2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node
);
67 EXPORT_PER_CPU_SYMBOL(numa_node
);
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
82 * Array of node states.
84 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
85 [N_POSSIBLE
] = NODE_MASK_ALL
,
86 [N_ONLINE
] = { { [0] = 1UL } },
88 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
90 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
92 [N_CPU
] = { { [0] = 1UL } },
95 EXPORT_SYMBOL(node_states
);
97 unsigned long totalram_pages __read_mostly
;
98 unsigned long totalreserve_pages __read_mostly
;
99 int percpu_pagelist_fraction
;
100 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask
;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex
));
117 if (saved_gfp_mask
) {
118 gfp_allowed_mask
= saved_gfp_mask
;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex
));
126 WARN_ON(saved_gfp_mask
);
127 saved_gfp_mask
= gfp_allowed_mask
;
128 gfp_allowed_mask
&= ~GFP_IOFS
;
130 #endif /* CONFIG_PM_SLEEP */
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly
;
136 static void __free_pages_ok(struct page
*page
, unsigned int order
);
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
149 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
150 #ifdef CONFIG_ZONE_DMA
153 #ifdef CONFIG_ZONE_DMA32
156 #ifdef CONFIG_HIGHMEM
162 EXPORT_SYMBOL(totalram_pages
);
164 static char * const zone_names
[MAX_NR_ZONES
] = {
165 #ifdef CONFIG_ZONE_DMA
168 #ifdef CONFIG_ZONE_DMA32
172 #ifdef CONFIG_HIGHMEM
178 int min_free_kbytes
= 1024;
180 static unsigned long __meminitdata nr_kernel_pages
;
181 static unsigned long __meminitdata nr_all_pages
;
182 static unsigned long __meminitdata dma_reserve
;
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
205 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
206 static int __meminitdata nr_nodemap_entries
;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
209 static unsigned long __initdata required_kernelcore
;
210 static unsigned long __initdata required_movablecore
;
211 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
215 EXPORT_SYMBOL(movable_zone
);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
219 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
220 int nr_online_nodes __read_mostly
= 1;
221 EXPORT_SYMBOL(nr_node_ids
);
222 EXPORT_SYMBOL(nr_online_nodes
);
225 int page_group_by_mobility_disabled __read_mostly
;
227 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
230 if (unlikely(page_group_by_mobility_disabled
))
231 migratetype
= MIGRATE_UNMOVABLE
;
233 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
234 PB_migrate
, PB_migrate_end
);
237 bool oom_killer_disabled __read_mostly
;
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
244 unsigned long pfn
= page_to_pfn(page
);
247 seq
= zone_span_seqbegin(zone
);
248 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
250 else if (pfn
< zone
->zone_start_pfn
)
252 } while (zone_span_seqretry(zone
, seq
));
257 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
259 if (!pfn_valid_within(page_to_pfn(page
)))
261 if (zone
!= page_zone(page
))
267 * Temporary debugging check for pages not lying within a given zone.
269 static int bad_range(struct zone
*zone
, struct page
*page
)
271 if (page_outside_zone_boundaries(zone
, page
))
273 if (!page_is_consistent(zone
, page
))
279 static inline int bad_range(struct zone
*zone
, struct page
*page
)
285 static void bad_page(struct page
*page
)
287 static unsigned long resume
;
288 static unsigned long nr_shown
;
289 static unsigned long nr_unshown
;
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page
)) {
293 reset_page_mapcount(page
); /* remove PageBuddy */
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
301 if (nr_shown
== 60) {
302 if (time_before(jiffies
, resume
)) {
308 "BUG: Bad page state: %lu messages suppressed\n",
315 resume
= jiffies
+ 60 * HZ
;
317 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
318 current
->comm
, page_to_pfn(page
));
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page
); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE
);
329 * Higher-order pages are called "compound pages". They are structured thusly:
331 * The first PAGE_SIZE page is called the "head page".
333 * The remaining PAGE_SIZE pages are called "tail pages".
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
343 static void free_compound_page(struct page
*page
)
345 __free_pages_ok(page
, compound_order(page
));
348 void prep_compound_page(struct page
*page
, unsigned long order
)
351 int nr_pages
= 1 << order
;
353 set_compound_page_dtor(page
, free_compound_page
);
354 set_compound_order(page
, order
);
356 for (i
= 1; i
< nr_pages
; i
++) {
357 struct page
*p
= page
+ i
;
360 p
->first_page
= page
;
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page
*page
, unsigned long order
)
368 int nr_pages
= 1 << order
;
371 if (unlikely(compound_order(page
) != order
) ||
372 unlikely(!PageHead(page
))) {
377 __ClearPageHead(page
);
379 for (i
= 1; i
< nr_pages
; i
++) {
380 struct page
*p
= page
+ i
;
382 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
392 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
401 for (i
= 0; i
< (1 << order
); i
++)
402 clear_highpage(page
+ i
);
405 static inline void set_page_order(struct page
*page
, int order
)
407 set_page_private(page
, order
);
408 __SetPageBuddy(page
);
411 static inline void rmv_page_order(struct page
*page
)
413 __ClearPageBuddy(page
);
414 set_page_private(page
, 0);
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
424 * For example, if the starting buddy (buddy2) is #8 its order
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434 static inline unsigned long
435 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
437 return page_idx
^ (1 << order
);
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
443 * (a) the buddy is not in a hole &&
444 * (b) the buddy is in the buddy system &&
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
451 * For recording page's order, we use page_private(page).
453 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
456 if (!pfn_valid_within(page_to_pfn(buddy
)))
459 if (page_zone_id(page
) != page_zone_id(buddy
))
462 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
463 VM_BUG_ON(page_count(buddy
) != 0);
470 * Freeing function for a buddy system allocator.
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
483 * order is recorded in page_private(page) field.
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
493 static inline void __free_one_page(struct page
*page
,
494 struct zone
*zone
, unsigned int order
,
497 unsigned long page_idx
;
498 unsigned long combined_idx
;
499 unsigned long uninitialized_var(buddy_idx
);
502 if (unlikely(PageCompound(page
)))
503 if (unlikely(destroy_compound_page(page
, order
)))
506 VM_BUG_ON(migratetype
== -1);
508 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
510 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
511 VM_BUG_ON(bad_range(zone
, page
));
513 while (order
< MAX_ORDER
-1) {
514 buddy_idx
= __find_buddy_index(page_idx
, order
);
515 buddy
= page
+ (buddy_idx
- page_idx
);
516 if (!page_is_buddy(page
, buddy
, order
))
519 /* Our buddy is free, merge with it and move up one order. */
520 list_del(&buddy
->lru
);
521 zone
->free_area
[order
].nr_free
--;
522 rmv_page_order(buddy
);
523 combined_idx
= buddy_idx
& page_idx
;
524 page
= page
+ (combined_idx
- page_idx
);
525 page_idx
= combined_idx
;
528 set_page_order(page
, order
);
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
538 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
539 struct page
*higher_page
, *higher_buddy
;
540 combined_idx
= buddy_idx
& page_idx
;
541 higher_page
= page
+ (combined_idx
- page_idx
);
542 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
543 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
544 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
545 list_add_tail(&page
->lru
,
546 &zone
->free_area
[order
].free_list
[migratetype
]);
551 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
553 zone
->free_area
[order
].nr_free
++;
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
561 static inline void free_page_mlock(struct page
*page
)
563 __dec_zone_page_state(page
, NR_MLOCK
);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
567 static inline int free_pages_check(struct page
*page
)
569 if (unlikely(page_mapcount(page
) |
570 (page
->mapping
!= NULL
) |
571 (atomic_read(&page
->_count
) != 0) |
572 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
573 (mem_cgroup_bad_page_check(page
)))) {
577 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
578 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
583 * Frees a number of pages from the PCP lists
584 * Assumes all pages on list are in same zone, and of same order.
585 * count is the number of pages to free.
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
593 static void free_pcppages_bulk(struct zone
*zone
, int count
,
594 struct per_cpu_pages
*pcp
)
600 spin_lock(&zone
->lock
);
601 zone
->all_unreclaimable
= 0;
602 zone
->pages_scanned
= 0;
606 struct list_head
*list
;
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
617 if (++migratetype
== MIGRATE_PCPTYPES
)
619 list
= &pcp
->lists
[migratetype
];
620 } while (list_empty(list
));
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free
== MIGRATE_PCPTYPES
)
624 batch_free
= to_free
;
627 page
= list_entry(list
->prev
, struct page
, lru
);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page
->lru
);
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page
, zone
, 0, page_private(page
));
632 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
633 } while (--to_free
&& --batch_free
&& !list_empty(list
));
635 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
636 spin_unlock(&zone
->lock
);
639 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
642 spin_lock(&zone
->lock
);
643 zone
->all_unreclaimable
= 0;
644 zone
->pages_scanned
= 0;
646 __free_one_page(page
, zone
, order
, migratetype
);
647 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
648 spin_unlock(&zone
->lock
);
651 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
656 trace_mm_page_free_direct(page
, order
);
657 kmemcheck_free_shadow(page
, order
);
660 page
->mapping
= NULL
;
661 for (i
= 0; i
< (1 << order
); i
++)
662 bad
+= free_pages_check(page
+ i
);
666 if (!PageHighMem(page
)) {
667 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
668 debug_check_no_obj_freed(page_address(page
),
671 arch_free_page(page
, order
);
672 kernel_map_pages(page
, 1 << order
, 0);
677 static void __free_pages_ok(struct page
*page
, unsigned int order
)
680 int wasMlocked
= __TestClearPageMlocked(page
);
682 if (!free_pages_prepare(page
, order
))
685 local_irq_save(flags
);
686 if (unlikely(wasMlocked
))
687 free_page_mlock(page
);
688 __count_vm_events(PGFREE
, 1 << order
);
689 free_one_page(page_zone(page
), page
, order
,
690 get_pageblock_migratetype(page
));
691 local_irq_restore(flags
);
695 * permit the bootmem allocator to evade page validation on high-order frees
697 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
700 __ClearPageReserved(page
);
701 set_page_count(page
, 0);
702 set_page_refcounted(page
);
708 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
709 struct page
*p
= &page
[loop
];
711 if (loop
+ 1 < BITS_PER_LONG
)
713 __ClearPageReserved(p
);
714 set_page_count(p
, 0);
717 set_page_refcounted(page
);
718 __free_pages(page
, order
);
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
737 static inline void expand(struct zone
*zone
, struct page
*page
,
738 int low
, int high
, struct free_area
*area
,
741 unsigned long size
= 1 << high
;
747 VM_BUG_ON(bad_range(zone
, &page
[size
]));
748 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
750 set_page_order(&page
[size
], high
);
755 * This page is about to be returned from the page allocator
757 static inline int check_new_page(struct page
*page
)
759 if (unlikely(page_mapcount(page
) |
760 (page
->mapping
!= NULL
) |
761 (atomic_read(&page
->_count
) != 0) |
762 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
763 (mem_cgroup_bad_page_check(page
)))) {
770 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
774 for (i
= 0; i
< (1 << order
); i
++) {
775 struct page
*p
= page
+ i
;
776 if (unlikely(check_new_page(p
)))
780 set_page_private(page
, 0);
781 set_page_refcounted(page
);
783 arch_alloc_page(page
, order
);
784 kernel_map_pages(page
, 1 << order
, 1);
786 if (gfp_flags
& __GFP_ZERO
)
787 prep_zero_page(page
, order
, gfp_flags
);
789 if (order
&& (gfp_flags
& __GFP_COMP
))
790 prep_compound_page(page
, order
);
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
800 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
803 unsigned int current_order
;
804 struct free_area
* area
;
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
809 area
= &(zone
->free_area
[current_order
]);
810 if (list_empty(&area
->free_list
[migratetype
]))
813 page
= list_entry(area
->free_list
[migratetype
].next
,
815 list_del(&page
->lru
);
816 rmv_page_order(page
);
818 expand(zone
, page
, order
, current_order
, area
, migratetype
);
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
830 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
831 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
832 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
833 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
834 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
838 * Move the free pages in a range to the free lists of the requested type.
839 * Note that start_page and end_pages are not aligned on a pageblock
840 * boundary. If alignment is required, use move_freepages_block()
842 static int move_freepages(struct zone
*zone
,
843 struct page
*start_page
, struct page
*end_page
,
850 #ifndef CONFIG_HOLES_IN_ZONE
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
856 * grouping pages by mobility
858 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
861 for (page
= start_page
; page
<= end_page
;) {
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
865 if (!pfn_valid_within(page_to_pfn(page
))) {
870 if (!PageBuddy(page
)) {
875 order
= page_order(page
);
876 list_move(&page
->lru
,
877 &zone
->free_area
[order
].free_list
[migratetype
]);
879 pages_moved
+= 1 << order
;
885 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
888 unsigned long start_pfn
, end_pfn
;
889 struct page
*start_page
, *end_page
;
891 start_pfn
= page_to_pfn(page
);
892 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
893 start_page
= pfn_to_page(start_pfn
);
894 end_page
= start_page
+ pageblock_nr_pages
- 1;
895 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
897 /* Do not cross zone boundaries */
898 if (start_pfn
< zone
->zone_start_pfn
)
900 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
903 return move_freepages(zone
, start_page
, end_page
, migratetype
);
906 static void change_pageblock_range(struct page
*pageblock_page
,
907 int start_order
, int migratetype
)
909 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
911 while (nr_pageblocks
--) {
912 set_pageblock_migratetype(pageblock_page
, migratetype
);
913 pageblock_page
+= pageblock_nr_pages
;
917 /* Remove an element from the buddy allocator from the fallback list */
918 static inline struct page
*
919 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
921 struct free_area
* area
;
926 /* Find the largest possible block of pages in the other list */
927 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
929 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
930 migratetype
= fallbacks
[start_migratetype
][i
];
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype
== MIGRATE_RESERVE
)
936 area
= &(zone
->free_area
[current_order
]);
937 if (list_empty(&area
->free_list
[migratetype
]))
940 page
= list_entry(area
->free_list
[migratetype
].next
,
945 * If breaking a large block of pages, move all free
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
948 * aggressive about taking ownership of free pages
950 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
951 start_migratetype
== MIGRATE_RECLAIMABLE
||
952 page_group_by_mobility_disabled
) {
954 pages
= move_freepages_block(zone
, page
,
957 /* Claim the whole block if over half of it is free */
958 if (pages
>= (1 << (pageblock_order
-1)) ||
959 page_group_by_mobility_disabled
)
960 set_pageblock_migratetype(page
,
963 migratetype
= start_migratetype
;
966 /* Remove the page from the freelists */
967 list_del(&page
->lru
);
968 rmv_page_order(page
);
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order
>= pageblock_order
)
972 change_pageblock_range(page
, current_order
,
975 expand(zone
, page
, order
, current_order
, area
, migratetype
);
977 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
978 start_migratetype
, migratetype
);
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
991 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
997 page
= __rmqueue_smallest(zone
, order
, migratetype
);
999 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1000 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1008 migratetype
= MIGRATE_RESERVE
;
1013 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1022 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1023 unsigned long count
, struct list_head
*list
,
1024 int migratetype
, int cold
)
1028 spin_lock(&zone
->lock
);
1029 for (i
= 0; i
< count
; ++i
) {
1030 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1031 if (unlikely(page
== NULL
))
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1043 if (likely(cold
== 0))
1044 list_add(&page
->lru
, list
);
1046 list_add_tail(&page
->lru
, list
);
1047 set_page_private(page
, migratetype
);
1050 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1051 spin_unlock(&zone
->lock
);
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1064 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1066 unsigned long flags
;
1069 local_irq_save(flags
);
1070 if (pcp
->count
>= pcp
->batch
)
1071 to_drain
= pcp
->batch
;
1073 to_drain
= pcp
->count
;
1074 free_pcppages_bulk(zone
, to_drain
, pcp
);
1075 pcp
->count
-= to_drain
;
1076 local_irq_restore(flags
);
1081 * Drain pages of the indicated processor.
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1087 static void drain_pages(unsigned int cpu
)
1089 unsigned long flags
;
1092 for_each_populated_zone(zone
) {
1093 struct per_cpu_pageset
*pset
;
1094 struct per_cpu_pages
*pcp
;
1096 local_irq_save(flags
);
1097 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1101 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1104 local_irq_restore(flags
);
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1111 void drain_local_pages(void *arg
)
1113 drain_pages(smp_processor_id());
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1119 void drain_all_pages(void)
1121 on_each_cpu(drain_local_pages
, NULL
, 1);
1124 #ifdef CONFIG_HIBERNATION
1126 void mark_free_pages(struct zone
*zone
)
1128 unsigned long pfn
, max_zone_pfn
;
1129 unsigned long flags
;
1131 struct list_head
*curr
;
1133 if (!zone
->spanned_pages
)
1136 spin_lock_irqsave(&zone
->lock
, flags
);
1138 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1139 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1140 if (pfn_valid(pfn
)) {
1141 struct page
*page
= pfn_to_page(pfn
);
1143 if (!swsusp_page_is_forbidden(page
))
1144 swsusp_unset_page_free(page
);
1147 for_each_migratetype_order(order
, t
) {
1148 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1151 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1152 for (i
= 0; i
< (1UL << order
); i
++)
1153 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1156 spin_unlock_irqrestore(&zone
->lock
, flags
);
1158 #endif /* CONFIG_PM */
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1164 void free_hot_cold_page(struct page
*page
, int cold
)
1166 struct zone
*zone
= page_zone(page
);
1167 struct per_cpu_pages
*pcp
;
1168 unsigned long flags
;
1170 int wasMlocked
= __TestClearPageMlocked(page
);
1172 if (!free_pages_prepare(page
, 0))
1175 migratetype
= get_pageblock_migratetype(page
);
1176 set_page_private(page
, migratetype
);
1177 local_irq_save(flags
);
1178 if (unlikely(wasMlocked
))
1179 free_page_mlock(page
);
1180 __count_vm_event(PGFREE
);
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1189 if (migratetype
>= MIGRATE_PCPTYPES
) {
1190 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1191 free_one_page(zone
, page
, 0, migratetype
);
1194 migratetype
= MIGRATE_MOVABLE
;
1197 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1199 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1201 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1203 if (pcp
->count
>= pcp
->high
) {
1204 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1205 pcp
->count
-= pcp
->batch
;
1209 local_irq_restore(flags
);
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1220 void split_page(struct page
*page
, unsigned int order
)
1224 VM_BUG_ON(PageCompound(page
));
1225 VM_BUG_ON(!page_count(page
));
1227 #ifdef CONFIG_KMEMCHECK
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1232 if (kmemcheck_page_is_tracked(page
))
1233 split_page(virt_to_page(page
[0].shadow
), order
);
1236 for (i
= 1; i
< (1 << order
); i
++)
1237 set_page_refcounted(page
+ i
);
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1250 int split_free_page(struct page
*page
)
1253 unsigned long watermark
;
1256 BUG_ON(!PageBuddy(page
));
1258 zone
= page_zone(page
);
1259 order
= page_order(page
);
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark
= low_wmark_pages(zone
) + (1 << order
);
1263 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1266 /* Remove page from free list */
1267 list_del(&page
->lru
);
1268 zone
->free_area
[order
].nr_free
--;
1269 rmv_page_order(page
);
1270 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1272 /* Split into individual pages */
1273 set_page_refcounted(page
);
1274 split_page(page
, order
);
1276 if (order
>= pageblock_order
- 1) {
1277 struct page
*endpage
= page
+ (1 << order
) - 1;
1278 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1279 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1291 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1292 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1295 unsigned long flags
;
1297 int cold
= !!(gfp_flags
& __GFP_COLD
);
1300 if (likely(order
== 0)) {
1301 struct per_cpu_pages
*pcp
;
1302 struct list_head
*list
;
1304 local_irq_save(flags
);
1305 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1306 list
= &pcp
->lists
[migratetype
];
1307 if (list_empty(list
)) {
1308 pcp
->count
+= rmqueue_bulk(zone
, 0,
1311 if (unlikely(list_empty(list
)))
1316 page
= list_entry(list
->prev
, struct page
, lru
);
1318 page
= list_entry(list
->next
, struct page
, lru
);
1320 list_del(&page
->lru
);
1323 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1325 * __GFP_NOFAIL is not to be used in new code.
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1330 * We most definitely don't want callers attempting to
1331 * allocate greater than order-1 page units with
1334 WARN_ON_ONCE(order
> 1);
1336 spin_lock_irqsave(&zone
->lock
, flags
);
1337 page
= __rmqueue(zone
, order
, migratetype
);
1338 spin_unlock(&zone
->lock
);
1341 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1344 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1345 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1346 local_irq_restore(flags
);
1348 VM_BUG_ON(bad_range(zone
, page
));
1349 if (prep_new_page(page
, order
, gfp_flags
))
1354 local_irq_restore(flags
);
1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359 #define ALLOC_WMARK_MIN WMARK_MIN
1360 #define ALLOC_WMARK_LOW WMARK_LOW
1361 #define ALLOC_WMARK_HIGH WMARK_HIGH
1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1364 /* Mask to get the watermark bits */
1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1371 #ifdef CONFIG_FAIL_PAGE_ALLOC
1373 static struct fail_page_alloc_attr
{
1374 struct fault_attr attr
;
1376 u32 ignore_gfp_highmem
;
1377 u32 ignore_gfp_wait
;
1380 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1382 struct dentry
*ignore_gfp_highmem_file
;
1383 struct dentry
*ignore_gfp_wait_file
;
1384 struct dentry
*min_order_file
;
1386 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1388 } fail_page_alloc
= {
1389 .attr
= FAULT_ATTR_INITIALIZER
,
1390 .ignore_gfp_wait
= 1,
1391 .ignore_gfp_highmem
= 1,
1395 static int __init
setup_fail_page_alloc(char *str
)
1397 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1399 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1401 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1403 if (order
< fail_page_alloc
.min_order
)
1405 if (gfp_mask
& __GFP_NOFAIL
)
1407 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1409 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1412 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1415 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1417 static int __init
fail_page_alloc_debugfs(void)
1419 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1423 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1427 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1429 fail_page_alloc
.ignore_gfp_wait_file
=
1430 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1431 &fail_page_alloc
.ignore_gfp_wait
);
1433 fail_page_alloc
.ignore_gfp_highmem_file
=
1434 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1435 &fail_page_alloc
.ignore_gfp_highmem
);
1436 fail_page_alloc
.min_order_file
=
1437 debugfs_create_u32("min-order", mode
, dir
,
1438 &fail_page_alloc
.min_order
);
1440 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1441 !fail_page_alloc
.ignore_gfp_highmem_file
||
1442 !fail_page_alloc
.min_order_file
) {
1444 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1445 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1446 debugfs_remove(fail_page_alloc
.min_order_file
);
1447 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1453 late_initcall(fail_page_alloc_debugfs
);
1455 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1457 #else /* CONFIG_FAIL_PAGE_ALLOC */
1459 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1464 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1467 * Return true if free pages are above 'mark'. This takes into account the order
1468 * of the allocation.
1470 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1471 int classzone_idx
, int alloc_flags
, long free_pages
)
1473 /* free_pages my go negative - that's OK */
1477 free_pages
-= (1 << order
) + 1;
1478 if (alloc_flags
& ALLOC_HIGH
)
1480 if (alloc_flags
& ALLOC_HARDER
)
1483 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1485 for (o
= 0; o
< order
; o
++) {
1486 /* At the next order, this order's pages become unavailable */
1487 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1489 /* Require fewer higher order pages to be free */
1492 if (free_pages
<= min
)
1498 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1499 int classzone_idx
, int alloc_flags
)
1501 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1502 zone_page_state(z
, NR_FREE_PAGES
));
1505 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1506 int classzone_idx
, int alloc_flags
)
1508 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1510 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1511 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1513 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1519 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1520 * skip over zones that are not allowed by the cpuset, or that have
1521 * been recently (in last second) found to be nearly full. See further
1522 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1523 * that have to skip over a lot of full or unallowed zones.
1525 * If the zonelist cache is present in the passed in zonelist, then
1526 * returns a pointer to the allowed node mask (either the current
1527 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1529 * If the zonelist cache is not available for this zonelist, does
1530 * nothing and returns NULL.
1532 * If the fullzones BITMAP in the zonelist cache is stale (more than
1533 * a second since last zap'd) then we zap it out (clear its bits.)
1535 * We hold off even calling zlc_setup, until after we've checked the
1536 * first zone in the zonelist, on the theory that most allocations will
1537 * be satisfied from that first zone, so best to examine that zone as
1538 * quickly as we can.
1540 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1542 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1543 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1545 zlc
= zonelist
->zlcache_ptr
;
1549 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1550 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1551 zlc
->last_full_zap
= jiffies
;
1554 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1555 &cpuset_current_mems_allowed
:
1556 &node_states
[N_HIGH_MEMORY
];
1557 return allowednodes
;
1561 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1562 * if it is worth looking at further for free memory:
1563 * 1) Check that the zone isn't thought to be full (doesn't have its
1564 * bit set in the zonelist_cache fullzones BITMAP).
1565 * 2) Check that the zones node (obtained from the zonelist_cache
1566 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1567 * Return true (non-zero) if zone is worth looking at further, or
1568 * else return false (zero) if it is not.
1570 * This check -ignores- the distinction between various watermarks,
1571 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1572 * found to be full for any variation of these watermarks, it will
1573 * be considered full for up to one second by all requests, unless
1574 * we are so low on memory on all allowed nodes that we are forced
1575 * into the second scan of the zonelist.
1577 * In the second scan we ignore this zonelist cache and exactly
1578 * apply the watermarks to all zones, even it is slower to do so.
1579 * We are low on memory in the second scan, and should leave no stone
1580 * unturned looking for a free page.
1582 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1583 nodemask_t
*allowednodes
)
1585 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1586 int i
; /* index of *z in zonelist zones */
1587 int n
; /* node that zone *z is on */
1589 zlc
= zonelist
->zlcache_ptr
;
1593 i
= z
- zonelist
->_zonerefs
;
1596 /* This zone is worth trying if it is allowed but not full */
1597 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1601 * Given 'z' scanning a zonelist, set the corresponding bit in
1602 * zlc->fullzones, so that subsequent attempts to allocate a page
1603 * from that zone don't waste time re-examining it.
1605 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1607 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1608 int i
; /* index of *z in zonelist zones */
1610 zlc
= zonelist
->zlcache_ptr
;
1614 i
= z
- zonelist
->_zonerefs
;
1616 set_bit(i
, zlc
->fullzones
);
1619 #else /* CONFIG_NUMA */
1621 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1626 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1627 nodemask_t
*allowednodes
)
1632 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1635 #endif /* CONFIG_NUMA */
1638 * get_page_from_freelist goes through the zonelist trying to allocate
1641 static struct page
*
1642 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1643 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1644 struct zone
*preferred_zone
, int migratetype
)
1647 struct page
*page
= NULL
;
1650 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1651 int zlc_active
= 0; /* set if using zonelist_cache */
1652 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1654 classzone_idx
= zone_idx(preferred_zone
);
1657 * Scan zonelist, looking for a zone with enough free.
1658 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1660 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1661 high_zoneidx
, nodemask
) {
1662 if (NUMA_BUILD
&& zlc_active
&&
1663 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1665 if ((alloc_flags
& ALLOC_CPUSET
) &&
1666 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1669 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1670 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1674 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1675 if (zone_watermark_ok(zone
, order
, mark
,
1676 classzone_idx
, alloc_flags
))
1679 if (zone_reclaim_mode
== 0)
1680 goto this_zone_full
;
1682 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1684 case ZONE_RECLAIM_NOSCAN
:
1687 case ZONE_RECLAIM_FULL
:
1688 /* scanned but unreclaimable */
1689 goto this_zone_full
;
1691 /* did we reclaim enough */
1692 if (!zone_watermark_ok(zone
, order
, mark
,
1693 classzone_idx
, alloc_flags
))
1694 goto this_zone_full
;
1699 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1700 gfp_mask
, migratetype
);
1705 zlc_mark_zone_full(zonelist
, z
);
1707 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1709 * we do zlc_setup after the first zone is tried but only
1710 * if there are multiple nodes make it worthwhile
1712 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1718 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1719 /* Disable zlc cache for second zonelist scan */
1727 * Large machines with many possible nodes should not always dump per-node
1728 * meminfo in irq context.
1730 static inline bool should_suppress_show_mem(void)
1735 ret
= in_interrupt();
1740 static DEFINE_RATELIMIT_STATE(nopage_rs
,
1741 DEFAULT_RATELIMIT_INTERVAL
,
1742 DEFAULT_RATELIMIT_BURST
);
1744 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
1747 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
1749 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
1753 * This documents exceptions given to allocations in certain
1754 * contexts that are allowed to allocate outside current's set
1757 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1758 if (test_thread_flag(TIF_MEMDIE
) ||
1759 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
1760 filter
&= ~SHOW_MEM_FILTER_NODES
;
1761 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
1762 filter
&= ~SHOW_MEM_FILTER_NODES
;
1765 printk(KERN_WARNING
);
1766 va_start(args
, fmt
);
1771 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1772 current
->comm
, order
, gfp_mask
);
1775 if (!should_suppress_show_mem())
1780 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1781 unsigned long pages_reclaimed
)
1783 /* Do not loop if specifically requested */
1784 if (gfp_mask
& __GFP_NORETRY
)
1788 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1789 * means __GFP_NOFAIL, but that may not be true in other
1792 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1796 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1797 * specified, then we retry until we no longer reclaim any pages
1798 * (above), or we've reclaimed an order of pages at least as
1799 * large as the allocation's order. In both cases, if the
1800 * allocation still fails, we stop retrying.
1802 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1806 * Don't let big-order allocations loop unless the caller
1807 * explicitly requests that.
1809 if (gfp_mask
& __GFP_NOFAIL
)
1815 static inline struct page
*
1816 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1817 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1818 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1823 /* Acquire the OOM killer lock for the zones in zonelist */
1824 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1825 schedule_timeout_uninterruptible(1);
1830 * Go through the zonelist yet one more time, keep very high watermark
1831 * here, this is only to catch a parallel oom killing, we must fail if
1832 * we're still under heavy pressure.
1834 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1835 order
, zonelist
, high_zoneidx
,
1836 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1837 preferred_zone
, migratetype
);
1841 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1842 /* The OOM killer will not help higher order allocs */
1843 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1845 /* The OOM killer does not needlessly kill tasks for lowmem */
1846 if (high_zoneidx
< ZONE_NORMAL
)
1849 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1850 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1851 * The caller should handle page allocation failure by itself if
1852 * it specifies __GFP_THISNODE.
1853 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1855 if (gfp_mask
& __GFP_THISNODE
)
1858 /* Exhausted what can be done so it's blamo time */
1859 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1862 clear_zonelist_oom(zonelist
, gfp_mask
);
1866 #ifdef CONFIG_COMPACTION
1867 /* Try memory compaction for high-order allocations before reclaim */
1868 static struct page
*
1869 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1870 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1871 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1872 int migratetype
, unsigned long *did_some_progress
,
1873 bool sync_migration
)
1877 if (!order
|| compaction_deferred(preferred_zone
))
1880 current
->flags
|= PF_MEMALLOC
;
1881 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1882 nodemask
, sync_migration
);
1883 current
->flags
&= ~PF_MEMALLOC
;
1884 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1886 /* Page migration frees to the PCP lists but we want merging */
1887 drain_pages(get_cpu());
1890 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1891 order
, zonelist
, high_zoneidx
,
1892 alloc_flags
, preferred_zone
,
1895 preferred_zone
->compact_considered
= 0;
1896 preferred_zone
->compact_defer_shift
= 0;
1897 count_vm_event(COMPACTSUCCESS
);
1902 * It's bad if compaction run occurs and fails.
1903 * The most likely reason is that pages exist,
1904 * but not enough to satisfy watermarks.
1906 count_vm_event(COMPACTFAIL
);
1907 defer_compaction(preferred_zone
);
1915 static inline struct page
*
1916 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1917 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1918 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1919 int migratetype
, unsigned long *did_some_progress
,
1920 bool sync_migration
)
1924 #endif /* CONFIG_COMPACTION */
1926 /* The really slow allocator path where we enter direct reclaim */
1927 static inline struct page
*
1928 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1929 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1930 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1931 int migratetype
, unsigned long *did_some_progress
)
1933 struct page
*page
= NULL
;
1934 struct reclaim_state reclaim_state
;
1935 bool drained
= false;
1939 /* We now go into synchronous reclaim */
1940 cpuset_memory_pressure_bump();
1941 current
->flags
|= PF_MEMALLOC
;
1942 lockdep_set_current_reclaim_state(gfp_mask
);
1943 reclaim_state
.reclaimed_slab
= 0;
1944 current
->reclaim_state
= &reclaim_state
;
1946 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1948 current
->reclaim_state
= NULL
;
1949 lockdep_clear_current_reclaim_state();
1950 current
->flags
&= ~PF_MEMALLOC
;
1954 if (unlikely(!(*did_some_progress
)))
1958 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1959 zonelist
, high_zoneidx
,
1960 alloc_flags
, preferred_zone
,
1964 * If an allocation failed after direct reclaim, it could be because
1965 * pages are pinned on the per-cpu lists. Drain them and try again
1967 if (!page
&& !drained
) {
1977 * This is called in the allocator slow-path if the allocation request is of
1978 * sufficient urgency to ignore watermarks and take other desperate measures
1980 static inline struct page
*
1981 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1982 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1983 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1989 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1990 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1991 preferred_zone
, migratetype
);
1993 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1994 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
1995 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2001 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2002 enum zone_type high_zoneidx
,
2003 enum zone_type classzone_idx
)
2008 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2009 wakeup_kswapd(zone
, order
, classzone_idx
);
2013 gfp_to_alloc_flags(gfp_t gfp_mask
)
2015 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2016 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2018 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2019 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2022 * The caller may dip into page reserves a bit more if the caller
2023 * cannot run direct reclaim, or if the caller has realtime scheduling
2024 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2025 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2027 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2031 * Not worth trying to allocate harder for
2032 * __GFP_NOMEMALLOC even if it can't schedule.
2034 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2035 alloc_flags
|= ALLOC_HARDER
;
2037 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2038 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2040 alloc_flags
&= ~ALLOC_CPUSET
;
2041 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2042 alloc_flags
|= ALLOC_HARDER
;
2044 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2045 if (!in_interrupt() &&
2046 ((current
->flags
& PF_MEMALLOC
) ||
2047 unlikely(test_thread_flag(TIF_MEMDIE
))))
2048 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2054 static inline struct page
*
2055 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2056 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2057 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2060 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2061 struct page
*page
= NULL
;
2063 unsigned long pages_reclaimed
= 0;
2064 unsigned long did_some_progress
;
2065 bool sync_migration
= false;
2068 * In the slowpath, we sanity check order to avoid ever trying to
2069 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2070 * be using allocators in order of preference for an area that is
2073 if (order
>= MAX_ORDER
) {
2074 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2079 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2080 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2081 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2082 * using a larger set of nodes after it has established that the
2083 * allowed per node queues are empty and that nodes are
2086 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2090 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2091 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2092 zone_idx(preferred_zone
));
2095 * OK, we're below the kswapd watermark and have kicked background
2096 * reclaim. Now things get more complex, so set up alloc_flags according
2097 * to how we want to proceed.
2099 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2102 * Find the true preferred zone if the allocation is unconstrained by
2105 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2106 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2110 /* This is the last chance, in general, before the goto nopage. */
2111 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2112 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2113 preferred_zone
, migratetype
);
2117 /* Allocate without watermarks if the context allows */
2118 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2119 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2120 zonelist
, high_zoneidx
, nodemask
,
2121 preferred_zone
, migratetype
);
2126 /* Atomic allocations - we can't balance anything */
2130 /* Avoid recursion of direct reclaim */
2131 if (current
->flags
& PF_MEMALLOC
)
2134 /* Avoid allocations with no watermarks from looping endlessly */
2135 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2139 * Try direct compaction. The first pass is asynchronous. Subsequent
2140 * attempts after direct reclaim are synchronous
2142 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2143 zonelist
, high_zoneidx
,
2145 alloc_flags
, preferred_zone
,
2146 migratetype
, &did_some_progress
,
2150 sync_migration
= true;
2152 /* Try direct reclaim and then allocating */
2153 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2154 zonelist
, high_zoneidx
,
2156 alloc_flags
, preferred_zone
,
2157 migratetype
, &did_some_progress
);
2162 * If we failed to make any progress reclaiming, then we are
2163 * running out of options and have to consider going OOM
2165 if (!did_some_progress
) {
2166 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2167 if (oom_killer_disabled
)
2169 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2170 zonelist
, high_zoneidx
,
2171 nodemask
, preferred_zone
,
2176 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2178 * The oom killer is not called for high-order
2179 * allocations that may fail, so if no progress
2180 * is being made, there are no other options and
2181 * retrying is unlikely to help.
2183 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2186 * The oom killer is not called for lowmem
2187 * allocations to prevent needlessly killing
2190 if (high_zoneidx
< ZONE_NORMAL
)
2198 /* Check if we should retry the allocation */
2199 pages_reclaimed
+= did_some_progress
;
2200 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2201 /* Wait for some write requests to complete then retry */
2202 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2206 * High-order allocations do not necessarily loop after
2207 * direct reclaim and reclaim/compaction depends on compaction
2208 * being called after reclaim so call directly if necessary
2210 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2211 zonelist
, high_zoneidx
,
2213 alloc_flags
, preferred_zone
,
2214 migratetype
, &did_some_progress
,
2221 warn_alloc_failed(gfp_mask
, order
, NULL
);
2224 if (kmemcheck_enabled
)
2225 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2231 * This is the 'heart' of the zoned buddy allocator.
2234 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2235 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2237 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2238 struct zone
*preferred_zone
;
2240 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2242 gfp_mask
&= gfp_allowed_mask
;
2244 lockdep_trace_alloc(gfp_mask
);
2246 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2248 if (should_fail_alloc_page(gfp_mask
, order
))
2250 #ifndef CONFIG_ZONE_DMA
2251 if (WARN_ON_ONCE(gfp_mask
& __GFP_DMA
))
2256 * Check the zones suitable for the gfp_mask contain at least one
2257 * valid zone. It's possible to have an empty zonelist as a result
2258 * of GFP_THISNODE and a memoryless node
2260 if (unlikely(!zonelist
->_zonerefs
->zone
))
2264 /* The preferred zone is used for statistics later */
2265 first_zones_zonelist(zonelist
, high_zoneidx
,
2266 nodemask
? : &cpuset_current_mems_allowed
,
2268 if (!preferred_zone
) {
2273 /* First allocation attempt */
2274 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2275 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2276 preferred_zone
, migratetype
);
2277 if (unlikely(!page
))
2278 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2279 zonelist
, high_zoneidx
, nodemask
,
2280 preferred_zone
, migratetype
);
2283 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2286 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2289 * Common helper functions.
2291 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2296 * __get_free_pages() returns a 32-bit address, which cannot represent
2299 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2301 page
= alloc_pages(gfp_mask
, order
);
2304 return (unsigned long) page_address(page
);
2306 EXPORT_SYMBOL(__get_free_pages
);
2308 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2310 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2312 EXPORT_SYMBOL(get_zeroed_page
);
2314 void __pagevec_free(struct pagevec
*pvec
)
2316 int i
= pagevec_count(pvec
);
2319 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2320 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2324 void __free_pages(struct page
*page
, unsigned int order
)
2326 if (put_page_testzero(page
)) {
2328 free_hot_cold_page(page
, 0);
2330 __free_pages_ok(page
, order
);
2334 EXPORT_SYMBOL(__free_pages
);
2336 void free_pages(unsigned long addr
, unsigned int order
)
2339 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2340 __free_pages(virt_to_page((void *)addr
), order
);
2344 EXPORT_SYMBOL(free_pages
);
2346 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2349 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2350 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2352 split_page(virt_to_page((void *)addr
), order
);
2353 while (used
< alloc_end
) {
2358 return (void *)addr
;
2362 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2363 * @size: the number of bytes to allocate
2364 * @gfp_mask: GFP flags for the allocation
2366 * This function is similar to alloc_pages(), except that it allocates the
2367 * minimum number of pages to satisfy the request. alloc_pages() can only
2368 * allocate memory in power-of-two pages.
2370 * This function is also limited by MAX_ORDER.
2372 * Memory allocated by this function must be released by free_pages_exact().
2374 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2376 unsigned int order
= get_order(size
);
2379 addr
= __get_free_pages(gfp_mask
, order
);
2380 return make_alloc_exact(addr
, order
, size
);
2382 EXPORT_SYMBOL(alloc_pages_exact
);
2385 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2387 * @nid: the preferred node ID where memory should be allocated
2388 * @size: the number of bytes to allocate
2389 * @gfp_mask: GFP flags for the allocation
2391 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2393 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2396 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2398 unsigned order
= get_order(size
);
2399 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2402 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2404 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2407 * free_pages_exact - release memory allocated via alloc_pages_exact()
2408 * @virt: the value returned by alloc_pages_exact.
2409 * @size: size of allocation, same value as passed to alloc_pages_exact().
2411 * Release the memory allocated by a previous call to alloc_pages_exact.
2413 void free_pages_exact(void *virt
, size_t size
)
2415 unsigned long addr
= (unsigned long)virt
;
2416 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2418 while (addr
< end
) {
2423 EXPORT_SYMBOL(free_pages_exact
);
2425 static unsigned int nr_free_zone_pages(int offset
)
2430 /* Just pick one node, since fallback list is circular */
2431 unsigned int sum
= 0;
2433 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2435 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2436 unsigned long size
= zone
->present_pages
;
2437 unsigned long high
= high_wmark_pages(zone
);
2446 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2448 unsigned int nr_free_buffer_pages(void)
2450 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2452 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2455 * Amount of free RAM allocatable within all zones
2457 unsigned int nr_free_pagecache_pages(void)
2459 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2462 static inline void show_node(struct zone
*zone
)
2465 printk("Node %d ", zone_to_nid(zone
));
2468 void si_meminfo(struct sysinfo
*val
)
2470 val
->totalram
= totalram_pages
;
2472 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2473 val
->bufferram
= nr_blockdev_pages();
2474 val
->totalhigh
= totalhigh_pages
;
2475 val
->freehigh
= nr_free_highpages();
2476 val
->mem_unit
= PAGE_SIZE
;
2479 EXPORT_SYMBOL(si_meminfo
);
2482 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2484 pg_data_t
*pgdat
= NODE_DATA(nid
);
2486 val
->totalram
= pgdat
->node_present_pages
;
2487 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2488 #ifdef CONFIG_HIGHMEM
2489 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2490 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2496 val
->mem_unit
= PAGE_SIZE
;
2501 * Determine whether the node should be displayed or not, depending on whether
2502 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2504 bool skip_free_areas_node(unsigned int flags
, int nid
)
2508 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2512 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2518 #define K(x) ((x) << (PAGE_SHIFT-10))
2521 * Show free area list (used inside shift_scroll-lock stuff)
2522 * We also calculate the percentage fragmentation. We do this by counting the
2523 * memory on each free list with the exception of the first item on the list.
2524 * Suppresses nodes that are not allowed by current's cpuset if
2525 * SHOW_MEM_FILTER_NODES is passed.
2527 void show_free_areas(unsigned int filter
)
2532 for_each_populated_zone(zone
) {
2533 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2536 printk("%s per-cpu:\n", zone
->name
);
2538 for_each_online_cpu(cpu
) {
2539 struct per_cpu_pageset
*pageset
;
2541 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2543 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2544 cpu
, pageset
->pcp
.high
,
2545 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2549 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2550 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2552 " dirty:%lu writeback:%lu unstable:%lu\n"
2553 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2554 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2555 global_page_state(NR_ACTIVE_ANON
),
2556 global_page_state(NR_INACTIVE_ANON
),
2557 global_page_state(NR_ISOLATED_ANON
),
2558 global_page_state(NR_ACTIVE_FILE
),
2559 global_page_state(NR_INACTIVE_FILE
),
2560 global_page_state(NR_ISOLATED_FILE
),
2561 global_page_state(NR_UNEVICTABLE
),
2562 global_page_state(NR_FILE_DIRTY
),
2563 global_page_state(NR_WRITEBACK
),
2564 global_page_state(NR_UNSTABLE_NFS
),
2565 global_page_state(NR_FREE_PAGES
),
2566 global_page_state(NR_SLAB_RECLAIMABLE
),
2567 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2568 global_page_state(NR_FILE_MAPPED
),
2569 global_page_state(NR_SHMEM
),
2570 global_page_state(NR_PAGETABLE
),
2571 global_page_state(NR_BOUNCE
));
2573 for_each_populated_zone(zone
) {
2576 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2584 " active_anon:%lukB"
2585 " inactive_anon:%lukB"
2586 " active_file:%lukB"
2587 " inactive_file:%lukB"
2588 " unevictable:%lukB"
2589 " isolated(anon):%lukB"
2590 " isolated(file):%lukB"
2597 " slab_reclaimable:%lukB"
2598 " slab_unreclaimable:%lukB"
2599 " kernel_stack:%lukB"
2603 " writeback_tmp:%lukB"
2604 " pages_scanned:%lu"
2605 " all_unreclaimable? %s"
2608 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2609 K(min_wmark_pages(zone
)),
2610 K(low_wmark_pages(zone
)),
2611 K(high_wmark_pages(zone
)),
2612 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2613 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2614 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2615 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2616 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2617 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2618 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2619 K(zone
->present_pages
),
2620 K(zone_page_state(zone
, NR_MLOCK
)),
2621 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2622 K(zone_page_state(zone
, NR_WRITEBACK
)),
2623 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2624 K(zone_page_state(zone
, NR_SHMEM
)),
2625 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2626 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2627 zone_page_state(zone
, NR_KERNEL_STACK
) *
2629 K(zone_page_state(zone
, NR_PAGETABLE
)),
2630 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2631 K(zone_page_state(zone
, NR_BOUNCE
)),
2632 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2633 zone
->pages_scanned
,
2634 (zone
->all_unreclaimable
? "yes" : "no")
2636 printk("lowmem_reserve[]:");
2637 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2638 printk(" %lu", zone
->lowmem_reserve
[i
]);
2642 for_each_populated_zone(zone
) {
2643 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2645 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2648 printk("%s: ", zone
->name
);
2650 spin_lock_irqsave(&zone
->lock
, flags
);
2651 for (order
= 0; order
< MAX_ORDER
; order
++) {
2652 nr
[order
] = zone
->free_area
[order
].nr_free
;
2653 total
+= nr
[order
] << order
;
2655 spin_unlock_irqrestore(&zone
->lock
, flags
);
2656 for (order
= 0; order
< MAX_ORDER
; order
++)
2657 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2658 printk("= %lukB\n", K(total
));
2661 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2663 show_swap_cache_info();
2666 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2668 zoneref
->zone
= zone
;
2669 zoneref
->zone_idx
= zone_idx(zone
);
2673 * Builds allocation fallback zone lists.
2675 * Add all populated zones of a node to the zonelist.
2677 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2678 int nr_zones
, enum zone_type zone_type
)
2682 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2687 zone
= pgdat
->node_zones
+ zone_type
;
2688 if (populated_zone(zone
)) {
2689 zoneref_set_zone(zone
,
2690 &zonelist
->_zonerefs
[nr_zones
++]);
2691 check_highest_zone(zone_type
);
2694 } while (zone_type
);
2701 * 0 = automatic detection of better ordering.
2702 * 1 = order by ([node] distance, -zonetype)
2703 * 2 = order by (-zonetype, [node] distance)
2705 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2706 * the same zonelist. So only NUMA can configure this param.
2708 #define ZONELIST_ORDER_DEFAULT 0
2709 #define ZONELIST_ORDER_NODE 1
2710 #define ZONELIST_ORDER_ZONE 2
2712 /* zonelist order in the kernel.
2713 * set_zonelist_order() will set this to NODE or ZONE.
2715 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2716 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2720 /* The value user specified ....changed by config */
2721 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2722 /* string for sysctl */
2723 #define NUMA_ZONELIST_ORDER_LEN 16
2724 char numa_zonelist_order
[16] = "default";
2727 * interface for configure zonelist ordering.
2728 * command line option "numa_zonelist_order"
2729 * = "[dD]efault - default, automatic configuration.
2730 * = "[nN]ode - order by node locality, then by zone within node
2731 * = "[zZ]one - order by zone, then by locality within zone
2734 static int __parse_numa_zonelist_order(char *s
)
2736 if (*s
== 'd' || *s
== 'D') {
2737 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2738 } else if (*s
== 'n' || *s
== 'N') {
2739 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2740 } else if (*s
== 'z' || *s
== 'Z') {
2741 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2744 "Ignoring invalid numa_zonelist_order value: "
2751 static __init
int setup_numa_zonelist_order(char *s
)
2758 ret
= __parse_numa_zonelist_order(s
);
2760 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2764 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2767 * sysctl handler for numa_zonelist_order
2769 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2770 void __user
*buffer
, size_t *length
,
2773 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2775 static DEFINE_MUTEX(zl_order_mutex
);
2777 mutex_lock(&zl_order_mutex
);
2779 strcpy(saved_string
, (char*)table
->data
);
2780 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2784 int oldval
= user_zonelist_order
;
2785 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2787 * bogus value. restore saved string
2789 strncpy((char*)table
->data
, saved_string
,
2790 NUMA_ZONELIST_ORDER_LEN
);
2791 user_zonelist_order
= oldval
;
2792 } else if (oldval
!= user_zonelist_order
) {
2793 mutex_lock(&zonelists_mutex
);
2794 build_all_zonelists(NULL
);
2795 mutex_unlock(&zonelists_mutex
);
2799 mutex_unlock(&zl_order_mutex
);
2804 #define MAX_NODE_LOAD (nr_online_nodes)
2805 static int node_load
[MAX_NUMNODES
];
2808 * find_next_best_node - find the next node that should appear in a given node's fallback list
2809 * @node: node whose fallback list we're appending
2810 * @used_node_mask: nodemask_t of already used nodes
2812 * We use a number of factors to determine which is the next node that should
2813 * appear on a given node's fallback list. The node should not have appeared
2814 * already in @node's fallback list, and it should be the next closest node
2815 * according to the distance array (which contains arbitrary distance values
2816 * from each node to each node in the system), and should also prefer nodes
2817 * with no CPUs, since presumably they'll have very little allocation pressure
2818 * on them otherwise.
2819 * It returns -1 if no node is found.
2821 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2824 int min_val
= INT_MAX
;
2826 const struct cpumask
*tmp
= cpumask_of_node(0);
2828 /* Use the local node if we haven't already */
2829 if (!node_isset(node
, *used_node_mask
)) {
2830 node_set(node
, *used_node_mask
);
2834 for_each_node_state(n
, N_HIGH_MEMORY
) {
2836 /* Don't want a node to appear more than once */
2837 if (node_isset(n
, *used_node_mask
))
2840 /* Use the distance array to find the distance */
2841 val
= node_distance(node
, n
);
2843 /* Penalize nodes under us ("prefer the next node") */
2846 /* Give preference to headless and unused nodes */
2847 tmp
= cpumask_of_node(n
);
2848 if (!cpumask_empty(tmp
))
2849 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2851 /* Slight preference for less loaded node */
2852 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2853 val
+= node_load
[n
];
2855 if (val
< min_val
) {
2862 node_set(best_node
, *used_node_mask
);
2869 * Build zonelists ordered by node and zones within node.
2870 * This results in maximum locality--normal zone overflows into local
2871 * DMA zone, if any--but risks exhausting DMA zone.
2873 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2876 struct zonelist
*zonelist
;
2878 zonelist
= &pgdat
->node_zonelists
[0];
2879 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2881 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2883 zonelist
->_zonerefs
[j
].zone
= NULL
;
2884 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2888 * Build gfp_thisnode zonelists
2890 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2893 struct zonelist
*zonelist
;
2895 zonelist
= &pgdat
->node_zonelists
[1];
2896 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2897 zonelist
->_zonerefs
[j
].zone
= NULL
;
2898 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2902 * Build zonelists ordered by zone and nodes within zones.
2903 * This results in conserving DMA zone[s] until all Normal memory is
2904 * exhausted, but results in overflowing to remote node while memory
2905 * may still exist in local DMA zone.
2907 static int node_order
[MAX_NUMNODES
];
2909 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2912 int zone_type
; /* needs to be signed */
2914 struct zonelist
*zonelist
;
2916 zonelist
= &pgdat
->node_zonelists
[0];
2918 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2919 for (j
= 0; j
< nr_nodes
; j
++) {
2920 node
= node_order
[j
];
2921 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2922 if (populated_zone(z
)) {
2924 &zonelist
->_zonerefs
[pos
++]);
2925 check_highest_zone(zone_type
);
2929 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2930 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2933 static int default_zonelist_order(void)
2936 unsigned long low_kmem_size
,total_size
;
2940 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2941 * If they are really small and used heavily, the system can fall
2942 * into OOM very easily.
2943 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2945 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2948 for_each_online_node(nid
) {
2949 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2950 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2951 if (populated_zone(z
)) {
2952 if (zone_type
< ZONE_NORMAL
)
2953 low_kmem_size
+= z
->present_pages
;
2954 total_size
+= z
->present_pages
;
2955 } else if (zone_type
== ZONE_NORMAL
) {
2957 * If any node has only lowmem, then node order
2958 * is preferred to allow kernel allocations
2959 * locally; otherwise, they can easily infringe
2960 * on other nodes when there is an abundance of
2961 * lowmem available to allocate from.
2963 return ZONELIST_ORDER_NODE
;
2967 if (!low_kmem_size
|| /* there are no DMA area. */
2968 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2969 return ZONELIST_ORDER_NODE
;
2971 * look into each node's config.
2972 * If there is a node whose DMA/DMA32 memory is very big area on
2973 * local memory, NODE_ORDER may be suitable.
2975 average_size
= total_size
/
2976 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2977 for_each_online_node(nid
) {
2980 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2981 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2982 if (populated_zone(z
)) {
2983 if (zone_type
< ZONE_NORMAL
)
2984 low_kmem_size
+= z
->present_pages
;
2985 total_size
+= z
->present_pages
;
2988 if (low_kmem_size
&&
2989 total_size
> average_size
&& /* ignore small node */
2990 low_kmem_size
> total_size
* 70/100)
2991 return ZONELIST_ORDER_NODE
;
2993 return ZONELIST_ORDER_ZONE
;
2996 static void set_zonelist_order(void)
2998 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2999 current_zonelist_order
= default_zonelist_order();
3001 current_zonelist_order
= user_zonelist_order
;
3004 static void build_zonelists(pg_data_t
*pgdat
)
3008 nodemask_t used_mask
;
3009 int local_node
, prev_node
;
3010 struct zonelist
*zonelist
;
3011 int order
= current_zonelist_order
;
3013 /* initialize zonelists */
3014 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3015 zonelist
= pgdat
->node_zonelists
+ i
;
3016 zonelist
->_zonerefs
[0].zone
= NULL
;
3017 zonelist
->_zonerefs
[0].zone_idx
= 0;
3020 /* NUMA-aware ordering of nodes */
3021 local_node
= pgdat
->node_id
;
3022 load
= nr_online_nodes
;
3023 prev_node
= local_node
;
3024 nodes_clear(used_mask
);
3026 memset(node_order
, 0, sizeof(node_order
));
3029 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3030 int distance
= node_distance(local_node
, node
);
3033 * If another node is sufficiently far away then it is better
3034 * to reclaim pages in a zone before going off node.
3036 if (distance
> RECLAIM_DISTANCE
)
3037 zone_reclaim_mode
= 1;
3040 * We don't want to pressure a particular node.
3041 * So adding penalty to the first node in same
3042 * distance group to make it round-robin.
3044 if (distance
!= node_distance(local_node
, prev_node
))
3045 node_load
[node
] = load
;
3049 if (order
== ZONELIST_ORDER_NODE
)
3050 build_zonelists_in_node_order(pgdat
, node
);
3052 node_order
[j
++] = node
; /* remember order */
3055 if (order
== ZONELIST_ORDER_ZONE
) {
3056 /* calculate node order -- i.e., DMA last! */
3057 build_zonelists_in_zone_order(pgdat
, j
);
3060 build_thisnode_zonelists(pgdat
);
3063 /* Construct the zonelist performance cache - see further mmzone.h */
3064 static void build_zonelist_cache(pg_data_t
*pgdat
)
3066 struct zonelist
*zonelist
;
3067 struct zonelist_cache
*zlc
;
3070 zonelist
= &pgdat
->node_zonelists
[0];
3071 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3072 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3073 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3074 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3077 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3079 * Return node id of node used for "local" allocations.
3080 * I.e., first node id of first zone in arg node's generic zonelist.
3081 * Used for initializing percpu 'numa_mem', which is used primarily
3082 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3084 int local_memory_node(int node
)
3088 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3089 gfp_zone(GFP_KERNEL
),
3096 #else /* CONFIG_NUMA */
3098 static void set_zonelist_order(void)
3100 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3103 static void build_zonelists(pg_data_t
*pgdat
)
3105 int node
, local_node
;
3107 struct zonelist
*zonelist
;
3109 local_node
= pgdat
->node_id
;
3111 zonelist
= &pgdat
->node_zonelists
[0];
3112 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3115 * Now we build the zonelist so that it contains the zones
3116 * of all the other nodes.
3117 * We don't want to pressure a particular node, so when
3118 * building the zones for node N, we make sure that the
3119 * zones coming right after the local ones are those from
3120 * node N+1 (modulo N)
3122 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3123 if (!node_online(node
))
3125 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3128 for (node
= 0; node
< local_node
; node
++) {
3129 if (!node_online(node
))
3131 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3135 zonelist
->_zonerefs
[j
].zone
= NULL
;
3136 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3139 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3140 static void build_zonelist_cache(pg_data_t
*pgdat
)
3142 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3145 #endif /* CONFIG_NUMA */
3148 * Boot pageset table. One per cpu which is going to be used for all
3149 * zones and all nodes. The parameters will be set in such a way
3150 * that an item put on a list will immediately be handed over to
3151 * the buddy list. This is safe since pageset manipulation is done
3152 * with interrupts disabled.
3154 * The boot_pagesets must be kept even after bootup is complete for
3155 * unused processors and/or zones. They do play a role for bootstrapping
3156 * hotplugged processors.
3158 * zoneinfo_show() and maybe other functions do
3159 * not check if the processor is online before following the pageset pointer.
3160 * Other parts of the kernel may not check if the zone is available.
3162 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3163 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3164 static void setup_zone_pageset(struct zone
*zone
);
3167 * Global mutex to protect against size modification of zonelists
3168 * as well as to serialize pageset setup for the new populated zone.
3170 DEFINE_MUTEX(zonelists_mutex
);
3172 /* return values int ....just for stop_machine() */
3173 static __init_refok
int __build_all_zonelists(void *data
)
3179 memset(node_load
, 0, sizeof(node_load
));
3181 for_each_online_node(nid
) {
3182 pg_data_t
*pgdat
= NODE_DATA(nid
);
3184 build_zonelists(pgdat
);
3185 build_zonelist_cache(pgdat
);
3189 * Initialize the boot_pagesets that are going to be used
3190 * for bootstrapping processors. The real pagesets for
3191 * each zone will be allocated later when the per cpu
3192 * allocator is available.
3194 * boot_pagesets are used also for bootstrapping offline
3195 * cpus if the system is already booted because the pagesets
3196 * are needed to initialize allocators on a specific cpu too.
3197 * F.e. the percpu allocator needs the page allocator which
3198 * needs the percpu allocator in order to allocate its pagesets
3199 * (a chicken-egg dilemma).
3201 for_each_possible_cpu(cpu
) {
3202 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3204 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3206 * We now know the "local memory node" for each node--
3207 * i.e., the node of the first zone in the generic zonelist.
3208 * Set up numa_mem percpu variable for on-line cpus. During
3209 * boot, only the boot cpu should be on-line; we'll init the
3210 * secondary cpus' numa_mem as they come on-line. During
3211 * node/memory hotplug, we'll fixup all on-line cpus.
3213 if (cpu_online(cpu
))
3214 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3222 * Called with zonelists_mutex held always
3223 * unless system_state == SYSTEM_BOOTING.
3225 void __ref
build_all_zonelists(void *data
)
3227 set_zonelist_order();
3229 if (system_state
== SYSTEM_BOOTING
) {
3230 __build_all_zonelists(NULL
);
3231 mminit_verify_zonelist();
3232 cpuset_init_current_mems_allowed();
3234 /* we have to stop all cpus to guarantee there is no user
3236 #ifdef CONFIG_MEMORY_HOTPLUG
3238 setup_zone_pageset((struct zone
*)data
);
3240 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3241 /* cpuset refresh routine should be here */
3243 vm_total_pages
= nr_free_pagecache_pages();
3245 * Disable grouping by mobility if the number of pages in the
3246 * system is too low to allow the mechanism to work. It would be
3247 * more accurate, but expensive to check per-zone. This check is
3248 * made on memory-hotadd so a system can start with mobility
3249 * disabled and enable it later
3251 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3252 page_group_by_mobility_disabled
= 1;
3254 page_group_by_mobility_disabled
= 0;
3256 printk("Built %i zonelists in %s order, mobility grouping %s. "
3257 "Total pages: %ld\n",
3259 zonelist_order_name
[current_zonelist_order
],
3260 page_group_by_mobility_disabled
? "off" : "on",
3263 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3268 * Helper functions to size the waitqueue hash table.
3269 * Essentially these want to choose hash table sizes sufficiently
3270 * large so that collisions trying to wait on pages are rare.
3271 * But in fact, the number of active page waitqueues on typical
3272 * systems is ridiculously low, less than 200. So this is even
3273 * conservative, even though it seems large.
3275 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3276 * waitqueues, i.e. the size of the waitq table given the number of pages.
3278 #define PAGES_PER_WAITQUEUE 256
3280 #ifndef CONFIG_MEMORY_HOTPLUG
3281 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3283 unsigned long size
= 1;
3285 pages
/= PAGES_PER_WAITQUEUE
;
3287 while (size
< pages
)
3291 * Once we have dozens or even hundreds of threads sleeping
3292 * on IO we've got bigger problems than wait queue collision.
3293 * Limit the size of the wait table to a reasonable size.
3295 size
= min(size
, 4096UL);
3297 return max(size
, 4UL);
3301 * A zone's size might be changed by hot-add, so it is not possible to determine
3302 * a suitable size for its wait_table. So we use the maximum size now.
3304 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3306 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3307 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3308 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3310 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3311 * or more by the traditional way. (See above). It equals:
3313 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3314 * ia64(16K page size) : = ( 8G + 4M)byte.
3315 * powerpc (64K page size) : = (32G +16M)byte.
3317 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3324 * This is an integer logarithm so that shifts can be used later
3325 * to extract the more random high bits from the multiplicative
3326 * hash function before the remainder is taken.
3328 static inline unsigned long wait_table_bits(unsigned long size
)
3333 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3336 * Check if a pageblock contains reserved pages
3338 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3342 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3343 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3350 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3351 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3352 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3353 * higher will lead to a bigger reserve which will get freed as contiguous
3354 * blocks as reclaim kicks in
3356 static void setup_zone_migrate_reserve(struct zone
*zone
)
3358 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3360 unsigned long block_migratetype
;
3363 /* Get the start pfn, end pfn and the number of blocks to reserve */
3364 start_pfn
= zone
->zone_start_pfn
;
3365 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3366 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3370 * Reserve blocks are generally in place to help high-order atomic
3371 * allocations that are short-lived. A min_free_kbytes value that
3372 * would result in more than 2 reserve blocks for atomic allocations
3373 * is assumed to be in place to help anti-fragmentation for the
3374 * future allocation of hugepages at runtime.
3376 reserve
= min(2, reserve
);
3378 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3379 if (!pfn_valid(pfn
))
3381 page
= pfn_to_page(pfn
);
3383 /* Watch out for overlapping nodes */
3384 if (page_to_nid(page
) != zone_to_nid(zone
))
3387 /* Blocks with reserved pages will never free, skip them. */
3388 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3389 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3392 block_migratetype
= get_pageblock_migratetype(page
);
3394 /* If this block is reserved, account for it */
3395 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3400 /* Suitable for reserving if this block is movable */
3401 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3402 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3403 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3409 * If the reserve is met and this is a previous reserved block,
3412 if (block_migratetype
== MIGRATE_RESERVE
) {
3413 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3414 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3420 * Initially all pages are reserved - free ones are freed
3421 * up by free_all_bootmem() once the early boot process is
3422 * done. Non-atomic initialization, single-pass.
3424 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3425 unsigned long start_pfn
, enum memmap_context context
)
3428 unsigned long end_pfn
= start_pfn
+ size
;
3432 if (highest_memmap_pfn
< end_pfn
- 1)
3433 highest_memmap_pfn
= end_pfn
- 1;
3435 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3436 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3438 * There can be holes in boot-time mem_map[]s
3439 * handed to this function. They do not
3440 * exist on hotplugged memory.
3442 if (context
== MEMMAP_EARLY
) {
3443 if (!early_pfn_valid(pfn
))
3445 if (!early_pfn_in_nid(pfn
, nid
))
3448 page
= pfn_to_page(pfn
);
3449 set_page_links(page
, zone
, nid
, pfn
);
3450 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3451 init_page_count(page
);
3452 reset_page_mapcount(page
);
3453 SetPageReserved(page
);
3455 * Mark the block movable so that blocks are reserved for
3456 * movable at startup. This will force kernel allocations
3457 * to reserve their blocks rather than leaking throughout
3458 * the address space during boot when many long-lived
3459 * kernel allocations are made. Later some blocks near
3460 * the start are marked MIGRATE_RESERVE by
3461 * setup_zone_migrate_reserve()
3463 * bitmap is created for zone's valid pfn range. but memmap
3464 * can be created for invalid pages (for alignment)
3465 * check here not to call set_pageblock_migratetype() against
3468 if ((z
->zone_start_pfn
<= pfn
)
3469 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3470 && !(pfn
& (pageblock_nr_pages
- 1)))
3471 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3473 INIT_LIST_HEAD(&page
->lru
);
3474 #ifdef WANT_PAGE_VIRTUAL
3475 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3476 if (!is_highmem_idx(zone
))
3477 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3482 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3485 for_each_migratetype_order(order
, t
) {
3486 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3487 zone
->free_area
[order
].nr_free
= 0;
3491 #ifndef __HAVE_ARCH_MEMMAP_INIT
3492 #define memmap_init(size, nid, zone, start_pfn) \
3493 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3496 static int zone_batchsize(struct zone
*zone
)
3502 * The per-cpu-pages pools are set to around 1000th of the
3503 * size of the zone. But no more than 1/2 of a meg.
3505 * OK, so we don't know how big the cache is. So guess.
3507 batch
= zone
->present_pages
/ 1024;
3508 if (batch
* PAGE_SIZE
> 512 * 1024)
3509 batch
= (512 * 1024) / PAGE_SIZE
;
3510 batch
/= 4; /* We effectively *= 4 below */
3515 * Clamp the batch to a 2^n - 1 value. Having a power
3516 * of 2 value was found to be more likely to have
3517 * suboptimal cache aliasing properties in some cases.
3519 * For example if 2 tasks are alternately allocating
3520 * batches of pages, one task can end up with a lot
3521 * of pages of one half of the possible page colors
3522 * and the other with pages of the other colors.
3524 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3529 /* The deferral and batching of frees should be suppressed under NOMMU
3532 * The problem is that NOMMU needs to be able to allocate large chunks
3533 * of contiguous memory as there's no hardware page translation to
3534 * assemble apparent contiguous memory from discontiguous pages.
3536 * Queueing large contiguous runs of pages for batching, however,
3537 * causes the pages to actually be freed in smaller chunks. As there
3538 * can be a significant delay between the individual batches being
3539 * recycled, this leads to the once large chunks of space being
3540 * fragmented and becoming unavailable for high-order allocations.
3546 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3548 struct per_cpu_pages
*pcp
;
3551 memset(p
, 0, sizeof(*p
));
3555 pcp
->high
= 6 * batch
;
3556 pcp
->batch
= max(1UL, 1 * batch
);
3557 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3558 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3562 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3563 * to the value high for the pageset p.
3566 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3569 struct per_cpu_pages
*pcp
;
3573 pcp
->batch
= max(1UL, high
/4);
3574 if ((high
/4) > (PAGE_SHIFT
* 8))
3575 pcp
->batch
= PAGE_SHIFT
* 8;
3578 static void setup_zone_pageset(struct zone
*zone
)
3582 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3584 for_each_possible_cpu(cpu
) {
3585 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3587 setup_pageset(pcp
, zone_batchsize(zone
));
3589 if (percpu_pagelist_fraction
)
3590 setup_pagelist_highmark(pcp
,
3591 (zone
->present_pages
/
3592 percpu_pagelist_fraction
));
3597 * Allocate per cpu pagesets and initialize them.
3598 * Before this call only boot pagesets were available.
3600 void __init
setup_per_cpu_pageset(void)
3604 for_each_populated_zone(zone
)
3605 setup_zone_pageset(zone
);
3608 static noinline __init_refok
3609 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3612 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3616 * The per-page waitqueue mechanism uses hashed waitqueues
3619 zone
->wait_table_hash_nr_entries
=
3620 wait_table_hash_nr_entries(zone_size_pages
);
3621 zone
->wait_table_bits
=
3622 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3623 alloc_size
= zone
->wait_table_hash_nr_entries
3624 * sizeof(wait_queue_head_t
);
3626 if (!slab_is_available()) {
3627 zone
->wait_table
= (wait_queue_head_t
*)
3628 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
3631 * This case means that a zone whose size was 0 gets new memory
3632 * via memory hot-add.
3633 * But it may be the case that a new node was hot-added. In
3634 * this case vmalloc() will not be able to use this new node's
3635 * memory - this wait_table must be initialized to use this new
3636 * node itself as well.
3637 * To use this new node's memory, further consideration will be
3640 zone
->wait_table
= vmalloc(alloc_size
);
3642 if (!zone
->wait_table
)
3645 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3646 init_waitqueue_head(zone
->wait_table
+ i
);
3651 static int __zone_pcp_update(void *data
)
3653 struct zone
*zone
= data
;
3655 unsigned long batch
= zone_batchsize(zone
), flags
;
3657 for_each_possible_cpu(cpu
) {
3658 struct per_cpu_pageset
*pset
;
3659 struct per_cpu_pages
*pcp
;
3661 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3664 local_irq_save(flags
);
3665 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3666 setup_pageset(pset
, batch
);
3667 local_irq_restore(flags
);
3672 void zone_pcp_update(struct zone
*zone
)
3674 stop_machine(__zone_pcp_update
, zone
, NULL
);
3677 static __meminit
void zone_pcp_init(struct zone
*zone
)
3680 * per cpu subsystem is not up at this point. The following code
3681 * relies on the ability of the linker to provide the
3682 * offset of a (static) per cpu variable into the per cpu area.
3684 zone
->pageset
= &boot_pageset
;
3686 if (zone
->present_pages
)
3687 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3688 zone
->name
, zone
->present_pages
,
3689 zone_batchsize(zone
));
3692 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3693 unsigned long zone_start_pfn
,
3695 enum memmap_context context
)
3697 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3699 ret
= zone_wait_table_init(zone
, size
);
3702 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3704 zone
->zone_start_pfn
= zone_start_pfn
;
3706 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3707 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3709 (unsigned long)zone_idx(zone
),
3710 zone_start_pfn
, (zone_start_pfn
+ size
));
3712 zone_init_free_lists(zone
);
3717 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3719 * Basic iterator support. Return the first range of PFNs for a node
3720 * Note: nid == MAX_NUMNODES returns first region regardless of node
3722 static int __meminit
first_active_region_index_in_nid(int nid
)
3726 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3727 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3734 * Basic iterator support. Return the next active range of PFNs for a node
3735 * Note: nid == MAX_NUMNODES returns next region regardless of node
3737 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3739 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3740 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3746 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3748 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3749 * Architectures may implement their own version but if add_active_range()
3750 * was used and there are no special requirements, this is a convenient
3753 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3757 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3758 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3759 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3761 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3762 return early_node_map
[i
].nid
;
3764 /* This is a memory hole */
3767 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3769 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3773 nid
= __early_pfn_to_nid(pfn
);
3776 /* just returns 0 */
3780 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3781 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3785 nid
= __early_pfn_to_nid(pfn
);
3786 if (nid
>= 0 && nid
!= node
)
3792 /* Basic iterator support to walk early_node_map[] */
3793 #define for_each_active_range_index_in_nid(i, nid) \
3794 for (i = first_active_region_index_in_nid(nid); i != -1; \
3795 i = next_active_region_index_in_nid(i, nid))
3798 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3799 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3800 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3802 * If an architecture guarantees that all ranges registered with
3803 * add_active_ranges() contain no holes and may be freed, this
3804 * this function may be used instead of calling free_bootmem() manually.
3806 void __init
free_bootmem_with_active_regions(int nid
,
3807 unsigned long max_low_pfn
)
3811 for_each_active_range_index_in_nid(i
, nid
) {
3812 unsigned long size_pages
= 0;
3813 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3815 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3818 if (end_pfn
> max_low_pfn
)
3819 end_pfn
= max_low_pfn
;
3821 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3822 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3823 PFN_PHYS(early_node_map
[i
].start_pfn
),
3824 size_pages
<< PAGE_SHIFT
);
3828 #ifdef CONFIG_HAVE_MEMBLOCK
3830 * Basic iterator support. Return the last range of PFNs for a node
3831 * Note: nid == MAX_NUMNODES returns last region regardless of node
3833 static int __meminit
last_active_region_index_in_nid(int nid
)
3837 for (i
= nr_nodemap_entries
- 1; i
>= 0; i
--)
3838 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3845 * Basic iterator support. Return the previous active range of PFNs for a node
3846 * Note: nid == MAX_NUMNODES returns next region regardless of node
3848 static int __meminit
previous_active_region_index_in_nid(int index
, int nid
)
3850 for (index
= index
- 1; index
>= 0; index
--)
3851 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3857 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3858 for (i = last_active_region_index_in_nid(nid); i != -1; \
3859 i = previous_active_region_index_in_nid(i, nid))
3861 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3862 u64 goal
, u64 limit
)
3866 /* Need to go over early_node_map to find out good range for node */
3867 for_each_active_range_index_in_nid_reverse(i
, nid
) {
3869 u64 ei_start
, ei_last
;
3870 u64 final_start
, final_end
;
3872 ei_last
= early_node_map
[i
].end_pfn
;
3873 ei_last
<<= PAGE_SHIFT
;
3874 ei_start
= early_node_map
[i
].start_pfn
;
3875 ei_start
<<= PAGE_SHIFT
;
3877 final_start
= max(ei_start
, goal
);
3878 final_end
= min(ei_last
, limit
);
3880 if (final_start
>= final_end
)
3883 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3885 if (addr
== MEMBLOCK_ERROR
)
3891 return MEMBLOCK_ERROR
;
3895 int __init
add_from_early_node_map(struct range
*range
, int az
,
3896 int nr_range
, int nid
)
3901 /* need to go over early_node_map to find out good range for node */
3902 for_each_active_range_index_in_nid(i
, nid
) {
3903 start
= early_node_map
[i
].start_pfn
;
3904 end
= early_node_map
[i
].end_pfn
;
3905 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3910 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3915 for_each_active_range_index_in_nid(i
, nid
) {
3916 ret
= work_fn(early_node_map
[i
].start_pfn
,
3917 early_node_map
[i
].end_pfn
, data
);
3923 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3924 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3926 * If an architecture guarantees that all ranges registered with
3927 * add_active_ranges() contain no holes and may be freed, this
3928 * function may be used instead of calling memory_present() manually.
3930 void __init
sparse_memory_present_with_active_regions(int nid
)
3934 for_each_active_range_index_in_nid(i
, nid
)
3935 memory_present(early_node_map
[i
].nid
,
3936 early_node_map
[i
].start_pfn
,
3937 early_node_map
[i
].end_pfn
);
3941 * get_pfn_range_for_nid - Return the start and end page frames for a node
3942 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3943 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3944 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3946 * It returns the start and end page frame of a node based on information
3947 * provided by an arch calling add_active_range(). If called for a node
3948 * with no available memory, a warning is printed and the start and end
3951 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3952 unsigned long *start_pfn
, unsigned long *end_pfn
)
3958 for_each_active_range_index_in_nid(i
, nid
) {
3959 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3960 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3963 if (*start_pfn
== -1UL)
3968 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3969 * assumption is made that zones within a node are ordered in monotonic
3970 * increasing memory addresses so that the "highest" populated zone is used
3972 static void __init
find_usable_zone_for_movable(void)
3975 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3976 if (zone_index
== ZONE_MOVABLE
)
3979 if (arch_zone_highest_possible_pfn
[zone_index
] >
3980 arch_zone_lowest_possible_pfn
[zone_index
])
3984 VM_BUG_ON(zone_index
== -1);
3985 movable_zone
= zone_index
;
3989 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3990 * because it is sized independent of architecture. Unlike the other zones,
3991 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3992 * in each node depending on the size of each node and how evenly kernelcore
3993 * is distributed. This helper function adjusts the zone ranges
3994 * provided by the architecture for a given node by using the end of the
3995 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3996 * zones within a node are in order of monotonic increases memory addresses
3998 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3999 unsigned long zone_type
,
4000 unsigned long node_start_pfn
,
4001 unsigned long node_end_pfn
,
4002 unsigned long *zone_start_pfn
,
4003 unsigned long *zone_end_pfn
)
4005 /* Only adjust if ZONE_MOVABLE is on this node */
4006 if (zone_movable_pfn
[nid
]) {
4007 /* Size ZONE_MOVABLE */
4008 if (zone_type
== ZONE_MOVABLE
) {
4009 *zone_start_pfn
= zone_movable_pfn
[nid
];
4010 *zone_end_pfn
= min(node_end_pfn
,
4011 arch_zone_highest_possible_pfn
[movable_zone
]);
4013 /* Adjust for ZONE_MOVABLE starting within this range */
4014 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4015 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4016 *zone_end_pfn
= zone_movable_pfn
[nid
];
4018 /* Check if this whole range is within ZONE_MOVABLE */
4019 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4020 *zone_start_pfn
= *zone_end_pfn
;
4025 * Return the number of pages a zone spans in a node, including holes
4026 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4028 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4029 unsigned long zone_type
,
4030 unsigned long *ignored
)
4032 unsigned long node_start_pfn
, node_end_pfn
;
4033 unsigned long zone_start_pfn
, zone_end_pfn
;
4035 /* Get the start and end of the node and zone */
4036 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4037 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4038 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4039 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4040 node_start_pfn
, node_end_pfn
,
4041 &zone_start_pfn
, &zone_end_pfn
);
4043 /* Check that this node has pages within the zone's required range */
4044 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4047 /* Move the zone boundaries inside the node if necessary */
4048 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4049 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4051 /* Return the spanned pages */
4052 return zone_end_pfn
- zone_start_pfn
;
4056 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4057 * then all holes in the requested range will be accounted for.
4059 unsigned long __meminit
__absent_pages_in_range(int nid
,
4060 unsigned long range_start_pfn
,
4061 unsigned long range_end_pfn
)
4064 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
4065 unsigned long start_pfn
;
4067 /* Find the end_pfn of the first active range of pfns in the node */
4068 i
= first_active_region_index_in_nid(nid
);
4072 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4074 /* Account for ranges before physical memory on this node */
4075 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
4076 hole_pages
= prev_end_pfn
- range_start_pfn
;
4078 /* Find all holes for the zone within the node */
4079 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
4081 /* No need to continue if prev_end_pfn is outside the zone */
4082 if (prev_end_pfn
>= range_end_pfn
)
4085 /* Make sure the end of the zone is not within the hole */
4086 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4087 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
4089 /* Update the hole size cound and move on */
4090 if (start_pfn
> range_start_pfn
) {
4091 BUG_ON(prev_end_pfn
> start_pfn
);
4092 hole_pages
+= start_pfn
- prev_end_pfn
;
4094 prev_end_pfn
= early_node_map
[i
].end_pfn
;
4097 /* Account for ranges past physical memory on this node */
4098 if (range_end_pfn
> prev_end_pfn
)
4099 hole_pages
+= range_end_pfn
-
4100 max(range_start_pfn
, prev_end_pfn
);
4106 * absent_pages_in_range - Return number of page frames in holes within a range
4107 * @start_pfn: The start PFN to start searching for holes
4108 * @end_pfn: The end PFN to stop searching for holes
4110 * It returns the number of pages frames in memory holes within a range.
4112 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4113 unsigned long end_pfn
)
4115 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4118 /* Return the number of page frames in holes in a zone on a node */
4119 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4120 unsigned long zone_type
,
4121 unsigned long *ignored
)
4123 unsigned long node_start_pfn
, node_end_pfn
;
4124 unsigned long zone_start_pfn
, zone_end_pfn
;
4126 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4127 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
4129 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
4132 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4133 node_start_pfn
, node_end_pfn
,
4134 &zone_start_pfn
, &zone_end_pfn
);
4135 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4139 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4140 unsigned long zone_type
,
4141 unsigned long *zones_size
)
4143 return zones_size
[zone_type
];
4146 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4147 unsigned long zone_type
,
4148 unsigned long *zholes_size
)
4153 return zholes_size
[zone_type
];
4158 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4159 unsigned long *zones_size
, unsigned long *zholes_size
)
4161 unsigned long realtotalpages
, totalpages
= 0;
4164 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4165 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4167 pgdat
->node_spanned_pages
= totalpages
;
4169 realtotalpages
= totalpages
;
4170 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4172 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4174 pgdat
->node_present_pages
= realtotalpages
;
4175 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4179 #ifndef CONFIG_SPARSEMEM
4181 * Calculate the size of the zone->blockflags rounded to an unsigned long
4182 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4183 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4184 * round what is now in bits to nearest long in bits, then return it in
4187 static unsigned long __init
usemap_size(unsigned long zonesize
)
4189 unsigned long usemapsize
;
4191 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4192 usemapsize
= usemapsize
>> pageblock_order
;
4193 usemapsize
*= NR_PAGEBLOCK_BITS
;
4194 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4196 return usemapsize
/ 8;
4199 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4200 struct zone
*zone
, unsigned long zonesize
)
4202 unsigned long usemapsize
= usemap_size(zonesize
);
4203 zone
->pageblock_flags
= NULL
;
4205 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4209 static inline void setup_usemap(struct pglist_data
*pgdat
,
4210 struct zone
*zone
, unsigned long zonesize
) {}
4211 #endif /* CONFIG_SPARSEMEM */
4213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4215 /* Return a sensible default order for the pageblock size. */
4216 static inline int pageblock_default_order(void)
4218 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4219 return HUGETLB_PAGE_ORDER
;
4224 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4225 static inline void __init
set_pageblock_order(unsigned int order
)
4227 /* Check that pageblock_nr_pages has not already been setup */
4228 if (pageblock_order
)
4232 * Assume the largest contiguous order of interest is a huge page.
4233 * This value may be variable depending on boot parameters on IA64
4235 pageblock_order
= order
;
4237 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4240 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4241 * and pageblock_default_order() are unused as pageblock_order is set
4242 * at compile-time. See include/linux/pageblock-flags.h for the values of
4243 * pageblock_order based on the kernel config
4245 static inline int pageblock_default_order(unsigned int order
)
4249 #define set_pageblock_order(x) do {} while (0)
4251 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4254 * Set up the zone data structures:
4255 * - mark all pages reserved
4256 * - mark all memory queues empty
4257 * - clear the memory bitmaps
4259 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4260 unsigned long *zones_size
, unsigned long *zholes_size
)
4263 int nid
= pgdat
->node_id
;
4264 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4267 pgdat_resize_init(pgdat
);
4268 pgdat
->nr_zones
= 0;
4269 init_waitqueue_head(&pgdat
->kswapd_wait
);
4270 pgdat
->kswapd_max_order
= 0;
4271 pgdat_page_cgroup_init(pgdat
);
4273 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4274 struct zone
*zone
= pgdat
->node_zones
+ j
;
4275 unsigned long size
, realsize
, memmap_pages
;
4278 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4279 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4283 * Adjust realsize so that it accounts for how much memory
4284 * is used by this zone for memmap. This affects the watermark
4285 * and per-cpu initialisations
4288 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4289 if (realsize
>= memmap_pages
) {
4290 realsize
-= memmap_pages
;
4293 " %s zone: %lu pages used for memmap\n",
4294 zone_names
[j
], memmap_pages
);
4297 " %s zone: %lu pages exceeds realsize %lu\n",
4298 zone_names
[j
], memmap_pages
, realsize
);
4300 /* Account for reserved pages */
4301 if (j
== 0 && realsize
> dma_reserve
) {
4302 realsize
-= dma_reserve
;
4303 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4304 zone_names
[0], dma_reserve
);
4307 if (!is_highmem_idx(j
))
4308 nr_kernel_pages
+= realsize
;
4309 nr_all_pages
+= realsize
;
4311 zone
->spanned_pages
= size
;
4312 zone
->present_pages
= realsize
;
4315 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4317 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4319 zone
->name
= zone_names
[j
];
4320 spin_lock_init(&zone
->lock
);
4321 spin_lock_init(&zone
->lru_lock
);
4322 zone_seqlock_init(zone
);
4323 zone
->zone_pgdat
= pgdat
;
4325 zone_pcp_init(zone
);
4327 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4328 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4329 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4330 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4331 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4332 zap_zone_vm_stats(zone
);
4337 set_pageblock_order(pageblock_default_order());
4338 setup_usemap(pgdat
, zone
, size
);
4339 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4340 size
, MEMMAP_EARLY
);
4342 memmap_init(size
, nid
, j
, zone_start_pfn
);
4343 zone_start_pfn
+= size
;
4347 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4349 /* Skip empty nodes */
4350 if (!pgdat
->node_spanned_pages
)
4353 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4354 /* ia64 gets its own node_mem_map, before this, without bootmem */
4355 if (!pgdat
->node_mem_map
) {
4356 unsigned long size
, start
, end
;
4360 * The zone's endpoints aren't required to be MAX_ORDER
4361 * aligned but the node_mem_map endpoints must be in order
4362 * for the buddy allocator to function correctly.
4364 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4365 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4366 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4367 size
= (end
- start
) * sizeof(struct page
);
4368 map
= alloc_remap(pgdat
->node_id
, size
);
4370 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4371 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4373 #ifndef CONFIG_NEED_MULTIPLE_NODES
4375 * With no DISCONTIG, the global mem_map is just set as node 0's
4377 if (pgdat
== NODE_DATA(0)) {
4378 mem_map
= NODE_DATA(0)->node_mem_map
;
4379 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4380 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4381 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4382 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4385 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4388 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4389 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4391 pg_data_t
*pgdat
= NODE_DATA(nid
);
4393 pgdat
->node_id
= nid
;
4394 pgdat
->node_start_pfn
= node_start_pfn
;
4395 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4397 alloc_node_mem_map(pgdat
);
4398 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4399 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4400 nid
, (unsigned long)pgdat
,
4401 (unsigned long)pgdat
->node_mem_map
);
4404 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4407 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4409 #if MAX_NUMNODES > 1
4411 * Figure out the number of possible node ids.
4413 static void __init
setup_nr_node_ids(void)
4416 unsigned int highest
= 0;
4418 for_each_node_mask(node
, node_possible_map
)
4420 nr_node_ids
= highest
+ 1;
4423 static inline void setup_nr_node_ids(void)
4429 * add_active_range - Register a range of PFNs backed by physical memory
4430 * @nid: The node ID the range resides on
4431 * @start_pfn: The start PFN of the available physical memory
4432 * @end_pfn: The end PFN of the available physical memory
4434 * These ranges are stored in an early_node_map[] and later used by
4435 * free_area_init_nodes() to calculate zone sizes and holes. If the
4436 * range spans a memory hole, it is up to the architecture to ensure
4437 * the memory is not freed by the bootmem allocator. If possible
4438 * the range being registered will be merged with existing ranges.
4440 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4441 unsigned long end_pfn
)
4445 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4446 "Entering add_active_range(%d, %#lx, %#lx) "
4447 "%d entries of %d used\n",
4448 nid
, start_pfn
, end_pfn
,
4449 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4451 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4453 /* Merge with existing active regions if possible */
4454 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4455 if (early_node_map
[i
].nid
!= nid
)
4458 /* Skip if an existing region covers this new one */
4459 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4460 end_pfn
<= early_node_map
[i
].end_pfn
)
4463 /* Merge forward if suitable */
4464 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4465 end_pfn
> early_node_map
[i
].end_pfn
) {
4466 early_node_map
[i
].end_pfn
= end_pfn
;
4470 /* Merge backward if suitable */
4471 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4472 end_pfn
>= early_node_map
[i
].start_pfn
) {
4473 early_node_map
[i
].start_pfn
= start_pfn
;
4478 /* Check that early_node_map is large enough */
4479 if (i
>= MAX_ACTIVE_REGIONS
) {
4480 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4481 MAX_ACTIVE_REGIONS
);
4485 early_node_map
[i
].nid
= nid
;
4486 early_node_map
[i
].start_pfn
= start_pfn
;
4487 early_node_map
[i
].end_pfn
= end_pfn
;
4488 nr_nodemap_entries
= i
+ 1;
4492 * remove_active_range - Shrink an existing registered range of PFNs
4493 * @nid: The node id the range is on that should be shrunk
4494 * @start_pfn: The new PFN of the range
4495 * @end_pfn: The new PFN of the range
4497 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4498 * The map is kept near the end physical page range that has already been
4499 * registered. This function allows an arch to shrink an existing registered
4502 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4503 unsigned long end_pfn
)
4508 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4509 nid
, start_pfn
, end_pfn
);
4511 /* Find the old active region end and shrink */
4512 for_each_active_range_index_in_nid(i
, nid
) {
4513 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4514 early_node_map
[i
].end_pfn
<= end_pfn
) {
4516 early_node_map
[i
].start_pfn
= 0;
4517 early_node_map
[i
].end_pfn
= 0;
4521 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4522 early_node_map
[i
].end_pfn
> start_pfn
) {
4523 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4524 early_node_map
[i
].end_pfn
= start_pfn
;
4525 if (temp_end_pfn
> end_pfn
)
4526 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4529 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4530 early_node_map
[i
].end_pfn
> end_pfn
&&
4531 early_node_map
[i
].start_pfn
< end_pfn
) {
4532 early_node_map
[i
].start_pfn
= end_pfn
;
4540 /* remove the blank ones */
4541 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4542 if (early_node_map
[i
].nid
!= nid
)
4544 if (early_node_map
[i
].end_pfn
)
4546 /* we found it, get rid of it */
4547 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4548 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4549 sizeof(early_node_map
[j
]));
4550 j
= nr_nodemap_entries
- 1;
4551 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4552 nr_nodemap_entries
--;
4557 * remove_all_active_ranges - Remove all currently registered regions
4559 * During discovery, it may be found that a table like SRAT is invalid
4560 * and an alternative discovery method must be used. This function removes
4561 * all currently registered regions.
4563 void __init
remove_all_active_ranges(void)
4565 memset(early_node_map
, 0, sizeof(early_node_map
));
4566 nr_nodemap_entries
= 0;
4569 /* Compare two active node_active_regions */
4570 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4572 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4573 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4575 /* Done this way to avoid overflows */
4576 if (arange
->start_pfn
> brange
->start_pfn
)
4578 if (arange
->start_pfn
< brange
->start_pfn
)
4584 /* sort the node_map by start_pfn */
4585 void __init
sort_node_map(void)
4587 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4588 sizeof(struct node_active_region
),
4589 cmp_node_active_region
, NULL
);
4592 /* Find the lowest pfn for a node */
4593 static unsigned long __init
find_min_pfn_for_node(int nid
)
4596 unsigned long min_pfn
= ULONG_MAX
;
4598 /* Assuming a sorted map, the first range found has the starting pfn */
4599 for_each_active_range_index_in_nid(i
, nid
)
4600 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4602 if (min_pfn
== ULONG_MAX
) {
4604 "Could not find start_pfn for node %d\n", nid
);
4612 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4614 * It returns the minimum PFN based on information provided via
4615 * add_active_range().
4617 unsigned long __init
find_min_pfn_with_active_regions(void)
4619 return find_min_pfn_for_node(MAX_NUMNODES
);
4623 * early_calculate_totalpages()
4624 * Sum pages in active regions for movable zone.
4625 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4627 static unsigned long __init
early_calculate_totalpages(void)
4630 unsigned long totalpages
= 0;
4632 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4633 unsigned long pages
= early_node_map
[i
].end_pfn
-
4634 early_node_map
[i
].start_pfn
;
4635 totalpages
+= pages
;
4637 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4643 * Find the PFN the Movable zone begins in each node. Kernel memory
4644 * is spread evenly between nodes as long as the nodes have enough
4645 * memory. When they don't, some nodes will have more kernelcore than
4648 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4651 unsigned long usable_startpfn
;
4652 unsigned long kernelcore_node
, kernelcore_remaining
;
4653 /* save the state before borrow the nodemask */
4654 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4655 unsigned long totalpages
= early_calculate_totalpages();
4656 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4659 * If movablecore was specified, calculate what size of
4660 * kernelcore that corresponds so that memory usable for
4661 * any allocation type is evenly spread. If both kernelcore
4662 * and movablecore are specified, then the value of kernelcore
4663 * will be used for required_kernelcore if it's greater than
4664 * what movablecore would have allowed.
4666 if (required_movablecore
) {
4667 unsigned long corepages
;
4670 * Round-up so that ZONE_MOVABLE is at least as large as what
4671 * was requested by the user
4673 required_movablecore
=
4674 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4675 corepages
= totalpages
- required_movablecore
;
4677 required_kernelcore
= max(required_kernelcore
, corepages
);
4680 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4681 if (!required_kernelcore
)
4684 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4685 find_usable_zone_for_movable();
4686 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4689 /* Spread kernelcore memory as evenly as possible throughout nodes */
4690 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4691 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4693 * Recalculate kernelcore_node if the division per node
4694 * now exceeds what is necessary to satisfy the requested
4695 * amount of memory for the kernel
4697 if (required_kernelcore
< kernelcore_node
)
4698 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4701 * As the map is walked, we track how much memory is usable
4702 * by the kernel using kernelcore_remaining. When it is
4703 * 0, the rest of the node is usable by ZONE_MOVABLE
4705 kernelcore_remaining
= kernelcore_node
;
4707 /* Go through each range of PFNs within this node */
4708 for_each_active_range_index_in_nid(i
, nid
) {
4709 unsigned long start_pfn
, end_pfn
;
4710 unsigned long size_pages
;
4712 start_pfn
= max(early_node_map
[i
].start_pfn
,
4713 zone_movable_pfn
[nid
]);
4714 end_pfn
= early_node_map
[i
].end_pfn
;
4715 if (start_pfn
>= end_pfn
)
4718 /* Account for what is only usable for kernelcore */
4719 if (start_pfn
< usable_startpfn
) {
4720 unsigned long kernel_pages
;
4721 kernel_pages
= min(end_pfn
, usable_startpfn
)
4724 kernelcore_remaining
-= min(kernel_pages
,
4725 kernelcore_remaining
);
4726 required_kernelcore
-= min(kernel_pages
,
4727 required_kernelcore
);
4729 /* Continue if range is now fully accounted */
4730 if (end_pfn
<= usable_startpfn
) {
4733 * Push zone_movable_pfn to the end so
4734 * that if we have to rebalance
4735 * kernelcore across nodes, we will
4736 * not double account here
4738 zone_movable_pfn
[nid
] = end_pfn
;
4741 start_pfn
= usable_startpfn
;
4745 * The usable PFN range for ZONE_MOVABLE is from
4746 * start_pfn->end_pfn. Calculate size_pages as the
4747 * number of pages used as kernelcore
4749 size_pages
= end_pfn
- start_pfn
;
4750 if (size_pages
> kernelcore_remaining
)
4751 size_pages
= kernelcore_remaining
;
4752 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4755 * Some kernelcore has been met, update counts and
4756 * break if the kernelcore for this node has been
4759 required_kernelcore
-= min(required_kernelcore
,
4761 kernelcore_remaining
-= size_pages
;
4762 if (!kernelcore_remaining
)
4768 * If there is still required_kernelcore, we do another pass with one
4769 * less node in the count. This will push zone_movable_pfn[nid] further
4770 * along on the nodes that still have memory until kernelcore is
4774 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4777 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4778 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4779 zone_movable_pfn
[nid
] =
4780 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4783 /* restore the node_state */
4784 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4787 /* Any regular memory on that node ? */
4788 static void check_for_regular_memory(pg_data_t
*pgdat
)
4790 #ifdef CONFIG_HIGHMEM
4791 enum zone_type zone_type
;
4793 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4794 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4795 if (zone
->present_pages
)
4796 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4802 * free_area_init_nodes - Initialise all pg_data_t and zone data
4803 * @max_zone_pfn: an array of max PFNs for each zone
4805 * This will call free_area_init_node() for each active node in the system.
4806 * Using the page ranges provided by add_active_range(), the size of each
4807 * zone in each node and their holes is calculated. If the maximum PFN
4808 * between two adjacent zones match, it is assumed that the zone is empty.
4809 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4810 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4811 * starts where the previous one ended. For example, ZONE_DMA32 starts
4812 * at arch_max_dma_pfn.
4814 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4819 /* Sort early_node_map as initialisation assumes it is sorted */
4822 /* Record where the zone boundaries are */
4823 memset(arch_zone_lowest_possible_pfn
, 0,
4824 sizeof(arch_zone_lowest_possible_pfn
));
4825 memset(arch_zone_highest_possible_pfn
, 0,
4826 sizeof(arch_zone_highest_possible_pfn
));
4827 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4828 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4829 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4830 if (i
== ZONE_MOVABLE
)
4832 arch_zone_lowest_possible_pfn
[i
] =
4833 arch_zone_highest_possible_pfn
[i
-1];
4834 arch_zone_highest_possible_pfn
[i
] =
4835 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4837 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4838 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4840 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4841 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4842 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4844 /* Print out the zone ranges */
4845 printk("Zone PFN ranges:\n");
4846 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4847 if (i
== ZONE_MOVABLE
)
4849 printk(" %-8s ", zone_names
[i
]);
4850 if (arch_zone_lowest_possible_pfn
[i
] ==
4851 arch_zone_highest_possible_pfn
[i
])
4854 printk("%0#10lx -> %0#10lx\n",
4855 arch_zone_lowest_possible_pfn
[i
],
4856 arch_zone_highest_possible_pfn
[i
]);
4859 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4860 printk("Movable zone start PFN for each node\n");
4861 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4862 if (zone_movable_pfn
[i
])
4863 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4866 /* Print out the early_node_map[] */
4867 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4868 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4869 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4870 early_node_map
[i
].start_pfn
,
4871 early_node_map
[i
].end_pfn
);
4873 /* Initialise every node */
4874 mminit_verify_pageflags_layout();
4875 setup_nr_node_ids();
4876 for_each_online_node(nid
) {
4877 pg_data_t
*pgdat
= NODE_DATA(nid
);
4878 free_area_init_node(nid
, NULL
,
4879 find_min_pfn_for_node(nid
), NULL
);
4881 /* Any memory on that node */
4882 if (pgdat
->node_present_pages
)
4883 node_set_state(nid
, N_HIGH_MEMORY
);
4884 check_for_regular_memory(pgdat
);
4888 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4890 unsigned long long coremem
;
4894 coremem
= memparse(p
, &p
);
4895 *core
= coremem
>> PAGE_SHIFT
;
4897 /* Paranoid check that UL is enough for the coremem value */
4898 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4904 * kernelcore=size sets the amount of memory for use for allocations that
4905 * cannot be reclaimed or migrated.
4907 static int __init
cmdline_parse_kernelcore(char *p
)
4909 return cmdline_parse_core(p
, &required_kernelcore
);
4913 * movablecore=size sets the amount of memory for use for allocations that
4914 * can be reclaimed or migrated.
4916 static int __init
cmdline_parse_movablecore(char *p
)
4918 return cmdline_parse_core(p
, &required_movablecore
);
4921 early_param("kernelcore", cmdline_parse_kernelcore
);
4922 early_param("movablecore", cmdline_parse_movablecore
);
4924 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4927 * set_dma_reserve - set the specified number of pages reserved in the first zone
4928 * @new_dma_reserve: The number of pages to mark reserved
4930 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4931 * In the DMA zone, a significant percentage may be consumed by kernel image
4932 * and other unfreeable allocations which can skew the watermarks badly. This
4933 * function may optionally be used to account for unfreeable pages in the
4934 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4935 * smaller per-cpu batchsize.
4937 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4939 dma_reserve
= new_dma_reserve
;
4942 void __init
free_area_init(unsigned long *zones_size
)
4944 free_area_init_node(0, zones_size
,
4945 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4948 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4949 unsigned long action
, void *hcpu
)
4951 int cpu
= (unsigned long)hcpu
;
4953 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4957 * Spill the event counters of the dead processor
4958 * into the current processors event counters.
4959 * This artificially elevates the count of the current
4962 vm_events_fold_cpu(cpu
);
4965 * Zero the differential counters of the dead processor
4966 * so that the vm statistics are consistent.
4968 * This is only okay since the processor is dead and cannot
4969 * race with what we are doing.
4971 refresh_cpu_vm_stats(cpu
);
4976 void __init
page_alloc_init(void)
4978 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4982 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4983 * or min_free_kbytes changes.
4985 static void calculate_totalreserve_pages(void)
4987 struct pglist_data
*pgdat
;
4988 unsigned long reserve_pages
= 0;
4989 enum zone_type i
, j
;
4991 for_each_online_pgdat(pgdat
) {
4992 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4993 struct zone
*zone
= pgdat
->node_zones
+ i
;
4994 unsigned long max
= 0;
4996 /* Find valid and maximum lowmem_reserve in the zone */
4997 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4998 if (zone
->lowmem_reserve
[j
] > max
)
4999 max
= zone
->lowmem_reserve
[j
];
5002 /* we treat the high watermark as reserved pages. */
5003 max
+= high_wmark_pages(zone
);
5005 if (max
> zone
->present_pages
)
5006 max
= zone
->present_pages
;
5007 reserve_pages
+= max
;
5010 totalreserve_pages
= reserve_pages
;
5014 * setup_per_zone_lowmem_reserve - called whenever
5015 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5016 * has a correct pages reserved value, so an adequate number of
5017 * pages are left in the zone after a successful __alloc_pages().
5019 static void setup_per_zone_lowmem_reserve(void)
5021 struct pglist_data
*pgdat
;
5022 enum zone_type j
, idx
;
5024 for_each_online_pgdat(pgdat
) {
5025 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5026 struct zone
*zone
= pgdat
->node_zones
+ j
;
5027 unsigned long present_pages
= zone
->present_pages
;
5029 zone
->lowmem_reserve
[j
] = 0;
5033 struct zone
*lower_zone
;
5037 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5038 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5040 lower_zone
= pgdat
->node_zones
+ idx
;
5041 lower_zone
->lowmem_reserve
[j
] = present_pages
/
5042 sysctl_lowmem_reserve_ratio
[idx
];
5043 present_pages
+= lower_zone
->present_pages
;
5048 /* update totalreserve_pages */
5049 calculate_totalreserve_pages();
5053 * setup_per_zone_wmarks - called when min_free_kbytes changes
5054 * or when memory is hot-{added|removed}
5056 * Ensures that the watermark[min,low,high] values for each zone are set
5057 * correctly with respect to min_free_kbytes.
5059 void setup_per_zone_wmarks(void)
5061 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5062 unsigned long lowmem_pages
= 0;
5064 unsigned long flags
;
5066 /* Calculate total number of !ZONE_HIGHMEM pages */
5067 for_each_zone(zone
) {
5068 if (!is_highmem(zone
))
5069 lowmem_pages
+= zone
->present_pages
;
5072 for_each_zone(zone
) {
5075 spin_lock_irqsave(&zone
->lock
, flags
);
5076 tmp
= (u64
)pages_min
* zone
->present_pages
;
5077 do_div(tmp
, lowmem_pages
);
5078 if (is_highmem(zone
)) {
5080 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5081 * need highmem pages, so cap pages_min to a small
5084 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5085 * deltas controls asynch page reclaim, and so should
5086 * not be capped for highmem.
5090 min_pages
= zone
->present_pages
/ 1024;
5091 if (min_pages
< SWAP_CLUSTER_MAX
)
5092 min_pages
= SWAP_CLUSTER_MAX
;
5093 if (min_pages
> 128)
5095 zone
->watermark
[WMARK_MIN
] = min_pages
;
5098 * If it's a lowmem zone, reserve a number of pages
5099 * proportionate to the zone's size.
5101 zone
->watermark
[WMARK_MIN
] = tmp
;
5104 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5105 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5106 setup_zone_migrate_reserve(zone
);
5107 spin_unlock_irqrestore(&zone
->lock
, flags
);
5110 /* update totalreserve_pages */
5111 calculate_totalreserve_pages();
5115 * The inactive anon list should be small enough that the VM never has to
5116 * do too much work, but large enough that each inactive page has a chance
5117 * to be referenced again before it is swapped out.
5119 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5120 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5121 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5122 * the anonymous pages are kept on the inactive list.
5125 * memory ratio inactive anon
5126 * -------------------------------------
5135 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5137 unsigned int gb
, ratio
;
5139 /* Zone size in gigabytes */
5140 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5142 ratio
= int_sqrt(10 * gb
);
5146 zone
->inactive_ratio
= ratio
;
5149 static void __meminit
setup_per_zone_inactive_ratio(void)
5154 calculate_zone_inactive_ratio(zone
);
5158 * Initialise min_free_kbytes.
5160 * For small machines we want it small (128k min). For large machines
5161 * we want it large (64MB max). But it is not linear, because network
5162 * bandwidth does not increase linearly with machine size. We use
5164 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5165 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5181 int __meminit
init_per_zone_wmark_min(void)
5183 unsigned long lowmem_kbytes
;
5185 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5187 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5188 if (min_free_kbytes
< 128)
5189 min_free_kbytes
= 128;
5190 if (min_free_kbytes
> 65536)
5191 min_free_kbytes
= 65536;
5192 setup_per_zone_wmarks();
5193 refresh_zone_stat_thresholds();
5194 setup_per_zone_lowmem_reserve();
5195 setup_per_zone_inactive_ratio();
5198 module_init(init_per_zone_wmark_min
)
5201 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5202 * that we can call two helper functions whenever min_free_kbytes
5205 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5206 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5208 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5210 setup_per_zone_wmarks();
5215 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5216 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5221 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5226 zone
->min_unmapped_pages
= (zone
->present_pages
*
5227 sysctl_min_unmapped_ratio
) / 100;
5231 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5232 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5237 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5242 zone
->min_slab_pages
= (zone
->present_pages
*
5243 sysctl_min_slab_ratio
) / 100;
5249 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5250 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5251 * whenever sysctl_lowmem_reserve_ratio changes.
5253 * The reserve ratio obviously has absolutely no relation with the
5254 * minimum watermarks. The lowmem reserve ratio can only make sense
5255 * if in function of the boot time zone sizes.
5257 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5258 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5260 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5261 setup_per_zone_lowmem_reserve();
5266 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5267 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5268 * can have before it gets flushed back to buddy allocator.
5271 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5272 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5278 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5279 if (!write
|| (ret
== -EINVAL
))
5281 for_each_populated_zone(zone
) {
5282 for_each_possible_cpu(cpu
) {
5284 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5285 setup_pagelist_highmark(
5286 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5292 int hashdist
= HASHDIST_DEFAULT
;
5295 static int __init
set_hashdist(char *str
)
5299 hashdist
= simple_strtoul(str
, &str
, 0);
5302 __setup("hashdist=", set_hashdist
);
5306 * allocate a large system hash table from bootmem
5307 * - it is assumed that the hash table must contain an exact power-of-2
5308 * quantity of entries
5309 * - limit is the number of hash buckets, not the total allocation size
5311 void *__init
alloc_large_system_hash(const char *tablename
,
5312 unsigned long bucketsize
,
5313 unsigned long numentries
,
5316 unsigned int *_hash_shift
,
5317 unsigned int *_hash_mask
,
5318 unsigned long limit
)
5320 unsigned long long max
= limit
;
5321 unsigned long log2qty
, size
;
5324 /* allow the kernel cmdline to have a say */
5326 /* round applicable memory size up to nearest megabyte */
5327 numentries
= nr_kernel_pages
;
5328 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5329 numentries
>>= 20 - PAGE_SHIFT
;
5330 numentries
<<= 20 - PAGE_SHIFT
;
5332 /* limit to 1 bucket per 2^scale bytes of low memory */
5333 if (scale
> PAGE_SHIFT
)
5334 numentries
>>= (scale
- PAGE_SHIFT
);
5336 numentries
<<= (PAGE_SHIFT
- scale
);
5338 /* Make sure we've got at least a 0-order allocation.. */
5339 if (unlikely(flags
& HASH_SMALL
)) {
5340 /* Makes no sense without HASH_EARLY */
5341 WARN_ON(!(flags
& HASH_EARLY
));
5342 if (!(numentries
>> *_hash_shift
)) {
5343 numentries
= 1UL << *_hash_shift
;
5344 BUG_ON(!numentries
);
5346 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5347 numentries
= PAGE_SIZE
/ bucketsize
;
5349 numentries
= roundup_pow_of_two(numentries
);
5351 /* limit allocation size to 1/16 total memory by default */
5353 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5354 do_div(max
, bucketsize
);
5357 if (numentries
> max
)
5360 log2qty
= ilog2(numentries
);
5363 size
= bucketsize
<< log2qty
;
5364 if (flags
& HASH_EARLY
)
5365 table
= alloc_bootmem_nopanic(size
);
5367 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5370 * If bucketsize is not a power-of-two, we may free
5371 * some pages at the end of hash table which
5372 * alloc_pages_exact() automatically does
5374 if (get_order(size
) < MAX_ORDER
) {
5375 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5376 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5379 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5382 panic("Failed to allocate %s hash table\n", tablename
);
5384 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5387 ilog2(size
) - PAGE_SHIFT
,
5391 *_hash_shift
= log2qty
;
5393 *_hash_mask
= (1 << log2qty
) - 1;
5398 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5399 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5402 #ifdef CONFIG_SPARSEMEM
5403 return __pfn_to_section(pfn
)->pageblock_flags
;
5405 return zone
->pageblock_flags
;
5406 #endif /* CONFIG_SPARSEMEM */
5409 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5411 #ifdef CONFIG_SPARSEMEM
5412 pfn
&= (PAGES_PER_SECTION
-1);
5413 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5415 pfn
= pfn
- zone
->zone_start_pfn
;
5416 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5417 #endif /* CONFIG_SPARSEMEM */
5421 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5422 * @page: The page within the block of interest
5423 * @start_bitidx: The first bit of interest to retrieve
5424 * @end_bitidx: The last bit of interest
5425 * returns pageblock_bits flags
5427 unsigned long get_pageblock_flags_group(struct page
*page
,
5428 int start_bitidx
, int end_bitidx
)
5431 unsigned long *bitmap
;
5432 unsigned long pfn
, bitidx
;
5433 unsigned long flags
= 0;
5434 unsigned long value
= 1;
5436 zone
= page_zone(page
);
5437 pfn
= page_to_pfn(page
);
5438 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5439 bitidx
= pfn_to_bitidx(zone
, pfn
);
5441 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5442 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5449 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5450 * @page: The page within the block of interest
5451 * @start_bitidx: The first bit of interest
5452 * @end_bitidx: The last bit of interest
5453 * @flags: The flags to set
5455 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5456 int start_bitidx
, int end_bitidx
)
5459 unsigned long *bitmap
;
5460 unsigned long pfn
, bitidx
;
5461 unsigned long value
= 1;
5463 zone
= page_zone(page
);
5464 pfn
= page_to_pfn(page
);
5465 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5466 bitidx
= pfn_to_bitidx(zone
, pfn
);
5467 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5468 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5470 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5472 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5474 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5478 * This is designed as sub function...plz see page_isolation.c also.
5479 * set/clear page block's type to be ISOLATE.
5480 * page allocater never alloc memory from ISOLATE block.
5484 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5486 unsigned long pfn
, iter
, found
;
5488 * For avoiding noise data, lru_add_drain_all() should be called
5489 * If ZONE_MOVABLE, the zone never contains immobile pages
5491 if (zone_idx(zone
) == ZONE_MOVABLE
)
5494 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5497 pfn
= page_to_pfn(page
);
5498 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5499 unsigned long check
= pfn
+ iter
;
5501 if (!pfn_valid_within(check
))
5504 page
= pfn_to_page(check
);
5505 if (!page_count(page
)) {
5506 if (PageBuddy(page
))
5507 iter
+= (1 << page_order(page
)) - 1;
5513 * If there are RECLAIMABLE pages, we need to check it.
5514 * But now, memory offline itself doesn't call shrink_slab()
5515 * and it still to be fixed.
5518 * If the page is not RAM, page_count()should be 0.
5519 * we don't need more check. This is an _used_ not-movable page.
5521 * The problematic thing here is PG_reserved pages. PG_reserved
5522 * is set to both of a memory hole page and a _used_ kernel
5531 bool is_pageblock_removable_nolock(struct page
*page
)
5533 struct zone
*zone
= page_zone(page
);
5534 return __count_immobile_pages(zone
, page
, 0);
5537 int set_migratetype_isolate(struct page
*page
)
5540 unsigned long flags
, pfn
;
5541 struct memory_isolate_notify arg
;
5545 zone
= page_zone(page
);
5547 spin_lock_irqsave(&zone
->lock
, flags
);
5549 pfn
= page_to_pfn(page
);
5550 arg
.start_pfn
= pfn
;
5551 arg
.nr_pages
= pageblock_nr_pages
;
5552 arg
.pages_found
= 0;
5555 * It may be possible to isolate a pageblock even if the
5556 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5557 * notifier chain is used by balloon drivers to return the
5558 * number of pages in a range that are held by the balloon
5559 * driver to shrink memory. If all the pages are accounted for
5560 * by balloons, are free, or on the LRU, isolation can continue.
5561 * Later, for example, when memory hotplug notifier runs, these
5562 * pages reported as "can be isolated" should be isolated(freed)
5563 * by the balloon driver through the memory notifier chain.
5565 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5566 notifier_ret
= notifier_to_errno(notifier_ret
);
5570 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5571 * We just check MOVABLE pages.
5573 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5577 * immobile means "not-on-lru" paes. If immobile is larger than
5578 * removable-by-driver pages reported by notifier, we'll fail.
5583 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5584 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5587 spin_unlock_irqrestore(&zone
->lock
, flags
);
5593 void unset_migratetype_isolate(struct page
*page
)
5596 unsigned long flags
;
5597 zone
= page_zone(page
);
5598 spin_lock_irqsave(&zone
->lock
, flags
);
5599 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5601 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5602 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5604 spin_unlock_irqrestore(&zone
->lock
, flags
);
5607 #ifdef CONFIG_MEMORY_HOTREMOVE
5609 * All pages in the range must be isolated before calling this.
5612 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5618 unsigned long flags
;
5619 /* find the first valid pfn */
5620 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5625 zone
= page_zone(pfn_to_page(pfn
));
5626 spin_lock_irqsave(&zone
->lock
, flags
);
5628 while (pfn
< end_pfn
) {
5629 if (!pfn_valid(pfn
)) {
5633 page
= pfn_to_page(pfn
);
5634 BUG_ON(page_count(page
));
5635 BUG_ON(!PageBuddy(page
));
5636 order
= page_order(page
);
5637 #ifdef CONFIG_DEBUG_VM
5638 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5639 pfn
, 1 << order
, end_pfn
);
5641 list_del(&page
->lru
);
5642 rmv_page_order(page
);
5643 zone
->free_area
[order
].nr_free
--;
5644 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5646 for (i
= 0; i
< (1 << order
); i
++)
5647 SetPageReserved((page
+i
));
5648 pfn
+= (1 << order
);
5650 spin_unlock_irqrestore(&zone
->lock
, flags
);
5654 #ifdef CONFIG_MEMORY_FAILURE
5655 bool is_free_buddy_page(struct page
*page
)
5657 struct zone
*zone
= page_zone(page
);
5658 unsigned long pfn
= page_to_pfn(page
);
5659 unsigned long flags
;
5662 spin_lock_irqsave(&zone
->lock
, flags
);
5663 for (order
= 0; order
< MAX_ORDER
; order
++) {
5664 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5666 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5669 spin_unlock_irqrestore(&zone
->lock
, flags
);
5671 return order
< MAX_ORDER
;
5675 static struct trace_print_flags pageflag_names
[] = {
5676 {1UL << PG_locked
, "locked" },
5677 {1UL << PG_error
, "error" },
5678 {1UL << PG_referenced
, "referenced" },
5679 {1UL << PG_uptodate
, "uptodate" },
5680 {1UL << PG_dirty
, "dirty" },
5681 {1UL << PG_lru
, "lru" },
5682 {1UL << PG_active
, "active" },
5683 {1UL << PG_slab
, "slab" },
5684 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5685 {1UL << PG_arch_1
, "arch_1" },
5686 {1UL << PG_reserved
, "reserved" },
5687 {1UL << PG_private
, "private" },
5688 {1UL << PG_private_2
, "private_2" },
5689 {1UL << PG_writeback
, "writeback" },
5690 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5691 {1UL << PG_head
, "head" },
5692 {1UL << PG_tail
, "tail" },
5694 {1UL << PG_compound
, "compound" },
5696 {1UL << PG_swapcache
, "swapcache" },
5697 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5698 {1UL << PG_reclaim
, "reclaim" },
5699 {1UL << PG_swapbacked
, "swapbacked" },
5700 {1UL << PG_unevictable
, "unevictable" },
5702 {1UL << PG_mlocked
, "mlocked" },
5704 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5705 {1UL << PG_uncached
, "uncached" },
5707 #ifdef CONFIG_MEMORY_FAILURE
5708 {1UL << PG_hwpoison
, "hwpoison" },
5713 static void dump_page_flags(unsigned long flags
)
5715 const char *delim
= "";
5719 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5721 /* remove zone id */
5722 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5724 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5726 mask
= pageflag_names
[i
].mask
;
5727 if ((flags
& mask
) != mask
)
5731 printk("%s%s", delim
, pageflag_names
[i
].name
);
5735 /* check for left over flags */
5737 printk("%s%#lx", delim
, flags
);
5742 void dump_page(struct page
*page
)
5745 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5746 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5747 page
->mapping
, page
->index
);
5748 dump_page_flags(page
->flags
);
5749 mem_cgroup_print_bad_page(page
);