powerpc: Use call_rcu_sched() for pagetables
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / mm / pgtable.c
blob6a3997f98dfb90a2f3d01da4b53156c2098a38f8
1 /*
2 * This file contains common routines for dealing with free of page tables
3 * Along with common page table handling code
5 * Derived from arch/powerpc/mm/tlb_64.c:
6 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
9 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
10 * Copyright (C) 1996 Paul Mackerras
12 * Derived from "arch/i386/mm/init.c"
13 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
15 * Dave Engebretsen <engebret@us.ibm.com>
16 * Rework for PPC64 port.
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
24 #include <linux/kernel.h>
25 #include <linux/gfp.h>
26 #include <linux/mm.h>
27 #include <linux/init.h>
28 #include <linux/percpu.h>
29 #include <linux/hardirq.h>
30 #include <asm/pgalloc.h>
31 #include <asm/tlbflush.h>
32 #include <asm/tlb.h>
34 #include "mmu_decl.h"
36 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
38 #ifdef CONFIG_SMP
41 * Handle batching of page table freeing on SMP. Page tables are
42 * queued up and send to be freed later by RCU in order to avoid
43 * freeing a page table page that is being walked without locks
46 static DEFINE_PER_CPU(struct pte_freelist_batch *, pte_freelist_cur);
47 static unsigned long pte_freelist_forced_free;
49 struct pte_freelist_batch
51 struct rcu_head rcu;
52 unsigned int index;
53 unsigned long tables[0];
56 #define PTE_FREELIST_SIZE \
57 ((PAGE_SIZE - sizeof(struct pte_freelist_batch)) \
58 / sizeof(unsigned long))
60 static void pte_free_smp_sync(void *arg)
62 /* Do nothing, just ensure we sync with all CPUs */
65 /* This is only called when we are critically out of memory
66 * (and fail to get a page in pte_free_tlb).
68 static void pgtable_free_now(void *table, unsigned shift)
70 pte_freelist_forced_free++;
72 smp_call_function(pte_free_smp_sync, NULL, 1);
74 pgtable_free(table, shift);
77 static void pte_free_rcu_callback(struct rcu_head *head)
79 struct pte_freelist_batch *batch =
80 container_of(head, struct pte_freelist_batch, rcu);
81 unsigned int i;
83 for (i = 0; i < batch->index; i++) {
84 void *table = (void *)(batch->tables[i] & ~MAX_PGTABLE_INDEX_SIZE);
85 unsigned shift = batch->tables[i] & MAX_PGTABLE_INDEX_SIZE;
87 pgtable_free(table, shift);
90 free_page((unsigned long)batch);
93 static void pte_free_submit(struct pte_freelist_batch *batch)
95 call_rcu_sched(&batch->rcu, pte_free_rcu_callback);
98 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, unsigned shift)
100 /* This is safe since tlb_gather_mmu has disabled preemption */
101 struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur);
102 unsigned long pgf;
104 if (atomic_read(&tlb->mm->mm_users) < 2 ||
105 cpumask_equal(mm_cpumask(tlb->mm), cpumask_of(smp_processor_id()))){
106 pgtable_free(table, shift);
107 return;
110 if (*batchp == NULL) {
111 *batchp = (struct pte_freelist_batch *)__get_free_page(GFP_ATOMIC);
112 if (*batchp == NULL) {
113 pgtable_free_now(table, shift);
114 return;
116 (*batchp)->index = 0;
118 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
119 pgf = (unsigned long)table | shift;
120 (*batchp)->tables[(*batchp)->index++] = pgf;
121 if ((*batchp)->index == PTE_FREELIST_SIZE) {
122 pte_free_submit(*batchp);
123 *batchp = NULL;
127 void pte_free_finish(void)
129 /* This is safe since tlb_gather_mmu has disabled preemption */
130 struct pte_freelist_batch **batchp = &__get_cpu_var(pte_freelist_cur);
132 if (*batchp == NULL)
133 return;
134 pte_free_submit(*batchp);
135 *batchp = NULL;
138 #endif /* CONFIG_SMP */
140 static inline int is_exec_fault(void)
142 return current->thread.regs && TRAP(current->thread.regs) == 0x400;
145 /* We only try to do i/d cache coherency on stuff that looks like
146 * reasonably "normal" PTEs. We currently require a PTE to be present
147 * and we avoid _PAGE_SPECIAL and _PAGE_NO_CACHE. We also only do that
148 * on userspace PTEs
150 static inline int pte_looks_normal(pte_t pte)
152 return (pte_val(pte) &
153 (_PAGE_PRESENT | _PAGE_SPECIAL | _PAGE_NO_CACHE | _PAGE_USER)) ==
154 (_PAGE_PRESENT | _PAGE_USER);
157 struct page * maybe_pte_to_page(pte_t pte)
159 unsigned long pfn = pte_pfn(pte);
160 struct page *page;
162 if (unlikely(!pfn_valid(pfn)))
163 return NULL;
164 page = pfn_to_page(pfn);
165 if (PageReserved(page))
166 return NULL;
167 return page;
170 #if defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0
172 /* Server-style MMU handles coherency when hashing if HW exec permission
173 * is supposed per page (currently 64-bit only). If not, then, we always
174 * flush the cache for valid PTEs in set_pte. Embedded CPU without HW exec
175 * support falls into the same category.
178 static pte_t set_pte_filter(pte_t pte, unsigned long addr)
180 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
181 if (pte_looks_normal(pte) && !(cpu_has_feature(CPU_FTR_COHERENT_ICACHE) ||
182 cpu_has_feature(CPU_FTR_NOEXECUTE))) {
183 struct page *pg = maybe_pte_to_page(pte);
184 if (!pg)
185 return pte;
186 if (!test_bit(PG_arch_1, &pg->flags)) {
187 #ifdef CONFIG_8xx
188 /* On 8xx, cache control instructions (particularly
189 * "dcbst" from flush_dcache_icache) fault as write
190 * operation if there is an unpopulated TLB entry
191 * for the address in question. To workaround that,
192 * we invalidate the TLB here, thus avoiding dcbst
193 * misbehaviour.
195 /* 8xx doesn't care about PID, size or ind args */
196 _tlbil_va(addr, 0, 0, 0);
197 #endif /* CONFIG_8xx */
198 flush_dcache_icache_page(pg);
199 set_bit(PG_arch_1, &pg->flags);
202 return pte;
205 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
206 int dirty)
208 return pte;
211 #else /* defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0 */
213 /* Embedded type MMU with HW exec support. This is a bit more complicated
214 * as we don't have two bits to spare for _PAGE_EXEC and _PAGE_HWEXEC so
215 * instead we "filter out" the exec permission for non clean pages.
217 static pte_t set_pte_filter(pte_t pte, unsigned long addr)
219 struct page *pg;
221 /* No exec permission in the first place, move on */
222 if (!(pte_val(pte) & _PAGE_EXEC) || !pte_looks_normal(pte))
223 return pte;
225 /* If you set _PAGE_EXEC on weird pages you're on your own */
226 pg = maybe_pte_to_page(pte);
227 if (unlikely(!pg))
228 return pte;
230 /* If the page clean, we move on */
231 if (test_bit(PG_arch_1, &pg->flags))
232 return pte;
234 /* If it's an exec fault, we flush the cache and make it clean */
235 if (is_exec_fault()) {
236 flush_dcache_icache_page(pg);
237 set_bit(PG_arch_1, &pg->flags);
238 return pte;
241 /* Else, we filter out _PAGE_EXEC */
242 return __pte(pte_val(pte) & ~_PAGE_EXEC);
245 static pte_t set_access_flags_filter(pte_t pte, struct vm_area_struct *vma,
246 int dirty)
248 struct page *pg;
250 /* So here, we only care about exec faults, as we use them
251 * to recover lost _PAGE_EXEC and perform I$/D$ coherency
252 * if necessary. Also if _PAGE_EXEC is already set, same deal,
253 * we just bail out
255 if (dirty || (pte_val(pte) & _PAGE_EXEC) || !is_exec_fault())
256 return pte;
258 #ifdef CONFIG_DEBUG_VM
259 /* So this is an exec fault, _PAGE_EXEC is not set. If it was
260 * an error we would have bailed out earlier in do_page_fault()
261 * but let's make sure of it
263 if (WARN_ON(!(vma->vm_flags & VM_EXEC)))
264 return pte;
265 #endif /* CONFIG_DEBUG_VM */
267 /* If you set _PAGE_EXEC on weird pages you're on your own */
268 pg = maybe_pte_to_page(pte);
269 if (unlikely(!pg))
270 goto bail;
272 /* If the page is already clean, we move on */
273 if (test_bit(PG_arch_1, &pg->flags))
274 goto bail;
276 /* Clean the page and set PG_arch_1 */
277 flush_dcache_icache_page(pg);
278 set_bit(PG_arch_1, &pg->flags);
280 bail:
281 return __pte(pte_val(pte) | _PAGE_EXEC);
284 #endif /* !(defined(CONFIG_PPC_STD_MMU) || _PAGE_EXEC == 0) */
287 * set_pte stores a linux PTE into the linux page table.
289 void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
290 pte_t pte)
292 #ifdef CONFIG_DEBUG_VM
293 WARN_ON(pte_present(*ptep));
294 #endif
295 /* Note: mm->context.id might not yet have been assigned as
296 * this context might not have been activated yet when this
297 * is called.
299 pte = set_pte_filter(pte, addr);
301 /* Perform the setting of the PTE */
302 __set_pte_at(mm, addr, ptep, pte, 0);
306 * This is called when relaxing access to a PTE. It's also called in the page
307 * fault path when we don't hit any of the major fault cases, ie, a minor
308 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
309 * handled those two for us, we additionally deal with missing execute
310 * permission here on some processors
312 int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
313 pte_t *ptep, pte_t entry, int dirty)
315 int changed;
316 entry = set_access_flags_filter(entry, vma, dirty);
317 changed = !pte_same(*(ptep), entry);
318 if (changed) {
319 if (!(vma->vm_flags & VM_HUGETLB))
320 assert_pte_locked(vma->vm_mm, address);
321 __ptep_set_access_flags(ptep, entry);
322 flush_tlb_page_nohash(vma, address);
324 return changed;
327 #ifdef CONFIG_DEBUG_VM
328 void assert_pte_locked(struct mm_struct *mm, unsigned long addr)
330 pgd_t *pgd;
331 pud_t *pud;
332 pmd_t *pmd;
334 if (mm == &init_mm)
335 return;
336 pgd = mm->pgd + pgd_index(addr);
337 BUG_ON(pgd_none(*pgd));
338 pud = pud_offset(pgd, addr);
339 BUG_ON(pud_none(*pud));
340 pmd = pmd_offset(pud, addr);
341 BUG_ON(!pmd_present(*pmd));
342 assert_spin_locked(pte_lockptr(mm, pmd));
344 #endif /* CONFIG_DEBUG_VM */