x86: introduce max_low_pfn_mapped for 64-bit
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / mm / pageattr.c
blob0389cb8f6b1ab16846c642ee0d7feaa6d9a517f4
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/interrupt.h>
12 #include <linux/seq_file.h>
13 #include <linux/debugfs.h>
15 #include <asm/e820.h>
16 #include <asm/processor.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 #include <asm/uaccess.h>
20 #include <asm/pgalloc.h>
21 #include <asm/proto.h>
22 #include <asm/pat.h>
25 * The current flushing context - we pass it instead of 5 arguments:
27 struct cpa_data {
28 unsigned long vaddr;
29 pgprot_t mask_set;
30 pgprot_t mask_clr;
31 int numpages;
32 int flushtlb;
33 unsigned long pfn;
34 unsigned force_split : 1;
37 #ifdef CONFIG_PROC_FS
38 static unsigned long direct_pages_count[PG_LEVEL_NUM];
40 void update_page_count(int level, unsigned long pages)
42 unsigned long flags;
44 /* Protect against CPA */
45 spin_lock_irqsave(&pgd_lock, flags);
46 direct_pages_count[level] += pages;
47 spin_unlock_irqrestore(&pgd_lock, flags);
50 static void split_page_count(int level)
52 direct_pages_count[level]--;
53 direct_pages_count[level - 1] += PTRS_PER_PTE;
56 int arch_report_meminfo(char *page)
58 int n = sprintf(page, "DirectMap4k: %8lu\n"
59 "DirectMap2M: %8lu\n",
60 direct_pages_count[PG_LEVEL_4K],
61 direct_pages_count[PG_LEVEL_2M]);
62 #ifdef CONFIG_X86_64
63 n += sprintf(page + n, "DirectMap1G: %8lu\n",
64 direct_pages_count[PG_LEVEL_1G]);
65 #endif
66 return n;
68 #else
69 static inline void split_page_count(int level) { }
70 #endif
72 #ifdef CONFIG_X86_64
74 static inline unsigned long highmap_start_pfn(void)
76 return __pa(_text) >> PAGE_SHIFT;
79 static inline unsigned long highmap_end_pfn(void)
81 return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
84 #endif
86 #ifdef CONFIG_DEBUG_PAGEALLOC
87 # define debug_pagealloc 1
88 #else
89 # define debug_pagealloc 0
90 #endif
92 static inline int
93 within(unsigned long addr, unsigned long start, unsigned long end)
95 return addr >= start && addr < end;
99 * Flushing functions
103 * clflush_cache_range - flush a cache range with clflush
104 * @addr: virtual start address
105 * @size: number of bytes to flush
107 * clflush is an unordered instruction which needs fencing with mfence
108 * to avoid ordering issues.
110 void clflush_cache_range(void *vaddr, unsigned int size)
112 void *vend = vaddr + size - 1;
114 mb();
116 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
117 clflush(vaddr);
119 * Flush any possible final partial cacheline:
121 clflush(vend);
123 mb();
126 static void __cpa_flush_all(void *arg)
128 unsigned long cache = (unsigned long)arg;
131 * Flush all to work around Errata in early athlons regarding
132 * large page flushing.
134 __flush_tlb_all();
136 if (cache && boot_cpu_data.x86_model >= 4)
137 wbinvd();
140 static void cpa_flush_all(unsigned long cache)
142 BUG_ON(irqs_disabled());
144 on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
147 static void __cpa_flush_range(void *arg)
150 * We could optimize that further and do individual per page
151 * tlb invalidates for a low number of pages. Caveat: we must
152 * flush the high aliases on 64bit as well.
154 __flush_tlb_all();
157 static void cpa_flush_range(unsigned long start, int numpages, int cache)
159 unsigned int i, level;
160 unsigned long addr;
162 BUG_ON(irqs_disabled());
163 WARN_ON(PAGE_ALIGN(start) != start);
165 on_each_cpu(__cpa_flush_range, NULL, 1, 1);
167 if (!cache)
168 return;
171 * We only need to flush on one CPU,
172 * clflush is a MESI-coherent instruction that
173 * will cause all other CPUs to flush the same
174 * cachelines:
176 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
177 pte_t *pte = lookup_address(addr, &level);
180 * Only flush present addresses:
182 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
183 clflush_cache_range((void *) addr, PAGE_SIZE);
188 * Certain areas of memory on x86 require very specific protection flags,
189 * for example the BIOS area or kernel text. Callers don't always get this
190 * right (again, ioremap() on BIOS memory is not uncommon) so this function
191 * checks and fixes these known static required protection bits.
193 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
194 unsigned long pfn)
196 pgprot_t forbidden = __pgprot(0);
199 * The BIOS area between 640k and 1Mb needs to be executable for
200 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
202 if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
203 pgprot_val(forbidden) |= _PAGE_NX;
206 * The kernel text needs to be executable for obvious reasons
207 * Does not cover __inittext since that is gone later on. On
208 * 64bit we do not enforce !NX on the low mapping
210 if (within(address, (unsigned long)_text, (unsigned long)_etext))
211 pgprot_val(forbidden) |= _PAGE_NX;
214 * The .rodata section needs to be read-only. Using the pfn
215 * catches all aliases.
217 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
218 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
219 pgprot_val(forbidden) |= _PAGE_RW;
221 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
223 return prot;
227 * Lookup the page table entry for a virtual address. Return a pointer
228 * to the entry and the level of the mapping.
230 * Note: We return pud and pmd either when the entry is marked large
231 * or when the present bit is not set. Otherwise we would return a
232 * pointer to a nonexisting mapping.
234 pte_t *lookup_address(unsigned long address, unsigned int *level)
236 pgd_t *pgd = pgd_offset_k(address);
237 pud_t *pud;
238 pmd_t *pmd;
240 *level = PG_LEVEL_NONE;
242 if (pgd_none(*pgd))
243 return NULL;
245 pud = pud_offset(pgd, address);
246 if (pud_none(*pud))
247 return NULL;
249 *level = PG_LEVEL_1G;
250 if (pud_large(*pud) || !pud_present(*pud))
251 return (pte_t *)pud;
253 pmd = pmd_offset(pud, address);
254 if (pmd_none(*pmd))
255 return NULL;
257 *level = PG_LEVEL_2M;
258 if (pmd_large(*pmd) || !pmd_present(*pmd))
259 return (pte_t *)pmd;
261 *level = PG_LEVEL_4K;
263 return pte_offset_kernel(pmd, address);
267 * Set the new pmd in all the pgds we know about:
269 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
271 /* change init_mm */
272 set_pte_atomic(kpte, pte);
273 #ifdef CONFIG_X86_32
274 if (!SHARED_KERNEL_PMD) {
275 struct page *page;
277 list_for_each_entry(page, &pgd_list, lru) {
278 pgd_t *pgd;
279 pud_t *pud;
280 pmd_t *pmd;
282 pgd = (pgd_t *)page_address(page) + pgd_index(address);
283 pud = pud_offset(pgd, address);
284 pmd = pmd_offset(pud, address);
285 set_pte_atomic((pte_t *)pmd, pte);
288 #endif
291 static int
292 try_preserve_large_page(pte_t *kpte, unsigned long address,
293 struct cpa_data *cpa)
295 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
296 pte_t new_pte, old_pte, *tmp;
297 pgprot_t old_prot, new_prot;
298 int i, do_split = 1;
299 unsigned int level;
301 if (cpa->force_split)
302 return 1;
304 spin_lock_irqsave(&pgd_lock, flags);
306 * Check for races, another CPU might have split this page
307 * up already:
309 tmp = lookup_address(address, &level);
310 if (tmp != kpte)
311 goto out_unlock;
313 switch (level) {
314 case PG_LEVEL_2M:
315 psize = PMD_PAGE_SIZE;
316 pmask = PMD_PAGE_MASK;
317 break;
318 #ifdef CONFIG_X86_64
319 case PG_LEVEL_1G:
320 psize = PUD_PAGE_SIZE;
321 pmask = PUD_PAGE_MASK;
322 break;
323 #endif
324 default:
325 do_split = -EINVAL;
326 goto out_unlock;
330 * Calculate the number of pages, which fit into this large
331 * page starting at address:
333 nextpage_addr = (address + psize) & pmask;
334 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
335 if (numpages < cpa->numpages)
336 cpa->numpages = numpages;
339 * We are safe now. Check whether the new pgprot is the same:
341 old_pte = *kpte;
342 old_prot = new_prot = pte_pgprot(old_pte);
344 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
345 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
348 * old_pte points to the large page base address. So we need
349 * to add the offset of the virtual address:
351 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
352 cpa->pfn = pfn;
354 new_prot = static_protections(new_prot, address, pfn);
357 * We need to check the full range, whether
358 * static_protection() requires a different pgprot for one of
359 * the pages in the range we try to preserve:
361 addr = address + PAGE_SIZE;
362 pfn++;
363 for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
364 pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
366 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
367 goto out_unlock;
371 * If there are no changes, return. maxpages has been updated
372 * above:
374 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
375 do_split = 0;
376 goto out_unlock;
380 * We need to change the attributes. Check, whether we can
381 * change the large page in one go. We request a split, when
382 * the address is not aligned and the number of pages is
383 * smaller than the number of pages in the large page. Note
384 * that we limited the number of possible pages already to
385 * the number of pages in the large page.
387 if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
389 * The address is aligned and the number of pages
390 * covers the full page.
392 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
393 __set_pmd_pte(kpte, address, new_pte);
394 cpa->flushtlb = 1;
395 do_split = 0;
398 out_unlock:
399 spin_unlock_irqrestore(&pgd_lock, flags);
401 return do_split;
404 static LIST_HEAD(page_pool);
405 static unsigned long pool_size, pool_pages, pool_low;
406 static unsigned long pool_used, pool_failed;
408 static void cpa_fill_pool(struct page **ret)
410 gfp_t gfp = GFP_KERNEL;
411 unsigned long flags;
412 struct page *p;
415 * Avoid recursion (on debug-pagealloc) and also signal
416 * our priority to get to these pagetables:
418 if (current->flags & PF_MEMALLOC)
419 return;
420 current->flags |= PF_MEMALLOC;
423 * Allocate atomically from atomic contexts:
425 if (in_atomic() || irqs_disabled() || debug_pagealloc)
426 gfp = GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
428 while (pool_pages < pool_size || (ret && !*ret)) {
429 p = alloc_pages(gfp, 0);
430 if (!p) {
431 pool_failed++;
432 break;
435 * If the call site needs a page right now, provide it:
437 if (ret && !*ret) {
438 *ret = p;
439 continue;
441 spin_lock_irqsave(&pgd_lock, flags);
442 list_add(&p->lru, &page_pool);
443 pool_pages++;
444 spin_unlock_irqrestore(&pgd_lock, flags);
447 current->flags &= ~PF_MEMALLOC;
450 #define SHIFT_MB (20 - PAGE_SHIFT)
451 #define ROUND_MB_GB ((1 << 10) - 1)
452 #define SHIFT_MB_GB 10
453 #define POOL_PAGES_PER_GB 16
455 void __init cpa_init(void)
457 struct sysinfo si;
458 unsigned long gb;
460 si_meminfo(&si);
462 * Calculate the number of pool pages:
464 * Convert totalram (nr of pages) to MiB and round to the next
465 * GiB. Shift MiB to Gib and multiply the result by
466 * POOL_PAGES_PER_GB:
468 if (debug_pagealloc) {
469 gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
470 pool_size = POOL_PAGES_PER_GB * gb;
471 } else {
472 pool_size = 1;
474 pool_low = pool_size;
476 cpa_fill_pool(NULL);
477 printk(KERN_DEBUG
478 "CPA: page pool initialized %lu of %lu pages preallocated\n",
479 pool_pages, pool_size);
482 static int split_large_page(pte_t *kpte, unsigned long address)
484 unsigned long flags, pfn, pfninc = 1;
485 unsigned int i, level;
486 pte_t *pbase, *tmp;
487 pgprot_t ref_prot;
488 struct page *base;
491 * Get a page from the pool. The pool list is protected by the
492 * pgd_lock, which we have to take anyway for the split
493 * operation:
495 spin_lock_irqsave(&pgd_lock, flags);
496 if (list_empty(&page_pool)) {
497 spin_unlock_irqrestore(&pgd_lock, flags);
498 base = NULL;
499 cpa_fill_pool(&base);
500 if (!base)
501 return -ENOMEM;
502 spin_lock_irqsave(&pgd_lock, flags);
503 } else {
504 base = list_first_entry(&page_pool, struct page, lru);
505 list_del(&base->lru);
506 pool_pages--;
508 if (pool_pages < pool_low)
509 pool_low = pool_pages;
513 * Check for races, another CPU might have split this page
514 * up for us already:
516 tmp = lookup_address(address, &level);
517 if (tmp != kpte)
518 goto out_unlock;
520 pbase = (pte_t *)page_address(base);
521 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
522 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
524 #ifdef CONFIG_X86_64
525 if (level == PG_LEVEL_1G) {
526 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
527 pgprot_val(ref_prot) |= _PAGE_PSE;
529 #endif
532 * Get the target pfn from the original entry:
534 pfn = pte_pfn(*kpte);
535 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
536 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
538 if (address >= (unsigned long)__va(0) &&
539 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
540 split_page_count(level);
542 #ifdef CONFIG_X86_64
543 if (address >= (unsigned long)__va(1UL<<32) &&
544 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
545 split_page_count(level);
546 #endif
549 * Install the new, split up pagetable. Important details here:
551 * On Intel the NX bit of all levels must be cleared to make a
552 * page executable. See section 4.13.2 of Intel 64 and IA-32
553 * Architectures Software Developer's Manual).
555 * Mark the entry present. The current mapping might be
556 * set to not present, which we preserved above.
558 ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
559 pgprot_val(ref_prot) |= _PAGE_PRESENT;
560 __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
561 base = NULL;
563 out_unlock:
565 * If we dropped out via the lookup_address check under
566 * pgd_lock then stick the page back into the pool:
568 if (base) {
569 list_add(&base->lru, &page_pool);
570 pool_pages++;
571 } else
572 pool_used++;
573 spin_unlock_irqrestore(&pgd_lock, flags);
575 return 0;
578 static int __change_page_attr(struct cpa_data *cpa, int primary)
580 unsigned long address = cpa->vaddr;
581 int do_split, err;
582 unsigned int level;
583 pte_t *kpte, old_pte;
585 repeat:
586 kpte = lookup_address(address, &level);
587 if (!kpte)
588 return 0;
590 old_pte = *kpte;
591 if (!pte_val(old_pte)) {
592 if (!primary)
593 return 0;
594 printk(KERN_WARNING "CPA: called for zero pte. "
595 "vaddr = %lx cpa->vaddr = %lx\n", address,
596 cpa->vaddr);
597 WARN_ON(1);
598 return -EINVAL;
601 if (level == PG_LEVEL_4K) {
602 pte_t new_pte;
603 pgprot_t new_prot = pte_pgprot(old_pte);
604 unsigned long pfn = pte_pfn(old_pte);
606 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
607 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
609 new_prot = static_protections(new_prot, address, pfn);
612 * We need to keep the pfn from the existing PTE,
613 * after all we're only going to change it's attributes
614 * not the memory it points to
616 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
617 cpa->pfn = pfn;
619 * Do we really change anything ?
621 if (pte_val(old_pte) != pte_val(new_pte)) {
622 set_pte_atomic(kpte, new_pte);
623 cpa->flushtlb = 1;
625 cpa->numpages = 1;
626 return 0;
630 * Check, whether we can keep the large page intact
631 * and just change the pte:
633 do_split = try_preserve_large_page(kpte, address, cpa);
635 * When the range fits into the existing large page,
636 * return. cp->numpages and cpa->tlbflush have been updated in
637 * try_large_page:
639 if (do_split <= 0)
640 return do_split;
643 * We have to split the large page:
645 err = split_large_page(kpte, address);
646 if (!err) {
647 cpa->flushtlb = 1;
648 goto repeat;
651 return err;
654 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
656 static int cpa_process_alias(struct cpa_data *cpa)
658 struct cpa_data alias_cpa;
659 int ret = 0;
661 if (cpa->pfn > max_pfn_mapped)
662 return 0;
664 #ifdef CONFIG_X86_64
665 if (cpa->pfn > max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
666 return 0;
667 #endif
669 * No need to redo, when the primary call touched the direct
670 * mapping already:
672 if (!(within(cpa->vaddr, PAGE_OFFSET,
673 PAGE_OFFSET + (max_low_pfn_mapped << PAGE_SHIFT))
674 #ifdef CONFIG_X86_64
675 || within(cpa->vaddr, PAGE_OFFSET + (1UL<<32),
676 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))
677 #endif
678 )) {
680 alias_cpa = *cpa;
681 alias_cpa.vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
683 ret = __change_page_attr_set_clr(&alias_cpa, 0);
686 #ifdef CONFIG_X86_64
687 if (ret)
688 return ret;
690 * No need to redo, when the primary call touched the high
691 * mapping already:
693 if (within(cpa->vaddr, (unsigned long) _text, (unsigned long) _end))
694 return 0;
697 * If the physical address is inside the kernel map, we need
698 * to touch the high mapped kernel as well:
700 if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
701 return 0;
703 alias_cpa = *cpa;
704 alias_cpa.vaddr =
705 (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
708 * The high mapping range is imprecise, so ignore the return value.
710 __change_page_attr_set_clr(&alias_cpa, 0);
711 #endif
712 return ret;
715 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
717 int ret, numpages = cpa->numpages;
719 while (numpages) {
721 * Store the remaining nr of pages for the large page
722 * preservation check.
724 cpa->numpages = numpages;
726 ret = __change_page_attr(cpa, checkalias);
727 if (ret)
728 return ret;
730 if (checkalias) {
731 ret = cpa_process_alias(cpa);
732 if (ret)
733 return ret;
737 * Adjust the number of pages with the result of the
738 * CPA operation. Either a large page has been
739 * preserved or a single page update happened.
741 BUG_ON(cpa->numpages > numpages);
742 numpages -= cpa->numpages;
743 cpa->vaddr += cpa->numpages * PAGE_SIZE;
745 return 0;
748 static inline int cache_attr(pgprot_t attr)
750 return pgprot_val(attr) &
751 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
754 static int change_page_attr_set_clr(unsigned long addr, int numpages,
755 pgprot_t mask_set, pgprot_t mask_clr,
756 int force_split)
758 struct cpa_data cpa;
759 int ret, cache, checkalias;
762 * Check, if we are requested to change a not supported
763 * feature:
765 mask_set = canon_pgprot(mask_set);
766 mask_clr = canon_pgprot(mask_clr);
767 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
768 return 0;
770 /* Ensure we are PAGE_SIZE aligned */
771 if (addr & ~PAGE_MASK) {
772 addr &= PAGE_MASK;
774 * People should not be passing in unaligned addresses:
776 WARN_ON_ONCE(1);
779 cpa.vaddr = addr;
780 cpa.numpages = numpages;
781 cpa.mask_set = mask_set;
782 cpa.mask_clr = mask_clr;
783 cpa.flushtlb = 0;
784 cpa.force_split = force_split;
786 /* No alias checking for _NX bit modifications */
787 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
789 ret = __change_page_attr_set_clr(&cpa, checkalias);
792 * Check whether we really changed something:
794 if (!cpa.flushtlb)
795 goto out;
798 * No need to flush, when we did not set any of the caching
799 * attributes:
801 cache = cache_attr(mask_set);
804 * On success we use clflush, when the CPU supports it to
805 * avoid the wbindv. If the CPU does not support it and in the
806 * error case we fall back to cpa_flush_all (which uses
807 * wbindv):
809 if (!ret && cpu_has_clflush)
810 cpa_flush_range(addr, numpages, cache);
811 else
812 cpa_flush_all(cache);
814 out:
815 cpa_fill_pool(NULL);
817 return ret;
820 static inline int change_page_attr_set(unsigned long addr, int numpages,
821 pgprot_t mask)
823 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0);
826 static inline int change_page_attr_clear(unsigned long addr, int numpages,
827 pgprot_t mask)
829 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0);
832 int _set_memory_uc(unsigned long addr, int numpages)
835 * for now UC MINUS. see comments in ioremap_nocache()
837 return change_page_attr_set(addr, numpages,
838 __pgprot(_PAGE_CACHE_UC_MINUS));
841 int set_memory_uc(unsigned long addr, int numpages)
844 * for now UC MINUS. see comments in ioremap_nocache()
846 if (reserve_memtype(addr, addr + numpages * PAGE_SIZE,
847 _PAGE_CACHE_UC_MINUS, NULL))
848 return -EINVAL;
850 return _set_memory_uc(addr, numpages);
852 EXPORT_SYMBOL(set_memory_uc);
854 int _set_memory_wc(unsigned long addr, int numpages)
856 return change_page_attr_set(addr, numpages,
857 __pgprot(_PAGE_CACHE_WC));
860 int set_memory_wc(unsigned long addr, int numpages)
862 if (!pat_enabled)
863 return set_memory_uc(addr, numpages);
865 if (reserve_memtype(addr, addr + numpages * PAGE_SIZE,
866 _PAGE_CACHE_WC, NULL))
867 return -EINVAL;
869 return _set_memory_wc(addr, numpages);
871 EXPORT_SYMBOL(set_memory_wc);
873 int _set_memory_wb(unsigned long addr, int numpages)
875 return change_page_attr_clear(addr, numpages,
876 __pgprot(_PAGE_CACHE_MASK));
879 int set_memory_wb(unsigned long addr, int numpages)
881 free_memtype(addr, addr + numpages * PAGE_SIZE);
883 return _set_memory_wb(addr, numpages);
885 EXPORT_SYMBOL(set_memory_wb);
887 int set_memory_x(unsigned long addr, int numpages)
889 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
891 EXPORT_SYMBOL(set_memory_x);
893 int set_memory_nx(unsigned long addr, int numpages)
895 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
897 EXPORT_SYMBOL(set_memory_nx);
899 int set_memory_ro(unsigned long addr, int numpages)
901 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
904 int set_memory_rw(unsigned long addr, int numpages)
906 return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
909 int set_memory_np(unsigned long addr, int numpages)
911 return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
914 int set_memory_4k(unsigned long addr, int numpages)
916 return change_page_attr_set_clr(addr, numpages, __pgprot(0),
917 __pgprot(0), 1);
920 int set_pages_uc(struct page *page, int numpages)
922 unsigned long addr = (unsigned long)page_address(page);
924 return set_memory_uc(addr, numpages);
926 EXPORT_SYMBOL(set_pages_uc);
928 int set_pages_wb(struct page *page, int numpages)
930 unsigned long addr = (unsigned long)page_address(page);
932 return set_memory_wb(addr, numpages);
934 EXPORT_SYMBOL(set_pages_wb);
936 int set_pages_x(struct page *page, int numpages)
938 unsigned long addr = (unsigned long)page_address(page);
940 return set_memory_x(addr, numpages);
942 EXPORT_SYMBOL(set_pages_x);
944 int set_pages_nx(struct page *page, int numpages)
946 unsigned long addr = (unsigned long)page_address(page);
948 return set_memory_nx(addr, numpages);
950 EXPORT_SYMBOL(set_pages_nx);
952 int set_pages_ro(struct page *page, int numpages)
954 unsigned long addr = (unsigned long)page_address(page);
956 return set_memory_ro(addr, numpages);
959 int set_pages_rw(struct page *page, int numpages)
961 unsigned long addr = (unsigned long)page_address(page);
963 return set_memory_rw(addr, numpages);
966 #ifdef CONFIG_DEBUG_PAGEALLOC
968 static int __set_pages_p(struct page *page, int numpages)
970 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
971 .numpages = numpages,
972 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
973 .mask_clr = __pgprot(0)};
975 return __change_page_attr_set_clr(&cpa, 1);
978 static int __set_pages_np(struct page *page, int numpages)
980 struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
981 .numpages = numpages,
982 .mask_set = __pgprot(0),
983 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
985 return __change_page_attr_set_clr(&cpa, 1);
988 void kernel_map_pages(struct page *page, int numpages, int enable)
990 if (PageHighMem(page))
991 return;
992 if (!enable) {
993 debug_check_no_locks_freed(page_address(page),
994 numpages * PAGE_SIZE);
998 * If page allocator is not up yet then do not call c_p_a():
1000 if (!debug_pagealloc_enabled)
1001 return;
1004 * The return value is ignored as the calls cannot fail.
1005 * Large pages are kept enabled at boot time, and are
1006 * split up quickly with DEBUG_PAGEALLOC. If a splitup
1007 * fails here (due to temporary memory shortage) no damage
1008 * is done because we just keep the largepage intact up
1009 * to the next attempt when it will likely be split up:
1011 if (enable)
1012 __set_pages_p(page, numpages);
1013 else
1014 __set_pages_np(page, numpages);
1017 * We should perform an IPI and flush all tlbs,
1018 * but that can deadlock->flush only current cpu:
1020 __flush_tlb_all();
1023 * Try to refill the page pool here. We can do this only after
1024 * the tlb flush.
1026 cpa_fill_pool(NULL);
1029 #ifdef CONFIG_DEBUG_FS
1030 static int dpa_show(struct seq_file *m, void *v)
1032 seq_puts(m, "DEBUG_PAGEALLOC\n");
1033 seq_printf(m, "pool_size : %lu\n", pool_size);
1034 seq_printf(m, "pool_pages : %lu\n", pool_pages);
1035 seq_printf(m, "pool_low : %lu\n", pool_low);
1036 seq_printf(m, "pool_used : %lu\n", pool_used);
1037 seq_printf(m, "pool_failed : %lu\n", pool_failed);
1039 return 0;
1042 static int dpa_open(struct inode *inode, struct file *filp)
1044 return single_open(filp, dpa_show, NULL);
1047 static const struct file_operations dpa_fops = {
1048 .open = dpa_open,
1049 .read = seq_read,
1050 .llseek = seq_lseek,
1051 .release = single_release,
1054 static int __init debug_pagealloc_proc_init(void)
1056 struct dentry *de;
1058 de = debugfs_create_file("debug_pagealloc", 0600, NULL, NULL,
1059 &dpa_fops);
1060 if (!de)
1061 return -ENOMEM;
1063 return 0;
1065 __initcall(debug_pagealloc_proc_init);
1066 #endif
1068 #ifdef CONFIG_HIBERNATION
1070 bool kernel_page_present(struct page *page)
1072 unsigned int level;
1073 pte_t *pte;
1075 if (PageHighMem(page))
1076 return false;
1078 pte = lookup_address((unsigned long)page_address(page), &level);
1079 return (pte_val(*pte) & _PAGE_PRESENT);
1082 #endif /* CONFIG_HIBERNATION */
1084 #endif /* CONFIG_DEBUG_PAGEALLOC */
1087 * The testcases use internal knowledge of the implementation that shouldn't
1088 * be exposed to the rest of the kernel. Include these directly here.
1090 #ifdef CONFIG_CPA_DEBUG
1091 #include "pageattr-test.c"
1092 #endif