error_value;
3029 /* checks the status of the job and calls complete buffers to mark all
3030 * buffers for the completed job. Note that this function does not need
3031 * to hold the hba/queue lock.
3033 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3034 int timeout)
3036 int retry_cmd = 0;
3037 struct request *rq = cmd->rq;
3039 rq->errors = 0;
3041 if (timeout)
3042 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3044 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
3045 goto after_error_processing;
3047 switch (cmd->err_info->CommandStatus) {
3048 case CMD_TARGET_STATUS:
3049 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3050 break;
3051 case CMD_DATA_UNDERRUN:
3052 if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3053 dev_warn(&h->pdev->dev, "cmd %p has"
3054 " completed with data underrun "
3055 "reported\n", cmd);
3056 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3058 break;
3059 case CMD_DATA_OVERRUN:
3060 if (cmd->rq->cmd_type == REQ_TYPE_FS)
3061 dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3062 " completed with data overrun "
3063 "reported\n", cmd);
3064 break;
3065 case CMD_INVALID:
3066 dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3067 "reported invalid\n", cmd);
3068 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3069 cmd->err_info->CommandStatus, DRIVER_OK,
3070 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3071 DID_PASSTHROUGH : DID_ERROR);
3072 break;
3073 case CMD_PROTOCOL_ERR:
3074 dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3075 "protocol error\n", cmd);
3076 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3077 cmd->err_info->CommandStatus, DRIVER_OK,
3078 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3079 DID_PASSTHROUGH : DID_ERROR);
3080 break;
3081 case CMD_HARDWARE_ERR:
3082 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3083 " hardware error\n", cmd);
3084 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3085 cmd->err_info->CommandStatus, DRIVER_OK,
3086 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3087 DID_PASSTHROUGH : DID_ERROR);
3088 break;
3089 case CMD_CONNECTION_LOST:
3090 dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3091 "connection lost\n", cmd);
3092 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3093 cmd->err_info->CommandStatus, DRIVER_OK,
3094 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3095 DID_PASSTHROUGH : DID_ERROR);
3096 break;
3097 case CMD_ABORTED:
3098 dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3099 "aborted\n", cmd);
3100 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3101 cmd->err_info->CommandStatus, DRIVER_OK,
3102 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3103 DID_PASSTHROUGH : DID_ABORT);
3104 break;
3105 case CMD_ABORT_FAILED:
3106 dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3107 "abort failed\n", cmd);
3108 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3109 cmd->err_info->CommandStatus, DRIVER_OK,
3110 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3111 DID_PASSTHROUGH : DID_ERROR);
3112 break;
3113 case CMD_UNSOLICITED_ABORT:
3114 dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3115 "abort %p\n", h->ctlr, cmd);
3116 if (cmd->retry_count < MAX_CMD_RETRIES) {
3117 retry_cmd = 1;
3118 dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3119 cmd->retry_count++;
3120 } else
3121 dev_warn(&h->pdev->dev,
3122 "%p retried too many times\n", cmd);
3123 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3124 cmd->err_info->CommandStatus, DRIVER_OK,
3125 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3126 DID_PASSTHROUGH : DID_ABORT);
3127 break;
3128 case CMD_TIMEOUT:
3129 dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3130 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3131 cmd->err_info->CommandStatus, DRIVER_OK,
3132 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3133 DID_PASSTHROUGH : DID_ERROR);
3134 break;
3135 default:
3136 dev_warn(&h->pdev->dev, "cmd %p returned "
3137 "unknown status %x\n", cmd,
3138 cmd->err_info->CommandStatus);
3139 rq->errors = make_status_bytes(SAM_STAT_GOOD,
3140 cmd->err_info->CommandStatus, DRIVER_OK,
3141 (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3142 DID_PASSTHROUGH : DID_ERROR);
3145 after_error_processing:
3147 /* We need to return this command */
3148 if (retry_cmd) {
3149 resend_cciss_cmd(h, cmd);
3150 return;
3152 cmd->rq->completion_data = cmd;
3153 blk_complete_request(cmd->rq);
3156 static inline u32 cciss_tag_contains_index(u32 tag)
3158 #define DIRECT_LOOKUP_BIT 0x10
3159 return tag & DIRECT_LOOKUP_BIT;
3162 static inline u32 cciss_tag_to_index(u32 tag)
3164 #define DIRECT_LOOKUP_SHIFT 5
3165 return tag >> DIRECT_LOOKUP_SHIFT;
3168 static inline u32 cciss_tag_discard_error_bits(u32 tag)
3170 #define CCISS_ERROR_BITS 0x03
3171 return tag & ~CCISS_ERROR_BITS;
3174 static inline void cciss_mark_tag_indexed(u32 *tag)
3176 *tag |= DIRECT_LOOKUP_BIT;
3179 static inline void cciss_set_tag_index(u32 *tag, u32 index)
3181 *tag |= (index << DIRECT_LOOKUP_SHIFT);
3185 * Get a request and submit it to the controller.
3187 static void do_cciss_request(struct request_queue *q)
3189 ctlr_info_t *h = q->queuedata;
3190 CommandList_struct *c;
3191 sector_t start_blk;
3192 int seg;
3193 struct request *creq;
3194 u64bit temp64;
3195 struct scatterlist *tmp_sg;
3196 SGDescriptor_struct *curr_sg;
3197 drive_info_struct *drv;
3198 int i, dir;
3199 int sg_index = 0;
3200 int chained = 0;
3202 /* We call start_io here in case there is a command waiting on the
3203 * queue that has not been sent.
3205 if (blk_queue_plugged(q))
3206 goto startio;
3208 queue:
3209 creq = blk_peek_request(q);
3210 if (!creq)
3211 goto startio;
3213 BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3215 c = cmd_alloc(h);
3216 if (!c)
3217 goto full;
3219 blk_start_request(creq);
3221 tmp_sg = h->scatter_list[c->cmdindex];
3222 spin_unlock_irq(q->queue_lock);
3224 c->cmd_type = CMD_RWREQ;
3225 c->rq = creq;
3227 /* fill in the request */
3228 drv = creq->rq_disk->private_data;
3229 c->Header.ReplyQueue = 0; /* unused in simple mode */
3230 /* got command from pool, so use the command block index instead */
3231 /* for direct lookups. */
3232 /* The first 2 bits are reserved for controller error reporting. */
3233 cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3234 cciss_mark_tag_indexed(&c->Header.Tag.lower);
3235 memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3236 c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3237 c->Request.Type.Type = TYPE_CMD; /* It is a command. */
3238 c->Request.Type.Attribute = ATTR_SIMPLE;
3239 c->Request.Type.Direction =
3240 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3241 c->Request.Timeout = 0; /* Don't time out */
3242 c->Request.CDB[0] =
3243 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3244 start_blk = blk_rq_pos(creq);
3245 dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3246 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3247 sg_init_table(tmp_sg, h->maxsgentries);
3248 seg = blk_rq_map_sg(q, creq, tmp_sg);
3250 /* get the DMA records for the setup */
3251 if (c->Request.Type.Direction == XFER_READ)
3252 dir = PCI_DMA_FROMDEVICE;
3253 else
3254 dir = PCI_DMA_TODEVICE;
3256 curr_sg = c->SG;
3257 sg_index = 0;
3258 chained = 0;
3260 for (i = 0; i < seg; i++) {
3261 if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3262 !chained && ((seg - i) > 1)) {
3263 /* Point to next chain block. */
3264 curr_sg = h->cmd_sg_list[c->cmdindex];
3265 sg_index = 0;
3266 chained = 1;
3268 curr_sg[sg_index].Len = tmp_sg[i].length;
3269 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3270 tmp_sg[i].offset,
3271 tmp_sg[i].length, dir);
3272 curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3273 curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3274 curr_sg[sg_index].Ext = 0; /* we are not chaining */
3275 ++sg_index;
3277 if (chained)
3278 cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3279 (seg - (h->max_cmd_sgentries - 1)) *
3280 sizeof(SGDescriptor_struct));
3282 /* track how many SG entries we are using */
3283 if (seg > h->maxSG)
3284 h->maxSG = seg;
3286 dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3287 "chained[%d]\n",
3288 blk_rq_sectors(creq), seg, chained);
3290 c->Header.SGTotal = seg + chained;
3291 if (seg <= h->max_cmd_sgentries)
3292 c->Header.SGList = c->Header.SGTotal;
3293 else
3294 c->Header.SGList = h->max_cmd_sgentries;
3295 set_performant_mode(h, c);
3297 if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3298 if(h->cciss_read == CCISS_READ_10) {
3299 c->Request.CDB[1] = 0;
3300 c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3301 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3302 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3303 c->Request.CDB[5] = start_blk & 0xff;
3304 c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3305 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3306 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3307 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3308 } else {
3309 u32 upper32 = upper_32_bits(start_blk);
3311 c->Request.CDBLen = 16;
3312 c->Request.CDB[1]= 0;
3313 c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3314 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3315 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3316 c->Request.CDB[5]= upper32 & 0xff;
3317 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3318 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3319 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3320 c->Request.CDB[9]= start_blk & 0xff;
3321 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3322 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3323 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3324 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3325 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3327 } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3328 c->Request.CDBLen = creq->cmd_len;
3329 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3330 } else {
3331 dev_warn(&h->pdev->dev, "bad request type %d\n",
3332 creq->cmd_type);
3333 BUG();
3336 spin_lock_irq(q->queue_lock);
3338 addQ(&h->reqQ, c);
3339 h->Qdepth++;
3340 if (h->Qdepth > h->maxQsinceinit)
3341 h->maxQsinceinit = h->Qdepth;
3343 goto queue;
3344 full:
3345 blk_stop_queue(q);
3346 startio:
3347 /* We will already have the driver lock here so not need
3348 * to lock it.
3350 start_io(h);
3353 static inline unsigned long get_next_completion(ctlr_info_t *h)
3355 return h->access.command_completed(h);
3358 static inline int interrupt_pending(ctlr_info_t *h)
3360 return h->access.intr_pending(h);
3363 static inline long interrupt_not_for_us(ctlr_info_t *h)
3365 return ((h->access.intr_pending(h) == 0) ||
3366 (h->interrupts_enabled == 0));
3369 static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3370 u32 raw_tag)
3372 if (unlikely(tag_index >= h->nr_cmds)) {
3373 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3374 return 1;
3376 return 0;
3379 static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3380 u32 raw_tag)
3382 removeQ(c);
3383 if (likely(c->cmd_type == CMD_RWREQ))
3384 complete_command(h, c, 0);
3385 else if (c->cmd_type == CMD_IOCTL_PEND)
3386 complete(c->waiting);
3387 #ifdef CONFIG_CISS_SCSI_TAPE
3388 else if (c->cmd_type == CMD_SCSI)
3389 complete_scsi_command(c, 0, raw_tag);
3390 #endif
3393 static inline u32 next_command(ctlr_info_t *h)
3395 u32 a;
3397 if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
3398 return h->access.command_completed(h);
3400 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3401 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3402 (h->reply_pool_head)++;
3403 h->commands_outstanding--;
3404 } else {
3405 a = FIFO_EMPTY;
3407 /* Check for wraparound */
3408 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3409 h->reply_pool_head = h->reply_pool;
3410 h->reply_pool_wraparound ^= 1;
3412 return a;
3415 /* process completion of an indexed ("direct lookup") command */
3416 static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3418 u32 tag_index;
3419 CommandList_struct *c;
3421 tag_index = cciss_tag_to_index(raw_tag);
3422 if (bad_tag(h, tag_index, raw_tag))
3423 return next_command(h);
3424 c = h->cmd_pool + tag_index;
3425 finish_cmd(h, c, raw_tag);
3426 return next_command(h);
3429 /* process completion of a non-indexed command */
3430 static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3432 u32 tag;
3433 CommandList_struct *c = NULL;
3434 struct hlist_node *tmp;
3435 __u32 busaddr_masked, tag_masked;
3437 tag = cciss_tag_discard_error_bits(raw_tag);
3438 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3439 busaddr_masked = cciss_tag_discard_error_bits(c->busaddr);
3440 tag_masked = cciss_tag_discard_error_bits(tag);
3441 if (busaddr_masked == tag_masked) {
3442 finish_cmd(h, c, raw_tag);
3443 return next_command(h);
3446 bad_tag(h, h->nr_cmds + 1, raw_tag);
3447 return next_command(h);
3450 static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3452 ctlr_info_t *h = dev_id;
3453 unsigned long flags;
3454 u32 raw_tag;
3456 if (interrupt_not_for_us(h))
3457 return IRQ_NONE;
3458 spin_lock_irqsave(&h->lock, flags);
3459 while (interrupt_pending(h)) {
3460 raw_tag = get_next_completion(h);
3461 while (raw_tag != FIFO_EMPTY) {
3462 if (cciss_tag_contains_index(raw_tag))
3463 raw_tag = process_indexed_cmd(h, raw_tag);
3464 else
3465 raw_tag = process_nonindexed_cmd(h, raw_tag);
3468 spin_unlock_irqrestore(&h->lock, flags);
3469 return IRQ_HANDLED;
3472 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3473 * check the interrupt pending register because it is not set.
3475 static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3477 ctlr_info_t *h = dev_id;
3478 unsigned long flags;
3479 u32 raw_tag;
3481 spin_lock_irqsave(&h->lock, flags);
3482 raw_tag = get_next_completion(h);
3483 while (raw_tag != FIFO_EMPTY) {
3484 if (cciss_tag_contains_index(raw_tag))
3485 raw_tag = process_indexed_cmd(h, raw_tag);
3486 else
3487 raw_tag = process_nonindexed_cmd(h, raw_tag);
3489 spin_unlock_irqrestore(&h->lock, flags);
3490 return IRQ_HANDLED;
3494 * add_to_scan_list() - add controller to rescan queue
3495 * @h: Pointer to the controller.
3497 * Adds the controller to the rescan queue if not already on the queue.
3499 * returns 1 if added to the queue, 0 if skipped (could be on the
3500 * queue already, or the controller could be initializing or shutting
3501 * down).
3503 static int add_to_scan_list(struct ctlr_info *h)
3505 struct ctlr_info *test_h;
3506 int found = 0;
3507 int ret = 0;
3509 if (h->busy_initializing)
3510 return 0;
3512 if (!mutex_trylock(&h->busy_shutting_down))
3513 return 0;
3515 mutex_lock(&scan_mutex);
3516 list_for_each_entry(test_h, &scan_q, scan_list) {
3517 if (test_h == h) {
3518 found = 1;
3519 break;
3522 if (!found && !h->busy_scanning) {
3523 INIT_COMPLETION(h->scan_wait);
3524 list_add_tail(&h->scan_list, &scan_q);
3525 ret = 1;
3527 mutex_unlock(&scan_mutex);
3528 mutex_unlock(&h->busy_shutting_down);
3530 return ret;
3534 * remove_from_scan_list() - remove controller from rescan queue
3535 * @h: Pointer to the controller.
3537 * Removes the controller from the rescan queue if present. Blocks if
3538 * the controller is currently conducting a rescan. The controller
3539 * can be in one of three states:
3540 * 1. Doesn't need a scan
3541 * 2. On the scan list, but not scanning yet (we remove it)
3542 * 3. Busy scanning (and not on the list). In this case we want to wait for
3543 * the scan to complete to make sure the scanning thread for this
3544 * controller is completely idle.
3546 static void remove_from_scan_list(struct ctlr_info *h)
3548 struct ctlr_info *test_h, *tmp_h;
3550 mutex_lock(&scan_mutex);
3551 list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3552 if (test_h == h) { /* state 2. */
3553 list_del(&h->scan_list);
3554 complete_all(&h->scan_wait);
3555 mutex_unlock(&scan_mutex);
3556 return;
3559 if (h->busy_scanning) { /* state 3. */
3560 mutex_unlock(&scan_mutex);
3561 wait_for_completion(&h->scan_wait);
3562 } else { /* state 1, nothing to do. */
3563 mutex_unlock(&scan_mutex);
3568 * scan_thread() - kernel thread used to rescan controllers
3569 * @data: Ignored.
3571 * A kernel thread used scan for drive topology changes on
3572 * controllers. The thread processes only one controller at a time
3573 * using a queue. Controllers are added to the queue using
3574 * add_to_scan_list() and removed from the queue either after done
3575 * processing or using remove_from_scan_list().
3577 * returns 0.
3579 static int scan_thread(void *data)
3581 struct ctlr_info *h;
3583 while (1) {
3584 set_current_state(TASK_INTERRUPTIBLE);
3585 schedule();
3586 if (kthread_should_stop())
3587 break;
3589 while (1) {
3590 mutex_lock(&scan_mutex);
3591 if (list_empty(&scan_q)) {
3592 mutex_unlock(&scan_mutex);
3593 break;
3596 h = list_entry(scan_q.next,
3597 struct ctlr_info,
3598 scan_list);
3599 list_del(&h->scan_list);
3600 h->busy_scanning = 1;
3601 mutex_unlock(&scan_mutex);
3603 rebuild_lun_table(h, 0, 0);
3604 complete_all(&h->scan_wait);
3605 mutex_lock(&scan_mutex);
3606 h->busy_scanning = 0;
3607 mutex_unlock(&scan_mutex);
3611 return 0;
3614 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3616 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3617 return 0;
3619 switch (c->err_info->SenseInfo[12]) {
3620 case STATE_CHANGED:
3621 dev_warn(&h->pdev->dev, "a state change "
3622 "detected, command retried\n");
3623 return 1;
3624 break;
3625 case LUN_FAILED:
3626 dev_warn(&h->pdev->dev, "LUN failure "
3627 "detected, action required\n");
3628 return 1;
3629 break;
3630 case REPORT_LUNS_CHANGED:
3631 dev_warn(&h->pdev->dev, "report LUN data changed\n");
3633 * Here, we could call add_to_scan_list and wake up the scan thread,
3634 * except that it's quite likely that we will get more than one
3635 * REPORT_LUNS_CHANGED condition in quick succession, which means
3636 * that those which occur after the first one will likely happen
3637 * *during* the scan_thread's rescan. And the rescan code is not
3638 * robust enough to restart in the middle, undoing what it has already
3639 * done, and it's not clear that it's even possible to do this, since
3640 * part of what it does is notify the block layer, which starts
3641 * doing it's own i/o to read partition tables and so on, and the
3642 * driver doesn't have visibility to know what might need undoing.
3643 * In any event, if possible, it is horribly complicated to get right
3644 * so we just don't do it for now.
3646 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3648 return 1;
3649 break;
3650 case POWER_OR_RESET:
3651 dev_warn(&h->pdev->dev,
3652 "a power on or device reset detected\n");
3653 return 1;
3654 break;
3655 case UNIT_ATTENTION_CLEARED:
3656 dev_warn(&h->pdev->dev,
3657 "unit attention cleared by another initiator\n");
3658 return 1;
3659 break;
3660 default:
3661 dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3662 return 1;
3667 * We cannot read the structure directly, for portability we must use
3668 * the io functions.
3669 * This is for debug only.
3671 static void print_cfg_table(ctlr_info_t *h)
3673 int i;
3674 char temp_name[17];
3675 CfgTable_struct *tb = h->cfgtable;
3677 dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3678 dev_dbg(&h->pdev->dev, "------------------------------------\n");
3679 for (i = 0; i < 4; i++)
3680 temp_name[i] = readb(&(tb->Signature[i]));
3681 temp_name[4] = '\0';
3682 dev_dbg(&h->pdev->dev, " Signature = %s\n", temp_name);
3683 dev_dbg(&h->pdev->dev, " Spec Number = %d\n",
3684 readl(&(tb->SpecValence)));
3685 dev_dbg(&h->pdev->dev, " Transport methods supported = 0x%x\n",
3686 readl(&(tb->TransportSupport)));
3687 dev_dbg(&h->pdev->dev, " Transport methods active = 0x%x\n",
3688 readl(&(tb->TransportActive)));
3689 dev_dbg(&h->pdev->dev, " Requested transport Method = 0x%x\n",
3690 readl(&(tb->HostWrite.TransportRequest)));
3691 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Delay = 0x%x\n",
3692 readl(&(tb->HostWrite.CoalIntDelay)));
3693 dev_dbg(&h->pdev->dev, " Coalesce Interrupt Count = 0x%x\n",
3694 readl(&(tb->HostWrite.CoalIntCount)));
3695 dev_dbg(&h->pdev->dev, " Max outstanding commands = 0x%d\n",
3696 readl(&(tb->CmdsOutMax)));
3697 dev_dbg(&h->pdev->dev, " Bus Types = 0x%x\n",
3698 readl(&(tb->BusTypes)));
3699 for (i = 0; i < 16; i++)
3700 temp_name[i] = readb(&(tb->ServerName[i]));
3701 temp_name[16] = '\0';
3702 dev_dbg(&h->pdev->dev, " Server Name = %s\n", temp_name);
3703 dev_dbg(&h->pdev->dev, " Heartbeat Counter = 0x%x\n\n\n",
3704 readl(&(tb->HeartBeat)));
3707 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3709 int i, offset, mem_type, bar_type;
3710 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3711 return 0;
3712 offset = 0;
3713 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3714 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3715 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3716 offset += 4;
3717 else {
3718 mem_type = pci_resource_flags(pdev, i) &
3719 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3720 switch (mem_type) {
3721 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3722 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3723 offset += 4; /* 32 bit */
3724 break;
3725 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3726 offset += 8;
3727 break;
3728 default: /* reserved in PCI 2.2 */
3729 dev_warn(&pdev->dev,
3730 "Base address is invalid\n");
3731 return -1;
3732 break;
3735 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3736 return i + 1;
3738 return -1;
3741 /* Fill in bucket_map[], given nsgs (the max number of
3742 * scatter gather elements supported) and bucket[],
3743 * which is an array of 8 integers. The bucket[] array
3744 * contains 8 different DMA transfer sizes (in 16
3745 * byte increments) which the controller uses to fetch
3746 * commands. This function fills in bucket_map[], which
3747 * maps a given number of scatter gather elements to one of
3748 * the 8 DMA transfer sizes. The point of it is to allow the
3749 * controller to only do as much DMA as needed to fetch the
3750 * command, with the DMA transfer size encoded in the lower
3751 * bits of the command address.
3753 static void calc_bucket_map(int bucket[], int num_buckets,
3754 int nsgs, int *bucket_map)
3756 int i, j, b, size;
3758 /* even a command with 0 SGs requires 4 blocks */
3759 #define MINIMUM_TRANSFER_BLOCKS 4
3760 #define NUM_BUCKETS 8
3761 /* Note, bucket_map must have nsgs+1 entries. */
3762 for (i = 0; i <= nsgs; i++) {
3763 /* Compute size of a command with i SG entries */
3764 size = i + MINIMUM_TRANSFER_BLOCKS;
3765 b = num_buckets; /* Assume the biggest bucket */
3766 /* Find the bucket that is just big enough */
3767 for (j = 0; j < 8; j++) {
3768 if (bucket[j] >= size) {
3769 b = j;
3770 break;
3773 /* for a command with i SG entries, use bucket b. */
3774 bucket_map[i] = b;
3778 static void __devinit cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3780 int i;
3782 /* under certain very rare conditions, this can take awhile.
3783 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3784 * as we enter this code.) */
3785 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3786 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3787 break;
3788 msleep(10);
3792 static __devinit void cciss_enter_performant_mode(ctlr_info_t *h)
3794 /* This is a bit complicated. There are 8 registers on
3795 * the controller which we write to to tell it 8 different
3796 * sizes of commands which there may be. It's a way of
3797 * reducing the DMA done to fetch each command. Encoded into
3798 * each command's tag are 3 bits which communicate to the controller
3799 * which of the eight sizes that command fits within. The size of
3800 * each command depends on how many scatter gather entries there are.
3801 * Each SG entry requires 16 bytes. The eight registers are programmed
3802 * with the number of 16-byte blocks a command of that size requires.
3803 * The smallest command possible requires 5 such 16 byte blocks.
3804 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3805 * blocks. Note, this only extends to the SG entries contained
3806 * within the command block, and does not extend to chained blocks
3807 * of SG elements. bft[] contains the eight values we write to
3808 * the registers. They are not evenly distributed, but have more
3809 * sizes for small commands, and fewer sizes for larger commands.
3811 __u32 trans_offset;
3812 int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3814 * 5 = 1 s/g entry or 4k
3815 * 6 = 2 s/g entry or 8k
3816 * 8 = 4 s/g entry or 16k
3817 * 10 = 6 s/g entry or 24k
3819 unsigned long register_value;
3820 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3822 h->reply_pool_wraparound = 1; /* spec: init to 1 */
3824 /* Controller spec: zero out this buffer. */
3825 memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3826 h->reply_pool_head = h->reply_pool;
3828 trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3829 calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3830 h->blockFetchTable);
3831 writel(bft[0], &h->transtable->BlockFetch0);
3832 writel(bft[1], &h->transtable->BlockFetch1);
3833 writel(bft[2], &h->transtable->BlockFetch2);
3834 writel(bft[3], &h->transtable->BlockFetch3);
3835 writel(bft[4], &h->transtable->BlockFetch4);
3836 writel(bft[5], &h->transtable->BlockFetch5);
3837 writel(bft[6], &h->transtable->BlockFetch6);
3838 writel(bft[7], &h->transtable->BlockFetch7);
3840 /* size of controller ring buffer */
3841 writel(h->max_commands, &h->transtable->RepQSize);
3842 writel(1, &h->transtable->RepQCount);
3843 writel(0, &h->transtable->RepQCtrAddrLow32);
3844 writel(0, &h->transtable->RepQCtrAddrHigh32);
3845 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3846 writel(0, &h->transtable->RepQAddr0High32);
3847 writel(CFGTBL_Trans_Performant,
3848 &(h->cfgtable->HostWrite.TransportRequest));
3850 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3851 cciss_wait_for_mode_change_ack(h);
3852 register_value = readl(&(h->cfgtable->TransportActive));
3853 if (!(register_value & CFGTBL_Trans_Performant))
3854 dev_warn(&h->pdev->dev, "cciss: unable to get board into"
3855 " performant mode\n");
3858 static void __devinit cciss_put_controller_into_performant_mode(ctlr_info_t *h)
3860 __u32 trans_support;
3862 dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
3863 /* Attempt to put controller into performant mode if supported */
3864 /* Does board support performant mode? */
3865 trans_support = readl(&(h->cfgtable->TransportSupport));
3866 if (!(trans_support & PERFORMANT_MODE))
3867 return;
3869 dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
3870 /* Performant mode demands commands on a 32 byte boundary
3871 * pci_alloc_consistent aligns on page boundarys already.
3872 * Just need to check if divisible by 32
3874 if ((sizeof(CommandList_struct) % 32) != 0) {
3875 dev_warn(&h->pdev->dev, "%s %d %s\n",
3876 "cciss info: command size[",
3877 (int)sizeof(CommandList_struct),
3878 "] not divisible by 32, no performant mode..\n");
3879 return;
3882 /* Performant mode ring buffer and supporting data structures */
3883 h->reply_pool = (__u64 *)pci_alloc_consistent(
3884 h->pdev, h->max_commands * sizeof(__u64),
3885 &(h->reply_pool_dhandle));
3887 /* Need a block fetch table for performant mode */
3888 h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
3889 sizeof(__u32)), GFP_KERNEL);
3891 if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
3892 goto clean_up;
3894 cciss_enter_performant_mode(h);
3896 /* Change the access methods to the performant access methods */
3897 h->access = SA5_performant_access;
3898 h->transMethod = CFGTBL_Trans_Performant;
3900 return;
3901 clean_up:
3902 kfree(h->blockFetchTable);
3903 if (h->reply_pool)
3904 pci_free_consistent(h->pdev,
3905 h->max_commands * sizeof(__u64),
3906 h->reply_pool,
3907 h->reply_pool_dhandle);
3908 return;
3910 } /* cciss_put_controller_into_performant_mode */
3912 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3913 * controllers that are capable. If not, we use IO-APIC mode.
3916 static void __devinit cciss_interrupt_mode(ctlr_info_t *h)
3918 #ifdef CONFIG_PCI_MSI
3919 int err;
3920 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3921 {0, 2}, {0, 3}
3924 /* Some boards advertise MSI but don't really support it */
3925 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3926 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3927 goto default_int_mode;
3929 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3930 err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
3931 if (!err) {
3932 h->intr[0] = cciss_msix_entries[0].vector;
3933 h->intr[1] = cciss_msix_entries[1].vector;
3934 h->intr[2] = cciss_msix_entries[2].vector;
3935 h->intr[3] = cciss_msix_entries[3].vector;
3936 h->msix_vector = 1;
3937 return;
3939 if (err > 0) {
3940 dev_warn(&h->pdev->dev,
3941 "only %d MSI-X vectors available\n", err);
3942 goto default_int_mode;
3943 } else {
3944 dev_warn(&h->pdev->dev,
3945 "MSI-X init failed %d\n", err);
3946 goto default_int_mode;
3949 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3950 if (!pci_enable_msi(h->pdev))
3951 h->msi_vector = 1;
3952 else
3953 dev_warn(&h->pdev->dev, "MSI init failed\n");
3955 default_int_mode:
3956 #endif /* CONFIG_PCI_MSI */
3957 /* if we get here we're going to use the default interrupt mode */
3958 h->intr[PERF_MODE_INT] = h->pdev->irq;
3959 return;
3962 static int __devinit cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3964 int i;
3965 u32 subsystem_vendor_id, subsystem_device_id;
3967 subsystem_vendor_id = pdev->subsystem_vendor;
3968 subsystem_device_id = pdev->subsystem_device;
3969 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3970 subsystem_vendor_id;
3972 for (i = 0; i < ARRAY_SIZE(products); i++) {
3973 /* Stand aside for hpsa driver on request */
3974 if (cciss_allow_hpsa && products[i].board_id == HPSA_BOUNDARY)
3975 return -ENODEV;
3976 if (*board_id == products[i].board_id)
3977 return i;
3979 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
3980 *board_id);
3981 return -ENODEV;
3984 static inline bool cciss_board_disabled(ctlr_info_t *h)
3986 u16 command;
3988 (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
3989 return ((command & PCI_COMMAND_MEMORY) == 0);
3992 static int __devinit cciss_pci_find_memory_BAR(struct pci_dev *pdev,
3993 unsigned long *memory_bar)
3995 int i;
3997 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3998 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3999 /* addressing mode bits already removed */
4000 *memory_bar = pci_resource_start(pdev, i);
4001 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4002 *memory_bar);
4003 return 0;
4005 dev_warn(&pdev->dev, "no memory BAR found\n");
4006 return -ENODEV;
4009 static int __devinit cciss_wait_for_board_state(struct pci_dev *pdev,
4010 void __iomem *vaddr, int wait_for_ready)
4011 #define BOARD_READY 1
4012 #define BOARD_NOT_READY 0
4014 int i, iterations;
4015 u32 scratchpad;
4017 if (wait_for_ready)
4018 iterations = CCISS_BOARD_READY_ITERATIONS;
4019 else
4020 iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4022 for (i = 0; i < iterations; i++) {
4023 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4024 if (wait_for_ready) {
4025 if (scratchpad == CCISS_FIRMWARE_READY)
4026 return 0;
4027 } else {
4028 if (scratchpad != CCISS_FIRMWARE_READY)
4029 return 0;
4031 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4033 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4034 return -ENODEV;
4037 static int __devinit cciss_find_cfg_addrs(struct pci_dev *pdev,
4038 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4039 u64 *cfg_offset)
4041 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4042 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4043 *cfg_base_addr &= (u32) 0x0000ffff;
4044 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4045 if (*cfg_base_addr_index == -1) {
4046 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4047 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4048 return -ENODEV;
4050 return 0;
4053 static int __devinit cciss_find_cfgtables(ctlr_info_t *h)
4055 u64 cfg_offset;
4056 u32 cfg_base_addr;
4057 u64 cfg_base_addr_index;
4058 u32 trans_offset;
4059 int rc;
4061 rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4062 &cfg_base_addr_index, &cfg_offset);
4063 if (rc)
4064 return rc;
4065 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4066 cfg_base_addr_index) + cfg_offset, sizeof(h->cfgtable));
4067 if (!h->cfgtable)
4068 return -ENOMEM;
4069 /* Find performant mode table. */
4070 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4071 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4072 cfg_base_addr_index)+cfg_offset+trans_offset,
4073 sizeof(*h->transtable));
4074 if (!h->transtable)
4075 return -ENOMEM;
4076 return 0;
4079 static void __devinit cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4081 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4082 if (h->max_commands < 16) {
4083 dev_warn(&h->pdev->dev, "Controller reports "
4084 "max supported commands of %d, an obvious lie. "
4085 "Using 16. Ensure that firmware is up to date.\n",
4086 h->max_commands);
4087 h->max_commands = 16;
4091 /* Interrogate the hardware for some limits:
4092 * max commands, max SG elements without chaining, and with chaining,
4093 * SG chain block size, etc.
4095 static void __devinit cciss_find_board_params(ctlr_info_t *h)
4097 cciss_get_max_perf_mode_cmds(h);
4098 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4099 h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4101 * Limit in-command s/g elements to 32 save dma'able memory.
4102 * Howvever spec says if 0, use 31
4104 h->max_cmd_sgentries = 31;
4105 if (h->maxsgentries > 512) {
4106 h->max_cmd_sgentries = 32;
4107 h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4108 h->maxsgentries--; /* save one for chain pointer */
4109 } else {
4110 h->maxsgentries = 31; /* default to traditional values */
4111 h->chainsize = 0;
4115 static inline bool CISS_signature_present(ctlr_info_t *h)
4117 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
4118 (readb(&h->cfgtable->Signature[1]) != 'I') ||
4119 (readb(&h->cfgtable->Signature[2]) != 'S') ||
4120 (readb(&h->cfgtable->Signature[3]) != 'S')) {
4121 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4122 return false;
4124 return true;
4127 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4128 static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4130 #ifdef CONFIG_X86
4131 u32 prefetch;
4133 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4134 prefetch |= 0x100;
4135 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4136 #endif
4139 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4140 * in a prefetch beyond physical memory.
4142 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4144 u32 dma_prefetch;
4145 __u32 dma_refetch;
4147 if (h->board_id != 0x3225103C)
4148 return;
4149 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4150 dma_prefetch |= 0x8000;
4151 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4152 pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4153 dma_refetch |= 0x1;
4154 pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4157 static int __devinit cciss_pci_init(ctlr_info_t *h)
4159 int prod_index, err;
4161 prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4162 if (prod_index < 0)
4163 return -ENODEV;
4164 h->product_name = products[prod_index].product_name;
4165 h->access = *(products[prod_index].access);
4167 if (cciss_board_disabled(h)) {
4168 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4169 return -ENODEV;
4171 err = pci_enable_device(h->pdev);
4172 if (err) {
4173 dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4174 return err;
4177 err = pci_request_regions(h->pdev, "cciss");
4178 if (err) {
4179 dev_warn(&h->pdev->dev,
4180 "Cannot obtain PCI resources, aborting\n");
4181 return err;
4184 dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4185 dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4187 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4188 * else we use the IO-APIC interrupt assigned to us by system ROM.
4190 cciss_interrupt_mode(h);
4191 err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4192 if (err)
4193 goto err_out_free_res;
4194 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4195 if (!h->vaddr) {
4196 err = -ENOMEM;
4197 goto err_out_free_res;
4199 err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4200 if (err)
4201 goto err_out_free_res;
4202 err = cciss_find_cfgtables(h);
4203 if (err)
4204 goto err_out_free_res;
4205 print_cfg_table(h);
4206 cciss_find_board_params(h);
4208 if (!CISS_signature_present(h)) {
4209 err = -ENODEV;
4210 goto err_out_free_res;
4212 cciss_enable_scsi_prefetch(h);
4213 cciss_p600_dma_prefetch_quirk(h);
4214 cciss_put_controller_into_performant_mode(h);
4215 return 0;
4217 err_out_free_res:
4219 * Deliberately omit pci_disable_device(): it does something nasty to
4220 * Smart Array controllers that pci_enable_device does not undo
4222 if (h->transtable)
4223 iounmap(h->transtable);
4224 if (h->cfgtable)
4225 iounmap(h->cfgtable);
4226 if (h->vaddr)
4227 iounmap(h->vaddr);
4228 pci_release_regions(h->pdev);
4229 return err;
4232 /* Function to find the first free pointer into our hba[] array
4233 * Returns -1 if no free entries are left.
4235 static int alloc_cciss_hba(struct pci_dev *pdev)
4237 int i;
4239 for (i = 0; i < MAX_CTLR; i++) {
4240 if (!hba[i]) {
4241 ctlr_info_t *h;
4243 h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4244 if (!h)
4245 goto Enomem;
4246 hba[i] = h;
4247 return i;
4250 dev_warn(&pdev->dev, "This driver supports a maximum"
4251 " of %d controllers.\n", MAX_CTLR);
4252 return -1;
4253 Enomem:
4254 dev_warn(&pdev->dev, "out of memory.\n");
4255 return -1;
4258 static void free_hba(ctlr_info_t *h)
4260 int i;
4262 hba[h->ctlr] = NULL;
4263 for (i = 0; i < h->highest_lun + 1; i++)
4264 if (h->gendisk[i] != NULL)
4265 put_disk(h->gendisk[i]);
4266 kfree(h);
4269 /* Send a message CDB to the firmware. */
4270 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
4272 typedef struct {
4273 CommandListHeader_struct CommandHeader;
4274 RequestBlock_struct Request;
4275 ErrDescriptor_struct ErrorDescriptor;
4276 } Command;
4277 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4278 Command *cmd;
4279 dma_addr_t paddr64;
4280 uint32_t paddr32, tag;
4281 void __iomem *vaddr;
4282 int i, err;
4284 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4285 if (vaddr == NULL)
4286 return -ENOMEM;
4288 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4289 CCISS commands, so they must be allocated from the lower 4GiB of
4290 memory. */
4291 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4292 if (err) {
4293 iounmap(vaddr);
4294 return -ENOMEM;
4297 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4298 if (cmd == NULL) {
4299 iounmap(vaddr);
4300 return -ENOMEM;
4303 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4304 although there's no guarantee, we assume that the address is at
4305 least 4-byte aligned (most likely, it's page-aligned). */
4306 paddr32 = paddr64;
4308 cmd->CommandHeader.ReplyQueue = 0;
4309 cmd->CommandHeader.SGList = 0;
4310 cmd->CommandHeader.SGTotal = 0;
4311 cmd->CommandHeader.Tag.lower = paddr32;
4312 cmd->CommandHeader.Tag.upper = 0;
4313 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4315 cmd->Request.CDBLen = 16;
4316 cmd->Request.Type.Type = TYPE_MSG;
4317 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4318 cmd->Request.Type.Direction = XFER_NONE;
4319 cmd->Request.Timeout = 0; /* Don't time out */
4320 cmd->Request.CDB[0] = opcode;
4321 cmd->Request.CDB[1] = type;
4322 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4324 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4325 cmd->ErrorDescriptor.Addr.upper = 0;
4326 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4328 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4330 for (i = 0; i < 10; i++) {
4331 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4332 if ((tag & ~3) == paddr32)
4333 break;
4334 schedule_timeout_uninterruptible(HZ);
4337 iounmap(vaddr);
4339 /* we leak the DMA buffer here ... no choice since the controller could
4340 still complete the command. */
4341 if (i == 10) {
4342 dev_err(&pdev->dev,
4343 "controller message %02x:%02x timed out\n",
4344 opcode, type);
4345 return -ETIMEDOUT;
4348 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4350 if (tag & 2) {
4351 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4352 opcode, type);
4353 return -EIO;
4356 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4357 opcode, type);
4358 return 0;
4361 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4362 #define cciss_noop(p) cciss_message(p, 3, 0)
4364 static int cciss_controller_hard_reset(struct pci_dev *pdev,
4365 void * __iomem vaddr, bool use_doorbell)
4367 u16 pmcsr;
4368 int pos;
4370 if (use_doorbell) {
4371 /* For everything after the P600, the PCI power state method
4372 * of resetting the controller doesn't work, so we have this
4373 * other way using the doorbell register.
4375 dev_info(&pdev->dev, "using doorbell to reset controller\n");
4376 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
4377 msleep(1000);
4378 } else { /* Try to do it the PCI power state way */
4380 /* Quoting from the Open CISS Specification: "The Power
4381 * Management Control/Status Register (CSR) controls the power
4382 * state of the device. The normal operating state is D0,
4383 * CSR=00h. The software off state is D3, CSR=03h. To reset
4384 * the controller, place the interface device in D3 then to D0,
4385 * this causes a secondary PCI reset which will reset the
4386 * controller." */
4388 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4389 if (pos == 0) {
4390 dev_err(&pdev->dev,
4391 "cciss_controller_hard_reset: "
4392 "PCI PM not supported\n");
4393 return -ENODEV;
4395 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4396 /* enter the D3hot power management state */
4397 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4398 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4399 pmcsr |= PCI_D3hot;
4400 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4402 msleep(500);
4404 /* enter the D0 power management state */
4405 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4406 pmcsr |= PCI_D0;
4407 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4409 msleep(500);
4411 return 0;
4414 /* This does a hard reset of the controller using PCI power management
4415 * states or using the doorbell register. */
4416 static __devinit int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4418 u64 cfg_offset;
4419 u32 cfg_base_addr;
4420 u64 cfg_base_addr_index;
4421 void __iomem *vaddr;
4422 unsigned long paddr;
4423 u32 misc_fw_support, active_transport;
4424 int rc;
4425 CfgTable_struct __iomem *cfgtable;
4426 bool use_doorbell;
4427 u32 board_id;
4428 u16 command_register;
4430 /* For controllers as old a the p600, this is very nearly
4431 * the same thing as
4433 * pci_save_state(pci_dev);
4434 * pci_set_power_state(pci_dev, PCI_D3hot);
4435 * pci_set_power_state(pci_dev, PCI_D0);
4436 * pci_restore_state(pci_dev);
4438 * For controllers newer than the P600, the pci power state
4439 * method of resetting doesn't work so we have another way
4440 * using the doorbell register.
4443 /* Exclude 640x boards. These are two pci devices in one slot
4444 * which share a battery backed cache module. One controls the
4445 * cache, the other accesses the cache through the one that controls
4446 * it. If we reset the one controlling the cache, the other will
4447 * likely not be happy. Just forbid resetting this conjoined mess.
4449 cciss_lookup_board_id(pdev, &board_id);
4450 if (board_id == 0x409C0E11 || board_id == 0x409D0E11) {
4451 dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4452 "due to shared cache module.");
4453 return -ENODEV;
4456 /* Save the PCI command register */
4457 pci_read_config_word(pdev, 4, &command_register);
4458 /* Turn the board off. This is so that later pci_restore_state()
4459 * won't turn the board on before the rest of config space is ready.
4461 pci_disable_device(pdev);
4462 pci_save_state(pdev);
4464 /* find the first memory BAR, so we can find the cfg table */
4465 rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4466 if (rc)
4467 return rc;
4468 vaddr = remap_pci_mem(paddr, 0x250);
4469 if (!vaddr)
4470 return -ENOMEM;
4472 /* find cfgtable in order to check if reset via doorbell is supported */
4473 rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4474 &cfg_base_addr_index, &cfg_offset);
4475 if (rc)
4476 goto unmap_vaddr;
4477 cfgtable = remap_pci_mem(pci_resource_start(pdev,
4478 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4479 if (!cfgtable) {
4480 rc = -ENOMEM;
4481 goto unmap_vaddr;
4484 /* If reset via doorbell register is supported, use that. */
4485 misc_fw_support = readl(&cfgtable->misc_fw_support);
4486 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4488 /* The doorbell reset seems to cause lockups on some Smart
4489 * Arrays (e.g. P410, P410i, maybe others). Until this is
4490 * fixed or at least isolated, avoid the doorbell reset.
4492 use_doorbell = 0;
4494 rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4495 if (rc)
4496 goto unmap_cfgtable;
4497 pci_restore_state(pdev);
4498 rc = pci_enable_device(pdev);
4499 if (rc) {
4500 dev_warn(&pdev->dev, "failed to enable device.\n");
4501 goto unmap_cfgtable;
4503 pci_write_config_word(pdev, 4, command_register);
4505 /* Some devices (notably the HP Smart Array 5i Controller)
4506 need a little pause here */
4507 msleep(CCISS_POST_RESET_PAUSE_MSECS);
4509 /* Wait for board to become not ready, then ready. */
4510 dev_info(&pdev->dev, "Waiting for board to become ready.\n");
4511 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4512 if (rc) /* Don't bail, might be E500, etc. which can't be reset */
4513 dev_warn(&pdev->dev,
4514 "failed waiting for board to become not ready\n");
4515 rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4516 if (rc) {
4517 dev_warn(&pdev->dev,
4518 "failed waiting for board to become ready\n");
4519 goto unmap_cfgtable;
4521 dev_info(&pdev->dev, "board ready.\n");
4523 /* Controller should be in simple mode at this point. If it's not,
4524 * It means we're on one of those controllers which doesn't support
4525 * the doorbell reset method and on which the PCI power management reset
4526 * method doesn't work (P800, for example.)
4527 * In those cases, don't try to proceed, as it generally doesn't work.
4529 active_transport = readl(&cfgtable->TransportActive);
4530 if (active_transport & PERFORMANT_MODE) {
4531 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
4532 " Ignoring controller.\n");
4533 rc = -ENODEV;
4536 unmap_cfgtable:
4537 iounmap(cfgtable);
4539 unmap_vaddr:
4540 iounmap(vaddr);
4541 return rc;
4544 static __devinit int cciss_init_reset_devices(struct pci_dev *pdev)
4546 int rc, i;
4548 if (!reset_devices)
4549 return 0;
4551 /* Reset the controller with a PCI power-cycle or via doorbell */
4552 rc = cciss_kdump_hard_reset_controller(pdev);
4554 /* -ENOTSUPP here means we cannot reset the controller
4555 * but it's already (and still) up and running in
4556 * "performant mode". Or, it might be 640x, which can't reset
4557 * due to concerns about shared bbwc between 6402/6404 pair.
4559 if (rc == -ENOTSUPP)
4560 return 0; /* just try to do the kdump anyhow. */
4561 if (rc)
4562 return -ENODEV;
4564 /* Now try to get the controller to respond to a no-op */
4565 for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4566 if (cciss_noop(pdev) == 0)
4567 break;
4568 else
4569 dev_warn(&pdev->dev, "no-op failed%s\n",
4570 (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4571 "; re-trying" : ""));
4572 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4574 return 0;
4578 * This is it. Find all the controllers and register them. I really hate
4579 * stealing all these major device numbers.
4580 * returns the number of block devices registered.
4582 static int __devinit cciss_init_one(struct pci_dev *pdev,
4583 const struct pci_device_id *ent)
4585 int i;
4586 int j = 0;
4587 int k = 0;
4588 int rc;
4589 int dac, return_code;
4590 InquiryData_struct *inq_buff;
4591 ctlr_info_t *h;
4593 rc = cciss_init_reset_devices(pdev);
4594 if (rc)
4595 return rc;
4596 i = alloc_cciss_hba(pdev);
4597 if (i < 0)
4598 return -1;
4600 h = hba[i];
4601 h->pdev = pdev;
4602 h->busy_initializing = 1;
4603 INIT_HLIST_HEAD(&h->cmpQ);
4604 INIT_HLIST_HEAD(&h->reqQ);
4605 mutex_init(&h->busy_shutting_down);
4607 if (cciss_pci_init(h) != 0)
4608 goto clean_no_release_regions;
4610 sprintf(h->devname, "cciss%d", i);
4611 h->ctlr = i;
4613 init_completion(&h->scan_wait);
4615 if (cciss_create_hba_sysfs_entry(h))
4616 goto clean0;
4618 /* configure PCI DMA stuff */
4619 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
4620 dac = 1;
4621 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
4622 dac = 0;
4623 else {
4624 dev_err(&h->pdev->dev, "no suitable DMA available\n");
4625 goto clean1;
4629 * register with the major number, or get a dynamic major number
4630 * by passing 0 as argument. This is done for greater than
4631 * 8 controller support.
4633 if (i < MAX_CTLR_ORIG)
4634 h->major = COMPAQ_CISS_MAJOR + i;
4635 rc = register_blkdev(h->major, h->devname);
4636 if (rc == -EBUSY || rc == -EINVAL) {
4637 dev_err(&h->pdev->dev,
4638 "Unable to get major number %d for %s "
4639 "on hba %d\n", h->major, h->devname, i);
4640 goto clean1;
4641 } else {
4642 if (i >= MAX_CTLR_ORIG)
4643 h->major = rc;
4646 /* make sure the board interrupts are off */
4647 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4648 if (h->msi_vector || h->msix_vector) {
4649 if (request_irq(h->intr[PERF_MODE_INT],
4650 do_cciss_msix_intr,
4651 IRQF_DISABLED, h->devname, h)) {
4652 dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4653 h->intr[PERF_MODE_INT], h->devname);
4654 goto clean2;
4656 } else {
4657 if (request_irq(h->intr[PERF_MODE_INT], do_cciss_intx,
4658 IRQF_DISABLED, h->devname, h)) {
4659 dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4660 h->intr[PERF_MODE_INT], h->devname);
4661 goto clean2;
4665 dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4666 h->devname, pdev->device, pci_name(pdev),
4667 h->intr[PERF_MODE_INT], dac ? "" : " not");
4669 h->cmd_pool_bits =
4670 kmalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
4671 * sizeof(unsigned long), GFP_KERNEL);
4672 h->cmd_pool = (CommandList_struct *)
4673 pci_alloc_consistent(h->pdev,
4674 h->nr_cmds * sizeof(CommandList_struct),
4675 &(h->cmd_pool_dhandle));
4676 h->errinfo_pool = (ErrorInfo_struct *)
4677 pci_alloc_consistent(h->pdev,
4678 h->nr_cmds * sizeof(ErrorInfo_struct),
4679 &(h->errinfo_pool_dhandle));
4680 if ((h->cmd_pool_bits == NULL)
4681 || (h->cmd_pool == NULL)
4682 || (h->errinfo_pool == NULL)) {
4683 dev_err(&h->pdev->dev, "out of memory");
4684 goto clean4;
4687 /* Need space for temp scatter list */
4688 h->scatter_list = kmalloc(h->max_commands *
4689 sizeof(struct scatterlist *),
4690 GFP_KERNEL);
4691 if (!h->scatter_list)
4692 goto clean4;
4694 for (k = 0; k < h->nr_cmds; k++) {
4695 h->scatter_list[k] = kmalloc(sizeof(struct scatterlist) *
4696 h->maxsgentries,
4697 GFP_KERNEL);
4698 if (h->scatter_list[k] == NULL) {
4699 dev_err(&h->pdev->dev,
4700 "could not allocate s/g lists\n");
4701 goto clean4;
4704 h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
4705 h->chainsize, h->nr_cmds);
4706 if (!h->cmd_sg_list && h->chainsize > 0)
4707 goto clean4;
4709 spin_lock_init(&h->lock);
4711 /* Initialize the pdev driver private data.
4712 have it point to h. */
4713 pci_set_drvdata(pdev, h);
4714 /* command and error info recs zeroed out before
4715 they are used */
4716 memset(h->cmd_pool_bits, 0,
4717 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG)
4718 * sizeof(unsigned long));
4720 h->num_luns = 0;
4721 h->highest_lun = -1;
4722 for (j = 0; j < CISS_MAX_LUN; j++) {
4723 h->drv[j] = NULL;
4724 h->gendisk[j] = NULL;
4727 cciss_scsi_setup(h);
4729 /* Turn the interrupts on so we can service requests */
4730 h->access.set_intr_mask(h, CCISS_INTR_ON);
4732 /* Get the firmware version */
4733 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4734 if (inq_buff == NULL) {
4735 dev_err(&h->pdev->dev, "out of memory\n");
4736 goto clean4;
4739 return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
4740 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4741 if (return_code == IO_OK) {
4742 h->firm_ver[0] = inq_buff->data_byte[32];
4743 h->firm_ver[1] = inq_buff->data_byte[33];
4744 h->firm_ver[2] = inq_buff->data_byte[34];
4745 h->firm_ver[3] = inq_buff->data_byte[35];
4746 } else { /* send command failed */
4747 dev_warn(&h->pdev->dev, "unable to determine firmware"
4748 " version of controller\n");
4750 kfree(inq_buff);
4752 cciss_procinit(h);
4754 h->cciss_max_sectors = 8192;
4756 rebuild_lun_table(h, 1, 0);
4757 h->busy_initializing = 0;
4758 return 1;
4760 clean4:
4761 kfree(h->cmd_pool_bits);
4762 /* Free up sg elements */
4763 for (k-- ; k >= 0; k--)
4764 kfree(h->scatter_list[k]);
4765 kfree(h->scatter_list);
4766 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4767 if (h->cmd_pool)
4768 pci_free_consistent(h->pdev,
4769 h->nr_cmds * sizeof(CommandList_struct),
4770 h->cmd_pool, h->cmd_pool_dhandle);
4771 if (h->errinfo_pool)
4772 pci_free_consistent(h->pdev,
4773 h->nr_cmds * sizeof(ErrorInfo_struct),
4774 h->errinfo_pool,
4775 h->errinfo_pool_dhandle);
4776 free_irq(h->intr[PERF_MODE_INT], h);
4777 clean2:
4778 unregister_blkdev(h->major, h->devname);
4779 clean1:
4780 cciss_destroy_hba_sysfs_entry(h);
4781 clean0:
4782 pci_release_regions(pdev);
4783 clean_no_release_regions:
4784 h->busy_initializing = 0;
4787 * Deliberately omit pci_disable_device(): it does something nasty to
4788 * Smart Array controllers that pci_enable_device does not undo
4790 pci_set_drvdata(pdev, NULL);
4791 free_hba(h);
4792 return -1;
4795 static void cciss_shutdown(struct pci_dev *pdev)
4797 ctlr_info_t *h;
4798 char *flush_buf;
4799 int return_code;
4801 h = pci_get_drvdata(pdev);
4802 flush_buf = kzalloc(4, GFP_KERNEL);
4803 if (!flush_buf) {
4804 dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
4805 return;
4807 /* write all data in the battery backed cache to disk */
4808 memset(flush_buf, 0, 4);
4809 return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
4810 4, 0, CTLR_LUNID, TYPE_CMD);
4811 kfree(flush_buf);
4812 if (return_code != IO_OK)
4813 dev_warn(&h->pdev->dev, "Error flushing cache\n");
4814 h->access.set_intr_mask(h, CCISS_INTR_OFF);
4815 free_irq(h->intr[PERF_MODE_INT], h);
4818 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4820 ctlr_info_t *h;
4821 int i, j;
4823 if (pci_get_drvdata(pdev) == NULL) {
4824 dev_err(&pdev->dev, "Unable to remove device\n");
4825 return;
4828 h = pci_get_drvdata(pdev);
4829 i = h->ctlr;
4830 if (hba[i] == NULL) {
4831 dev_err(&pdev->dev, "device appears to already be removed\n");
4832 return;
4835 mutex_lock(&h->busy_shutting_down);
4837 remove_from_scan_list(h);
4838 remove_proc_entry(h->devname, proc_cciss);
4839 unregister_blkdev(h->major, h->devname);
4841 /* remove it from the disk list */
4842 for (j = 0; j < CISS_MAX_LUN; j++) {
4843 struct gendisk *disk = h->gendisk[j];
4844 if (disk) {
4845 struct request_queue *q = disk->queue;
4847 if (disk->flags & GENHD_FL_UP) {
4848 cciss_destroy_ld_sysfs_entry(h, j, 1);
4849 del_gendisk(disk);
4851 if (q)
4852 blk_cleanup_queue(q);
4856 #ifdef CONFIG_CISS_SCSI_TAPE
4857 cciss_unregister_scsi(h); /* unhook from SCSI subsystem */
4858 #endif
4860 cciss_shutdown(pdev);
4862 #ifdef CONFIG_PCI_MSI
4863 if (h->msix_vector)
4864 pci_disable_msix(h->pdev);
4865 else if (h->msi_vector)
4866 pci_disable_msi(h->pdev);
4867 #endif /* CONFIG_PCI_MSI */
4869 iounmap(h->transtable);
4870 iounmap(h->cfgtable);
4871 iounmap(h->vaddr);
4873 pci_free_consistent(h->pdev, h->nr_cmds * sizeof(CommandList_struct),
4874 h->cmd_pool, h->cmd_pool_dhandle);
4875 pci_free_consistent(h->pdev, h->nr_cmds * sizeof(ErrorInfo_struct),
4876 h->errinfo_pool, h->errinfo_pool_dhandle);
4877 kfree(h->cmd_pool_bits);
4878 /* Free up sg elements */
4879 for (j = 0; j < h->nr_cmds; j++)
4880 kfree(h->scatter_list[j]);
4881 kfree(h->scatter_list);
4882 cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4884 * Deliberately omit pci_disable_device(): it does something nasty to
4885 * Smart Array controllers that pci_enable_device does not undo
4887 pci_release_regions(pdev);
4888 pci_set_drvdata(pdev, NULL);
4889 cciss_destroy_hba_sysfs_entry(h);
4890 mutex_unlock(&h->busy_shutting_down);
4891 free_hba(h);
4894 static struct pci_driver cciss_pci_driver = {
4895 .name = "cciss",
4896 .probe = cciss_init_one,
4897 .remove = __devexit_p(cciss_remove_one),
4898 .id_table = cciss_pci_device_id, /* id_table */
4899 .shutdown = cciss_shutdown,
4903 * This is it. Register the PCI driver information for the cards we control
4904 * the OS will call our registered routines when it finds one of our cards.
4906 static int __init cciss_init(void)
4908 int err;
4911 * The hardware requires that commands are aligned on a 64-bit
4912 * boundary. Given that we use pci_alloc_consistent() to allocate an
4913 * array of them, the size must be a multiple of 8 bytes.
4915 BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
4916 printk(KERN_INFO DRIVER_NAME "\n");
4918 err = bus_register(&cciss_bus_type);
4919 if (err)
4920 return err;
4922 /* Start the scan thread */
4923 cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
4924 if (IS_ERR(cciss_scan_thread)) {
4925 err = PTR_ERR(cciss_scan_thread);
4926 goto err_bus_unregister;
4929 /* Register for our PCI devices */
4930 err = pci_register_driver(&cciss_pci_driver);
4931 if (err)
4932 goto err_thread_stop;
4934 return err;
4936 err_thread_stop:
4937 kthread_stop(cciss_scan_thread);
4938 err_bus_unregister:
4939 bus_unregister(&cciss_bus_type);
4941 return err;
4944 static void __exit cciss_cleanup(void)
4946 int i;
4948 pci_unregister_driver(&cciss_pci_driver);
4949 /* double check that all controller entrys have been removed */
4950 for (i = 0; i < MAX_CTLR; i++) {
4951 if (hba[i] != NULL) {
4952 dev_warn(&hba[i]->pdev->dev,
4953 "had to remove controller\n");
4954 cciss_remove_one(hba[i]->pdev);
4957 kthread_stop(cciss_scan_thread);
4958 remove_proc_entry("driver/cciss", NULL);
4959 bus_unregister(&cciss_bus_type);
4962 module_init(cciss_init);
4963 module_exit(cciss_cleanup);