ACPI: thinkpad-acpi: rename one stray use of ibm-acpi in a comment
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob907ab056c71b83abc9a2d9eb25058fd55059ee16
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/freezer.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <asm/tlb.h>
57 #include <asm/unistd.h>
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
64 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
73 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
78 * Some helpers for converting nanosecond timing to jiffy resolution
80 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
84 * These are the 'tuning knobs' of the scheduler:
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
90 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91 #define DEF_TIMESLICE (100 * HZ / 1000)
92 #define ON_RUNQUEUE_WEIGHT 30
93 #define CHILD_PENALTY 95
94 #define PARENT_PENALTY 100
95 #define EXIT_WEIGHT 3
96 #define PRIO_BONUS_RATIO 25
97 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98 #define INTERACTIVE_DELTA 2
99 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
101 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
109 * This part scales the interactivity limit depending on niceness.
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
131 #define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
135 #define GRANULARITY (10 * HZ / 1000 ? : 1)
137 #ifdef CONFIG_SMP
138 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141 #else
142 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #endif
146 #define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
149 #define DELTA(p) \
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
153 #define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
156 #define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
160 #define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
163 #define SCALE_PRIO(x, prio) \
164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
166 static unsigned int static_prio_timeslice(int static_prio)
168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
170 else
171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
183 static inline unsigned int task_timeslice(struct task_struct *p)
185 return static_prio_timeslice(p->static_prio);
189 * These are the runqueue data structures:
192 struct prio_array {
193 unsigned int nr_active;
194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
195 struct list_head queue[MAX_PRIO];
199 * This is the main, per-CPU runqueue data structure.
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
205 struct rq {
206 spinlock_t lock;
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
212 unsigned long nr_running;
213 unsigned long raw_weighted_load;
214 #ifdef CONFIG_SMP
215 unsigned long cpu_load[3];
216 #endif
217 unsigned long long nr_switches;
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
225 unsigned long nr_uninterruptible;
227 unsigned long expired_timestamp;
228 /* Cached timestamp set by update_cpu_clock() */
229 unsigned long long most_recent_timestamp;
230 struct task_struct *curr, *idle;
231 unsigned long next_balance;
232 struct mm_struct *prev_mm;
233 struct prio_array *active, *expired, arrays[2];
234 int best_expired_prio;
235 atomic_t nr_iowait;
237 #ifdef CONFIG_SMP
238 struct sched_domain *sd;
240 /* For active balancing */
241 int active_balance;
242 int push_cpu;
243 int cpu; /* cpu of this runqueue */
245 struct task_struct *migration_thread;
246 struct list_head migration_queue;
247 #endif
249 #ifdef CONFIG_SCHEDSTATS
250 /* latency stats */
251 struct sched_info rq_sched_info;
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
267 #endif
268 struct lock_class_key rq_lock_key;
271 static DEFINE_PER_CPU(struct rq, runqueues);
273 static inline int cpu_of(struct rq *rq)
275 #ifdef CONFIG_SMP
276 return rq->cpu;
277 #else
278 return 0;
279 #endif
283 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
284 * See detach_destroy_domains: synchronize_sched for details.
286 * The domain tree of any CPU may only be accessed from within
287 * preempt-disabled sections.
289 #define for_each_domain(cpu, __sd) \
290 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
292 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
293 #define this_rq() (&__get_cpu_var(runqueues))
294 #define task_rq(p) cpu_rq(task_cpu(p))
295 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
297 #ifndef prepare_arch_switch
298 # define prepare_arch_switch(next) do { } while (0)
299 #endif
300 #ifndef finish_arch_switch
301 # define finish_arch_switch(prev) do { } while (0)
302 #endif
304 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
305 static inline int task_running(struct rq *rq, struct task_struct *p)
307 return rq->curr == p;
310 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
314 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
316 #ifdef CONFIG_DEBUG_SPINLOCK
317 /* this is a valid case when another task releases the spinlock */
318 rq->lock.owner = current;
319 #endif
321 * If we are tracking spinlock dependencies then we have to
322 * fix up the runqueue lock - which gets 'carried over' from
323 * prev into current:
325 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
327 spin_unlock_irq(&rq->lock);
330 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
331 static inline int task_running(struct rq *rq, struct task_struct *p)
333 #ifdef CONFIG_SMP
334 return p->oncpu;
335 #else
336 return rq->curr == p;
337 #endif
340 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
342 #ifdef CONFIG_SMP
344 * We can optimise this out completely for !SMP, because the
345 * SMP rebalancing from interrupt is the only thing that cares
346 * here.
348 next->oncpu = 1;
349 #endif
350 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
351 spin_unlock_irq(&rq->lock);
352 #else
353 spin_unlock(&rq->lock);
354 #endif
357 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
359 #ifdef CONFIG_SMP
361 * After ->oncpu is cleared, the task can be moved to a different CPU.
362 * We must ensure this doesn't happen until the switch is completely
363 * finished.
365 smp_wmb();
366 prev->oncpu = 0;
367 #endif
368 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
369 local_irq_enable();
370 #endif
372 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
375 * __task_rq_lock - lock the runqueue a given task resides on.
376 * Must be called interrupts disabled.
378 static inline struct rq *__task_rq_lock(struct task_struct *p)
379 __acquires(rq->lock)
381 struct rq *rq;
383 repeat_lock_task:
384 rq = task_rq(p);
385 spin_lock(&rq->lock);
386 if (unlikely(rq != task_rq(p))) {
387 spin_unlock(&rq->lock);
388 goto repeat_lock_task;
390 return rq;
394 * task_rq_lock - lock the runqueue a given task resides on and disable
395 * interrupts. Note the ordering: we can safely lookup the task_rq without
396 * explicitly disabling preemption.
398 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
399 __acquires(rq->lock)
401 struct rq *rq;
403 repeat_lock_task:
404 local_irq_save(*flags);
405 rq = task_rq(p);
406 spin_lock(&rq->lock);
407 if (unlikely(rq != task_rq(p))) {
408 spin_unlock_irqrestore(&rq->lock, *flags);
409 goto repeat_lock_task;
411 return rq;
414 static inline void __task_rq_unlock(struct rq *rq)
415 __releases(rq->lock)
417 spin_unlock(&rq->lock);
420 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
421 __releases(rq->lock)
423 spin_unlock_irqrestore(&rq->lock, *flags);
426 #ifdef CONFIG_SCHEDSTATS
428 * bump this up when changing the output format or the meaning of an existing
429 * format, so that tools can adapt (or abort)
431 #define SCHEDSTAT_VERSION 14
433 static int show_schedstat(struct seq_file *seq, void *v)
435 int cpu;
437 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
438 seq_printf(seq, "timestamp %lu\n", jiffies);
439 for_each_online_cpu(cpu) {
440 struct rq *rq = cpu_rq(cpu);
441 #ifdef CONFIG_SMP
442 struct sched_domain *sd;
443 int dcnt = 0;
444 #endif
446 /* runqueue-specific stats */
447 seq_printf(seq,
448 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
449 cpu, rq->yld_both_empty,
450 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
451 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
452 rq->ttwu_cnt, rq->ttwu_local,
453 rq->rq_sched_info.cpu_time,
454 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
456 seq_printf(seq, "\n");
458 #ifdef CONFIG_SMP
459 /* domain-specific stats */
460 preempt_disable();
461 for_each_domain(cpu, sd) {
462 enum idle_type itype;
463 char mask_str[NR_CPUS];
465 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
466 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
467 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
468 itype++) {
469 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
470 "%lu",
471 sd->lb_cnt[itype],
472 sd->lb_balanced[itype],
473 sd->lb_failed[itype],
474 sd->lb_imbalance[itype],
475 sd->lb_gained[itype],
476 sd->lb_hot_gained[itype],
477 sd->lb_nobusyq[itype],
478 sd->lb_nobusyg[itype]);
480 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
481 " %lu %lu %lu\n",
482 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
483 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
484 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
485 sd->ttwu_wake_remote, sd->ttwu_move_affine,
486 sd->ttwu_move_balance);
488 preempt_enable();
489 #endif
491 return 0;
494 static int schedstat_open(struct inode *inode, struct file *file)
496 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
497 char *buf = kmalloc(size, GFP_KERNEL);
498 struct seq_file *m;
499 int res;
501 if (!buf)
502 return -ENOMEM;
503 res = single_open(file, show_schedstat, NULL);
504 if (!res) {
505 m = file->private_data;
506 m->buf = buf;
507 m->size = size;
508 } else
509 kfree(buf);
510 return res;
513 const struct file_operations proc_schedstat_operations = {
514 .open = schedstat_open,
515 .read = seq_read,
516 .llseek = seq_lseek,
517 .release = single_release,
521 * Expects runqueue lock to be held for atomicity of update
523 static inline void
524 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
526 if (rq) {
527 rq->rq_sched_info.run_delay += delta_jiffies;
528 rq->rq_sched_info.pcnt++;
533 * Expects runqueue lock to be held for atomicity of update
535 static inline void
536 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
538 if (rq)
539 rq->rq_sched_info.cpu_time += delta_jiffies;
541 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
542 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
543 #else /* !CONFIG_SCHEDSTATS */
544 static inline void
545 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
547 static inline void
548 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
550 # define schedstat_inc(rq, field) do { } while (0)
551 # define schedstat_add(rq, field, amt) do { } while (0)
552 #endif
555 * this_rq_lock - lock this runqueue and disable interrupts.
557 static inline struct rq *this_rq_lock(void)
558 __acquires(rq->lock)
560 struct rq *rq;
562 local_irq_disable();
563 rq = this_rq();
564 spin_lock(&rq->lock);
566 return rq;
569 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
571 * Called when a process is dequeued from the active array and given
572 * the cpu. We should note that with the exception of interactive
573 * tasks, the expired queue will become the active queue after the active
574 * queue is empty, without explicitly dequeuing and requeuing tasks in the
575 * expired queue. (Interactive tasks may be requeued directly to the
576 * active queue, thus delaying tasks in the expired queue from running;
577 * see scheduler_tick()).
579 * This function is only called from sched_info_arrive(), rather than
580 * dequeue_task(). Even though a task may be queued and dequeued multiple
581 * times as it is shuffled about, we're really interested in knowing how
582 * long it was from the *first* time it was queued to the time that it
583 * finally hit a cpu.
585 static inline void sched_info_dequeued(struct task_struct *t)
587 t->sched_info.last_queued = 0;
591 * Called when a task finally hits the cpu. We can now calculate how
592 * long it was waiting to run. We also note when it began so that we
593 * can keep stats on how long its timeslice is.
595 static void sched_info_arrive(struct task_struct *t)
597 unsigned long now = jiffies, delta_jiffies = 0;
599 if (t->sched_info.last_queued)
600 delta_jiffies = now - t->sched_info.last_queued;
601 sched_info_dequeued(t);
602 t->sched_info.run_delay += delta_jiffies;
603 t->sched_info.last_arrival = now;
604 t->sched_info.pcnt++;
606 rq_sched_info_arrive(task_rq(t), delta_jiffies);
610 * Called when a process is queued into either the active or expired
611 * array. The time is noted and later used to determine how long we
612 * had to wait for us to reach the cpu. Since the expired queue will
613 * become the active queue after active queue is empty, without dequeuing
614 * and requeuing any tasks, we are interested in queuing to either. It
615 * is unusual but not impossible for tasks to be dequeued and immediately
616 * requeued in the same or another array: this can happen in sched_yield(),
617 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
618 * to runqueue.
620 * This function is only called from enqueue_task(), but also only updates
621 * the timestamp if it is already not set. It's assumed that
622 * sched_info_dequeued() will clear that stamp when appropriate.
624 static inline void sched_info_queued(struct task_struct *t)
626 if (unlikely(sched_info_on()))
627 if (!t->sched_info.last_queued)
628 t->sched_info.last_queued = jiffies;
632 * Called when a process ceases being the active-running process, either
633 * voluntarily or involuntarily. Now we can calculate how long we ran.
635 static inline void sched_info_depart(struct task_struct *t)
637 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
639 t->sched_info.cpu_time += delta_jiffies;
640 rq_sched_info_depart(task_rq(t), delta_jiffies);
644 * Called when tasks are switched involuntarily due, typically, to expiring
645 * their time slice. (This may also be called when switching to or from
646 * the idle task.) We are only called when prev != next.
648 static inline void
649 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
651 struct rq *rq = task_rq(prev);
654 * prev now departs the cpu. It's not interesting to record
655 * stats about how efficient we were at scheduling the idle
656 * process, however.
658 if (prev != rq->idle)
659 sched_info_depart(prev);
661 if (next != rq->idle)
662 sched_info_arrive(next);
664 static inline void
665 sched_info_switch(struct task_struct *prev, struct task_struct *next)
667 if (unlikely(sched_info_on()))
668 __sched_info_switch(prev, next);
670 #else
671 #define sched_info_queued(t) do { } while (0)
672 #define sched_info_switch(t, next) do { } while (0)
673 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
676 * Adding/removing a task to/from a priority array:
678 static void dequeue_task(struct task_struct *p, struct prio_array *array)
680 array->nr_active--;
681 list_del(&p->run_list);
682 if (list_empty(array->queue + p->prio))
683 __clear_bit(p->prio, array->bitmap);
686 static void enqueue_task(struct task_struct *p, struct prio_array *array)
688 sched_info_queued(p);
689 list_add_tail(&p->run_list, array->queue + p->prio);
690 __set_bit(p->prio, array->bitmap);
691 array->nr_active++;
692 p->array = array;
696 * Put task to the end of the run list without the overhead of dequeue
697 * followed by enqueue.
699 static void requeue_task(struct task_struct *p, struct prio_array *array)
701 list_move_tail(&p->run_list, array->queue + p->prio);
704 static inline void
705 enqueue_task_head(struct task_struct *p, struct prio_array *array)
707 list_add(&p->run_list, array->queue + p->prio);
708 __set_bit(p->prio, array->bitmap);
709 array->nr_active++;
710 p->array = array;
714 * __normal_prio - return the priority that is based on the static
715 * priority but is modified by bonuses/penalties.
717 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
718 * into the -5 ... 0 ... +5 bonus/penalty range.
720 * We use 25% of the full 0...39 priority range so that:
722 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
723 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
725 * Both properties are important to certain workloads.
728 static inline int __normal_prio(struct task_struct *p)
730 int bonus, prio;
732 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
734 prio = p->static_prio - bonus;
735 if (prio < MAX_RT_PRIO)
736 prio = MAX_RT_PRIO;
737 if (prio > MAX_PRIO-1)
738 prio = MAX_PRIO-1;
739 return prio;
743 * To aid in avoiding the subversion of "niceness" due to uneven distribution
744 * of tasks with abnormal "nice" values across CPUs the contribution that
745 * each task makes to its run queue's load is weighted according to its
746 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
747 * scaled version of the new time slice allocation that they receive on time
748 * slice expiry etc.
752 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
753 * If static_prio_timeslice() is ever changed to break this assumption then
754 * this code will need modification
756 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
757 #define LOAD_WEIGHT(lp) \
758 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
759 #define PRIO_TO_LOAD_WEIGHT(prio) \
760 LOAD_WEIGHT(static_prio_timeslice(prio))
761 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
762 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
764 static void set_load_weight(struct task_struct *p)
766 if (has_rt_policy(p)) {
767 #ifdef CONFIG_SMP
768 if (p == task_rq(p)->migration_thread)
770 * The migration thread does the actual balancing.
771 * Giving its load any weight will skew balancing
772 * adversely.
774 p->load_weight = 0;
775 else
776 #endif
777 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
778 } else
779 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
782 static inline void
783 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
785 rq->raw_weighted_load += p->load_weight;
788 static inline void
789 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
791 rq->raw_weighted_load -= p->load_weight;
794 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
796 rq->nr_running++;
797 inc_raw_weighted_load(rq, p);
800 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
802 rq->nr_running--;
803 dec_raw_weighted_load(rq, p);
807 * Calculate the expected normal priority: i.e. priority
808 * without taking RT-inheritance into account. Might be
809 * boosted by interactivity modifiers. Changes upon fork,
810 * setprio syscalls, and whenever the interactivity
811 * estimator recalculates.
813 static inline int normal_prio(struct task_struct *p)
815 int prio;
817 if (has_rt_policy(p))
818 prio = MAX_RT_PRIO-1 - p->rt_priority;
819 else
820 prio = __normal_prio(p);
821 return prio;
825 * Calculate the current priority, i.e. the priority
826 * taken into account by the scheduler. This value might
827 * be boosted by RT tasks, or might be boosted by
828 * interactivity modifiers. Will be RT if the task got
829 * RT-boosted. If not then it returns p->normal_prio.
831 static int effective_prio(struct task_struct *p)
833 p->normal_prio = normal_prio(p);
835 * If we are RT tasks or we were boosted to RT priority,
836 * keep the priority unchanged. Otherwise, update priority
837 * to the normal priority:
839 if (!rt_prio(p->prio))
840 return p->normal_prio;
841 return p->prio;
845 * __activate_task - move a task to the runqueue.
847 static void __activate_task(struct task_struct *p, struct rq *rq)
849 struct prio_array *target = rq->active;
851 if (batch_task(p))
852 target = rq->expired;
853 enqueue_task(p, target);
854 inc_nr_running(p, rq);
858 * __activate_idle_task - move idle task to the _front_ of runqueue.
860 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
862 enqueue_task_head(p, rq->active);
863 inc_nr_running(p, rq);
867 * Recalculate p->normal_prio and p->prio after having slept,
868 * updating the sleep-average too:
870 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
872 /* Caller must always ensure 'now >= p->timestamp' */
873 unsigned long sleep_time = now - p->timestamp;
875 if (batch_task(p))
876 sleep_time = 0;
878 if (likely(sleep_time > 0)) {
880 * This ceiling is set to the lowest priority that would allow
881 * a task to be reinserted into the active array on timeslice
882 * completion.
884 unsigned long ceiling = INTERACTIVE_SLEEP(p);
886 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
888 * Prevents user tasks from achieving best priority
889 * with one single large enough sleep.
891 p->sleep_avg = ceiling;
893 * Using INTERACTIVE_SLEEP() as a ceiling places a
894 * nice(0) task 1ms sleep away from promotion, and
895 * gives it 700ms to round-robin with no chance of
896 * being demoted. This is more than generous, so
897 * mark this sleep as non-interactive to prevent the
898 * on-runqueue bonus logic from intervening should
899 * this task not receive cpu immediately.
901 p->sleep_type = SLEEP_NONINTERACTIVE;
902 } else {
904 * Tasks waking from uninterruptible sleep are
905 * limited in their sleep_avg rise as they
906 * are likely to be waiting on I/O
908 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
909 if (p->sleep_avg >= ceiling)
910 sleep_time = 0;
911 else if (p->sleep_avg + sleep_time >=
912 ceiling) {
913 p->sleep_avg = ceiling;
914 sleep_time = 0;
919 * This code gives a bonus to interactive tasks.
921 * The boost works by updating the 'average sleep time'
922 * value here, based on ->timestamp. The more time a
923 * task spends sleeping, the higher the average gets -
924 * and the higher the priority boost gets as well.
926 p->sleep_avg += sleep_time;
929 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
930 p->sleep_avg = NS_MAX_SLEEP_AVG;
933 return effective_prio(p);
937 * activate_task - move a task to the runqueue and do priority recalculation
939 * Update all the scheduling statistics stuff. (sleep average
940 * calculation, priority modifiers, etc.)
942 static void activate_task(struct task_struct *p, struct rq *rq, int local)
944 unsigned long long now;
946 if (rt_task(p))
947 goto out;
949 now = sched_clock();
950 #ifdef CONFIG_SMP
951 if (!local) {
952 /* Compensate for drifting sched_clock */
953 struct rq *this_rq = this_rq();
954 now = (now - this_rq->most_recent_timestamp)
955 + rq->most_recent_timestamp;
957 #endif
960 * Sleep time is in units of nanosecs, so shift by 20 to get a
961 * milliseconds-range estimation of the amount of time that the task
962 * spent sleeping:
964 if (unlikely(prof_on == SLEEP_PROFILING)) {
965 if (p->state == TASK_UNINTERRUPTIBLE)
966 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
967 (now - p->timestamp) >> 20);
970 p->prio = recalc_task_prio(p, now);
973 * This checks to make sure it's not an uninterruptible task
974 * that is now waking up.
976 if (p->sleep_type == SLEEP_NORMAL) {
978 * Tasks which were woken up by interrupts (ie. hw events)
979 * are most likely of interactive nature. So we give them
980 * the credit of extending their sleep time to the period
981 * of time they spend on the runqueue, waiting for execution
982 * on a CPU, first time around:
984 if (in_interrupt())
985 p->sleep_type = SLEEP_INTERRUPTED;
986 else {
988 * Normal first-time wakeups get a credit too for
989 * on-runqueue time, but it will be weighted down:
991 p->sleep_type = SLEEP_INTERACTIVE;
994 p->timestamp = now;
995 out:
996 __activate_task(p, rq);
1000 * deactivate_task - remove a task from the runqueue.
1002 static void deactivate_task(struct task_struct *p, struct rq *rq)
1004 dec_nr_running(p, rq);
1005 dequeue_task(p, p->array);
1006 p->array = NULL;
1010 * resched_task - mark a task 'to be rescheduled now'.
1012 * On UP this means the setting of the need_resched flag, on SMP it
1013 * might also involve a cross-CPU call to trigger the scheduler on
1014 * the target CPU.
1016 #ifdef CONFIG_SMP
1018 #ifndef tsk_is_polling
1019 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1020 #endif
1022 static void resched_task(struct task_struct *p)
1024 int cpu;
1026 assert_spin_locked(&task_rq(p)->lock);
1028 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1029 return;
1031 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1033 cpu = task_cpu(p);
1034 if (cpu == smp_processor_id())
1035 return;
1037 /* NEED_RESCHED must be visible before we test polling */
1038 smp_mb();
1039 if (!tsk_is_polling(p))
1040 smp_send_reschedule(cpu);
1042 #else
1043 static inline void resched_task(struct task_struct *p)
1045 assert_spin_locked(&task_rq(p)->lock);
1046 set_tsk_need_resched(p);
1048 #endif
1051 * task_curr - is this task currently executing on a CPU?
1052 * @p: the task in question.
1054 inline int task_curr(const struct task_struct *p)
1056 return cpu_curr(task_cpu(p)) == p;
1059 /* Used instead of source_load when we know the type == 0 */
1060 unsigned long weighted_cpuload(const int cpu)
1062 return cpu_rq(cpu)->raw_weighted_load;
1065 #ifdef CONFIG_SMP
1066 struct migration_req {
1067 struct list_head list;
1069 struct task_struct *task;
1070 int dest_cpu;
1072 struct completion done;
1076 * The task's runqueue lock must be held.
1077 * Returns true if you have to wait for migration thread.
1079 static int
1080 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1082 struct rq *rq = task_rq(p);
1085 * If the task is not on a runqueue (and not running), then
1086 * it is sufficient to simply update the task's cpu field.
1088 if (!p->array && !task_running(rq, p)) {
1089 set_task_cpu(p, dest_cpu);
1090 return 0;
1093 init_completion(&req->done);
1094 req->task = p;
1095 req->dest_cpu = dest_cpu;
1096 list_add(&req->list, &rq->migration_queue);
1098 return 1;
1102 * wait_task_inactive - wait for a thread to unschedule.
1104 * The caller must ensure that the task *will* unschedule sometime soon,
1105 * else this function might spin for a *long* time. This function can't
1106 * be called with interrupts off, or it may introduce deadlock with
1107 * smp_call_function() if an IPI is sent by the same process we are
1108 * waiting to become inactive.
1110 void wait_task_inactive(struct task_struct *p)
1112 unsigned long flags;
1113 struct rq *rq;
1114 int preempted;
1116 repeat:
1117 rq = task_rq_lock(p, &flags);
1118 /* Must be off runqueue entirely, not preempted. */
1119 if (unlikely(p->array || task_running(rq, p))) {
1120 /* If it's preempted, we yield. It could be a while. */
1121 preempted = !task_running(rq, p);
1122 task_rq_unlock(rq, &flags);
1123 cpu_relax();
1124 if (preempted)
1125 yield();
1126 goto repeat;
1128 task_rq_unlock(rq, &flags);
1131 /***
1132 * kick_process - kick a running thread to enter/exit the kernel
1133 * @p: the to-be-kicked thread
1135 * Cause a process which is running on another CPU to enter
1136 * kernel-mode, without any delay. (to get signals handled.)
1138 * NOTE: this function doesnt have to take the runqueue lock,
1139 * because all it wants to ensure is that the remote task enters
1140 * the kernel. If the IPI races and the task has been migrated
1141 * to another CPU then no harm is done and the purpose has been
1142 * achieved as well.
1144 void kick_process(struct task_struct *p)
1146 int cpu;
1148 preempt_disable();
1149 cpu = task_cpu(p);
1150 if ((cpu != smp_processor_id()) && task_curr(p))
1151 smp_send_reschedule(cpu);
1152 preempt_enable();
1156 * Return a low guess at the load of a migration-source cpu weighted
1157 * according to the scheduling class and "nice" value.
1159 * We want to under-estimate the load of migration sources, to
1160 * balance conservatively.
1162 static inline unsigned long source_load(int cpu, int type)
1164 struct rq *rq = cpu_rq(cpu);
1166 if (type == 0)
1167 return rq->raw_weighted_load;
1169 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1173 * Return a high guess at the load of a migration-target cpu weighted
1174 * according to the scheduling class and "nice" value.
1176 static inline unsigned long target_load(int cpu, int type)
1178 struct rq *rq = cpu_rq(cpu);
1180 if (type == 0)
1181 return rq->raw_weighted_load;
1183 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1187 * Return the average load per task on the cpu's run queue
1189 static inline unsigned long cpu_avg_load_per_task(int cpu)
1191 struct rq *rq = cpu_rq(cpu);
1192 unsigned long n = rq->nr_running;
1194 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1198 * find_idlest_group finds and returns the least busy CPU group within the
1199 * domain.
1201 static struct sched_group *
1202 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1204 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1205 unsigned long min_load = ULONG_MAX, this_load = 0;
1206 int load_idx = sd->forkexec_idx;
1207 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1209 do {
1210 unsigned long load, avg_load;
1211 int local_group;
1212 int i;
1214 /* Skip over this group if it has no CPUs allowed */
1215 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1216 goto nextgroup;
1218 local_group = cpu_isset(this_cpu, group->cpumask);
1220 /* Tally up the load of all CPUs in the group */
1221 avg_load = 0;
1223 for_each_cpu_mask(i, group->cpumask) {
1224 /* Bias balancing toward cpus of our domain */
1225 if (local_group)
1226 load = source_load(i, load_idx);
1227 else
1228 load = target_load(i, load_idx);
1230 avg_load += load;
1233 /* Adjust by relative CPU power of the group */
1234 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1236 if (local_group) {
1237 this_load = avg_load;
1238 this = group;
1239 } else if (avg_load < min_load) {
1240 min_load = avg_load;
1241 idlest = group;
1243 nextgroup:
1244 group = group->next;
1245 } while (group != sd->groups);
1247 if (!idlest || 100*this_load < imbalance*min_load)
1248 return NULL;
1249 return idlest;
1253 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1255 static int
1256 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1258 cpumask_t tmp;
1259 unsigned long load, min_load = ULONG_MAX;
1260 int idlest = -1;
1261 int i;
1263 /* Traverse only the allowed CPUs */
1264 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1266 for_each_cpu_mask(i, tmp) {
1267 load = weighted_cpuload(i);
1269 if (load < min_load || (load == min_load && i == this_cpu)) {
1270 min_load = load;
1271 idlest = i;
1275 return idlest;
1279 * sched_balance_self: balance the current task (running on cpu) in domains
1280 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1281 * SD_BALANCE_EXEC.
1283 * Balance, ie. select the least loaded group.
1285 * Returns the target CPU number, or the same CPU if no balancing is needed.
1287 * preempt must be disabled.
1289 static int sched_balance_self(int cpu, int flag)
1291 struct task_struct *t = current;
1292 struct sched_domain *tmp, *sd = NULL;
1294 for_each_domain(cpu, tmp) {
1296 * If power savings logic is enabled for a domain, stop there.
1298 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1299 break;
1300 if (tmp->flags & flag)
1301 sd = tmp;
1304 while (sd) {
1305 cpumask_t span;
1306 struct sched_group *group;
1307 int new_cpu, weight;
1309 if (!(sd->flags & flag)) {
1310 sd = sd->child;
1311 continue;
1314 span = sd->span;
1315 group = find_idlest_group(sd, t, cpu);
1316 if (!group) {
1317 sd = sd->child;
1318 continue;
1321 new_cpu = find_idlest_cpu(group, t, cpu);
1322 if (new_cpu == -1 || new_cpu == cpu) {
1323 /* Now try balancing at a lower domain level of cpu */
1324 sd = sd->child;
1325 continue;
1328 /* Now try balancing at a lower domain level of new_cpu */
1329 cpu = new_cpu;
1330 sd = NULL;
1331 weight = cpus_weight(span);
1332 for_each_domain(cpu, tmp) {
1333 if (weight <= cpus_weight(tmp->span))
1334 break;
1335 if (tmp->flags & flag)
1336 sd = tmp;
1338 /* while loop will break here if sd == NULL */
1341 return cpu;
1344 #endif /* CONFIG_SMP */
1347 * wake_idle() will wake a task on an idle cpu if task->cpu is
1348 * not idle and an idle cpu is available. The span of cpus to
1349 * search starts with cpus closest then further out as needed,
1350 * so we always favor a closer, idle cpu.
1352 * Returns the CPU we should wake onto.
1354 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1355 static int wake_idle(int cpu, struct task_struct *p)
1357 cpumask_t tmp;
1358 struct sched_domain *sd;
1359 int i;
1361 if (idle_cpu(cpu))
1362 return cpu;
1364 for_each_domain(cpu, sd) {
1365 if (sd->flags & SD_WAKE_IDLE) {
1366 cpus_and(tmp, sd->span, p->cpus_allowed);
1367 for_each_cpu_mask(i, tmp) {
1368 if (idle_cpu(i))
1369 return i;
1372 else
1373 break;
1375 return cpu;
1377 #else
1378 static inline int wake_idle(int cpu, struct task_struct *p)
1380 return cpu;
1382 #endif
1384 /***
1385 * try_to_wake_up - wake up a thread
1386 * @p: the to-be-woken-up thread
1387 * @state: the mask of task states that can be woken
1388 * @sync: do a synchronous wakeup?
1390 * Put it on the run-queue if it's not already there. The "current"
1391 * thread is always on the run-queue (except when the actual
1392 * re-schedule is in progress), and as such you're allowed to do
1393 * the simpler "current->state = TASK_RUNNING" to mark yourself
1394 * runnable without the overhead of this.
1396 * returns failure only if the task is already active.
1398 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1400 int cpu, this_cpu, success = 0;
1401 unsigned long flags;
1402 long old_state;
1403 struct rq *rq;
1404 #ifdef CONFIG_SMP
1405 struct sched_domain *sd, *this_sd = NULL;
1406 unsigned long load, this_load;
1407 int new_cpu;
1408 #endif
1410 rq = task_rq_lock(p, &flags);
1411 old_state = p->state;
1412 if (!(old_state & state))
1413 goto out;
1415 if (p->array)
1416 goto out_running;
1418 cpu = task_cpu(p);
1419 this_cpu = smp_processor_id();
1421 #ifdef CONFIG_SMP
1422 if (unlikely(task_running(rq, p)))
1423 goto out_activate;
1425 new_cpu = cpu;
1427 schedstat_inc(rq, ttwu_cnt);
1428 if (cpu == this_cpu) {
1429 schedstat_inc(rq, ttwu_local);
1430 goto out_set_cpu;
1433 for_each_domain(this_cpu, sd) {
1434 if (cpu_isset(cpu, sd->span)) {
1435 schedstat_inc(sd, ttwu_wake_remote);
1436 this_sd = sd;
1437 break;
1441 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1442 goto out_set_cpu;
1445 * Check for affine wakeup and passive balancing possibilities.
1447 if (this_sd) {
1448 int idx = this_sd->wake_idx;
1449 unsigned int imbalance;
1451 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1453 load = source_load(cpu, idx);
1454 this_load = target_load(this_cpu, idx);
1456 new_cpu = this_cpu; /* Wake to this CPU if we can */
1458 if (this_sd->flags & SD_WAKE_AFFINE) {
1459 unsigned long tl = this_load;
1460 unsigned long tl_per_task;
1462 tl_per_task = cpu_avg_load_per_task(this_cpu);
1465 * If sync wakeup then subtract the (maximum possible)
1466 * effect of the currently running task from the load
1467 * of the current CPU:
1469 if (sync)
1470 tl -= current->load_weight;
1472 if ((tl <= load &&
1473 tl + target_load(cpu, idx) <= tl_per_task) ||
1474 100*(tl + p->load_weight) <= imbalance*load) {
1476 * This domain has SD_WAKE_AFFINE and
1477 * p is cache cold in this domain, and
1478 * there is no bad imbalance.
1480 schedstat_inc(this_sd, ttwu_move_affine);
1481 goto out_set_cpu;
1486 * Start passive balancing when half the imbalance_pct
1487 * limit is reached.
1489 if (this_sd->flags & SD_WAKE_BALANCE) {
1490 if (imbalance*this_load <= 100*load) {
1491 schedstat_inc(this_sd, ttwu_move_balance);
1492 goto out_set_cpu;
1497 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1498 out_set_cpu:
1499 new_cpu = wake_idle(new_cpu, p);
1500 if (new_cpu != cpu) {
1501 set_task_cpu(p, new_cpu);
1502 task_rq_unlock(rq, &flags);
1503 /* might preempt at this point */
1504 rq = task_rq_lock(p, &flags);
1505 old_state = p->state;
1506 if (!(old_state & state))
1507 goto out;
1508 if (p->array)
1509 goto out_running;
1511 this_cpu = smp_processor_id();
1512 cpu = task_cpu(p);
1515 out_activate:
1516 #endif /* CONFIG_SMP */
1517 if (old_state == TASK_UNINTERRUPTIBLE) {
1518 rq->nr_uninterruptible--;
1520 * Tasks on involuntary sleep don't earn
1521 * sleep_avg beyond just interactive state.
1523 p->sleep_type = SLEEP_NONINTERACTIVE;
1524 } else
1527 * Tasks that have marked their sleep as noninteractive get
1528 * woken up with their sleep average not weighted in an
1529 * interactive way.
1531 if (old_state & TASK_NONINTERACTIVE)
1532 p->sleep_type = SLEEP_NONINTERACTIVE;
1535 activate_task(p, rq, cpu == this_cpu);
1537 * Sync wakeups (i.e. those types of wakeups where the waker
1538 * has indicated that it will leave the CPU in short order)
1539 * don't trigger a preemption, if the woken up task will run on
1540 * this cpu. (in this case the 'I will reschedule' promise of
1541 * the waker guarantees that the freshly woken up task is going
1542 * to be considered on this CPU.)
1544 if (!sync || cpu != this_cpu) {
1545 if (TASK_PREEMPTS_CURR(p, rq))
1546 resched_task(rq->curr);
1548 success = 1;
1550 out_running:
1551 p->state = TASK_RUNNING;
1552 out:
1553 task_rq_unlock(rq, &flags);
1555 return success;
1558 int fastcall wake_up_process(struct task_struct *p)
1560 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1561 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1563 EXPORT_SYMBOL(wake_up_process);
1565 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1567 return try_to_wake_up(p, state, 0);
1570 static void task_running_tick(struct rq *rq, struct task_struct *p);
1572 * Perform scheduler related setup for a newly forked process p.
1573 * p is forked by current.
1575 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1577 int cpu = get_cpu();
1579 #ifdef CONFIG_SMP
1580 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1581 #endif
1582 set_task_cpu(p, cpu);
1585 * We mark the process as running here, but have not actually
1586 * inserted it onto the runqueue yet. This guarantees that
1587 * nobody will actually run it, and a signal or other external
1588 * event cannot wake it up and insert it on the runqueue either.
1590 p->state = TASK_RUNNING;
1593 * Make sure we do not leak PI boosting priority to the child:
1595 p->prio = current->normal_prio;
1597 INIT_LIST_HEAD(&p->run_list);
1598 p->array = NULL;
1599 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1600 if (unlikely(sched_info_on()))
1601 memset(&p->sched_info, 0, sizeof(p->sched_info));
1602 #endif
1603 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1604 p->oncpu = 0;
1605 #endif
1606 #ifdef CONFIG_PREEMPT
1607 /* Want to start with kernel preemption disabled. */
1608 task_thread_info(p)->preempt_count = 1;
1609 #endif
1611 * Share the timeslice between parent and child, thus the
1612 * total amount of pending timeslices in the system doesn't change,
1613 * resulting in more scheduling fairness.
1615 local_irq_disable();
1616 p->time_slice = (current->time_slice + 1) >> 1;
1618 * The remainder of the first timeslice might be recovered by
1619 * the parent if the child exits early enough.
1621 p->first_time_slice = 1;
1622 current->time_slice >>= 1;
1623 p->timestamp = sched_clock();
1624 if (unlikely(!current->time_slice)) {
1626 * This case is rare, it happens when the parent has only
1627 * a single jiffy left from its timeslice. Taking the
1628 * runqueue lock is not a problem.
1630 current->time_slice = 1;
1631 task_running_tick(cpu_rq(cpu), current);
1633 local_irq_enable();
1634 put_cpu();
1638 * wake_up_new_task - wake up a newly created task for the first time.
1640 * This function will do some initial scheduler statistics housekeeping
1641 * that must be done for every newly created context, then puts the task
1642 * on the runqueue and wakes it.
1644 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1646 struct rq *rq, *this_rq;
1647 unsigned long flags;
1648 int this_cpu, cpu;
1650 rq = task_rq_lock(p, &flags);
1651 BUG_ON(p->state != TASK_RUNNING);
1652 this_cpu = smp_processor_id();
1653 cpu = task_cpu(p);
1656 * We decrease the sleep average of forking parents
1657 * and children as well, to keep max-interactive tasks
1658 * from forking tasks that are max-interactive. The parent
1659 * (current) is done further down, under its lock.
1661 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1662 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1664 p->prio = effective_prio(p);
1666 if (likely(cpu == this_cpu)) {
1667 if (!(clone_flags & CLONE_VM)) {
1669 * The VM isn't cloned, so we're in a good position to
1670 * do child-runs-first in anticipation of an exec. This
1671 * usually avoids a lot of COW overhead.
1673 if (unlikely(!current->array))
1674 __activate_task(p, rq);
1675 else {
1676 p->prio = current->prio;
1677 p->normal_prio = current->normal_prio;
1678 list_add_tail(&p->run_list, &current->run_list);
1679 p->array = current->array;
1680 p->array->nr_active++;
1681 inc_nr_running(p, rq);
1683 set_need_resched();
1684 } else
1685 /* Run child last */
1686 __activate_task(p, rq);
1688 * We skip the following code due to cpu == this_cpu
1690 * task_rq_unlock(rq, &flags);
1691 * this_rq = task_rq_lock(current, &flags);
1693 this_rq = rq;
1694 } else {
1695 this_rq = cpu_rq(this_cpu);
1698 * Not the local CPU - must adjust timestamp. This should
1699 * get optimised away in the !CONFIG_SMP case.
1701 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1702 + rq->most_recent_timestamp;
1703 __activate_task(p, rq);
1704 if (TASK_PREEMPTS_CURR(p, rq))
1705 resched_task(rq->curr);
1708 * Parent and child are on different CPUs, now get the
1709 * parent runqueue to update the parent's ->sleep_avg:
1711 task_rq_unlock(rq, &flags);
1712 this_rq = task_rq_lock(current, &flags);
1714 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1715 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1716 task_rq_unlock(this_rq, &flags);
1720 * Potentially available exiting-child timeslices are
1721 * retrieved here - this way the parent does not get
1722 * penalized for creating too many threads.
1724 * (this cannot be used to 'generate' timeslices
1725 * artificially, because any timeslice recovered here
1726 * was given away by the parent in the first place.)
1728 void fastcall sched_exit(struct task_struct *p)
1730 unsigned long flags;
1731 struct rq *rq;
1734 * If the child was a (relative-) CPU hog then decrease
1735 * the sleep_avg of the parent as well.
1737 rq = task_rq_lock(p->parent, &flags);
1738 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1739 p->parent->time_slice += p->time_slice;
1740 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1741 p->parent->time_slice = task_timeslice(p);
1743 if (p->sleep_avg < p->parent->sleep_avg)
1744 p->parent->sleep_avg = p->parent->sleep_avg /
1745 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1746 (EXIT_WEIGHT + 1);
1747 task_rq_unlock(rq, &flags);
1751 * prepare_task_switch - prepare to switch tasks
1752 * @rq: the runqueue preparing to switch
1753 * @next: the task we are going to switch to.
1755 * This is called with the rq lock held and interrupts off. It must
1756 * be paired with a subsequent finish_task_switch after the context
1757 * switch.
1759 * prepare_task_switch sets up locking and calls architecture specific
1760 * hooks.
1762 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1764 prepare_lock_switch(rq, next);
1765 prepare_arch_switch(next);
1769 * finish_task_switch - clean up after a task-switch
1770 * @rq: runqueue associated with task-switch
1771 * @prev: the thread we just switched away from.
1773 * finish_task_switch must be called after the context switch, paired
1774 * with a prepare_task_switch call before the context switch.
1775 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1776 * and do any other architecture-specific cleanup actions.
1778 * Note that we may have delayed dropping an mm in context_switch(). If
1779 * so, we finish that here outside of the runqueue lock. (Doing it
1780 * with the lock held can cause deadlocks; see schedule() for
1781 * details.)
1783 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1784 __releases(rq->lock)
1786 struct mm_struct *mm = rq->prev_mm;
1787 long prev_state;
1789 rq->prev_mm = NULL;
1792 * A task struct has one reference for the use as "current".
1793 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1794 * schedule one last time. The schedule call will never return, and
1795 * the scheduled task must drop that reference.
1796 * The test for TASK_DEAD must occur while the runqueue locks are
1797 * still held, otherwise prev could be scheduled on another cpu, die
1798 * there before we look at prev->state, and then the reference would
1799 * be dropped twice.
1800 * Manfred Spraul <manfred@colorfullife.com>
1802 prev_state = prev->state;
1803 finish_arch_switch(prev);
1804 finish_lock_switch(rq, prev);
1805 if (mm)
1806 mmdrop(mm);
1807 if (unlikely(prev_state == TASK_DEAD)) {
1809 * Remove function-return probe instances associated with this
1810 * task and put them back on the free list.
1812 kprobe_flush_task(prev);
1813 put_task_struct(prev);
1818 * schedule_tail - first thing a freshly forked thread must call.
1819 * @prev: the thread we just switched away from.
1821 asmlinkage void schedule_tail(struct task_struct *prev)
1822 __releases(rq->lock)
1824 struct rq *rq = this_rq();
1826 finish_task_switch(rq, prev);
1827 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1828 /* In this case, finish_task_switch does not reenable preemption */
1829 preempt_enable();
1830 #endif
1831 if (current->set_child_tid)
1832 put_user(current->pid, current->set_child_tid);
1836 * context_switch - switch to the new MM and the new
1837 * thread's register state.
1839 static inline struct task_struct *
1840 context_switch(struct rq *rq, struct task_struct *prev,
1841 struct task_struct *next)
1843 struct mm_struct *mm = next->mm;
1844 struct mm_struct *oldmm = prev->active_mm;
1846 if (!mm) {
1847 next->active_mm = oldmm;
1848 atomic_inc(&oldmm->mm_count);
1849 enter_lazy_tlb(oldmm, next);
1850 } else
1851 switch_mm(oldmm, mm, next);
1853 if (!prev->mm) {
1854 prev->active_mm = NULL;
1855 WARN_ON(rq->prev_mm);
1856 rq->prev_mm = oldmm;
1859 * Since the runqueue lock will be released by the next
1860 * task (which is an invalid locking op but in the case
1861 * of the scheduler it's an obvious special-case), so we
1862 * do an early lockdep release here:
1864 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1865 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1866 #endif
1868 /* Here we just switch the register state and the stack. */
1869 switch_to(prev, next, prev);
1871 return prev;
1875 * nr_running, nr_uninterruptible and nr_context_switches:
1877 * externally visible scheduler statistics: current number of runnable
1878 * threads, current number of uninterruptible-sleeping threads, total
1879 * number of context switches performed since bootup.
1881 unsigned long nr_running(void)
1883 unsigned long i, sum = 0;
1885 for_each_online_cpu(i)
1886 sum += cpu_rq(i)->nr_running;
1888 return sum;
1891 unsigned long nr_uninterruptible(void)
1893 unsigned long i, sum = 0;
1895 for_each_possible_cpu(i)
1896 sum += cpu_rq(i)->nr_uninterruptible;
1899 * Since we read the counters lockless, it might be slightly
1900 * inaccurate. Do not allow it to go below zero though:
1902 if (unlikely((long)sum < 0))
1903 sum = 0;
1905 return sum;
1908 unsigned long long nr_context_switches(void)
1910 int i;
1911 unsigned long long sum = 0;
1913 for_each_possible_cpu(i)
1914 sum += cpu_rq(i)->nr_switches;
1916 return sum;
1919 unsigned long nr_iowait(void)
1921 unsigned long i, sum = 0;
1923 for_each_possible_cpu(i)
1924 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1926 return sum;
1929 unsigned long nr_active(void)
1931 unsigned long i, running = 0, uninterruptible = 0;
1933 for_each_online_cpu(i) {
1934 running += cpu_rq(i)->nr_running;
1935 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1938 if (unlikely((long)uninterruptible < 0))
1939 uninterruptible = 0;
1941 return running + uninterruptible;
1944 #ifdef CONFIG_SMP
1947 * Is this task likely cache-hot:
1949 static inline int
1950 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1952 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1956 * double_rq_lock - safely lock two runqueues
1958 * Note this does not disable interrupts like task_rq_lock,
1959 * you need to do so manually before calling.
1961 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1962 __acquires(rq1->lock)
1963 __acquires(rq2->lock)
1965 BUG_ON(!irqs_disabled());
1966 if (rq1 == rq2) {
1967 spin_lock(&rq1->lock);
1968 __acquire(rq2->lock); /* Fake it out ;) */
1969 } else {
1970 if (rq1 < rq2) {
1971 spin_lock(&rq1->lock);
1972 spin_lock(&rq2->lock);
1973 } else {
1974 spin_lock(&rq2->lock);
1975 spin_lock(&rq1->lock);
1981 * double_rq_unlock - safely unlock two runqueues
1983 * Note this does not restore interrupts like task_rq_unlock,
1984 * you need to do so manually after calling.
1986 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1987 __releases(rq1->lock)
1988 __releases(rq2->lock)
1990 spin_unlock(&rq1->lock);
1991 if (rq1 != rq2)
1992 spin_unlock(&rq2->lock);
1993 else
1994 __release(rq2->lock);
1998 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2000 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2001 __releases(this_rq->lock)
2002 __acquires(busiest->lock)
2003 __acquires(this_rq->lock)
2005 if (unlikely(!irqs_disabled())) {
2006 /* printk() doesn't work good under rq->lock */
2007 spin_unlock(&this_rq->lock);
2008 BUG_ON(1);
2010 if (unlikely(!spin_trylock(&busiest->lock))) {
2011 if (busiest < this_rq) {
2012 spin_unlock(&this_rq->lock);
2013 spin_lock(&busiest->lock);
2014 spin_lock(&this_rq->lock);
2015 } else
2016 spin_lock(&busiest->lock);
2021 * If dest_cpu is allowed for this process, migrate the task to it.
2022 * This is accomplished by forcing the cpu_allowed mask to only
2023 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2024 * the cpu_allowed mask is restored.
2026 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2028 struct migration_req req;
2029 unsigned long flags;
2030 struct rq *rq;
2032 rq = task_rq_lock(p, &flags);
2033 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2034 || unlikely(cpu_is_offline(dest_cpu)))
2035 goto out;
2037 /* force the process onto the specified CPU */
2038 if (migrate_task(p, dest_cpu, &req)) {
2039 /* Need to wait for migration thread (might exit: take ref). */
2040 struct task_struct *mt = rq->migration_thread;
2042 get_task_struct(mt);
2043 task_rq_unlock(rq, &flags);
2044 wake_up_process(mt);
2045 put_task_struct(mt);
2046 wait_for_completion(&req.done);
2048 return;
2050 out:
2051 task_rq_unlock(rq, &flags);
2055 * sched_exec - execve() is a valuable balancing opportunity, because at
2056 * this point the task has the smallest effective memory and cache footprint.
2058 void sched_exec(void)
2060 int new_cpu, this_cpu = get_cpu();
2061 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2062 put_cpu();
2063 if (new_cpu != this_cpu)
2064 sched_migrate_task(current, new_cpu);
2068 * pull_task - move a task from a remote runqueue to the local runqueue.
2069 * Both runqueues must be locked.
2071 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2072 struct task_struct *p, struct rq *this_rq,
2073 struct prio_array *this_array, int this_cpu)
2075 dequeue_task(p, src_array);
2076 dec_nr_running(p, src_rq);
2077 set_task_cpu(p, this_cpu);
2078 inc_nr_running(p, this_rq);
2079 enqueue_task(p, this_array);
2080 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2081 + this_rq->most_recent_timestamp;
2083 * Note that idle threads have a prio of MAX_PRIO, for this test
2084 * to be always true for them.
2086 if (TASK_PREEMPTS_CURR(p, this_rq))
2087 resched_task(this_rq->curr);
2091 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2093 static
2094 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2095 struct sched_domain *sd, enum idle_type idle,
2096 int *all_pinned)
2099 * We do not migrate tasks that are:
2100 * 1) running (obviously), or
2101 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2102 * 3) are cache-hot on their current CPU.
2104 if (!cpu_isset(this_cpu, p->cpus_allowed))
2105 return 0;
2106 *all_pinned = 0;
2108 if (task_running(rq, p))
2109 return 0;
2112 * Aggressive migration if:
2113 * 1) task is cache cold, or
2114 * 2) too many balance attempts have failed.
2117 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2118 #ifdef CONFIG_SCHEDSTATS
2119 if (task_hot(p, rq->most_recent_timestamp, sd))
2120 schedstat_inc(sd, lb_hot_gained[idle]);
2121 #endif
2122 return 1;
2125 if (task_hot(p, rq->most_recent_timestamp, sd))
2126 return 0;
2127 return 1;
2130 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2133 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2134 * load from busiest to this_rq, as part of a balancing operation within
2135 * "domain". Returns the number of tasks moved.
2137 * Called with both runqueues locked.
2139 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2140 unsigned long max_nr_move, unsigned long max_load_move,
2141 struct sched_domain *sd, enum idle_type idle,
2142 int *all_pinned)
2144 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2145 best_prio_seen, skip_for_load;
2146 struct prio_array *array, *dst_array;
2147 struct list_head *head, *curr;
2148 struct task_struct *tmp;
2149 long rem_load_move;
2151 if (max_nr_move == 0 || max_load_move == 0)
2152 goto out;
2154 rem_load_move = max_load_move;
2155 pinned = 1;
2156 this_best_prio = rq_best_prio(this_rq);
2157 best_prio = rq_best_prio(busiest);
2159 * Enable handling of the case where there is more than one task
2160 * with the best priority. If the current running task is one
2161 * of those with prio==best_prio we know it won't be moved
2162 * and therefore it's safe to override the skip (based on load) of
2163 * any task we find with that prio.
2165 best_prio_seen = best_prio == busiest->curr->prio;
2168 * We first consider expired tasks. Those will likely not be
2169 * executed in the near future, and they are most likely to
2170 * be cache-cold, thus switching CPUs has the least effect
2171 * on them.
2173 if (busiest->expired->nr_active) {
2174 array = busiest->expired;
2175 dst_array = this_rq->expired;
2176 } else {
2177 array = busiest->active;
2178 dst_array = this_rq->active;
2181 new_array:
2182 /* Start searching at priority 0: */
2183 idx = 0;
2184 skip_bitmap:
2185 if (!idx)
2186 idx = sched_find_first_bit(array->bitmap);
2187 else
2188 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2189 if (idx >= MAX_PRIO) {
2190 if (array == busiest->expired && busiest->active->nr_active) {
2191 array = busiest->active;
2192 dst_array = this_rq->active;
2193 goto new_array;
2195 goto out;
2198 head = array->queue + idx;
2199 curr = head->prev;
2200 skip_queue:
2201 tmp = list_entry(curr, struct task_struct, run_list);
2203 curr = curr->prev;
2206 * To help distribute high priority tasks accross CPUs we don't
2207 * skip a task if it will be the highest priority task (i.e. smallest
2208 * prio value) on its new queue regardless of its load weight
2210 skip_for_load = tmp->load_weight > rem_load_move;
2211 if (skip_for_load && idx < this_best_prio)
2212 skip_for_load = !best_prio_seen && idx == best_prio;
2213 if (skip_for_load ||
2214 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2216 best_prio_seen |= idx == best_prio;
2217 if (curr != head)
2218 goto skip_queue;
2219 idx++;
2220 goto skip_bitmap;
2223 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2224 pulled++;
2225 rem_load_move -= tmp->load_weight;
2228 * We only want to steal up to the prescribed number of tasks
2229 * and the prescribed amount of weighted load.
2231 if (pulled < max_nr_move && rem_load_move > 0) {
2232 if (idx < this_best_prio)
2233 this_best_prio = idx;
2234 if (curr != head)
2235 goto skip_queue;
2236 idx++;
2237 goto skip_bitmap;
2239 out:
2241 * Right now, this is the only place pull_task() is called,
2242 * so we can safely collect pull_task() stats here rather than
2243 * inside pull_task().
2245 schedstat_add(sd, lb_gained[idle], pulled);
2247 if (all_pinned)
2248 *all_pinned = pinned;
2249 return pulled;
2253 * find_busiest_group finds and returns the busiest CPU group within the
2254 * domain. It calculates and returns the amount of weighted load which
2255 * should be moved to restore balance via the imbalance parameter.
2257 static struct sched_group *
2258 find_busiest_group(struct sched_domain *sd, int this_cpu,
2259 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2260 cpumask_t *cpus, int *balance)
2262 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2263 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2264 unsigned long max_pull;
2265 unsigned long busiest_load_per_task, busiest_nr_running;
2266 unsigned long this_load_per_task, this_nr_running;
2267 int load_idx;
2268 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2269 int power_savings_balance = 1;
2270 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2271 unsigned long min_nr_running = ULONG_MAX;
2272 struct sched_group *group_min = NULL, *group_leader = NULL;
2273 #endif
2275 max_load = this_load = total_load = total_pwr = 0;
2276 busiest_load_per_task = busiest_nr_running = 0;
2277 this_load_per_task = this_nr_running = 0;
2278 if (idle == NOT_IDLE)
2279 load_idx = sd->busy_idx;
2280 else if (idle == NEWLY_IDLE)
2281 load_idx = sd->newidle_idx;
2282 else
2283 load_idx = sd->idle_idx;
2285 do {
2286 unsigned long load, group_capacity;
2287 int local_group;
2288 int i;
2289 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2290 unsigned long sum_nr_running, sum_weighted_load;
2292 local_group = cpu_isset(this_cpu, group->cpumask);
2294 if (local_group)
2295 balance_cpu = first_cpu(group->cpumask);
2297 /* Tally up the load of all CPUs in the group */
2298 sum_weighted_load = sum_nr_running = avg_load = 0;
2300 for_each_cpu_mask(i, group->cpumask) {
2301 struct rq *rq;
2303 if (!cpu_isset(i, *cpus))
2304 continue;
2306 rq = cpu_rq(i);
2308 if (*sd_idle && !idle_cpu(i))
2309 *sd_idle = 0;
2311 /* Bias balancing toward cpus of our domain */
2312 if (local_group) {
2313 if (idle_cpu(i) && !first_idle_cpu) {
2314 first_idle_cpu = 1;
2315 balance_cpu = i;
2318 load = target_load(i, load_idx);
2319 } else
2320 load = source_load(i, load_idx);
2322 avg_load += load;
2323 sum_nr_running += rq->nr_running;
2324 sum_weighted_load += rq->raw_weighted_load;
2328 * First idle cpu or the first cpu(busiest) in this sched group
2329 * is eligible for doing load balancing at this and above
2330 * domains.
2332 if (local_group && balance_cpu != this_cpu && balance) {
2333 *balance = 0;
2334 goto ret;
2337 total_load += avg_load;
2338 total_pwr += group->cpu_power;
2340 /* Adjust by relative CPU power of the group */
2341 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2343 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2345 if (local_group) {
2346 this_load = avg_load;
2347 this = group;
2348 this_nr_running = sum_nr_running;
2349 this_load_per_task = sum_weighted_load;
2350 } else if (avg_load > max_load &&
2351 sum_nr_running > group_capacity) {
2352 max_load = avg_load;
2353 busiest = group;
2354 busiest_nr_running = sum_nr_running;
2355 busiest_load_per_task = sum_weighted_load;
2358 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2360 * Busy processors will not participate in power savings
2361 * balance.
2363 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2364 goto group_next;
2367 * If the local group is idle or completely loaded
2368 * no need to do power savings balance at this domain
2370 if (local_group && (this_nr_running >= group_capacity ||
2371 !this_nr_running))
2372 power_savings_balance = 0;
2375 * If a group is already running at full capacity or idle,
2376 * don't include that group in power savings calculations
2378 if (!power_savings_balance || sum_nr_running >= group_capacity
2379 || !sum_nr_running)
2380 goto group_next;
2383 * Calculate the group which has the least non-idle load.
2384 * This is the group from where we need to pick up the load
2385 * for saving power
2387 if ((sum_nr_running < min_nr_running) ||
2388 (sum_nr_running == min_nr_running &&
2389 first_cpu(group->cpumask) <
2390 first_cpu(group_min->cpumask))) {
2391 group_min = group;
2392 min_nr_running = sum_nr_running;
2393 min_load_per_task = sum_weighted_load /
2394 sum_nr_running;
2398 * Calculate the group which is almost near its
2399 * capacity but still has some space to pick up some load
2400 * from other group and save more power
2402 if (sum_nr_running <= group_capacity - 1) {
2403 if (sum_nr_running > leader_nr_running ||
2404 (sum_nr_running == leader_nr_running &&
2405 first_cpu(group->cpumask) >
2406 first_cpu(group_leader->cpumask))) {
2407 group_leader = group;
2408 leader_nr_running = sum_nr_running;
2411 group_next:
2412 #endif
2413 group = group->next;
2414 } while (group != sd->groups);
2416 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2417 goto out_balanced;
2419 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2421 if (this_load >= avg_load ||
2422 100*max_load <= sd->imbalance_pct*this_load)
2423 goto out_balanced;
2425 busiest_load_per_task /= busiest_nr_running;
2427 * We're trying to get all the cpus to the average_load, so we don't
2428 * want to push ourselves above the average load, nor do we wish to
2429 * reduce the max loaded cpu below the average load, as either of these
2430 * actions would just result in more rebalancing later, and ping-pong
2431 * tasks around. Thus we look for the minimum possible imbalance.
2432 * Negative imbalances (*we* are more loaded than anyone else) will
2433 * be counted as no imbalance for these purposes -- we can't fix that
2434 * by pulling tasks to us. Be careful of negative numbers as they'll
2435 * appear as very large values with unsigned longs.
2437 if (max_load <= busiest_load_per_task)
2438 goto out_balanced;
2441 * In the presence of smp nice balancing, certain scenarios can have
2442 * max load less than avg load(as we skip the groups at or below
2443 * its cpu_power, while calculating max_load..)
2445 if (max_load < avg_load) {
2446 *imbalance = 0;
2447 goto small_imbalance;
2450 /* Don't want to pull so many tasks that a group would go idle */
2451 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2453 /* How much load to actually move to equalise the imbalance */
2454 *imbalance = min(max_pull * busiest->cpu_power,
2455 (avg_load - this_load) * this->cpu_power)
2456 / SCHED_LOAD_SCALE;
2459 * if *imbalance is less than the average load per runnable task
2460 * there is no gaurantee that any tasks will be moved so we'll have
2461 * a think about bumping its value to force at least one task to be
2462 * moved
2464 if (*imbalance < busiest_load_per_task) {
2465 unsigned long tmp, pwr_now, pwr_move;
2466 unsigned int imbn;
2468 small_imbalance:
2469 pwr_move = pwr_now = 0;
2470 imbn = 2;
2471 if (this_nr_running) {
2472 this_load_per_task /= this_nr_running;
2473 if (busiest_load_per_task > this_load_per_task)
2474 imbn = 1;
2475 } else
2476 this_load_per_task = SCHED_LOAD_SCALE;
2478 if (max_load - this_load >= busiest_load_per_task * imbn) {
2479 *imbalance = busiest_load_per_task;
2480 return busiest;
2484 * OK, we don't have enough imbalance to justify moving tasks,
2485 * however we may be able to increase total CPU power used by
2486 * moving them.
2489 pwr_now += busiest->cpu_power *
2490 min(busiest_load_per_task, max_load);
2491 pwr_now += this->cpu_power *
2492 min(this_load_per_task, this_load);
2493 pwr_now /= SCHED_LOAD_SCALE;
2495 /* Amount of load we'd subtract */
2496 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2497 busiest->cpu_power;
2498 if (max_load > tmp)
2499 pwr_move += busiest->cpu_power *
2500 min(busiest_load_per_task, max_load - tmp);
2502 /* Amount of load we'd add */
2503 if (max_load * busiest->cpu_power <
2504 busiest_load_per_task * SCHED_LOAD_SCALE)
2505 tmp = max_load * busiest->cpu_power / this->cpu_power;
2506 else
2507 tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
2508 this->cpu_power;
2509 pwr_move += this->cpu_power *
2510 min(this_load_per_task, this_load + tmp);
2511 pwr_move /= SCHED_LOAD_SCALE;
2513 /* Move if we gain throughput */
2514 if (pwr_move <= pwr_now)
2515 goto out_balanced;
2517 *imbalance = busiest_load_per_task;
2520 return busiest;
2522 out_balanced:
2523 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2524 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2525 goto ret;
2527 if (this == group_leader && group_leader != group_min) {
2528 *imbalance = min_load_per_task;
2529 return group_min;
2531 #endif
2532 ret:
2533 *imbalance = 0;
2534 return NULL;
2538 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2540 static struct rq *
2541 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2542 unsigned long imbalance, cpumask_t *cpus)
2544 struct rq *busiest = NULL, *rq;
2545 unsigned long max_load = 0;
2546 int i;
2548 for_each_cpu_mask(i, group->cpumask) {
2550 if (!cpu_isset(i, *cpus))
2551 continue;
2553 rq = cpu_rq(i);
2555 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2556 continue;
2558 if (rq->raw_weighted_load > max_load) {
2559 max_load = rq->raw_weighted_load;
2560 busiest = rq;
2564 return busiest;
2568 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2569 * so long as it is large enough.
2571 #define MAX_PINNED_INTERVAL 512
2573 static inline unsigned long minus_1_or_zero(unsigned long n)
2575 return n > 0 ? n - 1 : 0;
2579 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2580 * tasks if there is an imbalance.
2582 static int load_balance(int this_cpu, struct rq *this_rq,
2583 struct sched_domain *sd, enum idle_type idle,
2584 int *balance)
2586 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2587 struct sched_group *group;
2588 unsigned long imbalance;
2589 struct rq *busiest;
2590 cpumask_t cpus = CPU_MASK_ALL;
2591 unsigned long flags;
2594 * When power savings policy is enabled for the parent domain, idle
2595 * sibling can pick up load irrespective of busy siblings. In this case,
2596 * let the state of idle sibling percolate up as IDLE, instead of
2597 * portraying it as NOT_IDLE.
2599 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2600 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2601 sd_idle = 1;
2603 schedstat_inc(sd, lb_cnt[idle]);
2605 redo:
2606 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2607 &cpus, balance);
2609 if (*balance == 0)
2610 goto out_balanced;
2612 if (!group) {
2613 schedstat_inc(sd, lb_nobusyg[idle]);
2614 goto out_balanced;
2617 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2618 if (!busiest) {
2619 schedstat_inc(sd, lb_nobusyq[idle]);
2620 goto out_balanced;
2623 BUG_ON(busiest == this_rq);
2625 schedstat_add(sd, lb_imbalance[idle], imbalance);
2627 nr_moved = 0;
2628 if (busiest->nr_running > 1) {
2630 * Attempt to move tasks. If find_busiest_group has found
2631 * an imbalance but busiest->nr_running <= 1, the group is
2632 * still unbalanced. nr_moved simply stays zero, so it is
2633 * correctly treated as an imbalance.
2635 local_irq_save(flags);
2636 double_rq_lock(this_rq, busiest);
2637 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2638 minus_1_or_zero(busiest->nr_running),
2639 imbalance, sd, idle, &all_pinned);
2640 double_rq_unlock(this_rq, busiest);
2641 local_irq_restore(flags);
2643 /* All tasks on this runqueue were pinned by CPU affinity */
2644 if (unlikely(all_pinned)) {
2645 cpu_clear(cpu_of(busiest), cpus);
2646 if (!cpus_empty(cpus))
2647 goto redo;
2648 goto out_balanced;
2652 if (!nr_moved) {
2653 schedstat_inc(sd, lb_failed[idle]);
2654 sd->nr_balance_failed++;
2656 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2658 spin_lock_irqsave(&busiest->lock, flags);
2660 /* don't kick the migration_thread, if the curr
2661 * task on busiest cpu can't be moved to this_cpu
2663 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2664 spin_unlock_irqrestore(&busiest->lock, flags);
2665 all_pinned = 1;
2666 goto out_one_pinned;
2669 if (!busiest->active_balance) {
2670 busiest->active_balance = 1;
2671 busiest->push_cpu = this_cpu;
2672 active_balance = 1;
2674 spin_unlock_irqrestore(&busiest->lock, flags);
2675 if (active_balance)
2676 wake_up_process(busiest->migration_thread);
2679 * We've kicked active balancing, reset the failure
2680 * counter.
2682 sd->nr_balance_failed = sd->cache_nice_tries+1;
2684 } else
2685 sd->nr_balance_failed = 0;
2687 if (likely(!active_balance)) {
2688 /* We were unbalanced, so reset the balancing interval */
2689 sd->balance_interval = sd->min_interval;
2690 } else {
2692 * If we've begun active balancing, start to back off. This
2693 * case may not be covered by the all_pinned logic if there
2694 * is only 1 task on the busy runqueue (because we don't call
2695 * move_tasks).
2697 if (sd->balance_interval < sd->max_interval)
2698 sd->balance_interval *= 2;
2701 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2702 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2703 return -1;
2704 return nr_moved;
2706 out_balanced:
2707 schedstat_inc(sd, lb_balanced[idle]);
2709 sd->nr_balance_failed = 0;
2711 out_one_pinned:
2712 /* tune up the balancing interval */
2713 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2714 (sd->balance_interval < sd->max_interval))
2715 sd->balance_interval *= 2;
2717 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2718 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2719 return -1;
2720 return 0;
2724 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2725 * tasks if there is an imbalance.
2727 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2728 * this_rq is locked.
2730 static int
2731 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2733 struct sched_group *group;
2734 struct rq *busiest = NULL;
2735 unsigned long imbalance;
2736 int nr_moved = 0;
2737 int sd_idle = 0;
2738 cpumask_t cpus = CPU_MASK_ALL;
2741 * When power savings policy is enabled for the parent domain, idle
2742 * sibling can pick up load irrespective of busy siblings. In this case,
2743 * let the state of idle sibling percolate up as IDLE, instead of
2744 * portraying it as NOT_IDLE.
2746 if (sd->flags & SD_SHARE_CPUPOWER &&
2747 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2748 sd_idle = 1;
2750 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2751 redo:
2752 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2753 &sd_idle, &cpus, NULL);
2754 if (!group) {
2755 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2756 goto out_balanced;
2759 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2760 &cpus);
2761 if (!busiest) {
2762 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2763 goto out_balanced;
2766 BUG_ON(busiest == this_rq);
2768 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2770 nr_moved = 0;
2771 if (busiest->nr_running > 1) {
2772 /* Attempt to move tasks */
2773 double_lock_balance(this_rq, busiest);
2774 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2775 minus_1_or_zero(busiest->nr_running),
2776 imbalance, sd, NEWLY_IDLE, NULL);
2777 spin_unlock(&busiest->lock);
2779 if (!nr_moved) {
2780 cpu_clear(cpu_of(busiest), cpus);
2781 if (!cpus_empty(cpus))
2782 goto redo;
2786 if (!nr_moved) {
2787 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2788 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2789 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2790 return -1;
2791 } else
2792 sd->nr_balance_failed = 0;
2794 return nr_moved;
2796 out_balanced:
2797 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2798 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2800 return -1;
2801 sd->nr_balance_failed = 0;
2803 return 0;
2807 * idle_balance is called by schedule() if this_cpu is about to become
2808 * idle. Attempts to pull tasks from other CPUs.
2810 static void idle_balance(int this_cpu, struct rq *this_rq)
2812 struct sched_domain *sd;
2813 int pulled_task = 0;
2814 unsigned long next_balance = jiffies + 60 * HZ;
2816 for_each_domain(this_cpu, sd) {
2817 unsigned long interval;
2819 if (!(sd->flags & SD_LOAD_BALANCE))
2820 continue;
2822 if (sd->flags & SD_BALANCE_NEWIDLE)
2823 /* If we've pulled tasks over stop searching: */
2824 pulled_task = load_balance_newidle(this_cpu,
2825 this_rq, sd);
2827 interval = msecs_to_jiffies(sd->balance_interval);
2828 if (time_after(next_balance, sd->last_balance + interval))
2829 next_balance = sd->last_balance + interval;
2830 if (pulled_task)
2831 break;
2833 if (!pulled_task)
2835 * We are going idle. next_balance may be set based on
2836 * a busy processor. So reset next_balance.
2838 this_rq->next_balance = next_balance;
2842 * active_load_balance is run by migration threads. It pushes running tasks
2843 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2844 * running on each physical CPU where possible, and avoids physical /
2845 * logical imbalances.
2847 * Called with busiest_rq locked.
2849 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2851 int target_cpu = busiest_rq->push_cpu;
2852 struct sched_domain *sd;
2853 struct rq *target_rq;
2855 /* Is there any task to move? */
2856 if (busiest_rq->nr_running <= 1)
2857 return;
2859 target_rq = cpu_rq(target_cpu);
2862 * This condition is "impossible", if it occurs
2863 * we need to fix it. Originally reported by
2864 * Bjorn Helgaas on a 128-cpu setup.
2866 BUG_ON(busiest_rq == target_rq);
2868 /* move a task from busiest_rq to target_rq */
2869 double_lock_balance(busiest_rq, target_rq);
2871 /* Search for an sd spanning us and the target CPU. */
2872 for_each_domain(target_cpu, sd) {
2873 if ((sd->flags & SD_LOAD_BALANCE) &&
2874 cpu_isset(busiest_cpu, sd->span))
2875 break;
2878 if (likely(sd)) {
2879 schedstat_inc(sd, alb_cnt);
2881 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2882 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2883 NULL))
2884 schedstat_inc(sd, alb_pushed);
2885 else
2886 schedstat_inc(sd, alb_failed);
2888 spin_unlock(&target_rq->lock);
2891 static void update_load(struct rq *this_rq)
2893 unsigned long this_load;
2894 int i, scale;
2896 this_load = this_rq->raw_weighted_load;
2898 /* Update our load: */
2899 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2900 unsigned long old_load, new_load;
2902 old_load = this_rq->cpu_load[i];
2903 new_load = this_load;
2905 * Round up the averaging division if load is increasing. This
2906 * prevents us from getting stuck on 9 if the load is 10, for
2907 * example.
2909 if (new_load > old_load)
2910 new_load += scale-1;
2911 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2916 * run_rebalance_domains is triggered when needed from the scheduler tick.
2918 * It checks each scheduling domain to see if it is due to be balanced,
2919 * and initiates a balancing operation if so.
2921 * Balancing parameters are set up in arch_init_sched_domains.
2923 static DEFINE_SPINLOCK(balancing);
2925 static void run_rebalance_domains(struct softirq_action *h)
2927 int this_cpu = smp_processor_id(), balance = 1;
2928 struct rq *this_rq = cpu_rq(this_cpu);
2929 unsigned long interval;
2930 struct sched_domain *sd;
2932 * We are idle if there are no processes running. This
2933 * is valid even if we are the idle process (SMT).
2935 enum idle_type idle = !this_rq->nr_running ?
2936 SCHED_IDLE : NOT_IDLE;
2937 /* Earliest time when we have to call run_rebalance_domains again */
2938 unsigned long next_balance = jiffies + 60*HZ;
2940 for_each_domain(this_cpu, sd) {
2941 if (!(sd->flags & SD_LOAD_BALANCE))
2942 continue;
2944 interval = sd->balance_interval;
2945 if (idle != SCHED_IDLE)
2946 interval *= sd->busy_factor;
2948 /* scale ms to jiffies */
2949 interval = msecs_to_jiffies(interval);
2950 if (unlikely(!interval))
2951 interval = 1;
2953 if (sd->flags & SD_SERIALIZE) {
2954 if (!spin_trylock(&balancing))
2955 goto out;
2958 if (time_after_eq(jiffies, sd->last_balance + interval)) {
2959 if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
2961 * We've pulled tasks over so either we're no
2962 * longer idle, or one of our SMT siblings is
2963 * not idle.
2965 idle = NOT_IDLE;
2967 sd->last_balance = jiffies;
2969 if (sd->flags & SD_SERIALIZE)
2970 spin_unlock(&balancing);
2971 out:
2972 if (time_after(next_balance, sd->last_balance + interval))
2973 next_balance = sd->last_balance + interval;
2976 * Stop the load balance at this level. There is another
2977 * CPU in our sched group which is doing load balancing more
2978 * actively.
2980 if (!balance)
2981 break;
2983 this_rq->next_balance = next_balance;
2985 #else
2987 * on UP we do not need to balance between CPUs:
2989 static inline void idle_balance(int cpu, struct rq *rq)
2992 #endif
2994 static inline void wake_priority_sleeper(struct rq *rq)
2996 #ifdef CONFIG_SCHED_SMT
2997 if (!rq->nr_running)
2998 return;
3000 spin_lock(&rq->lock);
3002 * If an SMT sibling task has been put to sleep for priority
3003 * reasons reschedule the idle task to see if it can now run.
3005 if (rq->nr_running)
3006 resched_task(rq->idle);
3007 spin_unlock(&rq->lock);
3008 #endif
3011 DEFINE_PER_CPU(struct kernel_stat, kstat);
3013 EXPORT_PER_CPU_SYMBOL(kstat);
3016 * This is called on clock ticks and on context switches.
3017 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3019 static inline void
3020 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
3022 p->sched_time += now - p->last_ran;
3023 p->last_ran = rq->most_recent_timestamp = now;
3027 * Return current->sched_time plus any more ns on the sched_clock
3028 * that have not yet been banked.
3030 unsigned long long current_sched_time(const struct task_struct *p)
3032 unsigned long long ns;
3033 unsigned long flags;
3035 local_irq_save(flags);
3036 ns = p->sched_time + sched_clock() - p->last_ran;
3037 local_irq_restore(flags);
3039 return ns;
3043 * We place interactive tasks back into the active array, if possible.
3045 * To guarantee that this does not starve expired tasks we ignore the
3046 * interactivity of a task if the first expired task had to wait more
3047 * than a 'reasonable' amount of time. This deadline timeout is
3048 * load-dependent, as the frequency of array switched decreases with
3049 * increasing number of running tasks. We also ignore the interactivity
3050 * if a better static_prio task has expired:
3052 static inline int expired_starving(struct rq *rq)
3054 if (rq->curr->static_prio > rq->best_expired_prio)
3055 return 1;
3056 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3057 return 0;
3058 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3059 return 1;
3060 return 0;
3064 * Account user cpu time to a process.
3065 * @p: the process that the cpu time gets accounted to
3066 * @hardirq_offset: the offset to subtract from hardirq_count()
3067 * @cputime: the cpu time spent in user space since the last update
3069 void account_user_time(struct task_struct *p, cputime_t cputime)
3071 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3072 cputime64_t tmp;
3074 p->utime = cputime_add(p->utime, cputime);
3076 /* Add user time to cpustat. */
3077 tmp = cputime_to_cputime64(cputime);
3078 if (TASK_NICE(p) > 0)
3079 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3080 else
3081 cpustat->user = cputime64_add(cpustat->user, tmp);
3085 * Account system cpu time to a process.
3086 * @p: the process that the cpu time gets accounted to
3087 * @hardirq_offset: the offset to subtract from hardirq_count()
3088 * @cputime: the cpu time spent in kernel space since the last update
3090 void account_system_time(struct task_struct *p, int hardirq_offset,
3091 cputime_t cputime)
3093 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3094 struct rq *rq = this_rq();
3095 cputime64_t tmp;
3097 p->stime = cputime_add(p->stime, cputime);
3099 /* Add system time to cpustat. */
3100 tmp = cputime_to_cputime64(cputime);
3101 if (hardirq_count() - hardirq_offset)
3102 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3103 else if (softirq_count())
3104 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3105 else if (p != rq->idle)
3106 cpustat->system = cputime64_add(cpustat->system, tmp);
3107 else if (atomic_read(&rq->nr_iowait) > 0)
3108 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3109 else
3110 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3111 /* Account for system time used */
3112 acct_update_integrals(p);
3116 * Account for involuntary wait time.
3117 * @p: the process from which the cpu time has been stolen
3118 * @steal: the cpu time spent in involuntary wait
3120 void account_steal_time(struct task_struct *p, cputime_t steal)
3122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3123 cputime64_t tmp = cputime_to_cputime64(steal);
3124 struct rq *rq = this_rq();
3126 if (p == rq->idle) {
3127 p->stime = cputime_add(p->stime, steal);
3128 if (atomic_read(&rq->nr_iowait) > 0)
3129 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3130 else
3131 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3132 } else
3133 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3136 static void task_running_tick(struct rq *rq, struct task_struct *p)
3138 if (p->array != rq->active) {
3139 /* Task has expired but was not scheduled yet */
3140 set_tsk_need_resched(p);
3141 return;
3143 spin_lock(&rq->lock);
3145 * The task was running during this tick - update the
3146 * time slice counter. Note: we do not update a thread's
3147 * priority until it either goes to sleep or uses up its
3148 * timeslice. This makes it possible for interactive tasks
3149 * to use up their timeslices at their highest priority levels.
3151 if (rt_task(p)) {
3153 * RR tasks need a special form of timeslice management.
3154 * FIFO tasks have no timeslices.
3156 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3157 p->time_slice = task_timeslice(p);
3158 p->first_time_slice = 0;
3159 set_tsk_need_resched(p);
3161 /* put it at the end of the queue: */
3162 requeue_task(p, rq->active);
3164 goto out_unlock;
3166 if (!--p->time_slice) {
3167 dequeue_task(p, rq->active);
3168 set_tsk_need_resched(p);
3169 p->prio = effective_prio(p);
3170 p->time_slice = task_timeslice(p);
3171 p->first_time_slice = 0;
3173 if (!rq->expired_timestamp)
3174 rq->expired_timestamp = jiffies;
3175 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3176 enqueue_task(p, rq->expired);
3177 if (p->static_prio < rq->best_expired_prio)
3178 rq->best_expired_prio = p->static_prio;
3179 } else
3180 enqueue_task(p, rq->active);
3181 } else {
3183 * Prevent a too long timeslice allowing a task to monopolize
3184 * the CPU. We do this by splitting up the timeslice into
3185 * smaller pieces.
3187 * Note: this does not mean the task's timeslices expire or
3188 * get lost in any way, they just might be preempted by
3189 * another task of equal priority. (one with higher
3190 * priority would have preempted this task already.) We
3191 * requeue this task to the end of the list on this priority
3192 * level, which is in essence a round-robin of tasks with
3193 * equal priority.
3195 * This only applies to tasks in the interactive
3196 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3198 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3199 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3200 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3201 (p->array == rq->active)) {
3203 requeue_task(p, rq->active);
3204 set_tsk_need_resched(p);
3207 out_unlock:
3208 spin_unlock(&rq->lock);
3212 * This function gets called by the timer code, with HZ frequency.
3213 * We call it with interrupts disabled.
3215 * It also gets called by the fork code, when changing the parent's
3216 * timeslices.
3218 void scheduler_tick(void)
3220 unsigned long long now = sched_clock();
3221 struct task_struct *p = current;
3222 int cpu = smp_processor_id();
3223 struct rq *rq = cpu_rq(cpu);
3225 update_cpu_clock(p, rq, now);
3227 if (p == rq->idle)
3228 /* Task on the idle queue */
3229 wake_priority_sleeper(rq);
3230 else
3231 task_running_tick(rq, p);
3232 #ifdef CONFIG_SMP
3233 update_load(rq);
3234 if (time_after_eq(jiffies, rq->next_balance))
3235 raise_softirq(SCHED_SOFTIRQ);
3236 #endif
3239 #ifdef CONFIG_SCHED_SMT
3240 static inline void wakeup_busy_runqueue(struct rq *rq)
3242 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3243 if (rq->curr == rq->idle && rq->nr_running)
3244 resched_task(rq->idle);
3248 * Called with interrupt disabled and this_rq's runqueue locked.
3250 static void wake_sleeping_dependent(int this_cpu)
3252 struct sched_domain *tmp, *sd = NULL;
3253 int i;
3255 for_each_domain(this_cpu, tmp) {
3256 if (tmp->flags & SD_SHARE_CPUPOWER) {
3257 sd = tmp;
3258 break;
3262 if (!sd)
3263 return;
3265 for_each_cpu_mask(i, sd->span) {
3266 struct rq *smt_rq = cpu_rq(i);
3268 if (i == this_cpu)
3269 continue;
3270 if (unlikely(!spin_trylock(&smt_rq->lock)))
3271 continue;
3273 wakeup_busy_runqueue(smt_rq);
3274 spin_unlock(&smt_rq->lock);
3279 * number of 'lost' timeslices this task wont be able to fully
3280 * utilize, if another task runs on a sibling. This models the
3281 * slowdown effect of other tasks running on siblings:
3283 static inline unsigned long
3284 smt_slice(struct task_struct *p, struct sched_domain *sd)
3286 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3290 * To minimise lock contention and not have to drop this_rq's runlock we only
3291 * trylock the sibling runqueues and bypass those runqueues if we fail to
3292 * acquire their lock. As we only trylock the normal locking order does not
3293 * need to be obeyed.
3295 static int
3296 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3298 struct sched_domain *tmp, *sd = NULL;
3299 int ret = 0, i;
3301 /* kernel/rt threads do not participate in dependent sleeping */
3302 if (!p->mm || rt_task(p))
3303 return 0;
3305 for_each_domain(this_cpu, tmp) {
3306 if (tmp->flags & SD_SHARE_CPUPOWER) {
3307 sd = tmp;
3308 break;
3312 if (!sd)
3313 return 0;
3315 for_each_cpu_mask(i, sd->span) {
3316 struct task_struct *smt_curr;
3317 struct rq *smt_rq;
3319 if (i == this_cpu)
3320 continue;
3322 smt_rq = cpu_rq(i);
3323 if (unlikely(!spin_trylock(&smt_rq->lock)))
3324 continue;
3326 smt_curr = smt_rq->curr;
3328 if (!smt_curr->mm)
3329 goto unlock;
3332 * If a user task with lower static priority than the
3333 * running task on the SMT sibling is trying to schedule,
3334 * delay it till there is proportionately less timeslice
3335 * left of the sibling task to prevent a lower priority
3336 * task from using an unfair proportion of the
3337 * physical cpu's resources. -ck
3339 if (rt_task(smt_curr)) {
3341 * With real time tasks we run non-rt tasks only
3342 * per_cpu_gain% of the time.
3344 if ((jiffies % DEF_TIMESLICE) >
3345 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3346 ret = 1;
3347 } else {
3348 if (smt_curr->static_prio < p->static_prio &&
3349 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3350 smt_slice(smt_curr, sd) > task_timeslice(p))
3351 ret = 1;
3353 unlock:
3354 spin_unlock(&smt_rq->lock);
3356 return ret;
3358 #else
3359 static inline void wake_sleeping_dependent(int this_cpu)
3362 static inline int
3363 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3365 return 0;
3367 #endif
3369 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3371 void fastcall add_preempt_count(int val)
3374 * Underflow?
3376 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3377 return;
3378 preempt_count() += val;
3380 * Spinlock count overflowing soon?
3382 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3383 PREEMPT_MASK - 10);
3385 EXPORT_SYMBOL(add_preempt_count);
3387 void fastcall sub_preempt_count(int val)
3390 * Underflow?
3392 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3393 return;
3395 * Is the spinlock portion underflowing?
3397 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3398 !(preempt_count() & PREEMPT_MASK)))
3399 return;
3401 preempt_count() -= val;
3403 EXPORT_SYMBOL(sub_preempt_count);
3405 #endif
3407 static inline int interactive_sleep(enum sleep_type sleep_type)
3409 return (sleep_type == SLEEP_INTERACTIVE ||
3410 sleep_type == SLEEP_INTERRUPTED);
3414 * schedule() is the main scheduler function.
3416 asmlinkage void __sched schedule(void)
3418 struct task_struct *prev, *next;
3419 struct prio_array *array;
3420 struct list_head *queue;
3421 unsigned long long now;
3422 unsigned long run_time;
3423 int cpu, idx, new_prio;
3424 long *switch_count;
3425 struct rq *rq;
3428 * Test if we are atomic. Since do_exit() needs to call into
3429 * schedule() atomically, we ignore that path for now.
3430 * Otherwise, whine if we are scheduling when we should not be.
3432 if (unlikely(in_atomic() && !current->exit_state)) {
3433 printk(KERN_ERR "BUG: scheduling while atomic: "
3434 "%s/0x%08x/%d\n",
3435 current->comm, preempt_count(), current->pid);
3436 debug_show_held_locks(current);
3437 if (irqs_disabled())
3438 print_irqtrace_events(current);
3439 dump_stack();
3441 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3443 need_resched:
3444 preempt_disable();
3445 prev = current;
3446 release_kernel_lock(prev);
3447 need_resched_nonpreemptible:
3448 rq = this_rq();
3451 * The idle thread is not allowed to schedule!
3452 * Remove this check after it has been exercised a bit.
3454 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3455 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3456 dump_stack();
3459 schedstat_inc(rq, sched_cnt);
3460 now = sched_clock();
3461 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3462 run_time = now - prev->timestamp;
3463 if (unlikely((long long)(now - prev->timestamp) < 0))
3464 run_time = 0;
3465 } else
3466 run_time = NS_MAX_SLEEP_AVG;
3469 * Tasks charged proportionately less run_time at high sleep_avg to
3470 * delay them losing their interactive status
3472 run_time /= (CURRENT_BONUS(prev) ? : 1);
3474 spin_lock_irq(&rq->lock);
3476 switch_count = &prev->nivcsw;
3477 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3478 switch_count = &prev->nvcsw;
3479 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3480 unlikely(signal_pending(prev))))
3481 prev->state = TASK_RUNNING;
3482 else {
3483 if (prev->state == TASK_UNINTERRUPTIBLE)
3484 rq->nr_uninterruptible++;
3485 deactivate_task(prev, rq);
3489 cpu = smp_processor_id();
3490 if (unlikely(!rq->nr_running)) {
3491 idle_balance(cpu, rq);
3492 if (!rq->nr_running) {
3493 next = rq->idle;
3494 rq->expired_timestamp = 0;
3495 wake_sleeping_dependent(cpu);
3496 goto switch_tasks;
3500 array = rq->active;
3501 if (unlikely(!array->nr_active)) {
3503 * Switch the active and expired arrays.
3505 schedstat_inc(rq, sched_switch);
3506 rq->active = rq->expired;
3507 rq->expired = array;
3508 array = rq->active;
3509 rq->expired_timestamp = 0;
3510 rq->best_expired_prio = MAX_PRIO;
3513 idx = sched_find_first_bit(array->bitmap);
3514 queue = array->queue + idx;
3515 next = list_entry(queue->next, struct task_struct, run_list);
3517 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3518 unsigned long long delta = now - next->timestamp;
3519 if (unlikely((long long)(now - next->timestamp) < 0))
3520 delta = 0;
3522 if (next->sleep_type == SLEEP_INTERACTIVE)
3523 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3525 array = next->array;
3526 new_prio = recalc_task_prio(next, next->timestamp + delta);
3528 if (unlikely(next->prio != new_prio)) {
3529 dequeue_task(next, array);
3530 next->prio = new_prio;
3531 enqueue_task(next, array);
3534 next->sleep_type = SLEEP_NORMAL;
3535 if (rq->nr_running == 1 && dependent_sleeper(cpu, rq, next))
3536 next = rq->idle;
3537 switch_tasks:
3538 if (next == rq->idle)
3539 schedstat_inc(rq, sched_goidle);
3540 prefetch(next);
3541 prefetch_stack(next);
3542 clear_tsk_need_resched(prev);
3543 rcu_qsctr_inc(task_cpu(prev));
3545 update_cpu_clock(prev, rq, now);
3547 prev->sleep_avg -= run_time;
3548 if ((long)prev->sleep_avg <= 0)
3549 prev->sleep_avg = 0;
3550 prev->timestamp = prev->last_ran = now;
3552 sched_info_switch(prev, next);
3553 if (likely(prev != next)) {
3554 next->timestamp = next->last_ran = now;
3555 rq->nr_switches++;
3556 rq->curr = next;
3557 ++*switch_count;
3559 prepare_task_switch(rq, next);
3560 prev = context_switch(rq, prev, next);
3561 barrier();
3563 * this_rq must be evaluated again because prev may have moved
3564 * CPUs since it called schedule(), thus the 'rq' on its stack
3565 * frame will be invalid.
3567 finish_task_switch(this_rq(), prev);
3568 } else
3569 spin_unlock_irq(&rq->lock);
3571 prev = current;
3572 if (unlikely(reacquire_kernel_lock(prev) < 0))
3573 goto need_resched_nonpreemptible;
3574 preempt_enable_no_resched();
3575 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3576 goto need_resched;
3578 EXPORT_SYMBOL(schedule);
3580 #ifdef CONFIG_PREEMPT
3582 * this is the entry point to schedule() from in-kernel preemption
3583 * off of preempt_enable. Kernel preemptions off return from interrupt
3584 * occur there and call schedule directly.
3586 asmlinkage void __sched preempt_schedule(void)
3588 struct thread_info *ti = current_thread_info();
3589 #ifdef CONFIG_PREEMPT_BKL
3590 struct task_struct *task = current;
3591 int saved_lock_depth;
3592 #endif
3594 * If there is a non-zero preempt_count or interrupts are disabled,
3595 * we do not want to preempt the current task. Just return..
3597 if (likely(ti->preempt_count || irqs_disabled()))
3598 return;
3600 need_resched:
3601 add_preempt_count(PREEMPT_ACTIVE);
3603 * We keep the big kernel semaphore locked, but we
3604 * clear ->lock_depth so that schedule() doesnt
3605 * auto-release the semaphore:
3607 #ifdef CONFIG_PREEMPT_BKL
3608 saved_lock_depth = task->lock_depth;
3609 task->lock_depth = -1;
3610 #endif
3611 schedule();
3612 #ifdef CONFIG_PREEMPT_BKL
3613 task->lock_depth = saved_lock_depth;
3614 #endif
3615 sub_preempt_count(PREEMPT_ACTIVE);
3617 /* we could miss a preemption opportunity between schedule and now */
3618 barrier();
3619 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3620 goto need_resched;
3622 EXPORT_SYMBOL(preempt_schedule);
3625 * this is the entry point to schedule() from kernel preemption
3626 * off of irq context.
3627 * Note, that this is called and return with irqs disabled. This will
3628 * protect us against recursive calling from irq.
3630 asmlinkage void __sched preempt_schedule_irq(void)
3632 struct thread_info *ti = current_thread_info();
3633 #ifdef CONFIG_PREEMPT_BKL
3634 struct task_struct *task = current;
3635 int saved_lock_depth;
3636 #endif
3637 /* Catch callers which need to be fixed */
3638 BUG_ON(ti->preempt_count || !irqs_disabled());
3640 need_resched:
3641 add_preempt_count(PREEMPT_ACTIVE);
3643 * We keep the big kernel semaphore locked, but we
3644 * clear ->lock_depth so that schedule() doesnt
3645 * auto-release the semaphore:
3647 #ifdef CONFIG_PREEMPT_BKL
3648 saved_lock_depth = task->lock_depth;
3649 task->lock_depth = -1;
3650 #endif
3651 local_irq_enable();
3652 schedule();
3653 local_irq_disable();
3654 #ifdef CONFIG_PREEMPT_BKL
3655 task->lock_depth = saved_lock_depth;
3656 #endif
3657 sub_preempt_count(PREEMPT_ACTIVE);
3659 /* we could miss a preemption opportunity between schedule and now */
3660 barrier();
3661 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3662 goto need_resched;
3665 #endif /* CONFIG_PREEMPT */
3667 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3668 void *key)
3670 return try_to_wake_up(curr->private, mode, sync);
3672 EXPORT_SYMBOL(default_wake_function);
3675 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3676 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3677 * number) then we wake all the non-exclusive tasks and one exclusive task.
3679 * There are circumstances in which we can try to wake a task which has already
3680 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3681 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3683 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3684 int nr_exclusive, int sync, void *key)
3686 struct list_head *tmp, *next;
3688 list_for_each_safe(tmp, next, &q->task_list) {
3689 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3690 unsigned flags = curr->flags;
3692 if (curr->func(curr, mode, sync, key) &&
3693 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3694 break;
3699 * __wake_up - wake up threads blocked on a waitqueue.
3700 * @q: the waitqueue
3701 * @mode: which threads
3702 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3703 * @key: is directly passed to the wakeup function
3705 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3706 int nr_exclusive, void *key)
3708 unsigned long flags;
3710 spin_lock_irqsave(&q->lock, flags);
3711 __wake_up_common(q, mode, nr_exclusive, 0, key);
3712 spin_unlock_irqrestore(&q->lock, flags);
3714 EXPORT_SYMBOL(__wake_up);
3717 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3719 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3721 __wake_up_common(q, mode, 1, 0, NULL);
3725 * __wake_up_sync - wake up threads blocked on a waitqueue.
3726 * @q: the waitqueue
3727 * @mode: which threads
3728 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3730 * The sync wakeup differs that the waker knows that it will schedule
3731 * away soon, so while the target thread will be woken up, it will not
3732 * be migrated to another CPU - ie. the two threads are 'synchronized'
3733 * with each other. This can prevent needless bouncing between CPUs.
3735 * On UP it can prevent extra preemption.
3737 void fastcall
3738 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3740 unsigned long flags;
3741 int sync = 1;
3743 if (unlikely(!q))
3744 return;
3746 if (unlikely(!nr_exclusive))
3747 sync = 0;
3749 spin_lock_irqsave(&q->lock, flags);
3750 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3751 spin_unlock_irqrestore(&q->lock, flags);
3753 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3755 void fastcall complete(struct completion *x)
3757 unsigned long flags;
3759 spin_lock_irqsave(&x->wait.lock, flags);
3760 x->done++;
3761 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3762 1, 0, NULL);
3763 spin_unlock_irqrestore(&x->wait.lock, flags);
3765 EXPORT_SYMBOL(complete);
3767 void fastcall complete_all(struct completion *x)
3769 unsigned long flags;
3771 spin_lock_irqsave(&x->wait.lock, flags);
3772 x->done += UINT_MAX/2;
3773 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3774 0, 0, NULL);
3775 spin_unlock_irqrestore(&x->wait.lock, flags);
3777 EXPORT_SYMBOL(complete_all);
3779 void fastcall __sched wait_for_completion(struct completion *x)
3781 might_sleep();
3783 spin_lock_irq(&x->wait.lock);
3784 if (!x->done) {
3785 DECLARE_WAITQUEUE(wait, current);
3787 wait.flags |= WQ_FLAG_EXCLUSIVE;
3788 __add_wait_queue_tail(&x->wait, &wait);
3789 do {
3790 __set_current_state(TASK_UNINTERRUPTIBLE);
3791 spin_unlock_irq(&x->wait.lock);
3792 schedule();
3793 spin_lock_irq(&x->wait.lock);
3794 } while (!x->done);
3795 __remove_wait_queue(&x->wait, &wait);
3797 x->done--;
3798 spin_unlock_irq(&x->wait.lock);
3800 EXPORT_SYMBOL(wait_for_completion);
3802 unsigned long fastcall __sched
3803 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3805 might_sleep();
3807 spin_lock_irq(&x->wait.lock);
3808 if (!x->done) {
3809 DECLARE_WAITQUEUE(wait, current);
3811 wait.flags |= WQ_FLAG_EXCLUSIVE;
3812 __add_wait_queue_tail(&x->wait, &wait);
3813 do {
3814 __set_current_state(TASK_UNINTERRUPTIBLE);
3815 spin_unlock_irq(&x->wait.lock);
3816 timeout = schedule_timeout(timeout);
3817 spin_lock_irq(&x->wait.lock);
3818 if (!timeout) {
3819 __remove_wait_queue(&x->wait, &wait);
3820 goto out;
3822 } while (!x->done);
3823 __remove_wait_queue(&x->wait, &wait);
3825 x->done--;
3826 out:
3827 spin_unlock_irq(&x->wait.lock);
3828 return timeout;
3830 EXPORT_SYMBOL(wait_for_completion_timeout);
3832 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3834 int ret = 0;
3836 might_sleep();
3838 spin_lock_irq(&x->wait.lock);
3839 if (!x->done) {
3840 DECLARE_WAITQUEUE(wait, current);
3842 wait.flags |= WQ_FLAG_EXCLUSIVE;
3843 __add_wait_queue_tail(&x->wait, &wait);
3844 do {
3845 if (signal_pending(current)) {
3846 ret = -ERESTARTSYS;
3847 __remove_wait_queue(&x->wait, &wait);
3848 goto out;
3850 __set_current_state(TASK_INTERRUPTIBLE);
3851 spin_unlock_irq(&x->wait.lock);
3852 schedule();
3853 spin_lock_irq(&x->wait.lock);
3854 } while (!x->done);
3855 __remove_wait_queue(&x->wait, &wait);
3857 x->done--;
3858 out:
3859 spin_unlock_irq(&x->wait.lock);
3861 return ret;
3863 EXPORT_SYMBOL(wait_for_completion_interruptible);
3865 unsigned long fastcall __sched
3866 wait_for_completion_interruptible_timeout(struct completion *x,
3867 unsigned long timeout)
3869 might_sleep();
3871 spin_lock_irq(&x->wait.lock);
3872 if (!x->done) {
3873 DECLARE_WAITQUEUE(wait, current);
3875 wait.flags |= WQ_FLAG_EXCLUSIVE;
3876 __add_wait_queue_tail(&x->wait, &wait);
3877 do {
3878 if (signal_pending(current)) {
3879 timeout = -ERESTARTSYS;
3880 __remove_wait_queue(&x->wait, &wait);
3881 goto out;
3883 __set_current_state(TASK_INTERRUPTIBLE);
3884 spin_unlock_irq(&x->wait.lock);
3885 timeout = schedule_timeout(timeout);
3886 spin_lock_irq(&x->wait.lock);
3887 if (!timeout) {
3888 __remove_wait_queue(&x->wait, &wait);
3889 goto out;
3891 } while (!x->done);
3892 __remove_wait_queue(&x->wait, &wait);
3894 x->done--;
3895 out:
3896 spin_unlock_irq(&x->wait.lock);
3897 return timeout;
3899 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3902 #define SLEEP_ON_VAR \
3903 unsigned long flags; \
3904 wait_queue_t wait; \
3905 init_waitqueue_entry(&wait, current);
3907 #define SLEEP_ON_HEAD \
3908 spin_lock_irqsave(&q->lock,flags); \
3909 __add_wait_queue(q, &wait); \
3910 spin_unlock(&q->lock);
3912 #define SLEEP_ON_TAIL \
3913 spin_lock_irq(&q->lock); \
3914 __remove_wait_queue(q, &wait); \
3915 spin_unlock_irqrestore(&q->lock, flags);
3917 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3919 SLEEP_ON_VAR
3921 current->state = TASK_INTERRUPTIBLE;
3923 SLEEP_ON_HEAD
3924 schedule();
3925 SLEEP_ON_TAIL
3927 EXPORT_SYMBOL(interruptible_sleep_on);
3929 long fastcall __sched
3930 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3932 SLEEP_ON_VAR
3934 current->state = TASK_INTERRUPTIBLE;
3936 SLEEP_ON_HEAD
3937 timeout = schedule_timeout(timeout);
3938 SLEEP_ON_TAIL
3940 return timeout;
3942 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3944 void fastcall __sched sleep_on(wait_queue_head_t *q)
3946 SLEEP_ON_VAR
3948 current->state = TASK_UNINTERRUPTIBLE;
3950 SLEEP_ON_HEAD
3951 schedule();
3952 SLEEP_ON_TAIL
3954 EXPORT_SYMBOL(sleep_on);
3956 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3958 SLEEP_ON_VAR
3960 current->state = TASK_UNINTERRUPTIBLE;
3962 SLEEP_ON_HEAD
3963 timeout = schedule_timeout(timeout);
3964 SLEEP_ON_TAIL
3966 return timeout;
3969 EXPORT_SYMBOL(sleep_on_timeout);
3971 #ifdef CONFIG_RT_MUTEXES
3974 * rt_mutex_setprio - set the current priority of a task
3975 * @p: task
3976 * @prio: prio value (kernel-internal form)
3978 * This function changes the 'effective' priority of a task. It does
3979 * not touch ->normal_prio like __setscheduler().
3981 * Used by the rt_mutex code to implement priority inheritance logic.
3983 void rt_mutex_setprio(struct task_struct *p, int prio)
3985 struct prio_array *array;
3986 unsigned long flags;
3987 struct rq *rq;
3988 int oldprio;
3990 BUG_ON(prio < 0 || prio > MAX_PRIO);
3992 rq = task_rq_lock(p, &flags);
3994 oldprio = p->prio;
3995 array = p->array;
3996 if (array)
3997 dequeue_task(p, array);
3998 p->prio = prio;
4000 if (array) {
4002 * If changing to an RT priority then queue it
4003 * in the active array!
4005 if (rt_task(p))
4006 array = rq->active;
4007 enqueue_task(p, array);
4009 * Reschedule if we are currently running on this runqueue and
4010 * our priority decreased, or if we are not currently running on
4011 * this runqueue and our priority is higher than the current's
4013 if (task_running(rq, p)) {
4014 if (p->prio > oldprio)
4015 resched_task(rq->curr);
4016 } else if (TASK_PREEMPTS_CURR(p, rq))
4017 resched_task(rq->curr);
4019 task_rq_unlock(rq, &flags);
4022 #endif
4024 void set_user_nice(struct task_struct *p, long nice)
4026 struct prio_array *array;
4027 int old_prio, delta;
4028 unsigned long flags;
4029 struct rq *rq;
4031 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4032 return;
4034 * We have to be careful, if called from sys_setpriority(),
4035 * the task might be in the middle of scheduling on another CPU.
4037 rq = task_rq_lock(p, &flags);
4039 * The RT priorities are set via sched_setscheduler(), but we still
4040 * allow the 'normal' nice value to be set - but as expected
4041 * it wont have any effect on scheduling until the task is
4042 * not SCHED_NORMAL/SCHED_BATCH:
4044 if (has_rt_policy(p)) {
4045 p->static_prio = NICE_TO_PRIO(nice);
4046 goto out_unlock;
4048 array = p->array;
4049 if (array) {
4050 dequeue_task(p, array);
4051 dec_raw_weighted_load(rq, p);
4054 p->static_prio = NICE_TO_PRIO(nice);
4055 set_load_weight(p);
4056 old_prio = p->prio;
4057 p->prio = effective_prio(p);
4058 delta = p->prio - old_prio;
4060 if (array) {
4061 enqueue_task(p, array);
4062 inc_raw_weighted_load(rq, p);
4064 * If the task increased its priority or is running and
4065 * lowered its priority, then reschedule its CPU:
4067 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4068 resched_task(rq->curr);
4070 out_unlock:
4071 task_rq_unlock(rq, &flags);
4073 EXPORT_SYMBOL(set_user_nice);
4076 * can_nice - check if a task can reduce its nice value
4077 * @p: task
4078 * @nice: nice value
4080 int can_nice(const struct task_struct *p, const int nice)
4082 /* convert nice value [19,-20] to rlimit style value [1,40] */
4083 int nice_rlim = 20 - nice;
4085 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4086 capable(CAP_SYS_NICE));
4089 #ifdef __ARCH_WANT_SYS_NICE
4092 * sys_nice - change the priority of the current process.
4093 * @increment: priority increment
4095 * sys_setpriority is a more generic, but much slower function that
4096 * does similar things.
4098 asmlinkage long sys_nice(int increment)
4100 long nice, retval;
4103 * Setpriority might change our priority at the same moment.
4104 * We don't have to worry. Conceptually one call occurs first
4105 * and we have a single winner.
4107 if (increment < -40)
4108 increment = -40;
4109 if (increment > 40)
4110 increment = 40;
4112 nice = PRIO_TO_NICE(current->static_prio) + increment;
4113 if (nice < -20)
4114 nice = -20;
4115 if (nice > 19)
4116 nice = 19;
4118 if (increment < 0 && !can_nice(current, nice))
4119 return -EPERM;
4121 retval = security_task_setnice(current, nice);
4122 if (retval)
4123 return retval;
4125 set_user_nice(current, nice);
4126 return 0;
4129 #endif
4132 * task_prio - return the priority value of a given task.
4133 * @p: the task in question.
4135 * This is the priority value as seen by users in /proc.
4136 * RT tasks are offset by -200. Normal tasks are centered
4137 * around 0, value goes from -16 to +15.
4139 int task_prio(const struct task_struct *p)
4141 return p->prio - MAX_RT_PRIO;
4145 * task_nice - return the nice value of a given task.
4146 * @p: the task in question.
4148 int task_nice(const struct task_struct *p)
4150 return TASK_NICE(p);
4152 EXPORT_SYMBOL_GPL(task_nice);
4155 * idle_cpu - is a given cpu idle currently?
4156 * @cpu: the processor in question.
4158 int idle_cpu(int cpu)
4160 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4164 * idle_task - return the idle task for a given cpu.
4165 * @cpu: the processor in question.
4167 struct task_struct *idle_task(int cpu)
4169 return cpu_rq(cpu)->idle;
4173 * find_process_by_pid - find a process with a matching PID value.
4174 * @pid: the pid in question.
4176 static inline struct task_struct *find_process_by_pid(pid_t pid)
4178 return pid ? find_task_by_pid(pid) : current;
4181 /* Actually do priority change: must hold rq lock. */
4182 static void __setscheduler(struct task_struct *p, int policy, int prio)
4184 BUG_ON(p->array);
4186 p->policy = policy;
4187 p->rt_priority = prio;
4188 p->normal_prio = normal_prio(p);
4189 /* we are holding p->pi_lock already */
4190 p->prio = rt_mutex_getprio(p);
4192 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4194 if (policy == SCHED_BATCH)
4195 p->sleep_avg = 0;
4196 set_load_weight(p);
4200 * sched_setscheduler - change the scheduling policy and/or RT priority of
4201 * a thread.
4202 * @p: the task in question.
4203 * @policy: new policy.
4204 * @param: structure containing the new RT priority.
4206 * NOTE: the task may be already dead
4208 int sched_setscheduler(struct task_struct *p, int policy,
4209 struct sched_param *param)
4211 int retval, oldprio, oldpolicy = -1;
4212 struct prio_array *array;
4213 unsigned long flags;
4214 struct rq *rq;
4216 /* may grab non-irq protected spin_locks */
4217 BUG_ON(in_interrupt());
4218 recheck:
4219 /* double check policy once rq lock held */
4220 if (policy < 0)
4221 policy = oldpolicy = p->policy;
4222 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4223 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4224 return -EINVAL;
4226 * Valid priorities for SCHED_FIFO and SCHED_RR are
4227 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4228 * SCHED_BATCH is 0.
4230 if (param->sched_priority < 0 ||
4231 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4232 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4233 return -EINVAL;
4234 if (is_rt_policy(policy) != (param->sched_priority != 0))
4235 return -EINVAL;
4238 * Allow unprivileged RT tasks to decrease priority:
4240 if (!capable(CAP_SYS_NICE)) {
4241 if (is_rt_policy(policy)) {
4242 unsigned long rlim_rtprio;
4243 unsigned long flags;
4245 if (!lock_task_sighand(p, &flags))
4246 return -ESRCH;
4247 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4248 unlock_task_sighand(p, &flags);
4250 /* can't set/change the rt policy */
4251 if (policy != p->policy && !rlim_rtprio)
4252 return -EPERM;
4254 /* can't increase priority */
4255 if (param->sched_priority > p->rt_priority &&
4256 param->sched_priority > rlim_rtprio)
4257 return -EPERM;
4260 /* can't change other user's priorities */
4261 if ((current->euid != p->euid) &&
4262 (current->euid != p->uid))
4263 return -EPERM;
4266 retval = security_task_setscheduler(p, policy, param);
4267 if (retval)
4268 return retval;
4270 * make sure no PI-waiters arrive (or leave) while we are
4271 * changing the priority of the task:
4273 spin_lock_irqsave(&p->pi_lock, flags);
4275 * To be able to change p->policy safely, the apropriate
4276 * runqueue lock must be held.
4278 rq = __task_rq_lock(p);
4279 /* recheck policy now with rq lock held */
4280 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4281 policy = oldpolicy = -1;
4282 __task_rq_unlock(rq);
4283 spin_unlock_irqrestore(&p->pi_lock, flags);
4284 goto recheck;
4286 array = p->array;
4287 if (array)
4288 deactivate_task(p, rq);
4289 oldprio = p->prio;
4290 __setscheduler(p, policy, param->sched_priority);
4291 if (array) {
4292 __activate_task(p, rq);
4294 * Reschedule if we are currently running on this runqueue and
4295 * our priority decreased, or if we are not currently running on
4296 * this runqueue and our priority is higher than the current's
4298 if (task_running(rq, p)) {
4299 if (p->prio > oldprio)
4300 resched_task(rq->curr);
4301 } else if (TASK_PREEMPTS_CURR(p, rq))
4302 resched_task(rq->curr);
4304 __task_rq_unlock(rq);
4305 spin_unlock_irqrestore(&p->pi_lock, flags);
4307 rt_mutex_adjust_pi(p);
4309 return 0;
4311 EXPORT_SYMBOL_GPL(sched_setscheduler);
4313 static int
4314 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4316 struct sched_param lparam;
4317 struct task_struct *p;
4318 int retval;
4320 if (!param || pid < 0)
4321 return -EINVAL;
4322 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4323 return -EFAULT;
4325 rcu_read_lock();
4326 retval = -ESRCH;
4327 p = find_process_by_pid(pid);
4328 if (p != NULL)
4329 retval = sched_setscheduler(p, policy, &lparam);
4330 rcu_read_unlock();
4332 return retval;
4336 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4337 * @pid: the pid in question.
4338 * @policy: new policy.
4339 * @param: structure containing the new RT priority.
4341 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4342 struct sched_param __user *param)
4344 /* negative values for policy are not valid */
4345 if (policy < 0)
4346 return -EINVAL;
4348 return do_sched_setscheduler(pid, policy, param);
4352 * sys_sched_setparam - set/change the RT priority of a thread
4353 * @pid: the pid in question.
4354 * @param: structure containing the new RT priority.
4356 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4358 return do_sched_setscheduler(pid, -1, param);
4362 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4363 * @pid: the pid in question.
4365 asmlinkage long sys_sched_getscheduler(pid_t pid)
4367 struct task_struct *p;
4368 int retval = -EINVAL;
4370 if (pid < 0)
4371 goto out_nounlock;
4373 retval = -ESRCH;
4374 read_lock(&tasklist_lock);
4375 p = find_process_by_pid(pid);
4376 if (p) {
4377 retval = security_task_getscheduler(p);
4378 if (!retval)
4379 retval = p->policy;
4381 read_unlock(&tasklist_lock);
4383 out_nounlock:
4384 return retval;
4388 * sys_sched_getscheduler - get the RT priority of a thread
4389 * @pid: the pid in question.
4390 * @param: structure containing the RT priority.
4392 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4394 struct sched_param lp;
4395 struct task_struct *p;
4396 int retval = -EINVAL;
4398 if (!param || pid < 0)
4399 goto out_nounlock;
4401 read_lock(&tasklist_lock);
4402 p = find_process_by_pid(pid);
4403 retval = -ESRCH;
4404 if (!p)
4405 goto out_unlock;
4407 retval = security_task_getscheduler(p);
4408 if (retval)
4409 goto out_unlock;
4411 lp.sched_priority = p->rt_priority;
4412 read_unlock(&tasklist_lock);
4415 * This one might sleep, we cannot do it with a spinlock held ...
4417 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4419 out_nounlock:
4420 return retval;
4422 out_unlock:
4423 read_unlock(&tasklist_lock);
4424 return retval;
4427 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4429 cpumask_t cpus_allowed;
4430 struct task_struct *p;
4431 int retval;
4433 lock_cpu_hotplug();
4434 read_lock(&tasklist_lock);
4436 p = find_process_by_pid(pid);
4437 if (!p) {
4438 read_unlock(&tasklist_lock);
4439 unlock_cpu_hotplug();
4440 return -ESRCH;
4444 * It is not safe to call set_cpus_allowed with the
4445 * tasklist_lock held. We will bump the task_struct's
4446 * usage count and then drop tasklist_lock.
4448 get_task_struct(p);
4449 read_unlock(&tasklist_lock);
4451 retval = -EPERM;
4452 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4453 !capable(CAP_SYS_NICE))
4454 goto out_unlock;
4456 retval = security_task_setscheduler(p, 0, NULL);
4457 if (retval)
4458 goto out_unlock;
4460 cpus_allowed = cpuset_cpus_allowed(p);
4461 cpus_and(new_mask, new_mask, cpus_allowed);
4462 retval = set_cpus_allowed(p, new_mask);
4464 out_unlock:
4465 put_task_struct(p);
4466 unlock_cpu_hotplug();
4467 return retval;
4470 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4471 cpumask_t *new_mask)
4473 if (len < sizeof(cpumask_t)) {
4474 memset(new_mask, 0, sizeof(cpumask_t));
4475 } else if (len > sizeof(cpumask_t)) {
4476 len = sizeof(cpumask_t);
4478 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4482 * sys_sched_setaffinity - set the cpu affinity of a process
4483 * @pid: pid of the process
4484 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4485 * @user_mask_ptr: user-space pointer to the new cpu mask
4487 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4488 unsigned long __user *user_mask_ptr)
4490 cpumask_t new_mask;
4491 int retval;
4493 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4494 if (retval)
4495 return retval;
4497 return sched_setaffinity(pid, new_mask);
4501 * Represents all cpu's present in the system
4502 * In systems capable of hotplug, this map could dynamically grow
4503 * as new cpu's are detected in the system via any platform specific
4504 * method, such as ACPI for e.g.
4507 cpumask_t cpu_present_map __read_mostly;
4508 EXPORT_SYMBOL(cpu_present_map);
4510 #ifndef CONFIG_SMP
4511 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4512 EXPORT_SYMBOL(cpu_online_map);
4514 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4515 EXPORT_SYMBOL(cpu_possible_map);
4516 #endif
4518 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4520 struct task_struct *p;
4521 int retval;
4523 lock_cpu_hotplug();
4524 read_lock(&tasklist_lock);
4526 retval = -ESRCH;
4527 p = find_process_by_pid(pid);
4528 if (!p)
4529 goto out_unlock;
4531 retval = security_task_getscheduler(p);
4532 if (retval)
4533 goto out_unlock;
4535 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4537 out_unlock:
4538 read_unlock(&tasklist_lock);
4539 unlock_cpu_hotplug();
4540 if (retval)
4541 return retval;
4543 return 0;
4547 * sys_sched_getaffinity - get the cpu affinity of a process
4548 * @pid: pid of the process
4549 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4550 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4552 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4553 unsigned long __user *user_mask_ptr)
4555 int ret;
4556 cpumask_t mask;
4558 if (len < sizeof(cpumask_t))
4559 return -EINVAL;
4561 ret = sched_getaffinity(pid, &mask);
4562 if (ret < 0)
4563 return ret;
4565 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4566 return -EFAULT;
4568 return sizeof(cpumask_t);
4572 * sys_sched_yield - yield the current processor to other threads.
4574 * this function yields the current CPU by moving the calling thread
4575 * to the expired array. If there are no other threads running on this
4576 * CPU then this function will return.
4578 asmlinkage long sys_sched_yield(void)
4580 struct rq *rq = this_rq_lock();
4581 struct prio_array *array = current->array, *target = rq->expired;
4583 schedstat_inc(rq, yld_cnt);
4585 * We implement yielding by moving the task into the expired
4586 * queue.
4588 * (special rule: RT tasks will just roundrobin in the active
4589 * array.)
4591 if (rt_task(current))
4592 target = rq->active;
4594 if (array->nr_active == 1) {
4595 schedstat_inc(rq, yld_act_empty);
4596 if (!rq->expired->nr_active)
4597 schedstat_inc(rq, yld_both_empty);
4598 } else if (!rq->expired->nr_active)
4599 schedstat_inc(rq, yld_exp_empty);
4601 if (array != target) {
4602 dequeue_task(current, array);
4603 enqueue_task(current, target);
4604 } else
4606 * requeue_task is cheaper so perform that if possible.
4608 requeue_task(current, array);
4611 * Since we are going to call schedule() anyway, there's
4612 * no need to preempt or enable interrupts:
4614 __release(rq->lock);
4615 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4616 _raw_spin_unlock(&rq->lock);
4617 preempt_enable_no_resched();
4619 schedule();
4621 return 0;
4624 static void __cond_resched(void)
4626 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4627 __might_sleep(__FILE__, __LINE__);
4628 #endif
4630 * The BKS might be reacquired before we have dropped
4631 * PREEMPT_ACTIVE, which could trigger a second
4632 * cond_resched() call.
4634 do {
4635 add_preempt_count(PREEMPT_ACTIVE);
4636 schedule();
4637 sub_preempt_count(PREEMPT_ACTIVE);
4638 } while (need_resched());
4641 int __sched cond_resched(void)
4643 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4644 system_state == SYSTEM_RUNNING) {
4645 __cond_resched();
4646 return 1;
4648 return 0;
4650 EXPORT_SYMBOL(cond_resched);
4653 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4654 * call schedule, and on return reacquire the lock.
4656 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4657 * operations here to prevent schedule() from being called twice (once via
4658 * spin_unlock(), once by hand).
4660 int cond_resched_lock(spinlock_t *lock)
4662 int ret = 0;
4664 if (need_lockbreak(lock)) {
4665 spin_unlock(lock);
4666 cpu_relax();
4667 ret = 1;
4668 spin_lock(lock);
4670 if (need_resched() && system_state == SYSTEM_RUNNING) {
4671 spin_release(&lock->dep_map, 1, _THIS_IP_);
4672 _raw_spin_unlock(lock);
4673 preempt_enable_no_resched();
4674 __cond_resched();
4675 ret = 1;
4676 spin_lock(lock);
4678 return ret;
4680 EXPORT_SYMBOL(cond_resched_lock);
4682 int __sched cond_resched_softirq(void)
4684 BUG_ON(!in_softirq());
4686 if (need_resched() && system_state == SYSTEM_RUNNING) {
4687 raw_local_irq_disable();
4688 _local_bh_enable();
4689 raw_local_irq_enable();
4690 __cond_resched();
4691 local_bh_disable();
4692 return 1;
4694 return 0;
4696 EXPORT_SYMBOL(cond_resched_softirq);
4699 * yield - yield the current processor to other threads.
4701 * this is a shortcut for kernel-space yielding - it marks the
4702 * thread runnable and calls sys_sched_yield().
4704 void __sched yield(void)
4706 set_current_state(TASK_RUNNING);
4707 sys_sched_yield();
4709 EXPORT_SYMBOL(yield);
4712 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4713 * that process accounting knows that this is a task in IO wait state.
4715 * But don't do that if it is a deliberate, throttling IO wait (this task
4716 * has set its backing_dev_info: the queue against which it should throttle)
4718 void __sched io_schedule(void)
4720 struct rq *rq = &__raw_get_cpu_var(runqueues);
4722 delayacct_blkio_start();
4723 atomic_inc(&rq->nr_iowait);
4724 schedule();
4725 atomic_dec(&rq->nr_iowait);
4726 delayacct_blkio_end();
4728 EXPORT_SYMBOL(io_schedule);
4730 long __sched io_schedule_timeout(long timeout)
4732 struct rq *rq = &__raw_get_cpu_var(runqueues);
4733 long ret;
4735 delayacct_blkio_start();
4736 atomic_inc(&rq->nr_iowait);
4737 ret = schedule_timeout(timeout);
4738 atomic_dec(&rq->nr_iowait);
4739 delayacct_blkio_end();
4740 return ret;
4744 * sys_sched_get_priority_max - return maximum RT priority.
4745 * @policy: scheduling class.
4747 * this syscall returns the maximum rt_priority that can be used
4748 * by a given scheduling class.
4750 asmlinkage long sys_sched_get_priority_max(int policy)
4752 int ret = -EINVAL;
4754 switch (policy) {
4755 case SCHED_FIFO:
4756 case SCHED_RR:
4757 ret = MAX_USER_RT_PRIO-1;
4758 break;
4759 case SCHED_NORMAL:
4760 case SCHED_BATCH:
4761 ret = 0;
4762 break;
4764 return ret;
4768 * sys_sched_get_priority_min - return minimum RT priority.
4769 * @policy: scheduling class.
4771 * this syscall returns the minimum rt_priority that can be used
4772 * by a given scheduling class.
4774 asmlinkage long sys_sched_get_priority_min(int policy)
4776 int ret = -EINVAL;
4778 switch (policy) {
4779 case SCHED_FIFO:
4780 case SCHED_RR:
4781 ret = 1;
4782 break;
4783 case SCHED_NORMAL:
4784 case SCHED_BATCH:
4785 ret = 0;
4787 return ret;
4791 * sys_sched_rr_get_interval - return the default timeslice of a process.
4792 * @pid: pid of the process.
4793 * @interval: userspace pointer to the timeslice value.
4795 * this syscall writes the default timeslice value of a given process
4796 * into the user-space timespec buffer. A value of '0' means infinity.
4798 asmlinkage
4799 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4801 struct task_struct *p;
4802 int retval = -EINVAL;
4803 struct timespec t;
4805 if (pid < 0)
4806 goto out_nounlock;
4808 retval = -ESRCH;
4809 read_lock(&tasklist_lock);
4810 p = find_process_by_pid(pid);
4811 if (!p)
4812 goto out_unlock;
4814 retval = security_task_getscheduler(p);
4815 if (retval)
4816 goto out_unlock;
4818 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4819 0 : task_timeslice(p), &t);
4820 read_unlock(&tasklist_lock);
4821 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4822 out_nounlock:
4823 return retval;
4824 out_unlock:
4825 read_unlock(&tasklist_lock);
4826 return retval;
4829 static inline struct task_struct *eldest_child(struct task_struct *p)
4831 if (list_empty(&p->children))
4832 return NULL;
4833 return list_entry(p->children.next,struct task_struct,sibling);
4836 static inline struct task_struct *older_sibling(struct task_struct *p)
4838 if (p->sibling.prev==&p->parent->children)
4839 return NULL;
4840 return list_entry(p->sibling.prev,struct task_struct,sibling);
4843 static inline struct task_struct *younger_sibling(struct task_struct *p)
4845 if (p->sibling.next==&p->parent->children)
4846 return NULL;
4847 return list_entry(p->sibling.next,struct task_struct,sibling);
4850 static const char stat_nam[] = "RSDTtZX";
4852 static void show_task(struct task_struct *p)
4854 struct task_struct *relative;
4855 unsigned long free = 0;
4856 unsigned state;
4858 state = p->state ? __ffs(p->state) + 1 : 0;
4859 printk("%-13.13s %c", p->comm,
4860 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4861 #if (BITS_PER_LONG == 32)
4862 if (state == TASK_RUNNING)
4863 printk(" running ");
4864 else
4865 printk(" %08lX ", thread_saved_pc(p));
4866 #else
4867 if (state == TASK_RUNNING)
4868 printk(" running task ");
4869 else
4870 printk(" %016lx ", thread_saved_pc(p));
4871 #endif
4872 #ifdef CONFIG_DEBUG_STACK_USAGE
4874 unsigned long *n = end_of_stack(p);
4875 while (!*n)
4876 n++;
4877 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4879 #endif
4880 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4881 if ((relative = eldest_child(p)))
4882 printk("%5d ", relative->pid);
4883 else
4884 printk(" ");
4885 if ((relative = younger_sibling(p)))
4886 printk("%7d", relative->pid);
4887 else
4888 printk(" ");
4889 if ((relative = older_sibling(p)))
4890 printk(" %5d", relative->pid);
4891 else
4892 printk(" ");
4893 if (!p->mm)
4894 printk(" (L-TLB)\n");
4895 else
4896 printk(" (NOTLB)\n");
4898 if (state != TASK_RUNNING)
4899 show_stack(p, NULL);
4902 void show_state_filter(unsigned long state_filter)
4904 struct task_struct *g, *p;
4906 #if (BITS_PER_LONG == 32)
4907 printk("\n"
4908 " free sibling\n");
4909 printk(" task PC stack pid father child younger older\n");
4910 #else
4911 printk("\n"
4912 " free sibling\n");
4913 printk(" task PC stack pid father child younger older\n");
4914 #endif
4915 read_lock(&tasklist_lock);
4916 do_each_thread(g, p) {
4918 * reset the NMI-timeout, listing all files on a slow
4919 * console might take alot of time:
4921 touch_nmi_watchdog();
4922 if (p->state & state_filter)
4923 show_task(p);
4924 } while_each_thread(g, p);
4926 read_unlock(&tasklist_lock);
4928 * Only show locks if all tasks are dumped:
4930 if (state_filter == -1)
4931 debug_show_all_locks();
4935 * init_idle - set up an idle thread for a given CPU
4936 * @idle: task in question
4937 * @cpu: cpu the idle task belongs to
4939 * NOTE: this function does not set the idle thread's NEED_RESCHED
4940 * flag, to make booting more robust.
4942 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4944 struct rq *rq = cpu_rq(cpu);
4945 unsigned long flags;
4947 idle->timestamp = sched_clock();
4948 idle->sleep_avg = 0;
4949 idle->array = NULL;
4950 idle->prio = idle->normal_prio = MAX_PRIO;
4951 idle->state = TASK_RUNNING;
4952 idle->cpus_allowed = cpumask_of_cpu(cpu);
4953 set_task_cpu(idle, cpu);
4955 spin_lock_irqsave(&rq->lock, flags);
4956 rq->curr = rq->idle = idle;
4957 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4958 idle->oncpu = 1;
4959 #endif
4960 spin_unlock_irqrestore(&rq->lock, flags);
4962 /* Set the preempt count _outside_ the spinlocks! */
4963 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4964 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4965 #else
4966 task_thread_info(idle)->preempt_count = 0;
4967 #endif
4971 * In a system that switches off the HZ timer nohz_cpu_mask
4972 * indicates which cpus entered this state. This is used
4973 * in the rcu update to wait only for active cpus. For system
4974 * which do not switch off the HZ timer nohz_cpu_mask should
4975 * always be CPU_MASK_NONE.
4977 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4979 #ifdef CONFIG_SMP
4981 * This is how migration works:
4983 * 1) we queue a struct migration_req structure in the source CPU's
4984 * runqueue and wake up that CPU's migration thread.
4985 * 2) we down() the locked semaphore => thread blocks.
4986 * 3) migration thread wakes up (implicitly it forces the migrated
4987 * thread off the CPU)
4988 * 4) it gets the migration request and checks whether the migrated
4989 * task is still in the wrong runqueue.
4990 * 5) if it's in the wrong runqueue then the migration thread removes
4991 * it and puts it into the right queue.
4992 * 6) migration thread up()s the semaphore.
4993 * 7) we wake up and the migration is done.
4997 * Change a given task's CPU affinity. Migrate the thread to a
4998 * proper CPU and schedule it away if the CPU it's executing on
4999 * is removed from the allowed bitmask.
5001 * NOTE: the caller must have a valid reference to the task, the
5002 * task must not exit() & deallocate itself prematurely. The
5003 * call is not atomic; no spinlocks may be held.
5005 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5007 struct migration_req req;
5008 unsigned long flags;
5009 struct rq *rq;
5010 int ret = 0;
5012 rq = task_rq_lock(p, &flags);
5013 if (!cpus_intersects(new_mask, cpu_online_map)) {
5014 ret = -EINVAL;
5015 goto out;
5018 p->cpus_allowed = new_mask;
5019 /* Can the task run on the task's current CPU? If so, we're done */
5020 if (cpu_isset(task_cpu(p), new_mask))
5021 goto out;
5023 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5024 /* Need help from migration thread: drop lock and wait. */
5025 task_rq_unlock(rq, &flags);
5026 wake_up_process(rq->migration_thread);
5027 wait_for_completion(&req.done);
5028 tlb_migrate_finish(p->mm);
5029 return 0;
5031 out:
5032 task_rq_unlock(rq, &flags);
5034 return ret;
5036 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5039 * Move (not current) task off this cpu, onto dest cpu. We're doing
5040 * this because either it can't run here any more (set_cpus_allowed()
5041 * away from this CPU, or CPU going down), or because we're
5042 * attempting to rebalance this task on exec (sched_exec).
5044 * So we race with normal scheduler movements, but that's OK, as long
5045 * as the task is no longer on this CPU.
5047 * Returns non-zero if task was successfully migrated.
5049 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5051 struct rq *rq_dest, *rq_src;
5052 int ret = 0;
5054 if (unlikely(cpu_is_offline(dest_cpu)))
5055 return ret;
5057 rq_src = cpu_rq(src_cpu);
5058 rq_dest = cpu_rq(dest_cpu);
5060 double_rq_lock(rq_src, rq_dest);
5061 /* Already moved. */
5062 if (task_cpu(p) != src_cpu)
5063 goto out;
5064 /* Affinity changed (again). */
5065 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5066 goto out;
5068 set_task_cpu(p, dest_cpu);
5069 if (p->array) {
5071 * Sync timestamp with rq_dest's before activating.
5072 * The same thing could be achieved by doing this step
5073 * afterwards, and pretending it was a local activate.
5074 * This way is cleaner and logically correct.
5076 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5077 + rq_dest->most_recent_timestamp;
5078 deactivate_task(p, rq_src);
5079 __activate_task(p, rq_dest);
5080 if (TASK_PREEMPTS_CURR(p, rq_dest))
5081 resched_task(rq_dest->curr);
5083 ret = 1;
5084 out:
5085 double_rq_unlock(rq_src, rq_dest);
5086 return ret;
5090 * migration_thread - this is a highprio system thread that performs
5091 * thread migration by bumping thread off CPU then 'pushing' onto
5092 * another runqueue.
5094 static int migration_thread(void *data)
5096 int cpu = (long)data;
5097 struct rq *rq;
5099 rq = cpu_rq(cpu);
5100 BUG_ON(rq->migration_thread != current);
5102 set_current_state(TASK_INTERRUPTIBLE);
5103 while (!kthread_should_stop()) {
5104 struct migration_req *req;
5105 struct list_head *head;
5107 try_to_freeze();
5109 spin_lock_irq(&rq->lock);
5111 if (cpu_is_offline(cpu)) {
5112 spin_unlock_irq(&rq->lock);
5113 goto wait_to_die;
5116 if (rq->active_balance) {
5117 active_load_balance(rq, cpu);
5118 rq->active_balance = 0;
5121 head = &rq->migration_queue;
5123 if (list_empty(head)) {
5124 spin_unlock_irq(&rq->lock);
5125 schedule();
5126 set_current_state(TASK_INTERRUPTIBLE);
5127 continue;
5129 req = list_entry(head->next, struct migration_req, list);
5130 list_del_init(head->next);
5132 spin_unlock(&rq->lock);
5133 __migrate_task(req->task, cpu, req->dest_cpu);
5134 local_irq_enable();
5136 complete(&req->done);
5138 __set_current_state(TASK_RUNNING);
5139 return 0;
5141 wait_to_die:
5142 /* Wait for kthread_stop */
5143 set_current_state(TASK_INTERRUPTIBLE);
5144 while (!kthread_should_stop()) {
5145 schedule();
5146 set_current_state(TASK_INTERRUPTIBLE);
5148 __set_current_state(TASK_RUNNING);
5149 return 0;
5152 #ifdef CONFIG_HOTPLUG_CPU
5154 * Figure out where task on dead CPU should go, use force if neccessary.
5155 * NOTE: interrupts should be disabled by the caller
5157 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5159 unsigned long flags;
5160 cpumask_t mask;
5161 struct rq *rq;
5162 int dest_cpu;
5164 restart:
5165 /* On same node? */
5166 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5167 cpus_and(mask, mask, p->cpus_allowed);
5168 dest_cpu = any_online_cpu(mask);
5170 /* On any allowed CPU? */
5171 if (dest_cpu == NR_CPUS)
5172 dest_cpu = any_online_cpu(p->cpus_allowed);
5174 /* No more Mr. Nice Guy. */
5175 if (dest_cpu == NR_CPUS) {
5176 rq = task_rq_lock(p, &flags);
5177 cpus_setall(p->cpus_allowed);
5178 dest_cpu = any_online_cpu(p->cpus_allowed);
5179 task_rq_unlock(rq, &flags);
5182 * Don't tell them about moving exiting tasks or
5183 * kernel threads (both mm NULL), since they never
5184 * leave kernel.
5186 if (p->mm && printk_ratelimit())
5187 printk(KERN_INFO "process %d (%s) no "
5188 "longer affine to cpu%d\n",
5189 p->pid, p->comm, dead_cpu);
5191 if (!__migrate_task(p, dead_cpu, dest_cpu))
5192 goto restart;
5196 * While a dead CPU has no uninterruptible tasks queued at this point,
5197 * it might still have a nonzero ->nr_uninterruptible counter, because
5198 * for performance reasons the counter is not stricly tracking tasks to
5199 * their home CPUs. So we just add the counter to another CPU's counter,
5200 * to keep the global sum constant after CPU-down:
5202 static void migrate_nr_uninterruptible(struct rq *rq_src)
5204 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5205 unsigned long flags;
5207 local_irq_save(flags);
5208 double_rq_lock(rq_src, rq_dest);
5209 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5210 rq_src->nr_uninterruptible = 0;
5211 double_rq_unlock(rq_src, rq_dest);
5212 local_irq_restore(flags);
5215 /* Run through task list and migrate tasks from the dead cpu. */
5216 static void migrate_live_tasks(int src_cpu)
5218 struct task_struct *p, *t;
5220 write_lock_irq(&tasklist_lock);
5222 do_each_thread(t, p) {
5223 if (p == current)
5224 continue;
5226 if (task_cpu(p) == src_cpu)
5227 move_task_off_dead_cpu(src_cpu, p);
5228 } while_each_thread(t, p);
5230 write_unlock_irq(&tasklist_lock);
5233 /* Schedules idle task to be the next runnable task on current CPU.
5234 * It does so by boosting its priority to highest possible and adding it to
5235 * the _front_ of the runqueue. Used by CPU offline code.
5237 void sched_idle_next(void)
5239 int this_cpu = smp_processor_id();
5240 struct rq *rq = cpu_rq(this_cpu);
5241 struct task_struct *p = rq->idle;
5242 unsigned long flags;
5244 /* cpu has to be offline */
5245 BUG_ON(cpu_online(this_cpu));
5248 * Strictly not necessary since rest of the CPUs are stopped by now
5249 * and interrupts disabled on the current cpu.
5251 spin_lock_irqsave(&rq->lock, flags);
5253 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5255 /* Add idle task to the _front_ of its priority queue: */
5256 __activate_idle_task(p, rq);
5258 spin_unlock_irqrestore(&rq->lock, flags);
5262 * Ensures that the idle task is using init_mm right before its cpu goes
5263 * offline.
5265 void idle_task_exit(void)
5267 struct mm_struct *mm = current->active_mm;
5269 BUG_ON(cpu_online(smp_processor_id()));
5271 if (mm != &init_mm)
5272 switch_mm(mm, &init_mm, current);
5273 mmdrop(mm);
5276 /* called under rq->lock with disabled interrupts */
5277 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5279 struct rq *rq = cpu_rq(dead_cpu);
5281 /* Must be exiting, otherwise would be on tasklist. */
5282 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5284 /* Cannot have done final schedule yet: would have vanished. */
5285 BUG_ON(p->state == TASK_DEAD);
5287 get_task_struct(p);
5290 * Drop lock around migration; if someone else moves it,
5291 * that's OK. No task can be added to this CPU, so iteration is
5292 * fine.
5293 * NOTE: interrupts should be left disabled --dev@
5295 spin_unlock(&rq->lock);
5296 move_task_off_dead_cpu(dead_cpu, p);
5297 spin_lock(&rq->lock);
5299 put_task_struct(p);
5302 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5303 static void migrate_dead_tasks(unsigned int dead_cpu)
5305 struct rq *rq = cpu_rq(dead_cpu);
5306 unsigned int arr, i;
5308 for (arr = 0; arr < 2; arr++) {
5309 for (i = 0; i < MAX_PRIO; i++) {
5310 struct list_head *list = &rq->arrays[arr].queue[i];
5312 while (!list_empty(list))
5313 migrate_dead(dead_cpu, list_entry(list->next,
5314 struct task_struct, run_list));
5318 #endif /* CONFIG_HOTPLUG_CPU */
5321 * migration_call - callback that gets triggered when a CPU is added.
5322 * Here we can start up the necessary migration thread for the new CPU.
5324 static int __cpuinit
5325 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5327 struct task_struct *p;
5328 int cpu = (long)hcpu;
5329 unsigned long flags;
5330 struct rq *rq;
5332 switch (action) {
5333 case CPU_UP_PREPARE:
5334 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5335 if (IS_ERR(p))
5336 return NOTIFY_BAD;
5337 p->flags |= PF_NOFREEZE;
5338 kthread_bind(p, cpu);
5339 /* Must be high prio: stop_machine expects to yield to it. */
5340 rq = task_rq_lock(p, &flags);
5341 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5342 task_rq_unlock(rq, &flags);
5343 cpu_rq(cpu)->migration_thread = p;
5344 break;
5346 case CPU_ONLINE:
5347 /* Strictly unneccessary, as first user will wake it. */
5348 wake_up_process(cpu_rq(cpu)->migration_thread);
5349 break;
5351 #ifdef CONFIG_HOTPLUG_CPU
5352 case CPU_UP_CANCELED:
5353 if (!cpu_rq(cpu)->migration_thread)
5354 break;
5355 /* Unbind it from offline cpu so it can run. Fall thru. */
5356 kthread_bind(cpu_rq(cpu)->migration_thread,
5357 any_online_cpu(cpu_online_map));
5358 kthread_stop(cpu_rq(cpu)->migration_thread);
5359 cpu_rq(cpu)->migration_thread = NULL;
5360 break;
5362 case CPU_DEAD:
5363 migrate_live_tasks(cpu);
5364 rq = cpu_rq(cpu);
5365 kthread_stop(rq->migration_thread);
5366 rq->migration_thread = NULL;
5367 /* Idle task back to normal (off runqueue, low prio) */
5368 rq = task_rq_lock(rq->idle, &flags);
5369 deactivate_task(rq->idle, rq);
5370 rq->idle->static_prio = MAX_PRIO;
5371 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5372 migrate_dead_tasks(cpu);
5373 task_rq_unlock(rq, &flags);
5374 migrate_nr_uninterruptible(rq);
5375 BUG_ON(rq->nr_running != 0);
5377 /* No need to migrate the tasks: it was best-effort if
5378 * they didn't do lock_cpu_hotplug(). Just wake up
5379 * the requestors. */
5380 spin_lock_irq(&rq->lock);
5381 while (!list_empty(&rq->migration_queue)) {
5382 struct migration_req *req;
5384 req = list_entry(rq->migration_queue.next,
5385 struct migration_req, list);
5386 list_del_init(&req->list);
5387 complete(&req->done);
5389 spin_unlock_irq(&rq->lock);
5390 break;
5391 #endif
5393 return NOTIFY_OK;
5396 /* Register at highest priority so that task migration (migrate_all_tasks)
5397 * happens before everything else.
5399 static struct notifier_block __cpuinitdata migration_notifier = {
5400 .notifier_call = migration_call,
5401 .priority = 10
5404 int __init migration_init(void)
5406 void *cpu = (void *)(long)smp_processor_id();
5407 int err;
5409 /* Start one for the boot CPU: */
5410 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5411 BUG_ON(err == NOTIFY_BAD);
5412 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5413 register_cpu_notifier(&migration_notifier);
5415 return 0;
5417 #endif
5419 #ifdef CONFIG_SMP
5420 #undef SCHED_DOMAIN_DEBUG
5421 #ifdef SCHED_DOMAIN_DEBUG
5422 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5424 int level = 0;
5426 if (!sd) {
5427 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5428 return;
5431 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5433 do {
5434 int i;
5435 char str[NR_CPUS];
5436 struct sched_group *group = sd->groups;
5437 cpumask_t groupmask;
5439 cpumask_scnprintf(str, NR_CPUS, sd->span);
5440 cpus_clear(groupmask);
5442 printk(KERN_DEBUG);
5443 for (i = 0; i < level + 1; i++)
5444 printk(" ");
5445 printk("domain %d: ", level);
5447 if (!(sd->flags & SD_LOAD_BALANCE)) {
5448 printk("does not load-balance\n");
5449 if (sd->parent)
5450 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5451 " has parent");
5452 break;
5455 printk("span %s\n", str);
5457 if (!cpu_isset(cpu, sd->span))
5458 printk(KERN_ERR "ERROR: domain->span does not contain "
5459 "CPU%d\n", cpu);
5460 if (!cpu_isset(cpu, group->cpumask))
5461 printk(KERN_ERR "ERROR: domain->groups does not contain"
5462 " CPU%d\n", cpu);
5464 printk(KERN_DEBUG);
5465 for (i = 0; i < level + 2; i++)
5466 printk(" ");
5467 printk("groups:");
5468 do {
5469 if (!group) {
5470 printk("\n");
5471 printk(KERN_ERR "ERROR: group is NULL\n");
5472 break;
5475 if (!group->cpu_power) {
5476 printk("\n");
5477 printk(KERN_ERR "ERROR: domain->cpu_power not "
5478 "set\n");
5481 if (!cpus_weight(group->cpumask)) {
5482 printk("\n");
5483 printk(KERN_ERR "ERROR: empty group\n");
5486 if (cpus_intersects(groupmask, group->cpumask)) {
5487 printk("\n");
5488 printk(KERN_ERR "ERROR: repeated CPUs\n");
5491 cpus_or(groupmask, groupmask, group->cpumask);
5493 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5494 printk(" %s", str);
5496 group = group->next;
5497 } while (group != sd->groups);
5498 printk("\n");
5500 if (!cpus_equal(sd->span, groupmask))
5501 printk(KERN_ERR "ERROR: groups don't span "
5502 "domain->span\n");
5504 level++;
5505 sd = sd->parent;
5506 if (!sd)
5507 continue;
5509 if (!cpus_subset(groupmask, sd->span))
5510 printk(KERN_ERR "ERROR: parent span is not a superset "
5511 "of domain->span\n");
5513 } while (sd);
5515 #else
5516 # define sched_domain_debug(sd, cpu) do { } while (0)
5517 #endif
5519 static int sd_degenerate(struct sched_domain *sd)
5521 if (cpus_weight(sd->span) == 1)
5522 return 1;
5524 /* Following flags need at least 2 groups */
5525 if (sd->flags & (SD_LOAD_BALANCE |
5526 SD_BALANCE_NEWIDLE |
5527 SD_BALANCE_FORK |
5528 SD_BALANCE_EXEC |
5529 SD_SHARE_CPUPOWER |
5530 SD_SHARE_PKG_RESOURCES)) {
5531 if (sd->groups != sd->groups->next)
5532 return 0;
5535 /* Following flags don't use groups */
5536 if (sd->flags & (SD_WAKE_IDLE |
5537 SD_WAKE_AFFINE |
5538 SD_WAKE_BALANCE))
5539 return 0;
5541 return 1;
5544 static int
5545 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5547 unsigned long cflags = sd->flags, pflags = parent->flags;
5549 if (sd_degenerate(parent))
5550 return 1;
5552 if (!cpus_equal(sd->span, parent->span))
5553 return 0;
5555 /* Does parent contain flags not in child? */
5556 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5557 if (cflags & SD_WAKE_AFFINE)
5558 pflags &= ~SD_WAKE_BALANCE;
5559 /* Flags needing groups don't count if only 1 group in parent */
5560 if (parent->groups == parent->groups->next) {
5561 pflags &= ~(SD_LOAD_BALANCE |
5562 SD_BALANCE_NEWIDLE |
5563 SD_BALANCE_FORK |
5564 SD_BALANCE_EXEC |
5565 SD_SHARE_CPUPOWER |
5566 SD_SHARE_PKG_RESOURCES);
5568 if (~cflags & pflags)
5569 return 0;
5571 return 1;
5575 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5576 * hold the hotplug lock.
5578 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5580 struct rq *rq = cpu_rq(cpu);
5581 struct sched_domain *tmp;
5583 /* Remove the sched domains which do not contribute to scheduling. */
5584 for (tmp = sd; tmp; tmp = tmp->parent) {
5585 struct sched_domain *parent = tmp->parent;
5586 if (!parent)
5587 break;
5588 if (sd_parent_degenerate(tmp, parent)) {
5589 tmp->parent = parent->parent;
5590 if (parent->parent)
5591 parent->parent->child = tmp;
5595 if (sd && sd_degenerate(sd)) {
5596 sd = sd->parent;
5597 if (sd)
5598 sd->child = NULL;
5601 sched_domain_debug(sd, cpu);
5603 rcu_assign_pointer(rq->sd, sd);
5606 /* cpus with isolated domains */
5607 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5609 /* Setup the mask of cpus configured for isolated domains */
5610 static int __init isolated_cpu_setup(char *str)
5612 int ints[NR_CPUS], i;
5614 str = get_options(str, ARRAY_SIZE(ints), ints);
5615 cpus_clear(cpu_isolated_map);
5616 for (i = 1; i <= ints[0]; i++)
5617 if (ints[i] < NR_CPUS)
5618 cpu_set(ints[i], cpu_isolated_map);
5619 return 1;
5622 __setup ("isolcpus=", isolated_cpu_setup);
5625 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5626 * to a function which identifies what group(along with sched group) a CPU
5627 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5628 * (due to the fact that we keep track of groups covered with a cpumask_t).
5630 * init_sched_build_groups will build a circular linked list of the groups
5631 * covered by the given span, and will set each group's ->cpumask correctly,
5632 * and ->cpu_power to 0.
5634 static void
5635 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5636 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5637 struct sched_group **sg))
5639 struct sched_group *first = NULL, *last = NULL;
5640 cpumask_t covered = CPU_MASK_NONE;
5641 int i;
5643 for_each_cpu_mask(i, span) {
5644 struct sched_group *sg;
5645 int group = group_fn(i, cpu_map, &sg);
5646 int j;
5648 if (cpu_isset(i, covered))
5649 continue;
5651 sg->cpumask = CPU_MASK_NONE;
5652 sg->cpu_power = 0;
5654 for_each_cpu_mask(j, span) {
5655 if (group_fn(j, cpu_map, NULL) != group)
5656 continue;
5658 cpu_set(j, covered);
5659 cpu_set(j, sg->cpumask);
5661 if (!first)
5662 first = sg;
5663 if (last)
5664 last->next = sg;
5665 last = sg;
5667 last->next = first;
5670 #define SD_NODES_PER_DOMAIN 16
5673 * Self-tuning task migration cost measurement between source and target CPUs.
5675 * This is done by measuring the cost of manipulating buffers of varying
5676 * sizes. For a given buffer-size here are the steps that are taken:
5678 * 1) the source CPU reads+dirties a shared buffer
5679 * 2) the target CPU reads+dirties the same shared buffer
5681 * We measure how long they take, in the following 4 scenarios:
5683 * - source: CPU1, target: CPU2 | cost1
5684 * - source: CPU2, target: CPU1 | cost2
5685 * - source: CPU1, target: CPU1 | cost3
5686 * - source: CPU2, target: CPU2 | cost4
5688 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5689 * the cost of migration.
5691 * We then start off from a small buffer-size and iterate up to larger
5692 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5693 * doing a maximum search for the cost. (The maximum cost for a migration
5694 * normally occurs when the working set size is around the effective cache
5695 * size.)
5697 #define SEARCH_SCOPE 2
5698 #define MIN_CACHE_SIZE (64*1024U)
5699 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5700 #define ITERATIONS 1
5701 #define SIZE_THRESH 130
5702 #define COST_THRESH 130
5705 * The migration cost is a function of 'domain distance'. Domain
5706 * distance is the number of steps a CPU has to iterate down its
5707 * domain tree to share a domain with the other CPU. The farther
5708 * two CPUs are from each other, the larger the distance gets.
5710 * Note that we use the distance only to cache measurement results,
5711 * the distance value is not used numerically otherwise. When two
5712 * CPUs have the same distance it is assumed that the migration
5713 * cost is the same. (this is a simplification but quite practical)
5715 #define MAX_DOMAIN_DISTANCE 32
5717 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5718 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5720 * Architectures may override the migration cost and thus avoid
5721 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5722 * virtualized hardware:
5724 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5725 CONFIG_DEFAULT_MIGRATION_COST
5726 #else
5727 -1LL
5728 #endif
5732 * Allow override of migration cost - in units of microseconds.
5733 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5734 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5736 static int __init migration_cost_setup(char *str)
5738 int ints[MAX_DOMAIN_DISTANCE+1], i;
5740 str = get_options(str, ARRAY_SIZE(ints), ints);
5742 printk("#ints: %d\n", ints[0]);
5743 for (i = 1; i <= ints[0]; i++) {
5744 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5745 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5747 return 1;
5750 __setup ("migration_cost=", migration_cost_setup);
5753 * Global multiplier (divisor) for migration-cutoff values,
5754 * in percentiles. E.g. use a value of 150 to get 1.5 times
5755 * longer cache-hot cutoff times.
5757 * (We scale it from 100 to 128 to long long handling easier.)
5760 #define MIGRATION_FACTOR_SCALE 128
5762 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5764 static int __init setup_migration_factor(char *str)
5766 get_option(&str, &migration_factor);
5767 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5768 return 1;
5771 __setup("migration_factor=", setup_migration_factor);
5774 * Estimated distance of two CPUs, measured via the number of domains
5775 * we have to pass for the two CPUs to be in the same span:
5777 static unsigned long domain_distance(int cpu1, int cpu2)
5779 unsigned long distance = 0;
5780 struct sched_domain *sd;
5782 for_each_domain(cpu1, sd) {
5783 WARN_ON(!cpu_isset(cpu1, sd->span));
5784 if (cpu_isset(cpu2, sd->span))
5785 return distance;
5786 distance++;
5788 if (distance >= MAX_DOMAIN_DISTANCE) {
5789 WARN_ON(1);
5790 distance = MAX_DOMAIN_DISTANCE-1;
5793 return distance;
5796 static unsigned int migration_debug;
5798 static int __init setup_migration_debug(char *str)
5800 get_option(&str, &migration_debug);
5801 return 1;
5804 __setup("migration_debug=", setup_migration_debug);
5807 * Maximum cache-size that the scheduler should try to measure.
5808 * Architectures with larger caches should tune this up during
5809 * bootup. Gets used in the domain-setup code (i.e. during SMP
5810 * bootup).
5812 unsigned int max_cache_size;
5814 static int __init setup_max_cache_size(char *str)
5816 get_option(&str, &max_cache_size);
5817 return 1;
5820 __setup("max_cache_size=", setup_max_cache_size);
5823 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5824 * is the operation that is timed, so we try to generate unpredictable
5825 * cachemisses that still end up filling the L2 cache:
5827 static void touch_cache(void *__cache, unsigned long __size)
5829 unsigned long size = __size / sizeof(long);
5830 unsigned long chunk1 = size / 3;
5831 unsigned long chunk2 = 2 * size / 3;
5832 unsigned long *cache = __cache;
5833 int i;
5835 for (i = 0; i < size/6; i += 8) {
5836 switch (i % 6) {
5837 case 0: cache[i]++;
5838 case 1: cache[size-1-i]++;
5839 case 2: cache[chunk1-i]++;
5840 case 3: cache[chunk1+i]++;
5841 case 4: cache[chunk2-i]++;
5842 case 5: cache[chunk2+i]++;
5848 * Measure the cache-cost of one task migration. Returns in units of nsec.
5850 static unsigned long long
5851 measure_one(void *cache, unsigned long size, int source, int target)
5853 cpumask_t mask, saved_mask;
5854 unsigned long long t0, t1, t2, t3, cost;
5856 saved_mask = current->cpus_allowed;
5859 * Flush source caches to RAM and invalidate them:
5861 sched_cacheflush();
5864 * Migrate to the source CPU:
5866 mask = cpumask_of_cpu(source);
5867 set_cpus_allowed(current, mask);
5868 WARN_ON(smp_processor_id() != source);
5871 * Dirty the working set:
5873 t0 = sched_clock();
5874 touch_cache(cache, size);
5875 t1 = sched_clock();
5878 * Migrate to the target CPU, dirty the L2 cache and access
5879 * the shared buffer. (which represents the working set
5880 * of a migrated task.)
5882 mask = cpumask_of_cpu(target);
5883 set_cpus_allowed(current, mask);
5884 WARN_ON(smp_processor_id() != target);
5886 t2 = sched_clock();
5887 touch_cache(cache, size);
5888 t3 = sched_clock();
5890 cost = t1-t0 + t3-t2;
5892 if (migration_debug >= 2)
5893 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5894 source, target, t1-t0, t1-t0, t3-t2, cost);
5896 * Flush target caches to RAM and invalidate them:
5898 sched_cacheflush();
5900 set_cpus_allowed(current, saved_mask);
5902 return cost;
5906 * Measure a series of task migrations and return the average
5907 * result. Since this code runs early during bootup the system
5908 * is 'undisturbed' and the average latency makes sense.
5910 * The algorithm in essence auto-detects the relevant cache-size,
5911 * so it will properly detect different cachesizes for different
5912 * cache-hierarchies, depending on how the CPUs are connected.
5914 * Architectures can prime the upper limit of the search range via
5915 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5917 static unsigned long long
5918 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5920 unsigned long long cost1, cost2;
5921 int i;
5924 * Measure the migration cost of 'size' bytes, over an
5925 * average of 10 runs:
5927 * (We perturb the cache size by a small (0..4k)
5928 * value to compensate size/alignment related artifacts.
5929 * We also subtract the cost of the operation done on
5930 * the same CPU.)
5932 cost1 = 0;
5935 * dry run, to make sure we start off cache-cold on cpu1,
5936 * and to get any vmalloc pagefaults in advance:
5938 measure_one(cache, size, cpu1, cpu2);
5939 for (i = 0; i < ITERATIONS; i++)
5940 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
5942 measure_one(cache, size, cpu2, cpu1);
5943 for (i = 0; i < ITERATIONS; i++)
5944 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
5947 * (We measure the non-migrating [cached] cost on both
5948 * cpu1 and cpu2, to handle CPUs with different speeds)
5950 cost2 = 0;
5952 measure_one(cache, size, cpu1, cpu1);
5953 for (i = 0; i < ITERATIONS; i++)
5954 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
5956 measure_one(cache, size, cpu2, cpu2);
5957 for (i = 0; i < ITERATIONS; i++)
5958 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
5961 * Get the per-iteration migration cost:
5963 do_div(cost1, 2 * ITERATIONS);
5964 do_div(cost2, 2 * ITERATIONS);
5966 return cost1 - cost2;
5969 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5971 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5972 unsigned int max_size, size, size_found = 0;
5973 long long cost = 0, prev_cost;
5974 void *cache;
5977 * Search from max_cache_size*5 down to 64K - the real relevant
5978 * cachesize has to lie somewhere inbetween.
5980 if (max_cache_size) {
5981 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5982 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5983 } else {
5985 * Since we have no estimation about the relevant
5986 * search range
5988 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5989 size = MIN_CACHE_SIZE;
5992 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5993 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5994 return 0;
5998 * Allocate the working set:
6000 cache = vmalloc(max_size);
6001 if (!cache) {
6002 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
6003 return 1000000; /* return 1 msec on very small boxen */
6006 while (size <= max_size) {
6007 prev_cost = cost;
6008 cost = measure_cost(cpu1, cpu2, cache, size);
6011 * Update the max:
6013 if (cost > 0) {
6014 if (max_cost < cost) {
6015 max_cost = cost;
6016 size_found = size;
6020 * Calculate average fluctuation, we use this to prevent
6021 * noise from triggering an early break out of the loop:
6023 fluct = abs(cost - prev_cost);
6024 avg_fluct = (avg_fluct + fluct)/2;
6026 if (migration_debug)
6027 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6028 "(%8Ld %8Ld)\n",
6029 cpu1, cpu2, size,
6030 (long)cost / 1000000,
6031 ((long)cost / 100000) % 10,
6032 (long)max_cost / 1000000,
6033 ((long)max_cost / 100000) % 10,
6034 domain_distance(cpu1, cpu2),
6035 cost, avg_fluct);
6038 * If we iterated at least 20% past the previous maximum,
6039 * and the cost has dropped by more than 20% already,
6040 * (taking fluctuations into account) then we assume to
6041 * have found the maximum and break out of the loop early:
6043 if (size_found && (size*100 > size_found*SIZE_THRESH))
6044 if (cost+avg_fluct <= 0 ||
6045 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6047 if (migration_debug)
6048 printk("-> found max.\n");
6049 break;
6052 * Increase the cachesize in 10% steps:
6054 size = size * 10 / 9;
6057 if (migration_debug)
6058 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6059 cpu1, cpu2, size_found, max_cost);
6061 vfree(cache);
6064 * A task is considered 'cache cold' if at least 2 times
6065 * the worst-case cost of migration has passed.
6067 * (this limit is only listened to if the load-balancing
6068 * situation is 'nice' - if there is a large imbalance we
6069 * ignore it for the sake of CPU utilization and
6070 * processing fairness.)
6072 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6075 static void calibrate_migration_costs(const cpumask_t *cpu_map)
6077 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6078 unsigned long j0, j1, distance, max_distance = 0;
6079 struct sched_domain *sd;
6081 j0 = jiffies;
6084 * First pass - calculate the cacheflush times:
6086 for_each_cpu_mask(cpu1, *cpu_map) {
6087 for_each_cpu_mask(cpu2, *cpu_map) {
6088 if (cpu1 == cpu2)
6089 continue;
6090 distance = domain_distance(cpu1, cpu2);
6091 max_distance = max(max_distance, distance);
6093 * No result cached yet?
6095 if (migration_cost[distance] == -1LL)
6096 migration_cost[distance] =
6097 measure_migration_cost(cpu1, cpu2);
6101 * Second pass - update the sched domain hierarchy with
6102 * the new cache-hot-time estimations:
6104 for_each_cpu_mask(cpu, *cpu_map) {
6105 distance = 0;
6106 for_each_domain(cpu, sd) {
6107 sd->cache_hot_time = migration_cost[distance];
6108 distance++;
6112 * Print the matrix:
6114 if (migration_debug)
6115 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6116 max_cache_size,
6117 #ifdef CONFIG_X86
6118 cpu_khz/1000
6119 #else
6121 #endif
6123 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6124 printk("migration_cost=");
6125 for (distance = 0; distance <= max_distance; distance++) {
6126 if (distance)
6127 printk(",");
6128 printk("%ld", (long)migration_cost[distance] / 1000);
6130 printk("\n");
6132 j1 = jiffies;
6133 if (migration_debug)
6134 printk("migration: %ld seconds\n", (j1-j0) / HZ);
6137 * Move back to the original CPU. NUMA-Q gets confused
6138 * if we migrate to another quad during bootup.
6140 if (raw_smp_processor_id() != orig_cpu) {
6141 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6142 saved_mask = current->cpus_allowed;
6144 set_cpus_allowed(current, mask);
6145 set_cpus_allowed(current, saved_mask);
6149 #ifdef CONFIG_NUMA
6152 * find_next_best_node - find the next node to include in a sched_domain
6153 * @node: node whose sched_domain we're building
6154 * @used_nodes: nodes already in the sched_domain
6156 * Find the next node to include in a given scheduling domain. Simply
6157 * finds the closest node not already in the @used_nodes map.
6159 * Should use nodemask_t.
6161 static int find_next_best_node(int node, unsigned long *used_nodes)
6163 int i, n, val, min_val, best_node = 0;
6165 min_val = INT_MAX;
6167 for (i = 0; i < MAX_NUMNODES; i++) {
6168 /* Start at @node */
6169 n = (node + i) % MAX_NUMNODES;
6171 if (!nr_cpus_node(n))
6172 continue;
6174 /* Skip already used nodes */
6175 if (test_bit(n, used_nodes))
6176 continue;
6178 /* Simple min distance search */
6179 val = node_distance(node, n);
6181 if (val < min_val) {
6182 min_val = val;
6183 best_node = n;
6187 set_bit(best_node, used_nodes);
6188 return best_node;
6192 * sched_domain_node_span - get a cpumask for a node's sched_domain
6193 * @node: node whose cpumask we're constructing
6194 * @size: number of nodes to include in this span
6196 * Given a node, construct a good cpumask for its sched_domain to span. It
6197 * should be one that prevents unnecessary balancing, but also spreads tasks
6198 * out optimally.
6200 static cpumask_t sched_domain_node_span(int node)
6202 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6203 cpumask_t span, nodemask;
6204 int i;
6206 cpus_clear(span);
6207 bitmap_zero(used_nodes, MAX_NUMNODES);
6209 nodemask = node_to_cpumask(node);
6210 cpus_or(span, span, nodemask);
6211 set_bit(node, used_nodes);
6213 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6214 int next_node = find_next_best_node(node, used_nodes);
6216 nodemask = node_to_cpumask(next_node);
6217 cpus_or(span, span, nodemask);
6220 return span;
6222 #endif
6224 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6227 * SMT sched-domains:
6229 #ifdef CONFIG_SCHED_SMT
6230 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6231 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6233 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6234 struct sched_group **sg)
6236 if (sg)
6237 *sg = &per_cpu(sched_group_cpus, cpu);
6238 return cpu;
6240 #endif
6243 * multi-core sched-domains:
6245 #ifdef CONFIG_SCHED_MC
6246 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6247 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6248 #endif
6250 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6251 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6252 struct sched_group **sg)
6254 int group;
6255 cpumask_t mask = cpu_sibling_map[cpu];
6256 cpus_and(mask, mask, *cpu_map);
6257 group = first_cpu(mask);
6258 if (sg)
6259 *sg = &per_cpu(sched_group_core, group);
6260 return group;
6262 #elif defined(CONFIG_SCHED_MC)
6263 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6264 struct sched_group **sg)
6266 if (sg)
6267 *sg = &per_cpu(sched_group_core, cpu);
6268 return cpu;
6270 #endif
6272 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6273 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6275 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6276 struct sched_group **sg)
6278 int group;
6279 #ifdef CONFIG_SCHED_MC
6280 cpumask_t mask = cpu_coregroup_map(cpu);
6281 cpus_and(mask, mask, *cpu_map);
6282 group = first_cpu(mask);
6283 #elif defined(CONFIG_SCHED_SMT)
6284 cpumask_t mask = cpu_sibling_map[cpu];
6285 cpus_and(mask, mask, *cpu_map);
6286 group = first_cpu(mask);
6287 #else
6288 group = cpu;
6289 #endif
6290 if (sg)
6291 *sg = &per_cpu(sched_group_phys, group);
6292 return group;
6295 #ifdef CONFIG_NUMA
6297 * The init_sched_build_groups can't handle what we want to do with node
6298 * groups, so roll our own. Now each node has its own list of groups which
6299 * gets dynamically allocated.
6301 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6302 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6304 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6305 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6307 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6308 struct sched_group **sg)
6310 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6311 int group;
6313 cpus_and(nodemask, nodemask, *cpu_map);
6314 group = first_cpu(nodemask);
6316 if (sg)
6317 *sg = &per_cpu(sched_group_allnodes, group);
6318 return group;
6321 static void init_numa_sched_groups_power(struct sched_group *group_head)
6323 struct sched_group *sg = group_head;
6324 int j;
6326 if (!sg)
6327 return;
6328 next_sg:
6329 for_each_cpu_mask(j, sg->cpumask) {
6330 struct sched_domain *sd;
6332 sd = &per_cpu(phys_domains, j);
6333 if (j != first_cpu(sd->groups->cpumask)) {
6335 * Only add "power" once for each
6336 * physical package.
6338 continue;
6341 sg->cpu_power += sd->groups->cpu_power;
6343 sg = sg->next;
6344 if (sg != group_head)
6345 goto next_sg;
6347 #endif
6349 #ifdef CONFIG_NUMA
6350 /* Free memory allocated for various sched_group structures */
6351 static void free_sched_groups(const cpumask_t *cpu_map)
6353 int cpu, i;
6355 for_each_cpu_mask(cpu, *cpu_map) {
6356 struct sched_group **sched_group_nodes
6357 = sched_group_nodes_bycpu[cpu];
6359 if (!sched_group_nodes)
6360 continue;
6362 for (i = 0; i < MAX_NUMNODES; i++) {
6363 cpumask_t nodemask = node_to_cpumask(i);
6364 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6366 cpus_and(nodemask, nodemask, *cpu_map);
6367 if (cpus_empty(nodemask))
6368 continue;
6370 if (sg == NULL)
6371 continue;
6372 sg = sg->next;
6373 next_sg:
6374 oldsg = sg;
6375 sg = sg->next;
6376 kfree(oldsg);
6377 if (oldsg != sched_group_nodes[i])
6378 goto next_sg;
6380 kfree(sched_group_nodes);
6381 sched_group_nodes_bycpu[cpu] = NULL;
6384 #else
6385 static void free_sched_groups(const cpumask_t *cpu_map)
6388 #endif
6391 * Initialize sched groups cpu_power.
6393 * cpu_power indicates the capacity of sched group, which is used while
6394 * distributing the load between different sched groups in a sched domain.
6395 * Typically cpu_power for all the groups in a sched domain will be same unless
6396 * there are asymmetries in the topology. If there are asymmetries, group
6397 * having more cpu_power will pickup more load compared to the group having
6398 * less cpu_power.
6400 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6401 * the maximum number of tasks a group can handle in the presence of other idle
6402 * or lightly loaded groups in the same sched domain.
6404 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6406 struct sched_domain *child;
6407 struct sched_group *group;
6409 WARN_ON(!sd || !sd->groups);
6411 if (cpu != first_cpu(sd->groups->cpumask))
6412 return;
6414 child = sd->child;
6417 * For perf policy, if the groups in child domain share resources
6418 * (for example cores sharing some portions of the cache hierarchy
6419 * or SMT), then set this domain groups cpu_power such that each group
6420 * can handle only one task, when there are other idle groups in the
6421 * same sched domain.
6423 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6424 (child->flags &
6425 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6426 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6427 return;
6430 sd->groups->cpu_power = 0;
6433 * add cpu_power of each child group to this groups cpu_power
6435 group = child->groups;
6436 do {
6437 sd->groups->cpu_power += group->cpu_power;
6438 group = group->next;
6439 } while (group != child->groups);
6443 * Build sched domains for a given set of cpus and attach the sched domains
6444 * to the individual cpus
6446 static int build_sched_domains(const cpumask_t *cpu_map)
6448 int i;
6449 struct sched_domain *sd;
6450 #ifdef CONFIG_NUMA
6451 struct sched_group **sched_group_nodes = NULL;
6452 int sd_allnodes = 0;
6455 * Allocate the per-node list of sched groups
6457 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6458 GFP_KERNEL);
6459 if (!sched_group_nodes) {
6460 printk(KERN_WARNING "Can not alloc sched group node list\n");
6461 return -ENOMEM;
6463 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6464 #endif
6467 * Set up domains for cpus specified by the cpu_map.
6469 for_each_cpu_mask(i, *cpu_map) {
6470 struct sched_domain *sd = NULL, *p;
6471 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6473 cpus_and(nodemask, nodemask, *cpu_map);
6475 #ifdef CONFIG_NUMA
6476 if (cpus_weight(*cpu_map)
6477 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6478 sd = &per_cpu(allnodes_domains, i);
6479 *sd = SD_ALLNODES_INIT;
6480 sd->span = *cpu_map;
6481 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6482 p = sd;
6483 sd_allnodes = 1;
6484 } else
6485 p = NULL;
6487 sd = &per_cpu(node_domains, i);
6488 *sd = SD_NODE_INIT;
6489 sd->span = sched_domain_node_span(cpu_to_node(i));
6490 sd->parent = p;
6491 if (p)
6492 p->child = sd;
6493 cpus_and(sd->span, sd->span, *cpu_map);
6494 #endif
6496 p = sd;
6497 sd = &per_cpu(phys_domains, i);
6498 *sd = SD_CPU_INIT;
6499 sd->span = nodemask;
6500 sd->parent = p;
6501 if (p)
6502 p->child = sd;
6503 cpu_to_phys_group(i, cpu_map, &sd->groups);
6505 #ifdef CONFIG_SCHED_MC
6506 p = sd;
6507 sd = &per_cpu(core_domains, i);
6508 *sd = SD_MC_INIT;
6509 sd->span = cpu_coregroup_map(i);
6510 cpus_and(sd->span, sd->span, *cpu_map);
6511 sd->parent = p;
6512 p->child = sd;
6513 cpu_to_core_group(i, cpu_map, &sd->groups);
6514 #endif
6516 #ifdef CONFIG_SCHED_SMT
6517 p = sd;
6518 sd = &per_cpu(cpu_domains, i);
6519 *sd = SD_SIBLING_INIT;
6520 sd->span = cpu_sibling_map[i];
6521 cpus_and(sd->span, sd->span, *cpu_map);
6522 sd->parent = p;
6523 p->child = sd;
6524 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6525 #endif
6528 #ifdef CONFIG_SCHED_SMT
6529 /* Set up CPU (sibling) groups */
6530 for_each_cpu_mask(i, *cpu_map) {
6531 cpumask_t this_sibling_map = cpu_sibling_map[i];
6532 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6533 if (i != first_cpu(this_sibling_map))
6534 continue;
6536 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
6538 #endif
6540 #ifdef CONFIG_SCHED_MC
6541 /* Set up multi-core groups */
6542 for_each_cpu_mask(i, *cpu_map) {
6543 cpumask_t this_core_map = cpu_coregroup_map(i);
6544 cpus_and(this_core_map, this_core_map, *cpu_map);
6545 if (i != first_cpu(this_core_map))
6546 continue;
6547 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6549 #endif
6552 /* Set up physical groups */
6553 for (i = 0; i < MAX_NUMNODES; i++) {
6554 cpumask_t nodemask = node_to_cpumask(i);
6556 cpus_and(nodemask, nodemask, *cpu_map);
6557 if (cpus_empty(nodemask))
6558 continue;
6560 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6563 #ifdef CONFIG_NUMA
6564 /* Set up node groups */
6565 if (sd_allnodes)
6566 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6568 for (i = 0; i < MAX_NUMNODES; i++) {
6569 /* Set up node groups */
6570 struct sched_group *sg, *prev;
6571 cpumask_t nodemask = node_to_cpumask(i);
6572 cpumask_t domainspan;
6573 cpumask_t covered = CPU_MASK_NONE;
6574 int j;
6576 cpus_and(nodemask, nodemask, *cpu_map);
6577 if (cpus_empty(nodemask)) {
6578 sched_group_nodes[i] = NULL;
6579 continue;
6582 domainspan = sched_domain_node_span(i);
6583 cpus_and(domainspan, domainspan, *cpu_map);
6585 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6586 if (!sg) {
6587 printk(KERN_WARNING "Can not alloc domain group for "
6588 "node %d\n", i);
6589 goto error;
6591 sched_group_nodes[i] = sg;
6592 for_each_cpu_mask(j, nodemask) {
6593 struct sched_domain *sd;
6594 sd = &per_cpu(node_domains, j);
6595 sd->groups = sg;
6597 sg->cpu_power = 0;
6598 sg->cpumask = nodemask;
6599 sg->next = sg;
6600 cpus_or(covered, covered, nodemask);
6601 prev = sg;
6603 for (j = 0; j < MAX_NUMNODES; j++) {
6604 cpumask_t tmp, notcovered;
6605 int n = (i + j) % MAX_NUMNODES;
6607 cpus_complement(notcovered, covered);
6608 cpus_and(tmp, notcovered, *cpu_map);
6609 cpus_and(tmp, tmp, domainspan);
6610 if (cpus_empty(tmp))
6611 break;
6613 nodemask = node_to_cpumask(n);
6614 cpus_and(tmp, tmp, nodemask);
6615 if (cpus_empty(tmp))
6616 continue;
6618 sg = kmalloc_node(sizeof(struct sched_group),
6619 GFP_KERNEL, i);
6620 if (!sg) {
6621 printk(KERN_WARNING
6622 "Can not alloc domain group for node %d\n", j);
6623 goto error;
6625 sg->cpu_power = 0;
6626 sg->cpumask = tmp;
6627 sg->next = prev->next;
6628 cpus_or(covered, covered, tmp);
6629 prev->next = sg;
6630 prev = sg;
6633 #endif
6635 /* Calculate CPU power for physical packages and nodes */
6636 #ifdef CONFIG_SCHED_SMT
6637 for_each_cpu_mask(i, *cpu_map) {
6638 sd = &per_cpu(cpu_domains, i);
6639 init_sched_groups_power(i, sd);
6641 #endif
6642 #ifdef CONFIG_SCHED_MC
6643 for_each_cpu_mask(i, *cpu_map) {
6644 sd = &per_cpu(core_domains, i);
6645 init_sched_groups_power(i, sd);
6647 #endif
6649 for_each_cpu_mask(i, *cpu_map) {
6650 sd = &per_cpu(phys_domains, i);
6651 init_sched_groups_power(i, sd);
6654 #ifdef CONFIG_NUMA
6655 for (i = 0; i < MAX_NUMNODES; i++)
6656 init_numa_sched_groups_power(sched_group_nodes[i]);
6658 if (sd_allnodes) {
6659 struct sched_group *sg;
6661 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6662 init_numa_sched_groups_power(sg);
6664 #endif
6666 /* Attach the domains */
6667 for_each_cpu_mask(i, *cpu_map) {
6668 struct sched_domain *sd;
6669 #ifdef CONFIG_SCHED_SMT
6670 sd = &per_cpu(cpu_domains, i);
6671 #elif defined(CONFIG_SCHED_MC)
6672 sd = &per_cpu(core_domains, i);
6673 #else
6674 sd = &per_cpu(phys_domains, i);
6675 #endif
6676 cpu_attach_domain(sd, i);
6679 * Tune cache-hot values:
6681 calibrate_migration_costs(cpu_map);
6683 return 0;
6685 #ifdef CONFIG_NUMA
6686 error:
6687 free_sched_groups(cpu_map);
6688 return -ENOMEM;
6689 #endif
6692 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6694 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6696 cpumask_t cpu_default_map;
6697 int err;
6700 * Setup mask for cpus without special case scheduling requirements.
6701 * For now this just excludes isolated cpus, but could be used to
6702 * exclude other special cases in the future.
6704 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6706 err = build_sched_domains(&cpu_default_map);
6708 return err;
6711 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6713 free_sched_groups(cpu_map);
6717 * Detach sched domains from a group of cpus specified in cpu_map
6718 * These cpus will now be attached to the NULL domain
6720 static void detach_destroy_domains(const cpumask_t *cpu_map)
6722 int i;
6724 for_each_cpu_mask(i, *cpu_map)
6725 cpu_attach_domain(NULL, i);
6726 synchronize_sched();
6727 arch_destroy_sched_domains(cpu_map);
6731 * Partition sched domains as specified by the cpumasks below.
6732 * This attaches all cpus from the cpumasks to the NULL domain,
6733 * waits for a RCU quiescent period, recalculates sched
6734 * domain information and then attaches them back to the
6735 * correct sched domains
6736 * Call with hotplug lock held
6738 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6740 cpumask_t change_map;
6741 int err = 0;
6743 cpus_and(*partition1, *partition1, cpu_online_map);
6744 cpus_and(*partition2, *partition2, cpu_online_map);
6745 cpus_or(change_map, *partition1, *partition2);
6747 /* Detach sched domains from all of the affected cpus */
6748 detach_destroy_domains(&change_map);
6749 if (!cpus_empty(*partition1))
6750 err = build_sched_domains(partition1);
6751 if (!err && !cpus_empty(*partition2))
6752 err = build_sched_domains(partition2);
6754 return err;
6757 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6758 int arch_reinit_sched_domains(void)
6760 int err;
6762 lock_cpu_hotplug();
6763 detach_destroy_domains(&cpu_online_map);
6764 err = arch_init_sched_domains(&cpu_online_map);
6765 unlock_cpu_hotplug();
6767 return err;
6770 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6772 int ret;
6774 if (buf[0] != '0' && buf[0] != '1')
6775 return -EINVAL;
6777 if (smt)
6778 sched_smt_power_savings = (buf[0] == '1');
6779 else
6780 sched_mc_power_savings = (buf[0] == '1');
6782 ret = arch_reinit_sched_domains();
6784 return ret ? ret : count;
6787 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6789 int err = 0;
6791 #ifdef CONFIG_SCHED_SMT
6792 if (smt_capable())
6793 err = sysfs_create_file(&cls->kset.kobj,
6794 &attr_sched_smt_power_savings.attr);
6795 #endif
6796 #ifdef CONFIG_SCHED_MC
6797 if (!err && mc_capable())
6798 err = sysfs_create_file(&cls->kset.kobj,
6799 &attr_sched_mc_power_savings.attr);
6800 #endif
6801 return err;
6803 #endif
6805 #ifdef CONFIG_SCHED_MC
6806 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6808 return sprintf(page, "%u\n", sched_mc_power_savings);
6810 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6811 const char *buf, size_t count)
6813 return sched_power_savings_store(buf, count, 0);
6815 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6816 sched_mc_power_savings_store);
6817 #endif
6819 #ifdef CONFIG_SCHED_SMT
6820 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6822 return sprintf(page, "%u\n", sched_smt_power_savings);
6824 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6825 const char *buf, size_t count)
6827 return sched_power_savings_store(buf, count, 1);
6829 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6830 sched_smt_power_savings_store);
6831 #endif
6834 * Force a reinitialization of the sched domains hierarchy. The domains
6835 * and groups cannot be updated in place without racing with the balancing
6836 * code, so we temporarily attach all running cpus to the NULL domain
6837 * which will prevent rebalancing while the sched domains are recalculated.
6839 static int update_sched_domains(struct notifier_block *nfb,
6840 unsigned long action, void *hcpu)
6842 switch (action) {
6843 case CPU_UP_PREPARE:
6844 case CPU_DOWN_PREPARE:
6845 detach_destroy_domains(&cpu_online_map);
6846 return NOTIFY_OK;
6848 case CPU_UP_CANCELED:
6849 case CPU_DOWN_FAILED:
6850 case CPU_ONLINE:
6851 case CPU_DEAD:
6853 * Fall through and re-initialise the domains.
6855 break;
6856 default:
6857 return NOTIFY_DONE;
6860 /* The hotplug lock is already held by cpu_up/cpu_down */
6861 arch_init_sched_domains(&cpu_online_map);
6863 return NOTIFY_OK;
6866 void __init sched_init_smp(void)
6868 cpumask_t non_isolated_cpus;
6870 lock_cpu_hotplug();
6871 arch_init_sched_domains(&cpu_online_map);
6872 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6873 if (cpus_empty(non_isolated_cpus))
6874 cpu_set(smp_processor_id(), non_isolated_cpus);
6875 unlock_cpu_hotplug();
6876 /* XXX: Theoretical race here - CPU may be hotplugged now */
6877 hotcpu_notifier(update_sched_domains, 0);
6879 /* Move init over to a non-isolated CPU */
6880 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6881 BUG();
6883 #else
6884 void __init sched_init_smp(void)
6887 #endif /* CONFIG_SMP */
6889 int in_sched_functions(unsigned long addr)
6891 /* Linker adds these: start and end of __sched functions */
6892 extern char __sched_text_start[], __sched_text_end[];
6894 return in_lock_functions(addr) ||
6895 (addr >= (unsigned long)__sched_text_start
6896 && addr < (unsigned long)__sched_text_end);
6899 void __init sched_init(void)
6901 int i, j, k;
6903 for_each_possible_cpu(i) {
6904 struct prio_array *array;
6905 struct rq *rq;
6907 rq = cpu_rq(i);
6908 spin_lock_init(&rq->lock);
6909 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6910 rq->nr_running = 0;
6911 rq->active = rq->arrays;
6912 rq->expired = rq->arrays + 1;
6913 rq->best_expired_prio = MAX_PRIO;
6915 #ifdef CONFIG_SMP
6916 rq->sd = NULL;
6917 for (j = 1; j < 3; j++)
6918 rq->cpu_load[j] = 0;
6919 rq->active_balance = 0;
6920 rq->push_cpu = 0;
6921 rq->cpu = i;
6922 rq->migration_thread = NULL;
6923 INIT_LIST_HEAD(&rq->migration_queue);
6924 #endif
6925 atomic_set(&rq->nr_iowait, 0);
6927 for (j = 0; j < 2; j++) {
6928 array = rq->arrays + j;
6929 for (k = 0; k < MAX_PRIO; k++) {
6930 INIT_LIST_HEAD(array->queue + k);
6931 __clear_bit(k, array->bitmap);
6933 // delimiter for bitsearch
6934 __set_bit(MAX_PRIO, array->bitmap);
6938 set_load_weight(&init_task);
6940 #ifdef CONFIG_SMP
6941 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6942 #endif
6944 #ifdef CONFIG_RT_MUTEXES
6945 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6946 #endif
6949 * The boot idle thread does lazy MMU switching as well:
6951 atomic_inc(&init_mm.mm_count);
6952 enter_lazy_tlb(&init_mm, current);
6955 * Make us the idle thread. Technically, schedule() should not be
6956 * called from this thread, however somewhere below it might be,
6957 * but because we are the idle thread, we just pick up running again
6958 * when this runqueue becomes "idle".
6960 init_idle(current, smp_processor_id());
6963 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6964 void __might_sleep(char *file, int line)
6966 #ifdef in_atomic
6967 static unsigned long prev_jiffy; /* ratelimiting */
6969 if ((in_atomic() || irqs_disabled()) &&
6970 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6971 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6972 return;
6973 prev_jiffy = jiffies;
6974 printk(KERN_ERR "BUG: sleeping function called from invalid"
6975 " context at %s:%d\n", file, line);
6976 printk("in_atomic():%d, irqs_disabled():%d\n",
6977 in_atomic(), irqs_disabled());
6978 debug_show_held_locks(current);
6979 if (irqs_disabled())
6980 print_irqtrace_events(current);
6981 dump_stack();
6983 #endif
6985 EXPORT_SYMBOL(__might_sleep);
6986 #endif
6988 #ifdef CONFIG_MAGIC_SYSRQ
6989 void normalize_rt_tasks(void)
6991 struct prio_array *array;
6992 struct task_struct *p;
6993 unsigned long flags;
6994 struct rq *rq;
6996 read_lock_irq(&tasklist_lock);
6997 for_each_process(p) {
6998 if (!rt_task(p))
6999 continue;
7001 spin_lock_irqsave(&p->pi_lock, flags);
7002 rq = __task_rq_lock(p);
7004 array = p->array;
7005 if (array)
7006 deactivate_task(p, task_rq(p));
7007 __setscheduler(p, SCHED_NORMAL, 0);
7008 if (array) {
7009 __activate_task(p, task_rq(p));
7010 resched_task(rq->curr);
7013 __task_rq_unlock(rq);
7014 spin_unlock_irqrestore(&p->pi_lock, flags);
7016 read_unlock_irq(&tasklist_lock);
7019 #endif /* CONFIG_MAGIC_SYSRQ */
7021 #ifdef CONFIG_IA64
7023 * These functions are only useful for the IA64 MCA handling.
7025 * They can only be called when the whole system has been
7026 * stopped - every CPU needs to be quiescent, and no scheduling
7027 * activity can take place. Using them for anything else would
7028 * be a serious bug, and as a result, they aren't even visible
7029 * under any other configuration.
7033 * curr_task - return the current task for a given cpu.
7034 * @cpu: the processor in question.
7036 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7038 struct task_struct *curr_task(int cpu)
7040 return cpu_curr(cpu);
7044 * set_curr_task - set the current task for a given cpu.
7045 * @cpu: the processor in question.
7046 * @p: the task pointer to set.
7048 * Description: This function must only be used when non-maskable interrupts
7049 * are serviced on a separate stack. It allows the architecture to switch the
7050 * notion of the current task on a cpu in a non-blocking manner. This function
7051 * must be called with all CPU's synchronized, and interrupts disabled, the
7052 * and caller must save the original value of the current task (see
7053 * curr_task() above) and restore that value before reenabling interrupts and
7054 * re-starting the system.
7056 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7058 void set_curr_task(int cpu, struct task_struct *p)
7060 cpu_curr(cpu) = p;
7063 #endif