2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
32 * Inode locking rules:
34 * inode->i_lock protects:
35 * inode->i_state, inode->i_hash, __iget()
36 * inode_lru_lock protects:
37 * inode_lru, inode->i_lru
38 * inode_sb_list_lock protects:
39 * sb->s_inodes, inode->i_sb_list
40 * inode_wb_list_lock protects:
41 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42 * inode_hash_lock protects:
43 * inode_hashtable, inode->i_hash
62 static unsigned int i_hash_mask __read_mostly
;
63 static unsigned int i_hash_shift __read_mostly
;
64 static struct hlist_head
*inode_hashtable __read_mostly
;
65 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
67 static LIST_HEAD(inode_lru
);
68 static DEFINE_SPINLOCK(inode_lru_lock
);
70 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_sb_list_lock
);
71 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_wb_list_lock
);
74 * iprune_sem provides exclusion between the icache shrinking and the
77 * We don't actually need it to protect anything in the umount path,
78 * but only need to cycle through it to make sure any inode that
79 * prune_icache took off the LRU list has been fully torn down by the
80 * time we are past evict_inodes.
82 static DECLARE_RWSEM(iprune_sem
);
85 * Empty aops. Can be used for the cases where the user does not
86 * define any of the address_space operations.
88 const struct address_space_operations empty_aops
= {
90 EXPORT_SYMBOL(empty_aops
);
93 * Statistics gathering..
95 struct inodes_stat_t inodes_stat
;
97 static DEFINE_PER_CPU(unsigned int, nr_inodes
);
99 static struct kmem_cache
*inode_cachep __read_mostly
;
101 static int get_nr_inodes(void)
105 for_each_possible_cpu(i
)
106 sum
+= per_cpu(nr_inodes
, i
);
107 return sum
< 0 ? 0 : sum
;
110 static inline int get_nr_inodes_unused(void)
112 return inodes_stat
.nr_unused
;
115 int get_nr_dirty_inodes(void)
117 /* not actually dirty inodes, but a wild approximation */
118 int nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
119 return nr_dirty
> 0 ? nr_dirty
: 0;
123 * Handle nr_inode sysctl
126 int proc_nr_inodes(ctl_table
*table
, int write
,
127 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
129 inodes_stat
.nr_inodes
= get_nr_inodes();
130 return proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
135 * inode_init_always - perform inode structure intialisation
136 * @sb: superblock inode belongs to
137 * @inode: inode to initialise
139 * These are initializations that need to be done on every inode
140 * allocation as the fields are not initialised by slab allocation.
142 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
144 static const struct inode_operations empty_iops
;
145 static const struct file_operations empty_fops
;
146 struct address_space
*const mapping
= &inode
->i_data
;
149 inode
->i_blkbits
= sb
->s_blocksize_bits
;
151 atomic_set(&inode
->i_count
, 1);
152 inode
->i_op
= &empty_iops
;
153 inode
->i_fop
= &empty_fops
;
157 atomic_set(&inode
->i_writecount
, 0);
161 inode
->i_generation
= 0;
163 memset(&inode
->i_dquot
, 0, sizeof(inode
->i_dquot
));
165 inode
->i_pipe
= NULL
;
166 inode
->i_bdev
= NULL
;
167 inode
->i_cdev
= NULL
;
169 inode
->dirtied_when
= 0;
171 if (security_inode_alloc(inode
))
173 spin_lock_init(&inode
->i_lock
);
174 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
176 mutex_init(&inode
->i_mutex
);
177 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
179 init_rwsem(&inode
->i_alloc_sem
);
180 lockdep_set_class(&inode
->i_alloc_sem
, &sb
->s_type
->i_alloc_sem_key
);
182 mapping
->a_ops
= &empty_aops
;
183 mapping
->host
= inode
;
185 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
186 mapping
->assoc_mapping
= NULL
;
187 mapping
->backing_dev_info
= &default_backing_dev_info
;
188 mapping
->writeback_index
= 0;
191 * If the block_device provides a backing_dev_info for client
192 * inodes then use that. Otherwise the inode share the bdev's
196 struct backing_dev_info
*bdi
;
198 bdi
= sb
->s_bdev
->bd_inode
->i_mapping
->backing_dev_info
;
199 mapping
->backing_dev_info
= bdi
;
201 inode
->i_private
= NULL
;
202 inode
->i_mapping
= mapping
;
203 #ifdef CONFIG_FS_POSIX_ACL
204 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
207 #ifdef CONFIG_FSNOTIFY
208 inode
->i_fsnotify_mask
= 0;
211 this_cpu_inc(nr_inodes
);
217 EXPORT_SYMBOL(inode_init_always
);
219 static struct inode
*alloc_inode(struct super_block
*sb
)
223 if (sb
->s_op
->alloc_inode
)
224 inode
= sb
->s_op
->alloc_inode(sb
);
226 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
231 if (unlikely(inode_init_always(sb
, inode
))) {
232 if (inode
->i_sb
->s_op
->destroy_inode
)
233 inode
->i_sb
->s_op
->destroy_inode(inode
);
235 kmem_cache_free(inode_cachep
, inode
);
242 void free_inode_nonrcu(struct inode
*inode
)
244 kmem_cache_free(inode_cachep
, inode
);
246 EXPORT_SYMBOL(free_inode_nonrcu
);
248 void __destroy_inode(struct inode
*inode
)
250 BUG_ON(inode_has_buffers(inode
));
251 security_inode_free(inode
);
252 fsnotify_inode_delete(inode
);
253 #ifdef CONFIG_FS_POSIX_ACL
254 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
255 posix_acl_release(inode
->i_acl
);
256 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
257 posix_acl_release(inode
->i_default_acl
);
259 this_cpu_dec(nr_inodes
);
261 EXPORT_SYMBOL(__destroy_inode
);
263 static void i_callback(struct rcu_head
*head
)
265 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
266 INIT_LIST_HEAD(&inode
->i_dentry
);
267 kmem_cache_free(inode_cachep
, inode
);
270 static void destroy_inode(struct inode
*inode
)
272 BUG_ON(!list_empty(&inode
->i_lru
));
273 __destroy_inode(inode
);
274 if (inode
->i_sb
->s_op
->destroy_inode
)
275 inode
->i_sb
->s_op
->destroy_inode(inode
);
277 call_rcu(&inode
->i_rcu
, i_callback
);
280 void address_space_init_once(struct address_space
*mapping
)
282 memset(mapping
, 0, sizeof(*mapping
));
283 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
284 spin_lock_init(&mapping
->tree_lock
);
285 mutex_init(&mapping
->i_mmap_mutex
);
286 INIT_LIST_HEAD(&mapping
->private_list
);
287 spin_lock_init(&mapping
->private_lock
);
288 INIT_RAW_PRIO_TREE_ROOT(&mapping
->i_mmap
);
289 INIT_LIST_HEAD(&mapping
->i_mmap_nonlinear
);
291 EXPORT_SYMBOL(address_space_init_once
);
294 * These are initializations that only need to be done
295 * once, because the fields are idempotent across use
296 * of the inode, so let the slab aware of that.
298 void inode_init_once(struct inode
*inode
)
300 memset(inode
, 0, sizeof(*inode
));
301 INIT_HLIST_NODE(&inode
->i_hash
);
302 INIT_LIST_HEAD(&inode
->i_dentry
);
303 INIT_LIST_HEAD(&inode
->i_devices
);
304 INIT_LIST_HEAD(&inode
->i_wb_list
);
305 INIT_LIST_HEAD(&inode
->i_lru
);
306 address_space_init_once(&inode
->i_data
);
307 i_size_ordered_init(inode
);
308 #ifdef CONFIG_FSNOTIFY
309 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
312 EXPORT_SYMBOL(inode_init_once
);
314 static void init_once(void *foo
)
316 struct inode
*inode
= (struct inode
*) foo
;
318 inode_init_once(inode
);
322 * inode->i_lock must be held
324 void __iget(struct inode
*inode
)
326 atomic_inc(&inode
->i_count
);
330 * get additional reference to inode; caller must already hold one.
332 void ihold(struct inode
*inode
)
334 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
336 EXPORT_SYMBOL(ihold
);
338 static void inode_lru_list_add(struct inode
*inode
)
340 spin_lock(&inode_lru_lock
);
341 if (list_empty(&inode
->i_lru
)) {
342 list_add(&inode
->i_lru
, &inode_lru
);
343 inodes_stat
.nr_unused
++;
345 spin_unlock(&inode_lru_lock
);
348 static void inode_lru_list_del(struct inode
*inode
)
350 spin_lock(&inode_lru_lock
);
351 if (!list_empty(&inode
->i_lru
)) {
352 list_del_init(&inode
->i_lru
);
353 inodes_stat
.nr_unused
--;
355 spin_unlock(&inode_lru_lock
);
359 * inode_sb_list_add - add inode to the superblock list of inodes
360 * @inode: inode to add
362 void inode_sb_list_add(struct inode
*inode
)
364 spin_lock(&inode_sb_list_lock
);
365 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
366 spin_unlock(&inode_sb_list_lock
);
368 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
370 static inline void inode_sb_list_del(struct inode
*inode
)
372 spin_lock(&inode_sb_list_lock
);
373 list_del_init(&inode
->i_sb_list
);
374 spin_unlock(&inode_sb_list_lock
);
377 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
381 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
383 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
384 return tmp
& i_hash_mask
;
388 * __insert_inode_hash - hash an inode
389 * @inode: unhashed inode
390 * @hashval: unsigned long value used to locate this object in the
393 * Add an inode to the inode hash for this superblock.
395 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
397 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
399 spin_lock(&inode_hash_lock
);
400 spin_lock(&inode
->i_lock
);
401 hlist_add_head(&inode
->i_hash
, b
);
402 spin_unlock(&inode
->i_lock
);
403 spin_unlock(&inode_hash_lock
);
405 EXPORT_SYMBOL(__insert_inode_hash
);
408 * remove_inode_hash - remove an inode from the hash
409 * @inode: inode to unhash
411 * Remove an inode from the superblock.
413 void remove_inode_hash(struct inode
*inode
)
415 spin_lock(&inode_hash_lock
);
416 spin_lock(&inode
->i_lock
);
417 hlist_del_init(&inode
->i_hash
);
418 spin_unlock(&inode
->i_lock
);
419 spin_unlock(&inode_hash_lock
);
421 EXPORT_SYMBOL(remove_inode_hash
);
423 void end_writeback(struct inode
*inode
)
426 BUG_ON(inode
->i_data
.nrpages
);
427 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
428 BUG_ON(!(inode
->i_state
& I_FREEING
));
429 BUG_ON(inode
->i_state
& I_CLEAR
);
430 inode_sync_wait(inode
);
431 /* don't need i_lock here, no concurrent mods to i_state */
432 inode
->i_state
= I_FREEING
| I_CLEAR
;
434 EXPORT_SYMBOL(end_writeback
);
437 * Free the inode passed in, removing it from the lists it is still connected
438 * to. We remove any pages still attached to the inode and wait for any IO that
439 * is still in progress before finally destroying the inode.
441 * An inode must already be marked I_FREEING so that we avoid the inode being
442 * moved back onto lists if we race with other code that manipulates the lists
443 * (e.g. writeback_single_inode). The caller is responsible for setting this.
445 * An inode must already be removed from the LRU list before being evicted from
446 * the cache. This should occur atomically with setting the I_FREEING state
447 * flag, so no inodes here should ever be on the LRU when being evicted.
449 static void evict(struct inode
*inode
)
451 const struct super_operations
*op
= inode
->i_sb
->s_op
;
453 BUG_ON(!(inode
->i_state
& I_FREEING
));
454 BUG_ON(!list_empty(&inode
->i_lru
));
456 inode_wb_list_del(inode
);
457 inode_sb_list_del(inode
);
459 if (op
->evict_inode
) {
460 op
->evict_inode(inode
);
462 if (inode
->i_data
.nrpages
)
463 truncate_inode_pages(&inode
->i_data
, 0);
464 end_writeback(inode
);
466 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
468 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
471 remove_inode_hash(inode
);
473 spin_lock(&inode
->i_lock
);
474 wake_up_bit(&inode
->i_state
, __I_NEW
);
475 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
476 spin_unlock(&inode
->i_lock
);
478 destroy_inode(inode
);
482 * dispose_list - dispose of the contents of a local list
483 * @head: the head of the list to free
485 * Dispose-list gets a local list with local inodes in it, so it doesn't
486 * need to worry about list corruption and SMP locks.
488 static void dispose_list(struct list_head
*head
)
490 while (!list_empty(head
)) {
493 inode
= list_first_entry(head
, struct inode
, i_lru
);
494 list_del_init(&inode
->i_lru
);
501 * evict_inodes - evict all evictable inodes for a superblock
502 * @sb: superblock to operate on
504 * Make sure that no inodes with zero refcount are retained. This is
505 * called by superblock shutdown after having MS_ACTIVE flag removed,
506 * so any inode reaching zero refcount during or after that call will
507 * be immediately evicted.
509 void evict_inodes(struct super_block
*sb
)
511 struct inode
*inode
, *next
;
514 spin_lock(&inode_sb_list_lock
);
515 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
516 if (atomic_read(&inode
->i_count
))
519 spin_lock(&inode
->i_lock
);
520 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
521 spin_unlock(&inode
->i_lock
);
525 inode
->i_state
|= I_FREEING
;
526 inode_lru_list_del(inode
);
527 spin_unlock(&inode
->i_lock
);
528 list_add(&inode
->i_lru
, &dispose
);
530 spin_unlock(&inode_sb_list_lock
);
532 dispose_list(&dispose
);
535 * Cycle through iprune_sem to make sure any inode that prune_icache
536 * moved off the list before we took the lock has been fully torn
539 down_write(&iprune_sem
);
540 up_write(&iprune_sem
);
544 * invalidate_inodes - attempt to free all inodes on a superblock
545 * @sb: superblock to operate on
546 * @kill_dirty: flag to guide handling of dirty inodes
548 * Attempts to free all inodes for a given superblock. If there were any
549 * busy inodes return a non-zero value, else zero.
550 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
553 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
556 struct inode
*inode
, *next
;
559 spin_lock(&inode_sb_list_lock
);
560 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
561 spin_lock(&inode
->i_lock
);
562 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
563 spin_unlock(&inode
->i_lock
);
566 if (inode
->i_state
& I_DIRTY
&& !kill_dirty
) {
567 spin_unlock(&inode
->i_lock
);
571 if (atomic_read(&inode
->i_count
)) {
572 spin_unlock(&inode
->i_lock
);
577 inode
->i_state
|= I_FREEING
;
578 inode_lru_list_del(inode
);
579 spin_unlock(&inode
->i_lock
);
580 list_add(&inode
->i_lru
, &dispose
);
582 spin_unlock(&inode_sb_list_lock
);
584 dispose_list(&dispose
);
589 static int can_unuse(struct inode
*inode
)
591 if (inode
->i_state
& ~I_REFERENCED
)
593 if (inode_has_buffers(inode
))
595 if (atomic_read(&inode
->i_count
))
597 if (inode
->i_data
.nrpages
)
603 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
604 * temporary list and then are freed outside inode_lru_lock by dispose_list().
606 * Any inodes which are pinned purely because of attached pagecache have their
607 * pagecache removed. If the inode has metadata buffers attached to
608 * mapping->private_list then try to remove them.
610 * If the inode has the I_REFERENCED flag set, then it means that it has been
611 * used recently - the flag is set in iput_final(). When we encounter such an
612 * inode, clear the flag and move it to the back of the LRU so it gets another
613 * pass through the LRU before it gets reclaimed. This is necessary because of
614 * the fact we are doing lazy LRU updates to minimise lock contention so the
615 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
616 * with this flag set because they are the inodes that are out of order.
618 static void prune_icache(int nr_to_scan
)
622 unsigned long reap
= 0;
624 down_read(&iprune_sem
);
625 spin_lock(&inode_lru_lock
);
626 for (nr_scanned
= 0; nr_scanned
< nr_to_scan
; nr_scanned
++) {
629 if (list_empty(&inode_lru
))
632 inode
= list_entry(inode_lru
.prev
, struct inode
, i_lru
);
635 * we are inverting the inode_lru_lock/inode->i_lock here,
636 * so use a trylock. If we fail to get the lock, just move the
637 * inode to the back of the list so we don't spin on it.
639 if (!spin_trylock(&inode
->i_lock
)) {
640 list_move(&inode
->i_lru
, &inode_lru
);
645 * Referenced or dirty inodes are still in use. Give them
646 * another pass through the LRU as we canot reclaim them now.
648 if (atomic_read(&inode
->i_count
) ||
649 (inode
->i_state
& ~I_REFERENCED
)) {
650 list_del_init(&inode
->i_lru
);
651 spin_unlock(&inode
->i_lock
);
652 inodes_stat
.nr_unused
--;
656 /* recently referenced inodes get one more pass */
657 if (inode
->i_state
& I_REFERENCED
) {
658 inode
->i_state
&= ~I_REFERENCED
;
659 list_move(&inode
->i_lru
, &inode_lru
);
660 spin_unlock(&inode
->i_lock
);
663 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
665 spin_unlock(&inode
->i_lock
);
666 spin_unlock(&inode_lru_lock
);
667 if (remove_inode_buffers(inode
))
668 reap
+= invalidate_mapping_pages(&inode
->i_data
,
671 spin_lock(&inode_lru_lock
);
673 if (inode
!= list_entry(inode_lru
.next
,
674 struct inode
, i_lru
))
675 continue; /* wrong inode or list_empty */
676 /* avoid lock inversions with trylock */
677 if (!spin_trylock(&inode
->i_lock
))
679 if (!can_unuse(inode
)) {
680 spin_unlock(&inode
->i_lock
);
684 WARN_ON(inode
->i_state
& I_NEW
);
685 inode
->i_state
|= I_FREEING
;
686 spin_unlock(&inode
->i_lock
);
688 list_move(&inode
->i_lru
, &freeable
);
689 inodes_stat
.nr_unused
--;
691 if (current_is_kswapd())
692 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
694 __count_vm_events(PGINODESTEAL
, reap
);
695 spin_unlock(&inode_lru_lock
);
697 dispose_list(&freeable
);
698 up_read(&iprune_sem
);
702 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
703 * "unused" means that no dentries are referring to the inodes: the files are
704 * not open and the dcache references to those inodes have already been
707 * This function is passed the number of inodes to scan, and it returns the
708 * total number of remaining possibly-reclaimable inodes.
710 static int shrink_icache_memory(struct shrinker
*shrink
,
711 struct shrink_control
*sc
)
713 int nr
= sc
->nr_to_scan
;
714 gfp_t gfp_mask
= sc
->gfp_mask
;
718 * Nasty deadlock avoidance. We may hold various FS locks,
719 * and we don't want to recurse into the FS that called us
720 * in clear_inode() and friends..
722 if (!(gfp_mask
& __GFP_FS
))
726 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure
;
729 static struct shrinker icache_shrinker
= {
730 .shrink
= shrink_icache_memory
,
731 .seeks
= DEFAULT_SEEKS
,
734 static void __wait_on_freeing_inode(struct inode
*inode
);
736 * Called with the inode lock held.
738 static struct inode
*find_inode(struct super_block
*sb
,
739 struct hlist_head
*head
,
740 int (*test
)(struct inode
*, void *),
743 struct hlist_node
*node
;
744 struct inode
*inode
= NULL
;
747 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
748 spin_lock(&inode
->i_lock
);
749 if (inode
->i_sb
!= sb
) {
750 spin_unlock(&inode
->i_lock
);
753 if (!test(inode
, data
)) {
754 spin_unlock(&inode
->i_lock
);
757 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
758 __wait_on_freeing_inode(inode
);
762 spin_unlock(&inode
->i_lock
);
769 * find_inode_fast is the fast path version of find_inode, see the comment at
770 * iget_locked for details.
772 static struct inode
*find_inode_fast(struct super_block
*sb
,
773 struct hlist_head
*head
, unsigned long ino
)
775 struct hlist_node
*node
;
776 struct inode
*inode
= NULL
;
779 hlist_for_each_entry(inode
, node
, head
, i_hash
) {
780 spin_lock(&inode
->i_lock
);
781 if (inode
->i_ino
!= ino
) {
782 spin_unlock(&inode
->i_lock
);
785 if (inode
->i_sb
!= sb
) {
786 spin_unlock(&inode
->i_lock
);
789 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
790 __wait_on_freeing_inode(inode
);
794 spin_unlock(&inode
->i_lock
);
801 * Each cpu owns a range of LAST_INO_BATCH numbers.
802 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
803 * to renew the exhausted range.
805 * This does not significantly increase overflow rate because every CPU can
806 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
807 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
808 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
809 * overflow rate by 2x, which does not seem too significant.
811 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
812 * error if st_ino won't fit in target struct field. Use 32bit counter
813 * here to attempt to avoid that.
815 #define LAST_INO_BATCH 1024
816 static DEFINE_PER_CPU(unsigned int, last_ino
);
818 unsigned int get_next_ino(void)
820 unsigned int *p
= &get_cpu_var(last_ino
);
821 unsigned int res
= *p
;
824 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
825 static atomic_t shared_last_ino
;
826 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
828 res
= next
- LAST_INO_BATCH
;
833 put_cpu_var(last_ino
);
836 EXPORT_SYMBOL(get_next_ino
);
839 * new_inode - obtain an inode
842 * Allocates a new inode for given superblock. The default gfp_mask
843 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
844 * If HIGHMEM pages are unsuitable or it is known that pages allocated
845 * for the page cache are not reclaimable or migratable,
846 * mapping_set_gfp_mask() must be called with suitable flags on the
847 * newly created inode's mapping
850 struct inode
*new_inode(struct super_block
*sb
)
854 spin_lock_prefetch(&inode_sb_list_lock
);
856 inode
= alloc_inode(sb
);
858 spin_lock(&inode
->i_lock
);
860 spin_unlock(&inode
->i_lock
);
861 inode_sb_list_add(inode
);
865 EXPORT_SYMBOL(new_inode
);
868 * unlock_new_inode - clear the I_NEW state and wake up any waiters
869 * @inode: new inode to unlock
871 * Called when the inode is fully initialised to clear the new state of the
872 * inode and wake up anyone waiting for the inode to finish initialisation.
874 void unlock_new_inode(struct inode
*inode
)
876 #ifdef CONFIG_DEBUG_LOCK_ALLOC
877 if (S_ISDIR(inode
->i_mode
)) {
878 struct file_system_type
*type
= inode
->i_sb
->s_type
;
880 /* Set new key only if filesystem hasn't already changed it */
881 if (!lockdep_match_class(&inode
->i_mutex
,
882 &type
->i_mutex_key
)) {
884 * ensure nobody is actually holding i_mutex
886 mutex_destroy(&inode
->i_mutex
);
887 mutex_init(&inode
->i_mutex
);
888 lockdep_set_class(&inode
->i_mutex
,
889 &type
->i_mutex_dir_key
);
893 spin_lock(&inode
->i_lock
);
894 WARN_ON(!(inode
->i_state
& I_NEW
));
895 inode
->i_state
&= ~I_NEW
;
896 wake_up_bit(&inode
->i_state
, __I_NEW
);
897 spin_unlock(&inode
->i_lock
);
899 EXPORT_SYMBOL(unlock_new_inode
);
902 * iget5_locked - obtain an inode from a mounted file system
903 * @sb: super block of file system
904 * @hashval: hash value (usually inode number) to get
905 * @test: callback used for comparisons between inodes
906 * @set: callback used to initialize a new struct inode
907 * @data: opaque data pointer to pass to @test and @set
909 * Search for the inode specified by @hashval and @data in the inode cache,
910 * and if present it is return it with an increased reference count. This is
911 * a generalized version of iget_locked() for file systems where the inode
912 * number is not sufficient for unique identification of an inode.
914 * If the inode is not in cache, allocate a new inode and return it locked,
915 * hashed, and with the I_NEW flag set. The file system gets to fill it in
916 * before unlocking it via unlock_new_inode().
918 * Note both @test and @set are called with the inode_hash_lock held, so can't
921 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
922 int (*test
)(struct inode
*, void *),
923 int (*set
)(struct inode
*, void *), void *data
)
925 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
928 spin_lock(&inode_hash_lock
);
929 inode
= find_inode(sb
, head
, test
, data
);
930 spin_unlock(&inode_hash_lock
);
933 wait_on_inode(inode
);
937 inode
= alloc_inode(sb
);
941 spin_lock(&inode_hash_lock
);
942 /* We released the lock, so.. */
943 old
= find_inode(sb
, head
, test
, data
);
945 if (set(inode
, data
))
948 spin_lock(&inode
->i_lock
);
949 inode
->i_state
= I_NEW
;
950 hlist_add_head(&inode
->i_hash
, head
);
951 spin_unlock(&inode
->i_lock
);
952 inode_sb_list_add(inode
);
953 spin_unlock(&inode_hash_lock
);
955 /* Return the locked inode with I_NEW set, the
956 * caller is responsible for filling in the contents
962 * Uhhuh, somebody else created the same inode under
963 * us. Use the old inode instead of the one we just
966 spin_unlock(&inode_hash_lock
);
967 destroy_inode(inode
);
969 wait_on_inode(inode
);
974 spin_unlock(&inode_hash_lock
);
975 destroy_inode(inode
);
978 EXPORT_SYMBOL(iget5_locked
);
981 * iget_locked - obtain an inode from a mounted file system
982 * @sb: super block of file system
983 * @ino: inode number to get
985 * Search for the inode specified by @ino in the inode cache and if present
986 * return it with an increased reference count. This is for file systems
987 * where the inode number is sufficient for unique identification of an inode.
989 * If the inode is not in cache, allocate a new inode and return it locked,
990 * hashed, and with the I_NEW flag set. The file system gets to fill it in
991 * before unlocking it via unlock_new_inode().
993 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
995 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
998 spin_lock(&inode_hash_lock
);
999 inode
= find_inode_fast(sb
, head
, ino
);
1000 spin_unlock(&inode_hash_lock
);
1002 wait_on_inode(inode
);
1006 inode
= alloc_inode(sb
);
1010 spin_lock(&inode_hash_lock
);
1011 /* We released the lock, so.. */
1012 old
= find_inode_fast(sb
, head
, ino
);
1015 spin_lock(&inode
->i_lock
);
1016 inode
->i_state
= I_NEW
;
1017 hlist_add_head(&inode
->i_hash
, head
);
1018 spin_unlock(&inode
->i_lock
);
1019 inode_sb_list_add(inode
);
1020 spin_unlock(&inode_hash_lock
);
1022 /* Return the locked inode with I_NEW set, the
1023 * caller is responsible for filling in the contents
1029 * Uhhuh, somebody else created the same inode under
1030 * us. Use the old inode instead of the one we just
1033 spin_unlock(&inode_hash_lock
);
1034 destroy_inode(inode
);
1036 wait_on_inode(inode
);
1040 EXPORT_SYMBOL(iget_locked
);
1043 * search the inode cache for a matching inode number.
1044 * If we find one, then the inode number we are trying to
1045 * allocate is not unique and so we should not use it.
1047 * Returns 1 if the inode number is unique, 0 if it is not.
1049 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1051 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1052 struct hlist_node
*node
;
1053 struct inode
*inode
;
1055 spin_lock(&inode_hash_lock
);
1056 hlist_for_each_entry(inode
, node
, b
, i_hash
) {
1057 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1058 spin_unlock(&inode_hash_lock
);
1062 spin_unlock(&inode_hash_lock
);
1068 * iunique - get a unique inode number
1070 * @max_reserved: highest reserved inode number
1072 * Obtain an inode number that is unique on the system for a given
1073 * superblock. This is used by file systems that have no natural
1074 * permanent inode numbering system. An inode number is returned that
1075 * is higher than the reserved limit but unique.
1078 * With a large number of inodes live on the file system this function
1079 * currently becomes quite slow.
1081 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1084 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1085 * error if st_ino won't fit in target struct field. Use 32bit counter
1086 * here to attempt to avoid that.
1088 static DEFINE_SPINLOCK(iunique_lock
);
1089 static unsigned int counter
;
1092 spin_lock(&iunique_lock
);
1094 if (counter
<= max_reserved
)
1095 counter
= max_reserved
+ 1;
1097 } while (!test_inode_iunique(sb
, res
));
1098 spin_unlock(&iunique_lock
);
1102 EXPORT_SYMBOL(iunique
);
1104 struct inode
*igrab(struct inode
*inode
)
1106 spin_lock(&inode
->i_lock
);
1107 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1109 spin_unlock(&inode
->i_lock
);
1111 spin_unlock(&inode
->i_lock
);
1113 * Handle the case where s_op->clear_inode is not been
1114 * called yet, and somebody is calling igrab
1115 * while the inode is getting freed.
1121 EXPORT_SYMBOL(igrab
);
1124 * ilookup5_nowait - search for an inode in the inode cache
1125 * @sb: super block of file system to search
1126 * @hashval: hash value (usually inode number) to search for
1127 * @test: callback used for comparisons between inodes
1128 * @data: opaque data pointer to pass to @test
1130 * Search for the inode specified by @hashval and @data in the inode cache.
1131 * If the inode is in the cache, the inode is returned with an incremented
1134 * Note: I_NEW is not waited upon so you have to be very careful what you do
1135 * with the returned inode. You probably should be using ilookup5() instead.
1137 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1139 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1140 int (*test
)(struct inode
*, void *), void *data
)
1142 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1143 struct inode
*inode
;
1145 spin_lock(&inode_hash_lock
);
1146 inode
= find_inode(sb
, head
, test
, data
);
1147 spin_unlock(&inode_hash_lock
);
1151 EXPORT_SYMBOL(ilookup5_nowait
);
1154 * ilookup5 - search for an inode in the inode cache
1155 * @sb: super block of file system to search
1156 * @hashval: hash value (usually inode number) to search for
1157 * @test: callback used for comparisons between inodes
1158 * @data: opaque data pointer to pass to @test
1160 * Search for the inode specified by @hashval and @data in the inode cache,
1161 * and if the inode is in the cache, return the inode with an incremented
1162 * reference count. Waits on I_NEW before returning the inode.
1163 * returned with an incremented reference count.
1165 * This is a generalized version of ilookup() for file systems where the
1166 * inode number is not sufficient for unique identification of an inode.
1168 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1170 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1171 int (*test
)(struct inode
*, void *), void *data
)
1173 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1176 wait_on_inode(inode
);
1179 EXPORT_SYMBOL(ilookup5
);
1182 * ilookup - search for an inode in the inode cache
1183 * @sb: super block of file system to search
1184 * @ino: inode number to search for
1186 * Search for the inode @ino in the inode cache, and if the inode is in the
1187 * cache, the inode is returned with an incremented reference count.
1189 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1191 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1192 struct inode
*inode
;
1194 spin_lock(&inode_hash_lock
);
1195 inode
= find_inode_fast(sb
, head
, ino
);
1196 spin_unlock(&inode_hash_lock
);
1199 wait_on_inode(inode
);
1202 EXPORT_SYMBOL(ilookup
);
1204 int insert_inode_locked(struct inode
*inode
)
1206 struct super_block
*sb
= inode
->i_sb
;
1207 ino_t ino
= inode
->i_ino
;
1208 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1211 struct hlist_node
*node
;
1212 struct inode
*old
= NULL
;
1213 spin_lock(&inode_hash_lock
);
1214 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1215 if (old
->i_ino
!= ino
)
1217 if (old
->i_sb
!= sb
)
1219 spin_lock(&old
->i_lock
);
1220 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1221 spin_unlock(&old
->i_lock
);
1226 if (likely(!node
)) {
1227 spin_lock(&inode
->i_lock
);
1228 inode
->i_state
|= I_NEW
;
1229 hlist_add_head(&inode
->i_hash
, head
);
1230 spin_unlock(&inode
->i_lock
);
1231 spin_unlock(&inode_hash_lock
);
1235 spin_unlock(&old
->i_lock
);
1236 spin_unlock(&inode_hash_lock
);
1238 if (unlikely(!inode_unhashed(old
))) {
1245 EXPORT_SYMBOL(insert_inode_locked
);
1247 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1248 int (*test
)(struct inode
*, void *), void *data
)
1250 struct super_block
*sb
= inode
->i_sb
;
1251 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1254 struct hlist_node
*node
;
1255 struct inode
*old
= NULL
;
1257 spin_lock(&inode_hash_lock
);
1258 hlist_for_each_entry(old
, node
, head
, i_hash
) {
1259 if (old
->i_sb
!= sb
)
1261 if (!test(old
, data
))
1263 spin_lock(&old
->i_lock
);
1264 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1265 spin_unlock(&old
->i_lock
);
1270 if (likely(!node
)) {
1271 spin_lock(&inode
->i_lock
);
1272 inode
->i_state
|= I_NEW
;
1273 hlist_add_head(&inode
->i_hash
, head
);
1274 spin_unlock(&inode
->i_lock
);
1275 spin_unlock(&inode_hash_lock
);
1279 spin_unlock(&old
->i_lock
);
1280 spin_unlock(&inode_hash_lock
);
1282 if (unlikely(!inode_unhashed(old
))) {
1289 EXPORT_SYMBOL(insert_inode_locked4
);
1292 int generic_delete_inode(struct inode
*inode
)
1296 EXPORT_SYMBOL(generic_delete_inode
);
1299 * Normal UNIX filesystem behaviour: delete the
1300 * inode when the usage count drops to zero, and
1303 int generic_drop_inode(struct inode
*inode
)
1305 return !inode
->i_nlink
|| inode_unhashed(inode
);
1307 EXPORT_SYMBOL_GPL(generic_drop_inode
);
1310 * Called when we're dropping the last reference
1313 * Call the FS "drop_inode()" function, defaulting to
1314 * the legacy UNIX filesystem behaviour. If it tells
1315 * us to evict inode, do so. Otherwise, retain inode
1316 * in cache if fs is alive, sync and evict if fs is
1319 static void iput_final(struct inode
*inode
)
1321 struct super_block
*sb
= inode
->i_sb
;
1322 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1325 WARN_ON(inode
->i_state
& I_NEW
);
1327 if (op
&& op
->drop_inode
)
1328 drop
= op
->drop_inode(inode
);
1330 drop
= generic_drop_inode(inode
);
1332 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1333 inode
->i_state
|= I_REFERENCED
;
1334 if (!(inode
->i_state
& (I_DIRTY
|I_SYNC
)))
1335 inode_lru_list_add(inode
);
1336 spin_unlock(&inode
->i_lock
);
1341 inode
->i_state
|= I_WILL_FREE
;
1342 spin_unlock(&inode
->i_lock
);
1343 write_inode_now(inode
, 1);
1344 spin_lock(&inode
->i_lock
);
1345 WARN_ON(inode
->i_state
& I_NEW
);
1346 inode
->i_state
&= ~I_WILL_FREE
;
1349 inode
->i_state
|= I_FREEING
;
1350 inode_lru_list_del(inode
);
1351 spin_unlock(&inode
->i_lock
);
1357 * iput - put an inode
1358 * @inode: inode to put
1360 * Puts an inode, dropping its usage count. If the inode use count hits
1361 * zero, the inode is then freed and may also be destroyed.
1363 * Consequently, iput() can sleep.
1365 void iput(struct inode
*inode
)
1368 BUG_ON(inode
->i_state
& I_CLEAR
);
1370 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
))
1374 EXPORT_SYMBOL(iput
);
1377 * bmap - find a block number in a file
1378 * @inode: inode of file
1379 * @block: block to find
1381 * Returns the block number on the device holding the inode that
1382 * is the disk block number for the block of the file requested.
1383 * That is, asked for block 4 of inode 1 the function will return the
1384 * disk block relative to the disk start that holds that block of the
1387 sector_t
bmap(struct inode
*inode
, sector_t block
)
1390 if (inode
->i_mapping
->a_ops
->bmap
)
1391 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1394 EXPORT_SYMBOL(bmap
);
1397 * With relative atime, only update atime if the previous atime is
1398 * earlier than either the ctime or mtime or if at least a day has
1399 * passed since the last atime update.
1401 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1402 struct timespec now
)
1405 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1408 * Is mtime younger than atime? If yes, update atime:
1410 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1413 * Is ctime younger than atime? If yes, update atime:
1415 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1419 * Is the previous atime value older than a day? If yes,
1422 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1425 * Good, we can skip the atime update:
1431 * touch_atime - update the access time
1432 * @mnt: mount the inode is accessed on
1433 * @dentry: dentry accessed
1435 * Update the accessed time on an inode and mark it for writeback.
1436 * This function automatically handles read only file systems and media,
1437 * as well as the "noatime" flag and inode specific "noatime" markers.
1439 void touch_atime(struct vfsmount
*mnt
, struct dentry
*dentry
)
1441 struct inode
*inode
= dentry
->d_inode
;
1442 struct timespec now
;
1444 if (inode
->i_flags
& S_NOATIME
)
1446 if (IS_NOATIME(inode
))
1448 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1451 if (mnt
->mnt_flags
& MNT_NOATIME
)
1453 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1456 now
= current_fs_time(inode
->i_sb
);
1458 if (!relatime_need_update(mnt
, inode
, now
))
1461 if (timespec_equal(&inode
->i_atime
, &now
))
1464 if (mnt_want_write(mnt
))
1467 inode
->i_atime
= now
;
1468 mark_inode_dirty_sync(inode
);
1469 mnt_drop_write(mnt
);
1471 EXPORT_SYMBOL(touch_atime
);
1474 * file_update_time - update mtime and ctime time
1475 * @file: file accessed
1477 * Update the mtime and ctime members of an inode and mark the inode
1478 * for writeback. Note that this function is meant exclusively for
1479 * usage in the file write path of filesystems, and filesystems may
1480 * choose to explicitly ignore update via this function with the
1481 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1482 * timestamps are handled by the server.
1485 void file_update_time(struct file
*file
)
1487 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1488 struct timespec now
;
1489 enum { S_MTIME
= 1, S_CTIME
= 2, S_VERSION
= 4 } sync_it
= 0;
1491 /* First try to exhaust all avenues to not sync */
1492 if (IS_NOCMTIME(inode
))
1495 now
= current_fs_time(inode
->i_sb
);
1496 if (!timespec_equal(&inode
->i_mtime
, &now
))
1499 if (!timespec_equal(&inode
->i_ctime
, &now
))
1502 if (IS_I_VERSION(inode
))
1503 sync_it
|= S_VERSION
;
1508 /* Finally allowed to write? Takes lock. */
1509 if (mnt_want_write_file(file
))
1512 /* Only change inode inside the lock region */
1513 if (sync_it
& S_VERSION
)
1514 inode_inc_iversion(inode
);
1515 if (sync_it
& S_CTIME
)
1516 inode
->i_ctime
= now
;
1517 if (sync_it
& S_MTIME
)
1518 inode
->i_mtime
= now
;
1519 mark_inode_dirty_sync(inode
);
1520 mnt_drop_write(file
->f_path
.mnt
);
1522 EXPORT_SYMBOL(file_update_time
);
1524 int inode_needs_sync(struct inode
*inode
)
1528 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1532 EXPORT_SYMBOL(inode_needs_sync
);
1534 int inode_wait(void *word
)
1539 EXPORT_SYMBOL(inode_wait
);
1542 * If we try to find an inode in the inode hash while it is being
1543 * deleted, we have to wait until the filesystem completes its
1544 * deletion before reporting that it isn't found. This function waits
1545 * until the deletion _might_ have completed. Callers are responsible
1546 * to recheck inode state.
1548 * It doesn't matter if I_NEW is not set initially, a call to
1549 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1552 static void __wait_on_freeing_inode(struct inode
*inode
)
1554 wait_queue_head_t
*wq
;
1555 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1556 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1557 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1558 spin_unlock(&inode
->i_lock
);
1559 spin_unlock(&inode_hash_lock
);
1561 finish_wait(wq
, &wait
.wait
);
1562 spin_lock(&inode_hash_lock
);
1565 static __initdata
unsigned long ihash_entries
;
1566 static int __init
set_ihash_entries(char *str
)
1570 ihash_entries
= simple_strtoul(str
, &str
, 0);
1573 __setup("ihash_entries=", set_ihash_entries
);
1576 * Initialize the waitqueues and inode hash table.
1578 void __init
inode_init_early(void)
1582 /* If hashes are distributed across NUMA nodes, defer
1583 * hash allocation until vmalloc space is available.
1589 alloc_large_system_hash("Inode-cache",
1590 sizeof(struct hlist_head
),
1598 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1599 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1602 void __init
inode_init(void)
1606 /* inode slab cache */
1607 inode_cachep
= kmem_cache_create("inode_cache",
1608 sizeof(struct inode
),
1610 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1613 register_shrinker(&icache_shrinker
);
1615 /* Hash may have been set up in inode_init_early */
1620 alloc_large_system_hash("Inode-cache",
1621 sizeof(struct hlist_head
),
1629 for (loop
= 0; loop
< (1 << i_hash_shift
); loop
++)
1630 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1633 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1635 inode
->i_mode
= mode
;
1636 if (S_ISCHR(mode
)) {
1637 inode
->i_fop
= &def_chr_fops
;
1638 inode
->i_rdev
= rdev
;
1639 } else if (S_ISBLK(mode
)) {
1640 inode
->i_fop
= &def_blk_fops
;
1641 inode
->i_rdev
= rdev
;
1642 } else if (S_ISFIFO(mode
))
1643 inode
->i_fop
= &def_fifo_fops
;
1644 else if (S_ISSOCK(mode
))
1645 inode
->i_fop
= &bad_sock_fops
;
1647 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1648 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1651 EXPORT_SYMBOL(init_special_inode
);
1654 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1656 * @dir: Directory inode
1657 * @mode: mode of the new inode
1659 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1662 inode
->i_uid
= current_fsuid();
1663 if (dir
&& dir
->i_mode
& S_ISGID
) {
1664 inode
->i_gid
= dir
->i_gid
;
1668 inode
->i_gid
= current_fsgid();
1669 inode
->i_mode
= mode
;
1671 EXPORT_SYMBOL(inode_init_owner
);
1674 * inode_owner_or_capable - check current task permissions to inode
1675 * @inode: inode being checked
1677 * Return true if current either has CAP_FOWNER to the inode, or
1680 bool inode_owner_or_capable(const struct inode
*inode
)
1682 struct user_namespace
*ns
= inode_userns(inode
);
1684 if (current_user_ns() == ns
&& current_fsuid() == inode
->i_uid
)
1686 if (ns_capable(ns
, CAP_FOWNER
))
1690 EXPORT_SYMBOL(inode_owner_or_capable
);