2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_mutex
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
39 * within inode_wb_list_lock in __sync_single_inode)
41 * (code doesn't rely on that order so it could be switched around)
43 * anon_vma->mutex (memory_failure, collect_procs_anon)
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
62 #include <asm/tlbflush.h>
66 static struct kmem_cache
*anon_vma_cachep
;
67 static struct kmem_cache
*anon_vma_chain_cachep
;
69 static inline struct anon_vma
*anon_vma_alloc(void)
71 struct anon_vma
*anon_vma
;
73 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
75 atomic_set(&anon_vma
->refcount
, 1);
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
80 anon_vma
->root
= anon_vma
;
86 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
88 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
91 * Synchronize against page_lock_anon_vma() such that
92 * we can safely hold the lock without the anon_vma getting
95 * Relies on the full mb implied by the atomic_dec_and_test() from
96 * put_anon_vma() against the acquire barrier implied by
97 * mutex_trylock() from page_lock_anon_vma(). This orders:
99 * page_lock_anon_vma() VS put_anon_vma()
100 * mutex_trylock() atomic_dec_and_test()
102 * atomic_read() mutex_is_locked()
104 * LOCK should suffice since the actual taking of the lock must
105 * happen _before_ what follows.
107 if (mutex_is_locked(&anon_vma
->root
->mutex
)) {
108 anon_vma_lock(anon_vma
);
109 anon_vma_unlock(anon_vma
);
112 kmem_cache_free(anon_vma_cachep
, anon_vma
);
115 static inline struct anon_vma_chain
*anon_vma_chain_alloc(void)
117 return kmem_cache_alloc(anon_vma_chain_cachep
, GFP_KERNEL
);
120 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
122 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
126 * anon_vma_prepare - attach an anon_vma to a memory region
127 * @vma: the memory region in question
129 * This makes sure the memory mapping described by 'vma' has
130 * an 'anon_vma' attached to it, so that we can associate the
131 * anonymous pages mapped into it with that anon_vma.
133 * The common case will be that we already have one, but if
134 * not we either need to find an adjacent mapping that we
135 * can re-use the anon_vma from (very common when the only
136 * reason for splitting a vma has been mprotect()), or we
137 * allocate a new one.
139 * Anon-vma allocations are very subtle, because we may have
140 * optimistically looked up an anon_vma in page_lock_anon_vma()
141 * and that may actually touch the spinlock even in the newly
142 * allocated vma (it depends on RCU to make sure that the
143 * anon_vma isn't actually destroyed).
145 * As a result, we need to do proper anon_vma locking even
146 * for the new allocation. At the same time, we do not want
147 * to do any locking for the common case of already having
150 * This must be called with the mmap_sem held for reading.
152 int anon_vma_prepare(struct vm_area_struct
*vma
)
154 struct anon_vma
*anon_vma
= vma
->anon_vma
;
155 struct anon_vma_chain
*avc
;
158 if (unlikely(!anon_vma
)) {
159 struct mm_struct
*mm
= vma
->vm_mm
;
160 struct anon_vma
*allocated
;
162 avc
= anon_vma_chain_alloc();
166 anon_vma
= find_mergeable_anon_vma(vma
);
169 anon_vma
= anon_vma_alloc();
170 if (unlikely(!anon_vma
))
171 goto out_enomem_free_avc
;
172 allocated
= anon_vma
;
175 anon_vma_lock(anon_vma
);
176 /* page_table_lock to protect against threads */
177 spin_lock(&mm
->page_table_lock
);
178 if (likely(!vma
->anon_vma
)) {
179 vma
->anon_vma
= anon_vma
;
180 avc
->anon_vma
= anon_vma
;
182 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
183 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
187 spin_unlock(&mm
->page_table_lock
);
188 anon_vma_unlock(anon_vma
);
190 if (unlikely(allocated
))
191 put_anon_vma(allocated
);
193 anon_vma_chain_free(avc
);
198 anon_vma_chain_free(avc
);
203 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
204 struct anon_vma_chain
*avc
,
205 struct anon_vma
*anon_vma
)
208 avc
->anon_vma
= anon_vma
;
209 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
211 anon_vma_lock(anon_vma
);
213 * It's critical to add new vmas to the tail of the anon_vma,
214 * see comment in huge_memory.c:__split_huge_page().
216 list_add_tail(&avc
->same_anon_vma
, &anon_vma
->head
);
217 anon_vma_unlock(anon_vma
);
221 * Attach the anon_vmas from src to dst.
222 * Returns 0 on success, -ENOMEM on failure.
224 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
226 struct anon_vma_chain
*avc
, *pavc
;
228 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
229 avc
= anon_vma_chain_alloc();
232 anon_vma_chain_link(dst
, avc
, pavc
->anon_vma
);
237 unlink_anon_vmas(dst
);
242 * Attach vma to its own anon_vma, as well as to the anon_vmas that
243 * the corresponding VMA in the parent process is attached to.
244 * Returns 0 on success, non-zero on failure.
246 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
248 struct anon_vma_chain
*avc
;
249 struct anon_vma
*anon_vma
;
251 /* Don't bother if the parent process has no anon_vma here. */
256 * First, attach the new VMA to the parent VMA's anon_vmas,
257 * so rmap can find non-COWed pages in child processes.
259 if (anon_vma_clone(vma
, pvma
))
262 /* Then add our own anon_vma. */
263 anon_vma
= anon_vma_alloc();
266 avc
= anon_vma_chain_alloc();
268 goto out_error_free_anon_vma
;
271 * The root anon_vma's spinlock is the lock actually used when we
272 * lock any of the anon_vmas in this anon_vma tree.
274 anon_vma
->root
= pvma
->anon_vma
->root
;
276 * With refcounts, an anon_vma can stay around longer than the
277 * process it belongs to. The root anon_vma needs to be pinned until
278 * this anon_vma is freed, because the lock lives in the root.
280 get_anon_vma(anon_vma
->root
);
281 /* Mark this anon_vma as the one where our new (COWed) pages go. */
282 vma
->anon_vma
= anon_vma
;
283 anon_vma_chain_link(vma
, avc
, anon_vma
);
287 out_error_free_anon_vma
:
288 put_anon_vma(anon_vma
);
290 unlink_anon_vmas(vma
);
294 static void anon_vma_unlink(struct anon_vma_chain
*anon_vma_chain
)
296 struct anon_vma
*anon_vma
= anon_vma_chain
->anon_vma
;
299 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
303 anon_vma_lock(anon_vma
);
304 list_del(&anon_vma_chain
->same_anon_vma
);
306 /* We must garbage collect the anon_vma if it's empty */
307 empty
= list_empty(&anon_vma
->head
);
308 anon_vma_unlock(anon_vma
);
311 put_anon_vma(anon_vma
);
314 void unlink_anon_vmas(struct vm_area_struct
*vma
)
316 struct anon_vma_chain
*avc
, *next
;
319 * Unlink each anon_vma chained to the VMA. This list is ordered
320 * from newest to oldest, ensuring the root anon_vma gets freed last.
322 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
323 anon_vma_unlink(avc
);
324 list_del(&avc
->same_vma
);
325 anon_vma_chain_free(avc
);
329 static void anon_vma_ctor(void *data
)
331 struct anon_vma
*anon_vma
= data
;
333 mutex_init(&anon_vma
->mutex
);
334 atomic_set(&anon_vma
->refcount
, 0);
335 INIT_LIST_HEAD(&anon_vma
->head
);
338 void __init
anon_vma_init(void)
340 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
341 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
342 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
346 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
348 * Since there is no serialization what so ever against page_remove_rmap()
349 * the best this function can do is return a locked anon_vma that might
350 * have been relevant to this page.
352 * The page might have been remapped to a different anon_vma or the anon_vma
353 * returned may already be freed (and even reused).
355 * In case it was remapped to a different anon_vma, the new anon_vma will be a
356 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
357 * ensure that any anon_vma obtained from the page will still be valid for as
358 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
360 * All users of this function must be very careful when walking the anon_vma
361 * chain and verify that the page in question is indeed mapped in it
362 * [ something equivalent to page_mapped_in_vma() ].
364 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
365 * that the anon_vma pointer from page->mapping is valid if there is a
366 * mapcount, we can dereference the anon_vma after observing those.
368 struct anon_vma
*page_get_anon_vma(struct page
*page
)
370 struct anon_vma
*anon_vma
= NULL
;
371 unsigned long anon_mapping
;
374 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
375 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
377 if (!page_mapped(page
))
380 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
381 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
387 * If this page is still mapped, then its anon_vma cannot have been
388 * freed. But if it has been unmapped, we have no security against the
389 * anon_vma structure being freed and reused (for another anon_vma:
390 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
391 * above cannot corrupt).
393 if (!page_mapped(page
)) {
394 put_anon_vma(anon_vma
);
404 * Similar to page_get_anon_vma() except it locks the anon_vma.
406 * Its a little more complex as it tries to keep the fast path to a single
407 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
408 * reference like with page_get_anon_vma() and then block on the mutex.
410 struct anon_vma
*page_lock_anon_vma(struct page
*page
)
412 struct anon_vma
*anon_vma
= NULL
;
413 struct anon_vma
*root_anon_vma
;
414 unsigned long anon_mapping
;
417 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
418 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
420 if (!page_mapped(page
))
423 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
424 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
425 if (mutex_trylock(&root_anon_vma
->mutex
)) {
427 * If the page is still mapped, then this anon_vma is still
428 * its anon_vma, and holding the mutex ensures that it will
429 * not go away, see anon_vma_free().
431 if (!page_mapped(page
)) {
432 mutex_unlock(&root_anon_vma
->mutex
);
438 /* trylock failed, we got to sleep */
439 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
444 if (!page_mapped(page
)) {
445 put_anon_vma(anon_vma
);
450 /* we pinned the anon_vma, its safe to sleep */
452 anon_vma_lock(anon_vma
);
454 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
456 * Oops, we held the last refcount, release the lock
457 * and bail -- can't simply use put_anon_vma() because
458 * we'll deadlock on the anon_vma_lock() recursion.
460 anon_vma_unlock(anon_vma
);
461 __put_anon_vma(anon_vma
);
472 void page_unlock_anon_vma(struct anon_vma
*anon_vma
)
474 anon_vma_unlock(anon_vma
);
478 * At what user virtual address is page expected in @vma?
479 * Returns virtual address or -EFAULT if page's index/offset is not
480 * within the range mapped the @vma.
483 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
485 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
486 unsigned long address
;
488 if (unlikely(is_vm_hugetlb_page(vma
)))
489 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
490 address
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
491 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
)) {
492 /* page should be within @vma mapping range */
499 * At what user virtual address is page expected in vma?
500 * Caller should check the page is actually part of the vma.
502 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
504 if (PageAnon(page
)) {
505 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
507 * Note: swapoff's unuse_vma() is more efficient with this
508 * check, and needs it to match anon_vma when KSM is active.
510 if (!vma
->anon_vma
|| !page__anon_vma
||
511 vma
->anon_vma
->root
!= page__anon_vma
->root
)
513 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
515 vma
->vm_file
->f_mapping
!= page
->mapping
)
519 return vma_address(page
, vma
);
523 * Check that @page is mapped at @address into @mm.
525 * If @sync is false, page_check_address may perform a racy check to avoid
526 * the page table lock when the pte is not present (helpful when reclaiming
527 * highly shared pages).
529 * On success returns with pte mapped and locked.
531 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
532 unsigned long address
, spinlock_t
**ptlp
, int sync
)
540 if (unlikely(PageHuge(page
))) {
541 pte
= huge_pte_offset(mm
, address
);
542 ptl
= &mm
->page_table_lock
;
546 pgd
= pgd_offset(mm
, address
);
547 if (!pgd_present(*pgd
))
550 pud
= pud_offset(pgd
, address
);
551 if (!pud_present(*pud
))
554 pmd
= pmd_offset(pud
, address
);
555 if (!pmd_present(*pmd
))
557 if (pmd_trans_huge(*pmd
))
560 pte
= pte_offset_map(pmd
, address
);
561 /* Make a quick check before getting the lock */
562 if (!sync
&& !pte_present(*pte
)) {
567 ptl
= pte_lockptr(mm
, pmd
);
570 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
574 pte_unmap_unlock(pte
, ptl
);
579 * page_mapped_in_vma - check whether a page is really mapped in a VMA
580 * @page: the page to test
581 * @vma: the VMA to test
583 * Returns 1 if the page is mapped into the page tables of the VMA, 0
584 * if the page is not mapped into the page tables of this VMA. Only
585 * valid for normal file or anonymous VMAs.
587 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
589 unsigned long address
;
593 address
= vma_address(page
, vma
);
594 if (address
== -EFAULT
) /* out of vma range */
596 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
597 if (!pte
) /* the page is not in this mm */
599 pte_unmap_unlock(pte
, ptl
);
605 * Subfunctions of page_referenced: page_referenced_one called
606 * repeatedly from either page_referenced_anon or page_referenced_file.
608 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
609 unsigned long address
, unsigned int *mapcount
,
610 unsigned long *vm_flags
)
612 struct mm_struct
*mm
= vma
->vm_mm
;
615 if (unlikely(PageTransHuge(page
))) {
618 spin_lock(&mm
->page_table_lock
);
620 * rmap might return false positives; we must filter
621 * these out using page_check_address_pmd().
623 pmd
= page_check_address_pmd(page
, mm
, address
,
624 PAGE_CHECK_ADDRESS_PMD_FLAG
);
626 spin_unlock(&mm
->page_table_lock
);
630 if (vma
->vm_flags
& VM_LOCKED
) {
631 spin_unlock(&mm
->page_table_lock
);
632 *mapcount
= 0; /* break early from loop */
633 *vm_flags
|= VM_LOCKED
;
637 /* go ahead even if the pmd is pmd_trans_splitting() */
638 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
640 spin_unlock(&mm
->page_table_lock
);
646 * rmap might return false positives; we must filter
647 * these out using page_check_address().
649 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
653 if (vma
->vm_flags
& VM_LOCKED
) {
654 pte_unmap_unlock(pte
, ptl
);
655 *mapcount
= 0; /* break early from loop */
656 *vm_flags
|= VM_LOCKED
;
660 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
662 * Don't treat a reference through a sequentially read
663 * mapping as such. If the page has been used in
664 * another mapping, we will catch it; if this other
665 * mapping is already gone, the unmap path will have
666 * set PG_referenced or activated the page.
668 if (likely(!VM_SequentialReadHint(vma
)))
671 pte_unmap_unlock(pte
, ptl
);
674 /* Pretend the page is referenced if the task has the
675 swap token and is in the middle of a page fault. */
676 if (mm
!= current
->mm
&& has_swap_token(mm
) &&
677 rwsem_is_locked(&mm
->mmap_sem
))
683 *vm_flags
|= vma
->vm_flags
;
688 static int page_referenced_anon(struct page
*page
,
689 struct mem_cgroup
*mem_cont
,
690 unsigned long *vm_flags
)
692 unsigned int mapcount
;
693 struct anon_vma
*anon_vma
;
694 struct anon_vma_chain
*avc
;
697 anon_vma
= page_lock_anon_vma(page
);
701 mapcount
= page_mapcount(page
);
702 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
703 struct vm_area_struct
*vma
= avc
->vma
;
704 unsigned long address
= vma_address(page
, vma
);
705 if (address
== -EFAULT
)
708 * If we are reclaiming on behalf of a cgroup, skip
709 * counting on behalf of references from different
712 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
714 referenced
+= page_referenced_one(page
, vma
, address
,
715 &mapcount
, vm_flags
);
720 page_unlock_anon_vma(anon_vma
);
725 * page_referenced_file - referenced check for object-based rmap
726 * @page: the page we're checking references on.
727 * @mem_cont: target memory controller
728 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
730 * For an object-based mapped page, find all the places it is mapped and
731 * check/clear the referenced flag. This is done by following the page->mapping
732 * pointer, then walking the chain of vmas it holds. It returns the number
733 * of references it found.
735 * This function is only called from page_referenced for object-based pages.
737 static int page_referenced_file(struct page
*page
,
738 struct mem_cgroup
*mem_cont
,
739 unsigned long *vm_flags
)
741 unsigned int mapcount
;
742 struct address_space
*mapping
= page
->mapping
;
743 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
744 struct vm_area_struct
*vma
;
745 struct prio_tree_iter iter
;
749 * The caller's checks on page->mapping and !PageAnon have made
750 * sure that this is a file page: the check for page->mapping
751 * excludes the case just before it gets set on an anon page.
753 BUG_ON(PageAnon(page
));
756 * The page lock not only makes sure that page->mapping cannot
757 * suddenly be NULLified by truncation, it makes sure that the
758 * structure at mapping cannot be freed and reused yet,
759 * so we can safely take mapping->i_mmap_mutex.
761 BUG_ON(!PageLocked(page
));
763 mutex_lock(&mapping
->i_mmap_mutex
);
766 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
767 * is more likely to be accurate if we note it after spinning.
769 mapcount
= page_mapcount(page
);
771 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
772 unsigned long address
= vma_address(page
, vma
);
773 if (address
== -EFAULT
)
776 * If we are reclaiming on behalf of a cgroup, skip
777 * counting on behalf of references from different
780 if (mem_cont
&& !mm_match_cgroup(vma
->vm_mm
, mem_cont
))
782 referenced
+= page_referenced_one(page
, vma
, address
,
783 &mapcount
, vm_flags
);
788 mutex_unlock(&mapping
->i_mmap_mutex
);
793 * page_referenced - test if the page was referenced
794 * @page: the page to test
795 * @is_locked: caller holds lock on the page
796 * @mem_cont: target memory controller
797 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
799 * Quick test_and_clear_referenced for all mappings to a page,
800 * returns the number of ptes which referenced the page.
802 int page_referenced(struct page
*page
,
804 struct mem_cgroup
*mem_cont
,
805 unsigned long *vm_flags
)
811 if (page_mapped(page
) && page_rmapping(page
)) {
812 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
813 we_locked
= trylock_page(page
);
819 if (unlikely(PageKsm(page
)))
820 referenced
+= page_referenced_ksm(page
, mem_cont
,
822 else if (PageAnon(page
))
823 referenced
+= page_referenced_anon(page
, mem_cont
,
825 else if (page
->mapping
)
826 referenced
+= page_referenced_file(page
, mem_cont
,
832 if (page_test_and_clear_young(page_to_pfn(page
)))
838 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
839 unsigned long address
)
841 struct mm_struct
*mm
= vma
->vm_mm
;
846 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
850 if (pte_dirty(*pte
) || pte_write(*pte
)) {
853 flush_cache_page(vma
, address
, pte_pfn(*pte
));
854 entry
= ptep_clear_flush_notify(vma
, address
, pte
);
855 entry
= pte_wrprotect(entry
);
856 entry
= pte_mkclean(entry
);
857 set_pte_at(mm
, address
, pte
, entry
);
861 pte_unmap_unlock(pte
, ptl
);
866 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
868 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
869 struct vm_area_struct
*vma
;
870 struct prio_tree_iter iter
;
873 BUG_ON(PageAnon(page
));
875 mutex_lock(&mapping
->i_mmap_mutex
);
876 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
877 if (vma
->vm_flags
& VM_SHARED
) {
878 unsigned long address
= vma_address(page
, vma
);
879 if (address
== -EFAULT
)
881 ret
+= page_mkclean_one(page
, vma
, address
);
884 mutex_unlock(&mapping
->i_mmap_mutex
);
888 int page_mkclean(struct page
*page
)
892 BUG_ON(!PageLocked(page
));
894 if (page_mapped(page
)) {
895 struct address_space
*mapping
= page_mapping(page
);
897 ret
= page_mkclean_file(mapping
, page
);
898 if (page_test_and_clear_dirty(page_to_pfn(page
), 1))
905 EXPORT_SYMBOL_GPL(page_mkclean
);
908 * page_move_anon_rmap - move a page to our anon_vma
909 * @page: the page to move to our anon_vma
910 * @vma: the vma the page belongs to
911 * @address: the user virtual address mapped
913 * When a page belongs exclusively to one process after a COW event,
914 * that page can be moved into the anon_vma that belongs to just that
915 * process, so the rmap code will not search the parent or sibling
918 void page_move_anon_rmap(struct page
*page
,
919 struct vm_area_struct
*vma
, unsigned long address
)
921 struct anon_vma
*anon_vma
= vma
->anon_vma
;
923 VM_BUG_ON(!PageLocked(page
));
924 VM_BUG_ON(!anon_vma
);
925 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
927 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
928 page
->mapping
= (struct address_space
*) anon_vma
;
932 * __page_set_anon_rmap - set up new anonymous rmap
933 * @page: Page to add to rmap
934 * @vma: VM area to add page to.
935 * @address: User virtual address of the mapping
936 * @exclusive: the page is exclusively owned by the current process
938 static void __page_set_anon_rmap(struct page
*page
,
939 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
941 struct anon_vma
*anon_vma
= vma
->anon_vma
;
949 * If the page isn't exclusively mapped into this vma,
950 * we must use the _oldest_ possible anon_vma for the
954 anon_vma
= anon_vma
->root
;
956 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
957 page
->mapping
= (struct address_space
*) anon_vma
;
958 page
->index
= linear_page_index(vma
, address
);
962 * __page_check_anon_rmap - sanity check anonymous rmap addition
963 * @page: the page to add the mapping to
964 * @vma: the vm area in which the mapping is added
965 * @address: the user virtual address mapped
967 static void __page_check_anon_rmap(struct page
*page
,
968 struct vm_area_struct
*vma
, unsigned long address
)
970 #ifdef CONFIG_DEBUG_VM
972 * The page's anon-rmap details (mapping and index) are guaranteed to
973 * be set up correctly at this point.
975 * We have exclusion against page_add_anon_rmap because the caller
976 * always holds the page locked, except if called from page_dup_rmap,
977 * in which case the page is already known to be setup.
979 * We have exclusion against page_add_new_anon_rmap because those pages
980 * are initially only visible via the pagetables, and the pte is locked
981 * over the call to page_add_new_anon_rmap.
983 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
984 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
989 * page_add_anon_rmap - add pte mapping to an anonymous page
990 * @page: the page to add the mapping to
991 * @vma: the vm area in which the mapping is added
992 * @address: the user virtual address mapped
994 * The caller needs to hold the pte lock, and the page must be locked in
995 * the anon_vma case: to serialize mapping,index checking after setting,
996 * and to ensure that PageAnon is not being upgraded racily to PageKsm
997 * (but PageKsm is never downgraded to PageAnon).
999 void page_add_anon_rmap(struct page
*page
,
1000 struct vm_area_struct
*vma
, unsigned long address
)
1002 do_page_add_anon_rmap(page
, vma
, address
, 0);
1006 * Special version of the above for do_swap_page, which often runs
1007 * into pages that are exclusively owned by the current process.
1008 * Everybody else should continue to use page_add_anon_rmap above.
1010 void do_page_add_anon_rmap(struct page
*page
,
1011 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1013 int first
= atomic_inc_and_test(&page
->_mapcount
);
1015 if (!PageTransHuge(page
))
1016 __inc_zone_page_state(page
, NR_ANON_PAGES
);
1018 __inc_zone_page_state(page
,
1019 NR_ANON_TRANSPARENT_HUGEPAGES
);
1021 if (unlikely(PageKsm(page
)))
1024 VM_BUG_ON(!PageLocked(page
));
1025 /* address might be in next vma when migration races vma_adjust */
1027 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1029 __page_check_anon_rmap(page
, vma
, address
);
1033 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1034 * @page: the page to add the mapping to
1035 * @vma: the vm area in which the mapping is added
1036 * @address: the user virtual address mapped
1038 * Same as page_add_anon_rmap but must only be called on *new* pages.
1039 * This means the inc-and-test can be bypassed.
1040 * Page does not have to be locked.
1042 void page_add_new_anon_rmap(struct page
*page
,
1043 struct vm_area_struct
*vma
, unsigned long address
)
1045 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1046 SetPageSwapBacked(page
);
1047 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1048 if (!PageTransHuge(page
))
1049 __inc_zone_page_state(page
, NR_ANON_PAGES
);
1051 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1052 __page_set_anon_rmap(page
, vma
, address
, 1);
1053 if (page_evictable(page
, vma
))
1054 lru_cache_add_lru(page
, LRU_ACTIVE_ANON
);
1056 add_page_to_unevictable_list(page
);
1060 * page_add_file_rmap - add pte mapping to a file page
1061 * @page: the page to add the mapping to
1063 * The caller needs to hold the pte lock.
1065 void page_add_file_rmap(struct page
*page
)
1067 if (atomic_inc_and_test(&page
->_mapcount
)) {
1068 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1069 mem_cgroup_inc_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
1074 * page_remove_rmap - take down pte mapping from a page
1075 * @page: page to remove mapping from
1077 * The caller needs to hold the pte lock.
1079 void page_remove_rmap(struct page
*page
)
1081 /* page still mapped by someone else? */
1082 if (!atomic_add_negative(-1, &page
->_mapcount
))
1086 * Now that the last pte has gone, s390 must transfer dirty
1087 * flag from storage key to struct page. We can usually skip
1088 * this if the page is anon, so about to be freed; but perhaps
1089 * not if it's in swapcache - there might be another pte slot
1090 * containing the swap entry, but page not yet written to swap.
1092 if ((!PageAnon(page
) || PageSwapCache(page
)) &&
1093 page_test_and_clear_dirty(page_to_pfn(page
), 1))
1094 set_page_dirty(page
);
1096 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1097 * and not charged by memcg for now.
1099 if (unlikely(PageHuge(page
)))
1101 if (PageAnon(page
)) {
1102 mem_cgroup_uncharge_page(page
);
1103 if (!PageTransHuge(page
))
1104 __dec_zone_page_state(page
, NR_ANON_PAGES
);
1106 __dec_zone_page_state(page
,
1107 NR_ANON_TRANSPARENT_HUGEPAGES
);
1109 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1110 mem_cgroup_dec_page_stat(page
, MEMCG_NR_FILE_MAPPED
);
1113 * It would be tidy to reset the PageAnon mapping here,
1114 * but that might overwrite a racing page_add_anon_rmap
1115 * which increments mapcount after us but sets mapping
1116 * before us: so leave the reset to free_hot_cold_page,
1117 * and remember that it's only reliable while mapped.
1118 * Leaving it set also helps swapoff to reinstate ptes
1119 * faster for those pages still in swapcache.
1124 * Subfunctions of try_to_unmap: try_to_unmap_one called
1125 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1127 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1128 unsigned long address
, enum ttu_flags flags
)
1130 struct mm_struct
*mm
= vma
->vm_mm
;
1134 int ret
= SWAP_AGAIN
;
1136 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1141 * If the page is mlock()d, we cannot swap it out.
1142 * If it's recently referenced (perhaps page_referenced
1143 * skipped over this mm) then we should reactivate it.
1145 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1146 if (vma
->vm_flags
& VM_LOCKED
)
1149 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1152 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1153 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1159 /* Nuke the page table entry. */
1160 flush_cache_page(vma
, address
, page_to_pfn(page
));
1161 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1163 /* Move the dirty bit to the physical page now the pte is gone. */
1164 if (pte_dirty(pteval
))
1165 set_page_dirty(page
);
1167 /* Update high watermark before we lower rss */
1168 update_hiwater_rss(mm
);
1170 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1172 dec_mm_counter(mm
, MM_ANONPAGES
);
1174 dec_mm_counter(mm
, MM_FILEPAGES
);
1175 set_pte_at(mm
, address
, pte
,
1176 swp_entry_to_pte(make_hwpoison_entry(page
)));
1177 } else if (PageAnon(page
)) {
1178 swp_entry_t entry
= { .val
= page_private(page
) };
1180 if (PageSwapCache(page
)) {
1182 * Store the swap location in the pte.
1183 * See handle_pte_fault() ...
1185 if (swap_duplicate(entry
) < 0) {
1186 set_pte_at(mm
, address
, pte
, pteval
);
1190 if (list_empty(&mm
->mmlist
)) {
1191 spin_lock(&mmlist_lock
);
1192 if (list_empty(&mm
->mmlist
))
1193 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1194 spin_unlock(&mmlist_lock
);
1196 dec_mm_counter(mm
, MM_ANONPAGES
);
1197 inc_mm_counter(mm
, MM_SWAPENTS
);
1198 } else if (PAGE_MIGRATION
) {
1200 * Store the pfn of the page in a special migration
1201 * pte. do_swap_page() will wait until the migration
1202 * pte is removed and then restart fault handling.
1204 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1205 entry
= make_migration_entry(page
, pte_write(pteval
));
1207 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1208 BUG_ON(pte_file(*pte
));
1209 } else if (PAGE_MIGRATION
&& (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1210 /* Establish migration entry for a file page */
1212 entry
= make_migration_entry(page
, pte_write(pteval
));
1213 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1215 dec_mm_counter(mm
, MM_FILEPAGES
);
1217 page_remove_rmap(page
);
1218 page_cache_release(page
);
1221 pte_unmap_unlock(pte
, ptl
);
1226 pte_unmap_unlock(pte
, ptl
);
1230 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1231 * unstable result and race. Plus, We can't wait here because
1232 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1233 * if trylock failed, the page remain in evictable lru and later
1234 * vmscan could retry to move the page to unevictable lru if the
1235 * page is actually mlocked.
1237 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1238 if (vma
->vm_flags
& VM_LOCKED
) {
1239 mlock_vma_page(page
);
1242 up_read(&vma
->vm_mm
->mmap_sem
);
1248 * objrmap doesn't work for nonlinear VMAs because the assumption that
1249 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1250 * Consequently, given a particular page and its ->index, we cannot locate the
1251 * ptes which are mapping that page without an exhaustive linear search.
1253 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1254 * maps the file to which the target page belongs. The ->vm_private_data field
1255 * holds the current cursor into that scan. Successive searches will circulate
1256 * around the vma's virtual address space.
1258 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1259 * more scanning pressure is placed against them as well. Eventually pages
1260 * will become fully unmapped and are eligible for eviction.
1262 * For very sparsely populated VMAs this is a little inefficient - chances are
1263 * there there won't be many ptes located within the scan cluster. In this case
1264 * maybe we could scan further - to the end of the pte page, perhaps.
1266 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1267 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1268 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1269 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1271 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1272 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1274 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1275 struct vm_area_struct
*vma
, struct page
*check_page
)
1277 struct mm_struct
*mm
= vma
->vm_mm
;
1285 unsigned long address
;
1287 int ret
= SWAP_AGAIN
;
1290 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1291 end
= address
+ CLUSTER_SIZE
;
1292 if (address
< vma
->vm_start
)
1293 address
= vma
->vm_start
;
1294 if (end
> vma
->vm_end
)
1297 pgd
= pgd_offset(mm
, address
);
1298 if (!pgd_present(*pgd
))
1301 pud
= pud_offset(pgd
, address
);
1302 if (!pud_present(*pud
))
1305 pmd
= pmd_offset(pud
, address
);
1306 if (!pmd_present(*pmd
))
1310 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1311 * keep the sem while scanning the cluster for mlocking pages.
1313 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1314 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1316 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1319 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1321 /* Update high watermark before we lower rss */
1322 update_hiwater_rss(mm
);
1324 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1325 if (!pte_present(*pte
))
1327 page
= vm_normal_page(vma
, address
, *pte
);
1328 BUG_ON(!page
|| PageAnon(page
));
1331 mlock_vma_page(page
); /* no-op if already mlocked */
1332 if (page
== check_page
)
1334 continue; /* don't unmap */
1337 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1340 /* Nuke the page table entry. */
1341 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1342 pteval
= ptep_clear_flush_notify(vma
, address
, pte
);
1344 /* If nonlinear, store the file page offset in the pte. */
1345 if (page
->index
!= linear_page_index(vma
, address
))
1346 set_pte_at(mm
, address
, pte
, pgoff_to_pte(page
->index
));
1348 /* Move the dirty bit to the physical page now the pte is gone. */
1349 if (pte_dirty(pteval
))
1350 set_page_dirty(page
);
1352 page_remove_rmap(page
);
1353 page_cache_release(page
);
1354 dec_mm_counter(mm
, MM_FILEPAGES
);
1357 pte_unmap_unlock(pte
- 1, ptl
);
1359 up_read(&vma
->vm_mm
->mmap_sem
);
1363 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1365 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1370 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1371 VM_STACK_INCOMPLETE_SETUP
)
1378 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1380 * @page: the page to unmap/unlock
1381 * @flags: action and flags
1383 * Find all the mappings of a page using the mapping pointer and the vma chains
1384 * contained in the anon_vma struct it points to.
1386 * This function is only called from try_to_unmap/try_to_munlock for
1388 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1389 * where the page was found will be held for write. So, we won't recheck
1390 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1393 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1395 struct anon_vma
*anon_vma
;
1396 struct anon_vma_chain
*avc
;
1397 int ret
= SWAP_AGAIN
;
1399 anon_vma
= page_lock_anon_vma(page
);
1403 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1404 struct vm_area_struct
*vma
= avc
->vma
;
1405 unsigned long address
;
1408 * During exec, a temporary VMA is setup and later moved.
1409 * The VMA is moved under the anon_vma lock but not the
1410 * page tables leading to a race where migration cannot
1411 * find the migration ptes. Rather than increasing the
1412 * locking requirements of exec(), migration skips
1413 * temporary VMAs until after exec() completes.
1415 if (PAGE_MIGRATION
&& (flags
& TTU_MIGRATION
) &&
1416 is_vma_temporary_stack(vma
))
1419 address
= vma_address(page
, vma
);
1420 if (address
== -EFAULT
)
1422 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1423 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1427 page_unlock_anon_vma(anon_vma
);
1432 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1433 * @page: the page to unmap/unlock
1434 * @flags: action and flags
1436 * Find all the mappings of a page using the mapping pointer and the vma chains
1437 * contained in the address_space struct it points to.
1439 * This function is only called from try_to_unmap/try_to_munlock for
1440 * object-based pages.
1441 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1442 * where the page was found will be held for write. So, we won't recheck
1443 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1446 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1448 struct address_space
*mapping
= page
->mapping
;
1449 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1450 struct vm_area_struct
*vma
;
1451 struct prio_tree_iter iter
;
1452 int ret
= SWAP_AGAIN
;
1453 unsigned long cursor
;
1454 unsigned long max_nl_cursor
= 0;
1455 unsigned long max_nl_size
= 0;
1456 unsigned int mapcount
;
1458 mutex_lock(&mapping
->i_mmap_mutex
);
1459 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1460 unsigned long address
= vma_address(page
, vma
);
1461 if (address
== -EFAULT
)
1463 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1464 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1468 if (list_empty(&mapping
->i_mmap_nonlinear
))
1472 * We don't bother to try to find the munlocked page in nonlinears.
1473 * It's costly. Instead, later, page reclaim logic may call
1474 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1476 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1479 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1480 shared
.vm_set
.list
) {
1481 cursor
= (unsigned long) vma
->vm_private_data
;
1482 if (cursor
> max_nl_cursor
)
1483 max_nl_cursor
= cursor
;
1484 cursor
= vma
->vm_end
- vma
->vm_start
;
1485 if (cursor
> max_nl_size
)
1486 max_nl_size
= cursor
;
1489 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1495 * We don't try to search for this page in the nonlinear vmas,
1496 * and page_referenced wouldn't have found it anyway. Instead
1497 * just walk the nonlinear vmas trying to age and unmap some.
1498 * The mapcount of the page we came in with is irrelevant,
1499 * but even so use it as a guide to how hard we should try?
1501 mapcount
= page_mapcount(page
);
1506 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1507 if (max_nl_cursor
== 0)
1508 max_nl_cursor
= CLUSTER_SIZE
;
1511 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1512 shared
.vm_set
.list
) {
1513 cursor
= (unsigned long) vma
->vm_private_data
;
1514 while ( cursor
< max_nl_cursor
&&
1515 cursor
< vma
->vm_end
- vma
->vm_start
) {
1516 if (try_to_unmap_cluster(cursor
, &mapcount
,
1517 vma
, page
) == SWAP_MLOCK
)
1519 cursor
+= CLUSTER_SIZE
;
1520 vma
->vm_private_data
= (void *) cursor
;
1521 if ((int)mapcount
<= 0)
1524 vma
->vm_private_data
= (void *) max_nl_cursor
;
1527 max_nl_cursor
+= CLUSTER_SIZE
;
1528 } while (max_nl_cursor
<= max_nl_size
);
1531 * Don't loop forever (perhaps all the remaining pages are
1532 * in locked vmas). Reset cursor on all unreserved nonlinear
1533 * vmas, now forgetting on which ones it had fallen behind.
1535 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.vm_set
.list
)
1536 vma
->vm_private_data
= NULL
;
1538 mutex_unlock(&mapping
->i_mmap_mutex
);
1543 * try_to_unmap - try to remove all page table mappings to a page
1544 * @page: the page to get unmapped
1545 * @flags: action and flags
1547 * Tries to remove all the page table entries which are mapping this
1548 * page, used in the pageout path. Caller must hold the page lock.
1549 * Return values are:
1551 * SWAP_SUCCESS - we succeeded in removing all mappings
1552 * SWAP_AGAIN - we missed a mapping, try again later
1553 * SWAP_FAIL - the page is unswappable
1554 * SWAP_MLOCK - page is mlocked.
1556 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1560 BUG_ON(!PageLocked(page
));
1561 VM_BUG_ON(!PageHuge(page
) && PageTransHuge(page
));
1563 if (unlikely(PageKsm(page
)))
1564 ret
= try_to_unmap_ksm(page
, flags
);
1565 else if (PageAnon(page
))
1566 ret
= try_to_unmap_anon(page
, flags
);
1568 ret
= try_to_unmap_file(page
, flags
);
1569 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1575 * try_to_munlock - try to munlock a page
1576 * @page: the page to be munlocked
1578 * Called from munlock code. Checks all of the VMAs mapping the page
1579 * to make sure nobody else has this page mlocked. The page will be
1580 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1582 * Return values are:
1584 * SWAP_AGAIN - no vma is holding page mlocked, or,
1585 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1586 * SWAP_FAIL - page cannot be located at present
1587 * SWAP_MLOCK - page is now mlocked.
1589 int try_to_munlock(struct page
*page
)
1591 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1593 if (unlikely(PageKsm(page
)))
1594 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1595 else if (PageAnon(page
))
1596 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1598 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1601 void __put_anon_vma(struct anon_vma
*anon_vma
)
1603 struct anon_vma
*root
= anon_vma
->root
;
1605 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1606 anon_vma_free(root
);
1608 anon_vma_free(anon_vma
);
1611 #ifdef CONFIG_MIGRATION
1613 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1614 * Called by migrate.c to remove migration ptes, but might be used more later.
1616 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1617 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1619 struct anon_vma
*anon_vma
;
1620 struct anon_vma_chain
*avc
;
1621 int ret
= SWAP_AGAIN
;
1624 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1625 * because that depends on page_mapped(); but not all its usages
1626 * are holding mmap_sem. Users without mmap_sem are required to
1627 * take a reference count to prevent the anon_vma disappearing
1629 anon_vma
= page_anon_vma(page
);
1632 anon_vma_lock(anon_vma
);
1633 list_for_each_entry(avc
, &anon_vma
->head
, same_anon_vma
) {
1634 struct vm_area_struct
*vma
= avc
->vma
;
1635 unsigned long address
= vma_address(page
, vma
);
1636 if (address
== -EFAULT
)
1638 ret
= rmap_one(page
, vma
, address
, arg
);
1639 if (ret
!= SWAP_AGAIN
)
1642 anon_vma_unlock(anon_vma
);
1646 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1647 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1649 struct address_space
*mapping
= page
->mapping
;
1650 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1651 struct vm_area_struct
*vma
;
1652 struct prio_tree_iter iter
;
1653 int ret
= SWAP_AGAIN
;
1657 mutex_lock(&mapping
->i_mmap_mutex
);
1658 vma_prio_tree_foreach(vma
, &iter
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1659 unsigned long address
= vma_address(page
, vma
);
1660 if (address
== -EFAULT
)
1662 ret
= rmap_one(page
, vma
, address
, arg
);
1663 if (ret
!= SWAP_AGAIN
)
1667 * No nonlinear handling: being always shared, nonlinear vmas
1668 * never contain migration ptes. Decide what to do about this
1669 * limitation to linear when we need rmap_walk() on nonlinear.
1671 mutex_unlock(&mapping
->i_mmap_mutex
);
1675 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1676 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1678 VM_BUG_ON(!PageLocked(page
));
1680 if (unlikely(PageKsm(page
)))
1681 return rmap_walk_ksm(page
, rmap_one
, arg
);
1682 else if (PageAnon(page
))
1683 return rmap_walk_anon(page
, rmap_one
, arg
);
1685 return rmap_walk_file(page
, rmap_one
, arg
);
1687 #endif /* CONFIG_MIGRATION */
1689 #ifdef CONFIG_HUGETLB_PAGE
1691 * The following three functions are for anonymous (private mapped) hugepages.
1692 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1693 * and no lru code, because we handle hugepages differently from common pages.
1695 static void __hugepage_set_anon_rmap(struct page
*page
,
1696 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1698 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1705 anon_vma
= anon_vma
->root
;
1707 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1708 page
->mapping
= (struct address_space
*) anon_vma
;
1709 page
->index
= linear_page_index(vma
, address
);
1712 void hugepage_add_anon_rmap(struct page
*page
,
1713 struct vm_area_struct
*vma
, unsigned long address
)
1715 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1718 BUG_ON(!PageLocked(page
));
1720 /* address might be in next vma when migration races vma_adjust */
1721 first
= atomic_inc_and_test(&page
->_mapcount
);
1723 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1726 void hugepage_add_new_anon_rmap(struct page
*page
,
1727 struct vm_area_struct
*vma
, unsigned long address
)
1729 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1730 atomic_set(&page
->_mapcount
, 0);
1731 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1733 #endif /* CONFIG_HUGETLB_PAGE */