Btrfs: add support for compat flags to btrfs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / disk-io.c
blob6ae9bdf98b682f6e57113ff775e923d016bb0add
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/version.h>
20 #include <linux/fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include <linux/kthread.h>
29 #include <linux/freezer.h>
30 #include "compat.h"
31 #include "crc32c.h"
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "volumes.h"
37 #include "print-tree.h"
38 #include "async-thread.h"
39 #include "locking.h"
40 #include "ref-cache.h"
41 #include "tree-log.h"
43 #if 0
44 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
46 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
47 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
48 (unsigned long long)extent_buffer_blocknr(buf),
49 (unsigned long long)btrfs_header_blocknr(buf));
50 return 1;
52 return 0;
54 #endif
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
60 * end_io_wq structs are used to do processing in task context when an IO is
61 * complete. This is used during reads to verify checksums, and it is used
62 * by writes to insert metadata for new file extents after IO is complete.
64 struct end_io_wq {
65 struct bio *bio;
66 bio_end_io_t *end_io;
67 void *private;
68 struct btrfs_fs_info *info;
69 int error;
70 int metadata;
71 struct list_head list;
72 struct btrfs_work work;
76 * async submit bios are used to offload expensive checksumming
77 * onto the worker threads. They checksum file and metadata bios
78 * just before they are sent down the IO stack.
80 struct async_submit_bio {
81 struct inode *inode;
82 struct bio *bio;
83 struct list_head list;
84 extent_submit_bio_hook_t *submit_bio_start;
85 extent_submit_bio_hook_t *submit_bio_done;
86 int rw;
87 int mirror_num;
88 unsigned long bio_flags;
89 struct btrfs_work work;
93 * extents on the btree inode are pretty simple, there's one extent
94 * that covers the entire device
96 static struct extent_map *btree_get_extent(struct inode *inode,
97 struct page *page, size_t page_offset, u64 start, u64 len,
98 int create)
100 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
101 struct extent_map *em;
102 int ret;
104 spin_lock(&em_tree->lock);
105 em = lookup_extent_mapping(em_tree, start, len);
106 if (em) {
107 em->bdev =
108 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
109 spin_unlock(&em_tree->lock);
110 goto out;
112 spin_unlock(&em_tree->lock);
114 em = alloc_extent_map(GFP_NOFS);
115 if (!em) {
116 em = ERR_PTR(-ENOMEM);
117 goto out;
119 em->start = 0;
120 em->len = (u64)-1;
121 em->block_len = (u64)-1;
122 em->block_start = 0;
123 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
125 spin_lock(&em_tree->lock);
126 ret = add_extent_mapping(em_tree, em);
127 if (ret == -EEXIST) {
128 u64 failed_start = em->start;
129 u64 failed_len = em->len;
131 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
132 em->start, em->len, em->block_start);
133 free_extent_map(em);
134 em = lookup_extent_mapping(em_tree, start, len);
135 if (em) {
136 printk("after failing, found %Lu %Lu %Lu\n",
137 em->start, em->len, em->block_start);
138 ret = 0;
139 } else {
140 em = lookup_extent_mapping(em_tree, failed_start,
141 failed_len);
142 if (em) {
143 printk("double failure lookup gives us "
144 "%Lu %Lu -> %Lu\n", em->start,
145 em->len, em->block_start);
146 free_extent_map(em);
148 ret = -EIO;
150 } else if (ret) {
151 free_extent_map(em);
152 em = NULL;
154 spin_unlock(&em_tree->lock);
156 if (ret)
157 em = ERR_PTR(ret);
158 out:
159 return em;
162 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
164 return btrfs_crc32c(seed, data, len);
167 void btrfs_csum_final(u32 crc, char *result)
169 *(__le32 *)result = ~cpu_to_le32(crc);
173 * compute the csum for a btree block, and either verify it or write it
174 * into the csum field of the block.
176 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
177 int verify)
179 char result[BTRFS_CRC32_SIZE];
180 unsigned long len;
181 unsigned long cur_len;
182 unsigned long offset = BTRFS_CSUM_SIZE;
183 char *map_token = NULL;
184 char *kaddr;
185 unsigned long map_start;
186 unsigned long map_len;
187 int err;
188 u32 crc = ~(u32)0;
190 len = buf->len - offset;
191 while(len > 0) {
192 err = map_private_extent_buffer(buf, offset, 32,
193 &map_token, &kaddr,
194 &map_start, &map_len, KM_USER0);
195 if (err) {
196 printk("failed to map extent buffer! %lu\n",
197 offset);
198 return 1;
200 cur_len = min(len, map_len - (offset - map_start));
201 crc = btrfs_csum_data(root, kaddr + offset - map_start,
202 crc, cur_len);
203 len -= cur_len;
204 offset += cur_len;
205 unmap_extent_buffer(buf, map_token, KM_USER0);
207 btrfs_csum_final(crc, result);
209 if (verify) {
210 /* FIXME, this is not good */
211 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
212 u32 val;
213 u32 found = 0;
214 memcpy(&found, result, BTRFS_CRC32_SIZE);
216 read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
217 printk("btrfs: %s checksum verify failed on %llu "
218 "wanted %X found %X level %d\n",
219 root->fs_info->sb->s_id,
220 buf->start, val, found, btrfs_header_level(buf));
221 return 1;
223 } else {
224 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
226 return 0;
230 * we can't consider a given block up to date unless the transid of the
231 * block matches the transid in the parent node's pointer. This is how we
232 * detect blocks that either didn't get written at all or got written
233 * in the wrong place.
235 static int verify_parent_transid(struct extent_io_tree *io_tree,
236 struct extent_buffer *eb, u64 parent_transid)
238 int ret;
240 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
241 return 0;
243 lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
244 if (extent_buffer_uptodate(io_tree, eb) &&
245 btrfs_header_generation(eb) == parent_transid) {
246 ret = 0;
247 goto out;
249 printk("parent transid verify failed on %llu wanted %llu found %llu\n",
250 (unsigned long long)eb->start,
251 (unsigned long long)parent_transid,
252 (unsigned long long)btrfs_header_generation(eb));
253 ret = 1;
254 clear_extent_buffer_uptodate(io_tree, eb);
255 out:
256 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
257 GFP_NOFS);
258 return ret;
262 * helper to read a given tree block, doing retries as required when
263 * the checksums don't match and we have alternate mirrors to try.
265 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
266 struct extent_buffer *eb,
267 u64 start, u64 parent_transid)
269 struct extent_io_tree *io_tree;
270 int ret;
271 int num_copies = 0;
272 int mirror_num = 0;
274 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
275 while (1) {
276 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
277 btree_get_extent, mirror_num);
278 if (!ret &&
279 !verify_parent_transid(io_tree, eb, parent_transid))
280 return ret;
281 printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
282 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
283 eb->start, eb->len);
284 if (num_copies == 1)
285 return ret;
287 mirror_num++;
288 if (mirror_num > num_copies)
289 return ret;
291 return -EIO;
295 * checksum a dirty tree block before IO. This has extra checks to make
296 * sure we only fill in the checksum field in the first page of a multi-page block
298 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
300 struct extent_io_tree *tree;
301 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
302 u64 found_start;
303 int found_level;
304 unsigned long len;
305 struct extent_buffer *eb;
306 int ret;
308 tree = &BTRFS_I(page->mapping->host)->io_tree;
310 if (page->private == EXTENT_PAGE_PRIVATE)
311 goto out;
312 if (!page->private)
313 goto out;
314 len = page->private >> 2;
315 if (len == 0) {
316 WARN_ON(1);
318 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
319 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
320 btrfs_header_generation(eb));
321 BUG_ON(ret);
322 found_start = btrfs_header_bytenr(eb);
323 if (found_start != start) {
324 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
325 start, found_start, len);
326 WARN_ON(1);
327 goto err;
329 if (eb->first_page != page) {
330 printk("bad first page %lu %lu\n", eb->first_page->index,
331 page->index);
332 WARN_ON(1);
333 goto err;
335 if (!PageUptodate(page)) {
336 printk("csum not up to date page %lu\n", page->index);
337 WARN_ON(1);
338 goto err;
340 found_level = btrfs_header_level(eb);
342 csum_tree_block(root, eb, 0);
343 err:
344 free_extent_buffer(eb);
345 out:
346 return 0;
349 static int check_tree_block_fsid(struct btrfs_root *root,
350 struct extent_buffer *eb)
352 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
353 u8 fsid[BTRFS_UUID_SIZE];
354 int ret = 1;
356 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
357 BTRFS_FSID_SIZE);
358 while (fs_devices) {
359 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
360 ret = 0;
361 break;
363 fs_devices = fs_devices->seed;
365 return ret;
368 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
369 struct extent_state *state)
371 struct extent_io_tree *tree;
372 u64 found_start;
373 int found_level;
374 unsigned long len;
375 struct extent_buffer *eb;
376 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
377 int ret = 0;
379 tree = &BTRFS_I(page->mapping->host)->io_tree;
380 if (page->private == EXTENT_PAGE_PRIVATE)
381 goto out;
382 if (!page->private)
383 goto out;
384 len = page->private >> 2;
385 if (len == 0) {
386 WARN_ON(1);
388 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
390 found_start = btrfs_header_bytenr(eb);
391 if (found_start != start) {
392 printk("bad tree block start %llu %llu\n",
393 (unsigned long long)found_start,
394 (unsigned long long)eb->start);
395 ret = -EIO;
396 goto err;
398 if (eb->first_page != page) {
399 printk("bad first page %lu %lu\n", eb->first_page->index,
400 page->index);
401 WARN_ON(1);
402 ret = -EIO;
403 goto err;
405 if (check_tree_block_fsid(root, eb)) {
406 printk("bad fsid on block %Lu\n", eb->start);
407 ret = -EIO;
408 goto err;
410 found_level = btrfs_header_level(eb);
412 ret = csum_tree_block(root, eb, 1);
413 if (ret)
414 ret = -EIO;
416 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
417 end = eb->start + end - 1;
418 err:
419 free_extent_buffer(eb);
420 out:
421 return ret;
424 static void end_workqueue_bio(struct bio *bio, int err)
426 struct end_io_wq *end_io_wq = bio->bi_private;
427 struct btrfs_fs_info *fs_info;
429 fs_info = end_io_wq->info;
430 end_io_wq->error = err;
431 end_io_wq->work.func = end_workqueue_fn;
432 end_io_wq->work.flags = 0;
433 if (bio->bi_rw & (1 << BIO_RW))
434 btrfs_queue_worker(&fs_info->endio_write_workers,
435 &end_io_wq->work);
436 else
437 btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
440 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
441 int metadata)
443 struct end_io_wq *end_io_wq;
444 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
445 if (!end_io_wq)
446 return -ENOMEM;
448 end_io_wq->private = bio->bi_private;
449 end_io_wq->end_io = bio->bi_end_io;
450 end_io_wq->info = info;
451 end_io_wq->error = 0;
452 end_io_wq->bio = bio;
453 end_io_wq->metadata = metadata;
455 bio->bi_private = end_io_wq;
456 bio->bi_end_io = end_workqueue_bio;
457 return 0;
460 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
462 unsigned long limit = min_t(unsigned long,
463 info->workers.max_workers,
464 info->fs_devices->open_devices);
465 return 256 * limit;
468 int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
470 return atomic_read(&info->nr_async_bios) >
471 btrfs_async_submit_limit(info);
474 static void run_one_async_start(struct btrfs_work *work)
476 struct btrfs_fs_info *fs_info;
477 struct async_submit_bio *async;
479 async = container_of(work, struct async_submit_bio, work);
480 fs_info = BTRFS_I(async->inode)->root->fs_info;
481 async->submit_bio_start(async->inode, async->rw, async->bio,
482 async->mirror_num, async->bio_flags);
485 static void run_one_async_done(struct btrfs_work *work)
487 struct btrfs_fs_info *fs_info;
488 struct async_submit_bio *async;
489 int limit;
491 async = container_of(work, struct async_submit_bio, work);
492 fs_info = BTRFS_I(async->inode)->root->fs_info;
494 limit = btrfs_async_submit_limit(fs_info);
495 limit = limit * 2 / 3;
497 atomic_dec(&fs_info->nr_async_submits);
499 if (atomic_read(&fs_info->nr_async_submits) < limit &&
500 waitqueue_active(&fs_info->async_submit_wait))
501 wake_up(&fs_info->async_submit_wait);
503 async->submit_bio_done(async->inode, async->rw, async->bio,
504 async->mirror_num, async->bio_flags);
507 static void run_one_async_free(struct btrfs_work *work)
509 struct async_submit_bio *async;
511 async = container_of(work, struct async_submit_bio, work);
512 kfree(async);
515 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
516 int rw, struct bio *bio, int mirror_num,
517 unsigned long bio_flags,
518 extent_submit_bio_hook_t *submit_bio_start,
519 extent_submit_bio_hook_t *submit_bio_done)
521 struct async_submit_bio *async;
523 async = kmalloc(sizeof(*async), GFP_NOFS);
524 if (!async)
525 return -ENOMEM;
527 async->inode = inode;
528 async->rw = rw;
529 async->bio = bio;
530 async->mirror_num = mirror_num;
531 async->submit_bio_start = submit_bio_start;
532 async->submit_bio_done = submit_bio_done;
534 async->work.func = run_one_async_start;
535 async->work.ordered_func = run_one_async_done;
536 async->work.ordered_free = run_one_async_free;
538 async->work.flags = 0;
539 async->bio_flags = bio_flags;
541 atomic_inc(&fs_info->nr_async_submits);
542 btrfs_queue_worker(&fs_info->workers, &async->work);
543 #if 0
544 int limit = btrfs_async_submit_limit(fs_info);
545 if (atomic_read(&fs_info->nr_async_submits) > limit) {
546 wait_event_timeout(fs_info->async_submit_wait,
547 (atomic_read(&fs_info->nr_async_submits) < limit),
548 HZ/10);
550 wait_event_timeout(fs_info->async_submit_wait,
551 (atomic_read(&fs_info->nr_async_bios) < limit),
552 HZ/10);
554 #endif
555 while(atomic_read(&fs_info->async_submit_draining) &&
556 atomic_read(&fs_info->nr_async_submits)) {
557 wait_event(fs_info->async_submit_wait,
558 (atomic_read(&fs_info->nr_async_submits) == 0));
561 return 0;
564 static int btree_csum_one_bio(struct bio *bio)
566 struct bio_vec *bvec = bio->bi_io_vec;
567 int bio_index = 0;
568 struct btrfs_root *root;
570 WARN_ON(bio->bi_vcnt <= 0);
571 while(bio_index < bio->bi_vcnt) {
572 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
573 csum_dirty_buffer(root, bvec->bv_page);
574 bio_index++;
575 bvec++;
577 return 0;
580 static int __btree_submit_bio_start(struct inode *inode, int rw,
581 struct bio *bio, int mirror_num,
582 unsigned long bio_flags)
585 * when we're called for a write, we're already in the async
586 * submission context. Just jump into btrfs_map_bio
588 btree_csum_one_bio(bio);
589 return 0;
592 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
593 int mirror_num, unsigned long bio_flags)
596 * when we're called for a write, we're already in the async
597 * submission context. Just jump into btrfs_map_bio
599 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
602 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
603 int mirror_num, unsigned long bio_flags)
606 * kthread helpers are used to submit writes so that checksumming
607 * can happen in parallel across all CPUs
609 if (!(rw & (1 << BIO_RW))) {
610 int ret;
612 * called for a read, do the setup so that checksum validation
613 * can happen in the async kernel threads
615 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
616 bio, 1);
617 BUG_ON(ret);
619 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
620 mirror_num, 0);
622 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
623 inode, rw, bio, mirror_num, 0,
624 __btree_submit_bio_start,
625 __btree_submit_bio_done);
628 static int btree_writepage(struct page *page, struct writeback_control *wbc)
630 struct extent_io_tree *tree;
631 tree = &BTRFS_I(page->mapping->host)->io_tree;
633 if (current->flags & PF_MEMALLOC) {
634 redirty_page_for_writepage(wbc, page);
635 unlock_page(page);
636 return 0;
638 return extent_write_full_page(tree, page, btree_get_extent, wbc);
641 static int btree_writepages(struct address_space *mapping,
642 struct writeback_control *wbc)
644 struct extent_io_tree *tree;
645 tree = &BTRFS_I(mapping->host)->io_tree;
646 if (wbc->sync_mode == WB_SYNC_NONE) {
647 u64 num_dirty;
648 u64 start = 0;
649 unsigned long thresh = 32 * 1024 * 1024;
651 if (wbc->for_kupdate)
652 return 0;
654 num_dirty = count_range_bits(tree, &start, (u64)-1,
655 thresh, EXTENT_DIRTY);
656 if (num_dirty < thresh) {
657 return 0;
660 return extent_writepages(tree, mapping, btree_get_extent, wbc);
663 static int btree_readpage(struct file *file, struct page *page)
665 struct extent_io_tree *tree;
666 tree = &BTRFS_I(page->mapping->host)->io_tree;
667 return extent_read_full_page(tree, page, btree_get_extent);
670 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
672 struct extent_io_tree *tree;
673 struct extent_map_tree *map;
674 int ret;
676 if (PageWriteback(page) || PageDirty(page))
677 return 0;
679 tree = &BTRFS_I(page->mapping->host)->io_tree;
680 map = &BTRFS_I(page->mapping->host)->extent_tree;
682 ret = try_release_extent_state(map, tree, page, gfp_flags);
683 if (!ret) {
684 return 0;
687 ret = try_release_extent_buffer(tree, page);
688 if (ret == 1) {
689 ClearPagePrivate(page);
690 set_page_private(page, 0);
691 page_cache_release(page);
694 return ret;
697 static void btree_invalidatepage(struct page *page, unsigned long offset)
699 struct extent_io_tree *tree;
700 tree = &BTRFS_I(page->mapping->host)->io_tree;
701 extent_invalidatepage(tree, page, offset);
702 btree_releasepage(page, GFP_NOFS);
703 if (PagePrivate(page)) {
704 printk("warning page private not zero on page %Lu\n",
705 page_offset(page));
706 ClearPagePrivate(page);
707 set_page_private(page, 0);
708 page_cache_release(page);
712 #if 0
713 static int btree_writepage(struct page *page, struct writeback_control *wbc)
715 struct buffer_head *bh;
716 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
717 struct buffer_head *head;
718 if (!page_has_buffers(page)) {
719 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
720 (1 << BH_Dirty)|(1 << BH_Uptodate));
722 head = page_buffers(page);
723 bh = head;
724 do {
725 if (buffer_dirty(bh))
726 csum_tree_block(root, bh, 0);
727 bh = bh->b_this_page;
728 } while (bh != head);
729 return block_write_full_page(page, btree_get_block, wbc);
731 #endif
733 static struct address_space_operations btree_aops = {
734 .readpage = btree_readpage,
735 .writepage = btree_writepage,
736 .writepages = btree_writepages,
737 .releasepage = btree_releasepage,
738 .invalidatepage = btree_invalidatepage,
739 .sync_page = block_sync_page,
742 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
743 u64 parent_transid)
745 struct extent_buffer *buf = NULL;
746 struct inode *btree_inode = root->fs_info->btree_inode;
747 int ret = 0;
749 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
750 if (!buf)
751 return 0;
752 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
753 buf, 0, 0, btree_get_extent, 0);
754 free_extent_buffer(buf);
755 return ret;
758 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
759 u64 bytenr, u32 blocksize)
761 struct inode *btree_inode = root->fs_info->btree_inode;
762 struct extent_buffer *eb;
763 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
764 bytenr, blocksize, GFP_NOFS);
765 return eb;
768 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
769 u64 bytenr, u32 blocksize)
771 struct inode *btree_inode = root->fs_info->btree_inode;
772 struct extent_buffer *eb;
774 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
775 bytenr, blocksize, NULL, GFP_NOFS);
776 return eb;
780 int btrfs_write_tree_block(struct extent_buffer *buf)
782 return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
783 buf->start + buf->len - 1, WB_SYNC_ALL);
786 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
788 return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
789 buf->start, buf->start + buf->len -1);
792 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
793 u32 blocksize, u64 parent_transid)
795 struct extent_buffer *buf = NULL;
796 struct inode *btree_inode = root->fs_info->btree_inode;
797 struct extent_io_tree *io_tree;
798 int ret;
800 io_tree = &BTRFS_I(btree_inode)->io_tree;
802 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
803 if (!buf)
804 return NULL;
806 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
808 if (ret == 0) {
809 buf->flags |= EXTENT_UPTODATE;
810 } else {
811 WARN_ON(1);
813 return buf;
817 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
818 struct extent_buffer *buf)
820 struct inode *btree_inode = root->fs_info->btree_inode;
821 if (btrfs_header_generation(buf) ==
822 root->fs_info->running_transaction->transid) {
823 WARN_ON(!btrfs_tree_locked(buf));
824 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
825 buf);
827 return 0;
830 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
831 u32 stripesize, struct btrfs_root *root,
832 struct btrfs_fs_info *fs_info,
833 u64 objectid)
835 root->node = NULL;
836 root->commit_root = NULL;
837 root->ref_tree = NULL;
838 root->sectorsize = sectorsize;
839 root->nodesize = nodesize;
840 root->leafsize = leafsize;
841 root->stripesize = stripesize;
842 root->ref_cows = 0;
843 root->track_dirty = 0;
845 root->fs_info = fs_info;
846 root->objectid = objectid;
847 root->last_trans = 0;
848 root->highest_inode = 0;
849 root->last_inode_alloc = 0;
850 root->name = NULL;
851 root->in_sysfs = 0;
853 INIT_LIST_HEAD(&root->dirty_list);
854 INIT_LIST_HEAD(&root->orphan_list);
855 INIT_LIST_HEAD(&root->dead_list);
856 spin_lock_init(&root->node_lock);
857 spin_lock_init(&root->list_lock);
858 mutex_init(&root->objectid_mutex);
859 mutex_init(&root->log_mutex);
860 extent_io_tree_init(&root->dirty_log_pages,
861 fs_info->btree_inode->i_mapping, GFP_NOFS);
863 btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
864 root->ref_tree = &root->ref_tree_struct;
866 memset(&root->root_key, 0, sizeof(root->root_key));
867 memset(&root->root_item, 0, sizeof(root->root_item));
868 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
869 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
870 root->defrag_trans_start = fs_info->generation;
871 init_completion(&root->kobj_unregister);
872 root->defrag_running = 0;
873 root->defrag_level = 0;
874 root->root_key.objectid = objectid;
875 root->anon_super.s_root = NULL;
876 root->anon_super.s_dev = 0;
877 INIT_LIST_HEAD(&root->anon_super.s_list);
878 INIT_LIST_HEAD(&root->anon_super.s_instances);
879 init_rwsem(&root->anon_super.s_umount);
881 return 0;
884 static int find_and_setup_root(struct btrfs_root *tree_root,
885 struct btrfs_fs_info *fs_info,
886 u64 objectid,
887 struct btrfs_root *root)
889 int ret;
890 u32 blocksize;
891 u64 generation;
893 __setup_root(tree_root->nodesize, tree_root->leafsize,
894 tree_root->sectorsize, tree_root->stripesize,
895 root, fs_info, objectid);
896 ret = btrfs_find_last_root(tree_root, objectid,
897 &root->root_item, &root->root_key);
898 BUG_ON(ret);
900 generation = btrfs_root_generation(&root->root_item);
901 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
902 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
903 blocksize, generation);
904 BUG_ON(!root->node);
905 return 0;
908 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
909 struct btrfs_fs_info *fs_info)
911 struct extent_buffer *eb;
912 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
913 u64 start = 0;
914 u64 end = 0;
915 int ret;
917 if (!log_root_tree)
918 return 0;
920 while(1) {
921 ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
922 0, &start, &end, EXTENT_DIRTY);
923 if (ret)
924 break;
926 clear_extent_dirty(&log_root_tree->dirty_log_pages,
927 start, end, GFP_NOFS);
929 eb = fs_info->log_root_tree->node;
931 WARN_ON(btrfs_header_level(eb) != 0);
932 WARN_ON(btrfs_header_nritems(eb) != 0);
934 ret = btrfs_free_reserved_extent(fs_info->tree_root,
935 eb->start, eb->len);
936 BUG_ON(ret);
938 free_extent_buffer(eb);
939 kfree(fs_info->log_root_tree);
940 fs_info->log_root_tree = NULL;
941 return 0;
944 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
945 struct btrfs_fs_info *fs_info)
947 struct btrfs_root *root;
948 struct btrfs_root *tree_root = fs_info->tree_root;
950 root = kzalloc(sizeof(*root), GFP_NOFS);
951 if (!root)
952 return -ENOMEM;
954 __setup_root(tree_root->nodesize, tree_root->leafsize,
955 tree_root->sectorsize, tree_root->stripesize,
956 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
958 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
959 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
960 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
961 root->ref_cows = 0;
963 root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
964 0, BTRFS_TREE_LOG_OBJECTID,
965 trans->transid, 0, 0, 0);
967 btrfs_set_header_nritems(root->node, 0);
968 btrfs_set_header_level(root->node, 0);
969 btrfs_set_header_bytenr(root->node, root->node->start);
970 btrfs_set_header_generation(root->node, trans->transid);
971 btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
973 write_extent_buffer(root->node, root->fs_info->fsid,
974 (unsigned long)btrfs_header_fsid(root->node),
975 BTRFS_FSID_SIZE);
976 btrfs_mark_buffer_dirty(root->node);
977 btrfs_tree_unlock(root->node);
978 fs_info->log_root_tree = root;
979 return 0;
982 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
983 struct btrfs_key *location)
985 struct btrfs_root *root;
986 struct btrfs_fs_info *fs_info = tree_root->fs_info;
987 struct btrfs_path *path;
988 struct extent_buffer *l;
989 u64 highest_inode;
990 u64 generation;
991 u32 blocksize;
992 int ret = 0;
994 root = kzalloc(sizeof(*root), GFP_NOFS);
995 if (!root)
996 return ERR_PTR(-ENOMEM);
997 if (location->offset == (u64)-1) {
998 ret = find_and_setup_root(tree_root, fs_info,
999 location->objectid, root);
1000 if (ret) {
1001 kfree(root);
1002 return ERR_PTR(ret);
1004 goto insert;
1007 __setup_root(tree_root->nodesize, tree_root->leafsize,
1008 tree_root->sectorsize, tree_root->stripesize,
1009 root, fs_info, location->objectid);
1011 path = btrfs_alloc_path();
1012 BUG_ON(!path);
1013 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1014 if (ret != 0) {
1015 if (ret > 0)
1016 ret = -ENOENT;
1017 goto out;
1019 l = path->nodes[0];
1020 read_extent_buffer(l, &root->root_item,
1021 btrfs_item_ptr_offset(l, path->slots[0]),
1022 sizeof(root->root_item));
1023 memcpy(&root->root_key, location, sizeof(*location));
1024 ret = 0;
1025 out:
1026 btrfs_release_path(root, path);
1027 btrfs_free_path(path);
1028 if (ret) {
1029 kfree(root);
1030 return ERR_PTR(ret);
1032 generation = btrfs_root_generation(&root->root_item);
1033 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1034 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1035 blocksize, generation);
1036 BUG_ON(!root->node);
1037 insert:
1038 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1039 root->ref_cows = 1;
1040 ret = btrfs_find_highest_inode(root, &highest_inode);
1041 if (ret == 0) {
1042 root->highest_inode = highest_inode;
1043 root->last_inode_alloc = highest_inode;
1046 return root;
1049 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1050 u64 root_objectid)
1052 struct btrfs_root *root;
1054 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
1055 return fs_info->tree_root;
1056 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
1057 return fs_info->extent_root;
1059 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1060 (unsigned long)root_objectid);
1061 return root;
1064 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1065 struct btrfs_key *location)
1067 struct btrfs_root *root;
1068 int ret;
1070 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1071 return fs_info->tree_root;
1072 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1073 return fs_info->extent_root;
1074 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1075 return fs_info->chunk_root;
1076 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1077 return fs_info->dev_root;
1079 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1080 (unsigned long)location->objectid);
1081 if (root)
1082 return root;
1084 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1085 if (IS_ERR(root))
1086 return root;
1088 set_anon_super(&root->anon_super, NULL);
1090 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1091 (unsigned long)root->root_key.objectid,
1092 root);
1093 if (ret) {
1094 free_extent_buffer(root->node);
1095 kfree(root);
1096 return ERR_PTR(ret);
1098 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
1099 ret = btrfs_find_dead_roots(fs_info->tree_root,
1100 root->root_key.objectid, root);
1101 BUG_ON(ret);
1102 btrfs_orphan_cleanup(root);
1104 return root;
1107 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
1108 struct btrfs_key *location,
1109 const char *name, int namelen)
1111 struct btrfs_root *root;
1112 int ret;
1114 root = btrfs_read_fs_root_no_name(fs_info, location);
1115 if (!root)
1116 return NULL;
1118 if (root->in_sysfs)
1119 return root;
1121 ret = btrfs_set_root_name(root, name, namelen);
1122 if (ret) {
1123 free_extent_buffer(root->node);
1124 kfree(root);
1125 return ERR_PTR(ret);
1127 #if 0
1128 ret = btrfs_sysfs_add_root(root);
1129 if (ret) {
1130 free_extent_buffer(root->node);
1131 kfree(root->name);
1132 kfree(root);
1133 return ERR_PTR(ret);
1135 #endif
1136 root->in_sysfs = 1;
1137 return root;
1139 #if 0
1140 static int add_hasher(struct btrfs_fs_info *info, char *type) {
1141 struct btrfs_hasher *hasher;
1143 hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
1144 if (!hasher)
1145 return -ENOMEM;
1146 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
1147 if (!hasher->hash_tfm) {
1148 kfree(hasher);
1149 return -EINVAL;
1151 spin_lock(&info->hash_lock);
1152 list_add(&hasher->list, &info->hashers);
1153 spin_unlock(&info->hash_lock);
1154 return 0;
1156 #endif
1158 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1160 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1161 int ret = 0;
1162 struct list_head *cur;
1163 struct btrfs_device *device;
1164 struct backing_dev_info *bdi;
1165 #if 0
1166 if ((bdi_bits & (1 << BDI_write_congested)) &&
1167 btrfs_congested_async(info, 0))
1168 return 1;
1169 #endif
1170 list_for_each(cur, &info->fs_devices->devices) {
1171 device = list_entry(cur, struct btrfs_device, dev_list);
1172 if (!device->bdev)
1173 continue;
1174 bdi = blk_get_backing_dev_info(device->bdev);
1175 if (bdi && bdi_congested(bdi, bdi_bits)) {
1176 ret = 1;
1177 break;
1180 return ret;
1184 * this unplugs every device on the box, and it is only used when page
1185 * is null
1187 static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1189 struct list_head *cur;
1190 struct btrfs_device *device;
1191 struct btrfs_fs_info *info;
1193 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
1194 list_for_each(cur, &info->fs_devices->devices) {
1195 device = list_entry(cur, struct btrfs_device, dev_list);
1196 bdi = blk_get_backing_dev_info(device->bdev);
1197 if (bdi->unplug_io_fn) {
1198 bdi->unplug_io_fn(bdi, page);
1203 static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1205 struct inode *inode;
1206 struct extent_map_tree *em_tree;
1207 struct extent_map *em;
1208 struct address_space *mapping;
1209 u64 offset;
1211 /* the generic O_DIRECT read code does this */
1212 if (1 || !page) {
1213 __unplug_io_fn(bdi, page);
1214 return;
1218 * page->mapping may change at any time. Get a consistent copy
1219 * and use that for everything below
1221 smp_mb();
1222 mapping = page->mapping;
1223 if (!mapping)
1224 return;
1226 inode = mapping->host;
1229 * don't do the expensive searching for a small number of
1230 * devices
1232 if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
1233 __unplug_io_fn(bdi, page);
1234 return;
1237 offset = page_offset(page);
1239 em_tree = &BTRFS_I(inode)->extent_tree;
1240 spin_lock(&em_tree->lock);
1241 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
1242 spin_unlock(&em_tree->lock);
1243 if (!em) {
1244 __unplug_io_fn(bdi, page);
1245 return;
1248 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1249 free_extent_map(em);
1250 __unplug_io_fn(bdi, page);
1251 return;
1253 offset = offset - em->start;
1254 btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
1255 em->block_start + offset, page);
1256 free_extent_map(em);
1259 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1261 bdi_init(bdi);
1262 bdi->ra_pages = default_backing_dev_info.ra_pages;
1263 bdi->state = 0;
1264 bdi->capabilities = default_backing_dev_info.capabilities;
1265 bdi->unplug_io_fn = btrfs_unplug_io_fn;
1266 bdi->unplug_io_data = info;
1267 bdi->congested_fn = btrfs_congested_fn;
1268 bdi->congested_data = info;
1269 return 0;
1272 static int bio_ready_for_csum(struct bio *bio)
1274 u64 length = 0;
1275 u64 buf_len = 0;
1276 u64 start = 0;
1277 struct page *page;
1278 struct extent_io_tree *io_tree = NULL;
1279 struct btrfs_fs_info *info = NULL;
1280 struct bio_vec *bvec;
1281 int i;
1282 int ret;
1284 bio_for_each_segment(bvec, bio, i) {
1285 page = bvec->bv_page;
1286 if (page->private == EXTENT_PAGE_PRIVATE) {
1287 length += bvec->bv_len;
1288 continue;
1290 if (!page->private) {
1291 length += bvec->bv_len;
1292 continue;
1294 length = bvec->bv_len;
1295 buf_len = page->private >> 2;
1296 start = page_offset(page) + bvec->bv_offset;
1297 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1298 info = BTRFS_I(page->mapping->host)->root->fs_info;
1300 /* are we fully contained in this bio? */
1301 if (buf_len <= length)
1302 return 1;
1304 ret = extent_range_uptodate(io_tree, start + length,
1305 start + buf_len - 1);
1306 if (ret == 1)
1307 return ret;
1308 return ret;
1312 * called by the kthread helper functions to finally call the bio end_io
1313 * functions. This is where read checksum verification actually happens
1315 static void end_workqueue_fn(struct btrfs_work *work)
1317 struct bio *bio;
1318 struct end_io_wq *end_io_wq;
1319 struct btrfs_fs_info *fs_info;
1320 int error;
1322 end_io_wq = container_of(work, struct end_io_wq, work);
1323 bio = end_io_wq->bio;
1324 fs_info = end_io_wq->info;
1326 /* metadata bios are special because the whole tree block must
1327 * be checksummed at once. This makes sure the entire block is in
1328 * ram and up to date before trying to verify things. For
1329 * blocksize <= pagesize, it is basically a noop
1331 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1332 btrfs_queue_worker(&fs_info->endio_workers,
1333 &end_io_wq->work);
1334 return;
1336 error = end_io_wq->error;
1337 bio->bi_private = end_io_wq->private;
1338 bio->bi_end_io = end_io_wq->end_io;
1339 kfree(end_io_wq);
1340 bio_endio(bio, error);
1343 static int cleaner_kthread(void *arg)
1345 struct btrfs_root *root = arg;
1347 do {
1348 smp_mb();
1349 if (root->fs_info->closing)
1350 break;
1352 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1353 mutex_lock(&root->fs_info->cleaner_mutex);
1354 btrfs_clean_old_snapshots(root);
1355 mutex_unlock(&root->fs_info->cleaner_mutex);
1357 if (freezing(current)) {
1358 refrigerator();
1359 } else {
1360 smp_mb();
1361 if (root->fs_info->closing)
1362 break;
1363 set_current_state(TASK_INTERRUPTIBLE);
1364 schedule();
1365 __set_current_state(TASK_RUNNING);
1367 } while (!kthread_should_stop());
1368 return 0;
1371 static int transaction_kthread(void *arg)
1373 struct btrfs_root *root = arg;
1374 struct btrfs_trans_handle *trans;
1375 struct btrfs_transaction *cur;
1376 unsigned long now;
1377 unsigned long delay;
1378 int ret;
1380 do {
1381 smp_mb();
1382 if (root->fs_info->closing)
1383 break;
1385 delay = HZ * 30;
1386 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1387 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1389 if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
1390 printk("btrfs: total reference cache size %Lu\n",
1391 root->fs_info->total_ref_cache_size);
1394 mutex_lock(&root->fs_info->trans_mutex);
1395 cur = root->fs_info->running_transaction;
1396 if (!cur) {
1397 mutex_unlock(&root->fs_info->trans_mutex);
1398 goto sleep;
1401 now = get_seconds();
1402 if (now < cur->start_time || now - cur->start_time < 30) {
1403 mutex_unlock(&root->fs_info->trans_mutex);
1404 delay = HZ * 5;
1405 goto sleep;
1407 mutex_unlock(&root->fs_info->trans_mutex);
1408 trans = btrfs_start_transaction(root, 1);
1409 ret = btrfs_commit_transaction(trans, root);
1410 sleep:
1411 wake_up_process(root->fs_info->cleaner_kthread);
1412 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1414 if (freezing(current)) {
1415 refrigerator();
1416 } else {
1417 if (root->fs_info->closing)
1418 break;
1419 set_current_state(TASK_INTERRUPTIBLE);
1420 schedule_timeout(delay);
1421 __set_current_state(TASK_RUNNING);
1423 } while (!kthread_should_stop());
1424 return 0;
1427 struct btrfs_root *open_ctree(struct super_block *sb,
1428 struct btrfs_fs_devices *fs_devices,
1429 char *options)
1431 u32 sectorsize;
1432 u32 nodesize;
1433 u32 leafsize;
1434 u32 blocksize;
1435 u32 stripesize;
1436 u64 generation;
1437 u64 features;
1438 struct btrfs_key location;
1439 struct buffer_head *bh;
1440 struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1441 GFP_NOFS);
1442 struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
1443 GFP_NOFS);
1444 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1445 GFP_NOFS);
1446 struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1447 GFP_NOFS);
1448 struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1449 GFP_NOFS);
1450 struct btrfs_root *log_tree_root;
1452 int ret;
1453 int err = -EINVAL;
1455 struct btrfs_super_block *disk_super;
1457 if (!extent_root || !tree_root || !fs_info ||
1458 !chunk_root || !dev_root) {
1459 err = -ENOMEM;
1460 goto fail;
1462 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1463 INIT_LIST_HEAD(&fs_info->trans_list);
1464 INIT_LIST_HEAD(&fs_info->dead_roots);
1465 INIT_LIST_HEAD(&fs_info->hashers);
1466 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1467 spin_lock_init(&fs_info->hash_lock);
1468 spin_lock_init(&fs_info->delalloc_lock);
1469 spin_lock_init(&fs_info->new_trans_lock);
1470 spin_lock_init(&fs_info->ref_cache_lock);
1472 init_completion(&fs_info->kobj_unregister);
1473 fs_info->tree_root = tree_root;
1474 fs_info->extent_root = extent_root;
1475 fs_info->chunk_root = chunk_root;
1476 fs_info->dev_root = dev_root;
1477 fs_info->fs_devices = fs_devices;
1478 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1479 INIT_LIST_HEAD(&fs_info->space_info);
1480 btrfs_mapping_init(&fs_info->mapping_tree);
1481 atomic_set(&fs_info->nr_async_submits, 0);
1482 atomic_set(&fs_info->async_delalloc_pages, 0);
1483 atomic_set(&fs_info->async_submit_draining, 0);
1484 atomic_set(&fs_info->nr_async_bios, 0);
1485 atomic_set(&fs_info->throttles, 0);
1486 atomic_set(&fs_info->throttle_gen, 0);
1487 fs_info->sb = sb;
1488 fs_info->max_extent = (u64)-1;
1489 fs_info->max_inline = 8192 * 1024;
1490 setup_bdi(fs_info, &fs_info->bdi);
1491 fs_info->btree_inode = new_inode(sb);
1492 fs_info->btree_inode->i_ino = 1;
1493 fs_info->btree_inode->i_nlink = 1;
1495 fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
1497 INIT_LIST_HEAD(&fs_info->ordered_extents);
1498 spin_lock_init(&fs_info->ordered_extent_lock);
1500 sb->s_blocksize = 4096;
1501 sb->s_blocksize_bits = blksize_bits(4096);
1504 * we set the i_size on the btree inode to the max possible int.
1505 * the real end of the address space is determined by all of
1506 * the devices in the system
1508 fs_info->btree_inode->i_size = OFFSET_MAX;
1509 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1510 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1512 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1513 fs_info->btree_inode->i_mapping,
1514 GFP_NOFS);
1515 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1516 GFP_NOFS);
1518 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1520 spin_lock_init(&fs_info->block_group_cache_lock);
1521 fs_info->block_group_cache_tree.rb_node = NULL;
1523 extent_io_tree_init(&fs_info->pinned_extents,
1524 fs_info->btree_inode->i_mapping, GFP_NOFS);
1525 extent_io_tree_init(&fs_info->pending_del,
1526 fs_info->btree_inode->i_mapping, GFP_NOFS);
1527 extent_io_tree_init(&fs_info->extent_ins,
1528 fs_info->btree_inode->i_mapping, GFP_NOFS);
1529 fs_info->do_barriers = 1;
1531 INIT_LIST_HEAD(&fs_info->dead_reloc_roots);
1532 btrfs_leaf_ref_tree_init(&fs_info->reloc_ref_tree);
1533 btrfs_leaf_ref_tree_init(&fs_info->shared_ref_tree);
1535 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1536 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1537 sizeof(struct btrfs_key));
1538 insert_inode_hash(fs_info->btree_inode);
1540 mutex_init(&fs_info->trans_mutex);
1541 mutex_init(&fs_info->tree_log_mutex);
1542 mutex_init(&fs_info->drop_mutex);
1543 mutex_init(&fs_info->extent_ins_mutex);
1544 mutex_init(&fs_info->pinned_mutex);
1545 mutex_init(&fs_info->chunk_mutex);
1546 mutex_init(&fs_info->transaction_kthread_mutex);
1547 mutex_init(&fs_info->cleaner_mutex);
1548 mutex_init(&fs_info->volume_mutex);
1549 mutex_init(&fs_info->tree_reloc_mutex);
1550 init_waitqueue_head(&fs_info->transaction_throttle);
1551 init_waitqueue_head(&fs_info->transaction_wait);
1552 init_waitqueue_head(&fs_info->async_submit_wait);
1553 init_waitqueue_head(&fs_info->tree_log_wait);
1554 atomic_set(&fs_info->tree_log_commit, 0);
1555 atomic_set(&fs_info->tree_log_writers, 0);
1556 fs_info->tree_log_transid = 0;
1558 #if 0
1559 ret = add_hasher(fs_info, "crc32c");
1560 if (ret) {
1561 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1562 err = -ENOMEM;
1563 goto fail_iput;
1565 #endif
1566 __setup_root(4096, 4096, 4096, 4096, tree_root,
1567 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1570 bh = __bread(fs_devices->latest_bdev,
1571 BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
1572 if (!bh)
1573 goto fail_iput;
1575 memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1576 brelse(bh);
1578 memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1580 disk_super = &fs_info->super_copy;
1581 if (!btrfs_super_root(disk_super))
1582 goto fail_sb_buffer;
1584 ret = btrfs_parse_options(tree_root, options);
1585 if (ret) {
1586 err = ret;
1587 goto fail_sb_buffer;
1590 features = btrfs_super_incompat_flags(disk_super) &
1591 ~BTRFS_FEATURE_INCOMPAT_SUPP;
1592 if (features) {
1593 printk(KERN_ERR "BTRFS: couldn't mount because of "
1594 "unsupported optional features (%Lx).\n",
1595 features);
1596 err = -EINVAL;
1597 goto fail_sb_buffer;
1600 features = btrfs_super_compat_ro_flags(disk_super) &
1601 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1602 if (!(sb->s_flags & MS_RDONLY) && features) {
1603 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1604 "unsupported option features (%Lx).\n",
1605 features);
1606 err = -EINVAL;
1607 goto fail_sb_buffer;
1611 * we need to start all the end_io workers up front because the
1612 * queue work function gets called at interrupt time, and so it
1613 * cannot dynamically grow.
1615 btrfs_init_workers(&fs_info->workers, "worker",
1616 fs_info->thread_pool_size);
1618 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1619 fs_info->thread_pool_size);
1621 btrfs_init_workers(&fs_info->submit_workers, "submit",
1622 min_t(u64, fs_devices->num_devices,
1623 fs_info->thread_pool_size));
1625 /* a higher idle thresh on the submit workers makes it much more
1626 * likely that bios will be send down in a sane order to the
1627 * devices
1629 fs_info->submit_workers.idle_thresh = 64;
1631 fs_info->workers.idle_thresh = 16;
1632 fs_info->workers.ordered = 1;
1634 fs_info->delalloc_workers.idle_thresh = 2;
1635 fs_info->delalloc_workers.ordered = 1;
1637 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
1638 btrfs_init_workers(&fs_info->endio_workers, "endio",
1639 fs_info->thread_pool_size);
1640 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1641 fs_info->thread_pool_size);
1644 * endios are largely parallel and should have a very
1645 * low idle thresh
1647 fs_info->endio_workers.idle_thresh = 4;
1648 fs_info->endio_write_workers.idle_thresh = 64;
1650 btrfs_start_workers(&fs_info->workers, 1);
1651 btrfs_start_workers(&fs_info->submit_workers, 1);
1652 btrfs_start_workers(&fs_info->delalloc_workers, 1);
1653 btrfs_start_workers(&fs_info->fixup_workers, 1);
1654 btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
1655 btrfs_start_workers(&fs_info->endio_write_workers,
1656 fs_info->thread_pool_size);
1658 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1659 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1660 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1662 nodesize = btrfs_super_nodesize(disk_super);
1663 leafsize = btrfs_super_leafsize(disk_super);
1664 sectorsize = btrfs_super_sectorsize(disk_super);
1665 stripesize = btrfs_super_stripesize(disk_super);
1666 tree_root->nodesize = nodesize;
1667 tree_root->leafsize = leafsize;
1668 tree_root->sectorsize = sectorsize;
1669 tree_root->stripesize = stripesize;
1671 sb->s_blocksize = sectorsize;
1672 sb->s_blocksize_bits = blksize_bits(sectorsize);
1674 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1675 sizeof(disk_super->magic))) {
1676 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1677 goto fail_sb_buffer;
1680 mutex_lock(&fs_info->chunk_mutex);
1681 ret = btrfs_read_sys_array(tree_root);
1682 mutex_unlock(&fs_info->chunk_mutex);
1683 if (ret) {
1684 printk("btrfs: failed to read the system array on %s\n",
1685 sb->s_id);
1686 goto fail_sys_array;
1689 blocksize = btrfs_level_size(tree_root,
1690 btrfs_super_chunk_root_level(disk_super));
1691 generation = btrfs_super_chunk_root_generation(disk_super);
1693 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1694 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1696 chunk_root->node = read_tree_block(chunk_root,
1697 btrfs_super_chunk_root(disk_super),
1698 blocksize, generation);
1699 BUG_ON(!chunk_root->node);
1701 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1702 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1703 BTRFS_UUID_SIZE);
1705 mutex_lock(&fs_info->chunk_mutex);
1706 ret = btrfs_read_chunk_tree(chunk_root);
1707 mutex_unlock(&fs_info->chunk_mutex);
1708 if (ret) {
1709 printk("btrfs: failed to read chunk tree on %s\n", sb->s_id);
1710 goto fail_chunk_root;
1713 btrfs_close_extra_devices(fs_devices);
1715 blocksize = btrfs_level_size(tree_root,
1716 btrfs_super_root_level(disk_super));
1717 generation = btrfs_super_generation(disk_super);
1719 tree_root->node = read_tree_block(tree_root,
1720 btrfs_super_root(disk_super),
1721 blocksize, generation);
1722 if (!tree_root->node)
1723 goto fail_chunk_root;
1726 ret = find_and_setup_root(tree_root, fs_info,
1727 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1728 if (ret)
1729 goto fail_tree_root;
1730 extent_root->track_dirty = 1;
1732 ret = find_and_setup_root(tree_root, fs_info,
1733 BTRFS_DEV_TREE_OBJECTID, dev_root);
1734 dev_root->track_dirty = 1;
1736 if (ret)
1737 goto fail_extent_root;
1739 btrfs_read_block_groups(extent_root);
1741 fs_info->generation = generation + 1;
1742 fs_info->last_trans_committed = generation;
1743 fs_info->data_alloc_profile = (u64)-1;
1744 fs_info->metadata_alloc_profile = (u64)-1;
1745 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1746 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
1747 "btrfs-cleaner");
1748 if (!fs_info->cleaner_kthread)
1749 goto fail_extent_root;
1751 fs_info->transaction_kthread = kthread_run(transaction_kthread,
1752 tree_root,
1753 "btrfs-transaction");
1754 if (!fs_info->transaction_kthread)
1755 goto fail_cleaner;
1757 if (btrfs_super_log_root(disk_super) != 0) {
1758 u64 bytenr = btrfs_super_log_root(disk_super);
1760 if (fs_devices->rw_devices == 0) {
1761 printk("Btrfs log replay required on RO media\n");
1762 err = -EIO;
1763 goto fail_trans_kthread;
1765 blocksize =
1766 btrfs_level_size(tree_root,
1767 btrfs_super_log_root_level(disk_super));
1769 log_tree_root = kzalloc(sizeof(struct btrfs_root),
1770 GFP_NOFS);
1772 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1773 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1775 log_tree_root->node = read_tree_block(tree_root, bytenr,
1776 blocksize,
1777 generation + 1);
1778 ret = btrfs_recover_log_trees(log_tree_root);
1779 BUG_ON(ret);
1781 if (sb->s_flags & MS_RDONLY) {
1782 ret = btrfs_commit_super(tree_root);
1783 BUG_ON(ret);
1787 if (!(sb->s_flags & MS_RDONLY)) {
1788 ret = btrfs_cleanup_reloc_trees(tree_root);
1789 BUG_ON(ret);
1792 location.objectid = BTRFS_FS_TREE_OBJECTID;
1793 location.type = BTRFS_ROOT_ITEM_KEY;
1794 location.offset = (u64)-1;
1796 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
1797 if (!fs_info->fs_root)
1798 goto fail_trans_kthread;
1799 return tree_root;
1801 fail_trans_kthread:
1802 kthread_stop(fs_info->transaction_kthread);
1803 fail_cleaner:
1804 kthread_stop(fs_info->cleaner_kthread);
1807 * make sure we're done with the btree inode before we stop our
1808 * kthreads
1810 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1811 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1813 fail_extent_root:
1814 free_extent_buffer(extent_root->node);
1815 fail_tree_root:
1816 free_extent_buffer(tree_root->node);
1817 fail_chunk_root:
1818 free_extent_buffer(chunk_root->node);
1819 fail_sys_array:
1820 free_extent_buffer(dev_root->node);
1821 fail_sb_buffer:
1822 btrfs_stop_workers(&fs_info->fixup_workers);
1823 btrfs_stop_workers(&fs_info->delalloc_workers);
1824 btrfs_stop_workers(&fs_info->workers);
1825 btrfs_stop_workers(&fs_info->endio_workers);
1826 btrfs_stop_workers(&fs_info->endio_write_workers);
1827 btrfs_stop_workers(&fs_info->submit_workers);
1828 fail_iput:
1829 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
1830 iput(fs_info->btree_inode);
1831 fail:
1832 btrfs_close_devices(fs_info->fs_devices);
1833 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1835 kfree(extent_root);
1836 kfree(tree_root);
1837 bdi_destroy(&fs_info->bdi);
1838 kfree(fs_info);
1839 kfree(chunk_root);
1840 kfree(dev_root);
1841 return ERR_PTR(err);
1844 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1846 char b[BDEVNAME_SIZE];
1848 if (uptodate) {
1849 set_buffer_uptodate(bh);
1850 } else {
1851 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1852 printk(KERN_WARNING "lost page write due to "
1853 "I/O error on %s\n",
1854 bdevname(bh->b_bdev, b));
1856 /* note, we dont' set_buffer_write_io_error because we have
1857 * our own ways of dealing with the IO errors
1859 clear_buffer_uptodate(bh);
1861 unlock_buffer(bh);
1862 put_bh(bh);
1865 static int write_all_supers(struct btrfs_root *root)
1867 struct list_head *cur;
1868 struct list_head *head = &root->fs_info->fs_devices->devices;
1869 struct btrfs_device *dev;
1870 struct btrfs_super_block *sb;
1871 struct btrfs_dev_item *dev_item;
1872 struct buffer_head *bh;
1873 int ret;
1874 int do_barriers;
1875 int max_errors;
1876 int total_errors = 0;
1877 u32 crc;
1878 u64 flags;
1880 max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1881 do_barriers = !btrfs_test_opt(root, NOBARRIER);
1883 sb = &root->fs_info->super_for_commit;
1884 dev_item = &sb->dev_item;
1885 list_for_each(cur, head) {
1886 dev = list_entry(cur, struct btrfs_device, dev_list);
1887 if (!dev->bdev) {
1888 total_errors++;
1889 continue;
1891 if (!dev->in_fs_metadata || !dev->writeable)
1892 continue;
1894 btrfs_set_stack_device_generation(dev_item, 0);
1895 btrfs_set_stack_device_type(dev_item, dev->type);
1896 btrfs_set_stack_device_id(dev_item, dev->devid);
1897 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
1898 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
1899 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
1900 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
1901 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
1902 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
1903 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
1904 flags = btrfs_super_flags(sb);
1905 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
1908 crc = ~(u32)0;
1909 crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
1910 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
1911 btrfs_csum_final(crc, sb->csum);
1913 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
1914 BTRFS_SUPER_INFO_SIZE);
1916 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
1917 dev->pending_io = bh;
1919 get_bh(bh);
1920 set_buffer_uptodate(bh);
1921 lock_buffer(bh);
1922 bh->b_end_io = btrfs_end_buffer_write_sync;
1924 if (do_barriers && dev->barriers) {
1925 ret = submit_bh(WRITE_BARRIER, bh);
1926 if (ret == -EOPNOTSUPP) {
1927 printk("btrfs: disabling barriers on dev %s\n",
1928 dev->name);
1929 set_buffer_uptodate(bh);
1930 dev->barriers = 0;
1931 get_bh(bh);
1932 lock_buffer(bh);
1933 ret = submit_bh(WRITE, bh);
1935 } else {
1936 ret = submit_bh(WRITE, bh);
1938 if (ret)
1939 total_errors++;
1941 if (total_errors > max_errors) {
1942 printk("btrfs: %d errors while writing supers\n", total_errors);
1943 BUG();
1945 total_errors = 0;
1947 list_for_each(cur, head) {
1948 dev = list_entry(cur, struct btrfs_device, dev_list);
1949 if (!dev->bdev)
1950 continue;
1951 if (!dev->in_fs_metadata || !dev->writeable)
1952 continue;
1954 BUG_ON(!dev->pending_io);
1955 bh = dev->pending_io;
1956 wait_on_buffer(bh);
1957 if (!buffer_uptodate(dev->pending_io)) {
1958 if (do_barriers && dev->barriers) {
1959 printk("btrfs: disabling barriers on dev %s\n",
1960 dev->name);
1961 set_buffer_uptodate(bh);
1962 get_bh(bh);
1963 lock_buffer(bh);
1964 dev->barriers = 0;
1965 ret = submit_bh(WRITE, bh);
1966 BUG_ON(ret);
1967 wait_on_buffer(bh);
1968 if (!buffer_uptodate(bh))
1969 total_errors++;
1970 } else {
1971 total_errors++;
1975 dev->pending_io = NULL;
1976 brelse(bh);
1978 if (total_errors > max_errors) {
1979 printk("btrfs: %d errors while writing supers\n", total_errors);
1980 BUG();
1982 return 0;
1985 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1986 *root)
1988 int ret;
1990 ret = write_all_supers(root);
1991 return ret;
1994 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1996 radix_tree_delete(&fs_info->fs_roots_radix,
1997 (unsigned long)root->root_key.objectid);
1998 if (root->anon_super.s_dev) {
1999 down_write(&root->anon_super.s_umount);
2000 kill_anon_super(&root->anon_super);
2002 #if 0
2003 if (root->in_sysfs)
2004 btrfs_sysfs_del_root(root);
2005 #endif
2006 if (root->node)
2007 free_extent_buffer(root->node);
2008 if (root->commit_root)
2009 free_extent_buffer(root->commit_root);
2010 if (root->name)
2011 kfree(root->name);
2012 kfree(root);
2013 return 0;
2016 static int del_fs_roots(struct btrfs_fs_info *fs_info)
2018 int ret;
2019 struct btrfs_root *gang[8];
2020 int i;
2022 while(1) {
2023 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2024 (void **)gang, 0,
2025 ARRAY_SIZE(gang));
2026 if (!ret)
2027 break;
2028 for (i = 0; i < ret; i++)
2029 btrfs_free_fs_root(fs_info, gang[i]);
2031 return 0;
2034 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2036 u64 root_objectid = 0;
2037 struct btrfs_root *gang[8];
2038 int i;
2039 int ret;
2041 while (1) {
2042 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2043 (void **)gang, root_objectid,
2044 ARRAY_SIZE(gang));
2045 if (!ret)
2046 break;
2047 for (i = 0; i < ret; i++) {
2048 root_objectid = gang[i]->root_key.objectid;
2049 ret = btrfs_find_dead_roots(fs_info->tree_root,
2050 root_objectid, gang[i]);
2051 BUG_ON(ret);
2052 btrfs_orphan_cleanup(gang[i]);
2054 root_objectid++;
2056 return 0;
2059 int btrfs_commit_super(struct btrfs_root *root)
2061 struct btrfs_trans_handle *trans;
2062 int ret;
2064 mutex_lock(&root->fs_info->cleaner_mutex);
2065 btrfs_clean_old_snapshots(root);
2066 mutex_unlock(&root->fs_info->cleaner_mutex);
2067 trans = btrfs_start_transaction(root, 1);
2068 ret = btrfs_commit_transaction(trans, root);
2069 BUG_ON(ret);
2070 /* run commit again to drop the original snapshot */
2071 trans = btrfs_start_transaction(root, 1);
2072 btrfs_commit_transaction(trans, root);
2073 ret = btrfs_write_and_wait_transaction(NULL, root);
2074 BUG_ON(ret);
2076 ret = write_ctree_super(NULL, root);
2077 return ret;
2080 int close_ctree(struct btrfs_root *root)
2082 struct btrfs_fs_info *fs_info = root->fs_info;
2083 int ret;
2085 fs_info->closing = 1;
2086 smp_mb();
2088 kthread_stop(root->fs_info->transaction_kthread);
2089 kthread_stop(root->fs_info->cleaner_kthread);
2091 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2092 ret = btrfs_commit_super(root);
2093 if (ret) {
2094 printk("btrfs: commit super returns %d\n", ret);
2098 if (fs_info->delalloc_bytes) {
2099 printk("btrfs: at unmount delalloc count %Lu\n",
2100 fs_info->delalloc_bytes);
2102 if (fs_info->total_ref_cache_size) {
2103 printk("btrfs: at umount reference cache size %Lu\n",
2104 fs_info->total_ref_cache_size);
2107 if (fs_info->extent_root->node)
2108 free_extent_buffer(fs_info->extent_root->node);
2110 if (fs_info->tree_root->node)
2111 free_extent_buffer(fs_info->tree_root->node);
2113 if (root->fs_info->chunk_root->node);
2114 free_extent_buffer(root->fs_info->chunk_root->node);
2116 if (root->fs_info->dev_root->node);
2117 free_extent_buffer(root->fs_info->dev_root->node);
2119 btrfs_free_block_groups(root->fs_info);
2121 del_fs_roots(fs_info);
2123 iput(fs_info->btree_inode);
2125 btrfs_stop_workers(&fs_info->fixup_workers);
2126 btrfs_stop_workers(&fs_info->delalloc_workers);
2127 btrfs_stop_workers(&fs_info->workers);
2128 btrfs_stop_workers(&fs_info->endio_workers);
2129 btrfs_stop_workers(&fs_info->endio_write_workers);
2130 btrfs_stop_workers(&fs_info->submit_workers);
2132 #if 0
2133 while(!list_empty(&fs_info->hashers)) {
2134 struct btrfs_hasher *hasher;
2135 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
2136 hashers);
2137 list_del(&hasher->hashers);
2138 crypto_free_hash(&fs_info->hash_tfm);
2139 kfree(hasher);
2141 #endif
2142 btrfs_close_devices(fs_info->fs_devices);
2143 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2145 bdi_destroy(&fs_info->bdi);
2147 kfree(fs_info->extent_root);
2148 kfree(fs_info->tree_root);
2149 kfree(fs_info->chunk_root);
2150 kfree(fs_info->dev_root);
2151 return 0;
2154 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2156 int ret;
2157 struct inode *btree_inode = buf->first_page->mapping->host;
2159 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
2160 if (!ret)
2161 return ret;
2163 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2164 parent_transid);
2165 return !ret;
2168 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2170 struct inode *btree_inode = buf->first_page->mapping->host;
2171 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2172 buf);
2175 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2177 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2178 u64 transid = btrfs_header_generation(buf);
2179 struct inode *btree_inode = root->fs_info->btree_inode;
2181 WARN_ON(!btrfs_tree_locked(buf));
2182 if (transid != root->fs_info->generation) {
2183 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
2184 (unsigned long long)buf->start,
2185 transid, root->fs_info->generation);
2186 WARN_ON(1);
2188 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
2191 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2194 * looks as though older kernels can get into trouble with
2195 * this code, they end up stuck in balance_dirty_pages forever
2197 struct extent_io_tree *tree;
2198 u64 num_dirty;
2199 u64 start = 0;
2200 unsigned long thresh = 32 * 1024 * 1024;
2201 tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
2203 if (current_is_pdflush() || current->flags & PF_MEMALLOC)
2204 return;
2206 num_dirty = count_range_bits(tree, &start, (u64)-1,
2207 thresh, EXTENT_DIRTY);
2208 if (num_dirty > thresh) {
2209 balance_dirty_pages_ratelimited_nr(
2210 root->fs_info->btree_inode->i_mapping, 1);
2212 return;
2215 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2217 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2218 int ret;
2219 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2220 if (ret == 0) {
2221 buf->flags |= EXTENT_UPTODATE;
2223 return ret;
2226 int btree_lock_page_hook(struct page *page)
2228 struct inode *inode = page->mapping->host;
2229 struct btrfs_root *root = BTRFS_I(inode)->root;
2230 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2231 struct extent_buffer *eb;
2232 unsigned long len;
2233 u64 bytenr = page_offset(page);
2235 if (page->private == EXTENT_PAGE_PRIVATE)
2236 goto out;
2238 len = page->private >> 2;
2239 eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
2240 if (!eb)
2241 goto out;
2243 btrfs_tree_lock(eb);
2244 spin_lock(&root->fs_info->hash_lock);
2245 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2246 spin_unlock(&root->fs_info->hash_lock);
2247 btrfs_tree_unlock(eb);
2248 free_extent_buffer(eb);
2249 out:
2250 lock_page(page);
2251 return 0;
2254 static struct extent_io_ops btree_extent_io_ops = {
2255 .write_cache_pages_lock_hook = btree_lock_page_hook,
2256 .readpage_end_io_hook = btree_readpage_end_io_hook,
2257 .submit_bio_hook = btree_submit_bio_hook,
2258 /* note we're sharing with inode.c for the merge bio hook */
2259 .merge_bio_hook = btrfs_merge_bio_hook,