2 * Simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ioctl.h>
27 #include <linux/device.h>
28 #include <linux/err.h>
29 #include <linux/list.h>
30 #include <linux/errno.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/compat.h>
35 #include <linux/of_device.h>
37 #include <linux/spi/spi.h>
38 #include <linux/spi/spidev.h>
40 #include <asm/uaccess.h>
44 * This supports access to SPI devices using normal userspace I/O calls.
45 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
46 * and often mask message boundaries, full SPI support requires full duplex
47 * transfers. There are several kinds of internal message boundaries to
48 * handle chipselect management and other protocol options.
50 * SPI has a character major number assigned. We allocate minor numbers
51 * dynamically using a bitmask. You must use hotplug tools, such as udev
52 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
53 * nodes, since there is no fixed association of minor numbers with any
54 * particular SPI bus or device.
56 #define SPIDEV_MAJOR 153 /* assigned */
57 #define N_SPI_MINORS 32 /* ... up to 256 */
59 static DECLARE_BITMAP(minors
, N_SPI_MINORS
);
62 /* Bit masks for spi_device.mode management. Note that incorrect
63 * settings for some settings can cause *lots* of trouble for other
64 * devices on a shared bus:
66 * - CS_HIGH ... this device will be active when it shouldn't be
67 * - 3WIRE ... when active, it won't behave as it should
68 * - NO_CS ... there will be no explicit message boundaries; this
69 * is completely incompatible with the shared bus model
70 * - READY ... transfers may proceed when they shouldn't.
72 * REVISIT should changing those flags be privileged?
74 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
75 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
76 | SPI_NO_CS | SPI_READY)
81 struct spi_device
*spi
;
82 struct list_head device_entry
;
84 /* buffer is NULL unless this device is open (users > 0) */
85 struct mutex buf_lock
;
90 static LIST_HEAD(device_list
);
91 static DEFINE_MUTEX(device_list_lock
);
93 static unsigned bufsiz
= 4096;
94 module_param(bufsiz
, uint
, S_IRUGO
);
95 MODULE_PARM_DESC(bufsiz
, "data bytes in biggest supported SPI message");
97 /*-------------------------------------------------------------------------*/
100 * We can't use the standard synchronous wrappers for file I/O; we
101 * need to protect against async removal of the underlying spi_device.
103 static void spidev_complete(void *arg
)
109 spidev_sync(struct spidev_data
*spidev
, struct spi_message
*message
)
111 DECLARE_COMPLETION_ONSTACK(done
);
114 message
->complete
= spidev_complete
;
115 message
->context
= &done
;
117 spin_lock_irq(&spidev
->spi_lock
);
118 if (spidev
->spi
== NULL
)
121 status
= spi_async(spidev
->spi
, message
);
122 spin_unlock_irq(&spidev
->spi_lock
);
125 wait_for_completion(&done
);
126 status
= message
->status
;
128 status
= message
->actual_length
;
133 static inline ssize_t
134 spidev_sync_write(struct spidev_data
*spidev
, size_t len
)
136 struct spi_transfer t
= {
137 .tx_buf
= spidev
->buffer
,
140 struct spi_message m
;
142 spi_message_init(&m
);
143 spi_message_add_tail(&t
, &m
);
144 return spidev_sync(spidev
, &m
);
147 static inline ssize_t
148 spidev_sync_read(struct spidev_data
*spidev
, size_t len
)
150 struct spi_transfer t
= {
151 .rx_buf
= spidev
->buffer
,
154 struct spi_message m
;
156 spi_message_init(&m
);
157 spi_message_add_tail(&t
, &m
);
158 return spidev_sync(spidev
, &m
);
161 /*-------------------------------------------------------------------------*/
163 /* Read-only message with current device setup */
165 spidev_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*f_pos
)
167 struct spidev_data
*spidev
;
170 /* chipselect only toggles at start or end of operation */
174 spidev
= filp
->private_data
;
176 mutex_lock(&spidev
->buf_lock
);
177 status
= spidev_sync_read(spidev
, count
);
179 unsigned long missing
;
181 missing
= copy_to_user(buf
, spidev
->buffer
, status
);
182 if (missing
== status
)
185 status
= status
- missing
;
187 mutex_unlock(&spidev
->buf_lock
);
192 /* Write-only message with current device setup */
194 spidev_write(struct file
*filp
, const char __user
*buf
,
195 size_t count
, loff_t
*f_pos
)
197 struct spidev_data
*spidev
;
199 unsigned long missing
;
201 /* chipselect only toggles at start or end of operation */
205 spidev
= filp
->private_data
;
207 mutex_lock(&spidev
->buf_lock
);
208 missing
= copy_from_user(spidev
->buffer
, buf
, count
);
210 status
= spidev_sync_write(spidev
, count
);
213 mutex_unlock(&spidev
->buf_lock
);
218 static int spidev_message(struct spidev_data
*spidev
,
219 struct spi_ioc_transfer
*u_xfers
, unsigned n_xfers
)
221 struct spi_message msg
;
222 struct spi_transfer
*k_xfers
;
223 struct spi_transfer
*k_tmp
;
224 struct spi_ioc_transfer
*u_tmp
;
227 int status
= -EFAULT
;
229 spi_message_init(&msg
);
230 k_xfers
= kcalloc(n_xfers
, sizeof(*k_tmp
), GFP_KERNEL
);
234 /* Construct spi_message, copying any tx data to bounce buffer.
235 * We walk the array of user-provided transfers, using each one
236 * to initialize a kernel version of the same transfer.
238 buf
= spidev
->buffer
;
240 for (n
= n_xfers
, k_tmp
= k_xfers
, u_tmp
= u_xfers
;
242 n
--, k_tmp
++, u_tmp
++) {
243 k_tmp
->len
= u_tmp
->len
;
246 if (total
> bufsiz
) {
253 if (!access_ok(VERIFY_WRITE
, (u8 __user
*)
254 (uintptr_t) u_tmp
->rx_buf
,
260 if (copy_from_user(buf
, (const u8 __user
*)
261 (uintptr_t) u_tmp
->tx_buf
,
267 k_tmp
->cs_change
= !!u_tmp
->cs_change
;
268 k_tmp
->bits_per_word
= u_tmp
->bits_per_word
;
269 k_tmp
->delay_usecs
= u_tmp
->delay_usecs
;
270 k_tmp
->speed_hz
= u_tmp
->speed_hz
;
272 dev_dbg(&spidev
->spi
->dev
,
273 " xfer len %zd %s%s%s%dbits %u usec %uHz\n",
275 u_tmp
->rx_buf
? "rx " : "",
276 u_tmp
->tx_buf
? "tx " : "",
277 u_tmp
->cs_change
? "cs " : "",
278 u_tmp
->bits_per_word
? : spidev
->spi
->bits_per_word
,
280 u_tmp
->speed_hz
? : spidev
->spi
->max_speed_hz
);
282 spi_message_add_tail(k_tmp
, &msg
);
285 status
= spidev_sync(spidev
, &msg
);
289 /* copy any rx data out of bounce buffer */
290 buf
= spidev
->buffer
;
291 for (n
= n_xfers
, u_tmp
= u_xfers
; n
; n
--, u_tmp
++) {
293 if (__copy_to_user((u8 __user
*)
294 (uintptr_t) u_tmp
->rx_buf
, buf
,
310 spidev_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
314 struct spidev_data
*spidev
;
315 struct spi_device
*spi
;
318 struct spi_ioc_transfer
*ioc
;
320 /* Check type and command number */
321 if (_IOC_TYPE(cmd
) != SPI_IOC_MAGIC
)
324 /* Check access direction once here; don't repeat below.
325 * IOC_DIR is from the user perspective, while access_ok is
326 * from the kernel perspective; so they look reversed.
328 if (_IOC_DIR(cmd
) & _IOC_READ
)
329 err
= !access_ok(VERIFY_WRITE
,
330 (void __user
*)arg
, _IOC_SIZE(cmd
));
331 if (err
== 0 && _IOC_DIR(cmd
) & _IOC_WRITE
)
332 err
= !access_ok(VERIFY_READ
,
333 (void __user
*)arg
, _IOC_SIZE(cmd
));
337 /* guard against device removal before, or while,
338 * we issue this ioctl.
340 spidev
= filp
->private_data
;
341 spin_lock_irq(&spidev
->spi_lock
);
342 spi
= spi_dev_get(spidev
->spi
);
343 spin_unlock_irq(&spidev
->spi_lock
);
348 /* use the buffer lock here for triple duty:
349 * - prevent I/O (from us) so calling spi_setup() is safe;
350 * - prevent concurrent SPI_IOC_WR_* from morphing
351 * data fields while SPI_IOC_RD_* reads them;
352 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
354 mutex_lock(&spidev
->buf_lock
);
358 case SPI_IOC_RD_MODE
:
359 retval
= __put_user(spi
->mode
& SPI_MODE_MASK
,
362 case SPI_IOC_RD_LSB_FIRST
:
363 retval
= __put_user((spi
->mode
& SPI_LSB_FIRST
) ? 1 : 0,
366 case SPI_IOC_RD_BITS_PER_WORD
:
367 retval
= __put_user(spi
->bits_per_word
, (__u8 __user
*)arg
);
369 case SPI_IOC_RD_MAX_SPEED_HZ
:
370 retval
= __put_user(spi
->max_speed_hz
, (__u32 __user
*)arg
);
374 case SPI_IOC_WR_MODE
:
375 retval
= __get_user(tmp
, (u8 __user
*)arg
);
379 if (tmp
& ~SPI_MODE_MASK
) {
384 tmp
|= spi
->mode
& ~SPI_MODE_MASK
;
386 retval
= spi_setup(spi
);
390 dev_dbg(&spi
->dev
, "spi mode %02x\n", tmp
);
393 case SPI_IOC_WR_LSB_FIRST
:
394 retval
= __get_user(tmp
, (__u8 __user
*)arg
);
399 spi
->mode
|= SPI_LSB_FIRST
;
401 spi
->mode
&= ~SPI_LSB_FIRST
;
402 retval
= spi_setup(spi
);
406 dev_dbg(&spi
->dev
, "%csb first\n",
410 case SPI_IOC_WR_BITS_PER_WORD
:
411 retval
= __get_user(tmp
, (__u8 __user
*)arg
);
413 u8 save
= spi
->bits_per_word
;
415 spi
->bits_per_word
= tmp
;
416 retval
= spi_setup(spi
);
418 spi
->bits_per_word
= save
;
420 dev_dbg(&spi
->dev
, "%d bits per word\n", tmp
);
423 case SPI_IOC_WR_MAX_SPEED_HZ
:
424 retval
= __get_user(tmp
, (__u32 __user
*)arg
);
426 u32 save
= spi
->max_speed_hz
;
428 spi
->max_speed_hz
= tmp
;
429 retval
= spi_setup(spi
);
431 spi
->max_speed_hz
= save
;
433 dev_dbg(&spi
->dev
, "%d Hz (max)\n", tmp
);
438 /* segmented and/or full-duplex I/O request */
439 if (_IOC_NR(cmd
) != _IOC_NR(SPI_IOC_MESSAGE(0))
440 || _IOC_DIR(cmd
) != _IOC_WRITE
) {
445 tmp
= _IOC_SIZE(cmd
);
446 if ((tmp
% sizeof(struct spi_ioc_transfer
)) != 0) {
450 n_ioc
= tmp
/ sizeof(struct spi_ioc_transfer
);
454 /* copy into scratch area */
455 ioc
= kmalloc(tmp
, GFP_KERNEL
);
460 if (__copy_from_user(ioc
, (void __user
*)arg
, tmp
)) {
466 /* translate to spi_message, execute */
467 retval
= spidev_message(spidev
, ioc
, n_ioc
);
472 mutex_unlock(&spidev
->buf_lock
);
479 spidev_compat_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
481 return spidev_ioctl(filp
, cmd
, (unsigned long)compat_ptr(arg
));
484 #define spidev_compat_ioctl NULL
485 #endif /* CONFIG_COMPAT */
487 static int spidev_open(struct inode
*inode
, struct file
*filp
)
489 struct spidev_data
*spidev
;
492 mutex_lock(&device_list_lock
);
494 list_for_each_entry(spidev
, &device_list
, device_entry
) {
495 if (spidev
->devt
== inode
->i_rdev
) {
501 if (!spidev
->buffer
) {
502 spidev
->buffer
= kmalloc(bufsiz
, GFP_KERNEL
);
503 if (!spidev
->buffer
) {
504 dev_dbg(&spidev
->spi
->dev
, "open/ENOMEM\n");
510 filp
->private_data
= spidev
;
511 nonseekable_open(inode
, filp
);
514 pr_debug("spidev: nothing for minor %d\n", iminor(inode
));
516 mutex_unlock(&device_list_lock
);
520 static int spidev_release(struct inode
*inode
, struct file
*filp
)
522 struct spidev_data
*spidev
;
525 mutex_lock(&device_list_lock
);
526 spidev
= filp
->private_data
;
527 filp
->private_data
= NULL
;
531 if (!spidev
->users
) {
534 kfree(spidev
->buffer
);
535 spidev
->buffer
= NULL
;
537 /* ... after we unbound from the underlying device? */
538 spin_lock_irq(&spidev
->spi_lock
);
539 dofree
= (spidev
->spi
== NULL
);
540 spin_unlock_irq(&spidev
->spi_lock
);
545 mutex_unlock(&device_list_lock
);
550 static const struct file_operations spidev_fops
= {
551 .owner
= THIS_MODULE
,
552 /* REVISIT switch to aio primitives, so that userspace
553 * gets more complete API coverage. It'll simplify things
554 * too, except for the locking.
556 .write
= spidev_write
,
558 .unlocked_ioctl
= spidev_ioctl
,
559 .compat_ioctl
= spidev_compat_ioctl
,
561 .release
= spidev_release
,
565 /*-------------------------------------------------------------------------*/
567 /* The main reason to have this class is to make mdev/udev create the
568 * /dev/spidevB.C character device nodes exposing our userspace API.
569 * It also simplifies memory management.
572 static struct class *spidev_class
;
574 /*-------------------------------------------------------------------------*/
576 static int spidev_probe(struct spi_device
*spi
)
578 struct spidev_data
*spidev
;
582 /* Allocate driver data */
583 spidev
= kzalloc(sizeof(*spidev
), GFP_KERNEL
);
587 /* Initialize the driver data */
589 spin_lock_init(&spidev
->spi_lock
);
590 mutex_init(&spidev
->buf_lock
);
592 INIT_LIST_HEAD(&spidev
->device_entry
);
594 /* If we can allocate a minor number, hook up this device.
595 * Reusing minors is fine so long as udev or mdev is working.
597 mutex_lock(&device_list_lock
);
598 minor
= find_first_zero_bit(minors
, N_SPI_MINORS
);
599 if (minor
< N_SPI_MINORS
) {
602 spidev
->devt
= MKDEV(SPIDEV_MAJOR
, minor
);
603 dev
= device_create(spidev_class
, &spi
->dev
, spidev
->devt
,
604 spidev
, "spidev%d.%d",
605 spi
->master
->bus_num
, spi
->chip_select
);
606 status
= IS_ERR(dev
) ? PTR_ERR(dev
) : 0;
608 dev_dbg(&spi
->dev
, "no minor number available!\n");
612 set_bit(minor
, minors
);
613 list_add(&spidev
->device_entry
, &device_list
);
615 mutex_unlock(&device_list_lock
);
618 spi_set_drvdata(spi
, spidev
);
625 static int spidev_remove(struct spi_device
*spi
)
627 struct spidev_data
*spidev
= spi_get_drvdata(spi
);
629 /* make sure ops on existing fds can abort cleanly */
630 spin_lock_irq(&spidev
->spi_lock
);
632 spi_set_drvdata(spi
, NULL
);
633 spin_unlock_irq(&spidev
->spi_lock
);
635 /* prevent new opens */
636 mutex_lock(&device_list_lock
);
637 list_del(&spidev
->device_entry
);
638 device_destroy(spidev_class
, spidev
->devt
);
639 clear_bit(MINOR(spidev
->devt
), minors
);
640 if (spidev
->users
== 0)
642 mutex_unlock(&device_list_lock
);
647 static const struct of_device_id spidev_dt_ids
[] = {
648 { .compatible
= "rohm,dh2228fv" },
652 MODULE_DEVICE_TABLE(of
, spidev_dt_ids
);
654 static struct spi_driver spidev_spi_driver
= {
657 .owner
= THIS_MODULE
,
658 .of_match_table
= of_match_ptr(spidev_dt_ids
),
660 .probe
= spidev_probe
,
661 .remove
= spidev_remove
,
663 /* NOTE: suspend/resume methods are not necessary here.
664 * We don't do anything except pass the requests to/from
665 * the underlying controller. The refrigerator handles
666 * most issues; the controller driver handles the rest.
670 /*-------------------------------------------------------------------------*/
672 static int __init
spidev_init(void)
676 /* Claim our 256 reserved device numbers. Then register a class
677 * that will key udev/mdev to add/remove /dev nodes. Last, register
678 * the driver which manages those device numbers.
680 BUILD_BUG_ON(N_SPI_MINORS
> 256);
681 status
= register_chrdev(SPIDEV_MAJOR
, "spi", &spidev_fops
);
685 spidev_class
= class_create(THIS_MODULE
, "spidev");
686 if (IS_ERR(spidev_class
)) {
687 unregister_chrdev(SPIDEV_MAJOR
, spidev_spi_driver
.driver
.name
);
688 return PTR_ERR(spidev_class
);
691 status
= spi_register_driver(&spidev_spi_driver
);
693 class_destroy(spidev_class
);
694 unregister_chrdev(SPIDEV_MAJOR
, spidev_spi_driver
.driver
.name
);
698 module_init(spidev_init
);
700 static void __exit
spidev_exit(void)
702 spi_unregister_driver(&spidev_spi_driver
);
703 class_destroy(spidev_class
);
704 unregister_chrdev(SPIDEV_MAJOR
, spidev_spi_driver
.driver
.name
);
706 module_exit(spidev_exit
);
708 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
709 MODULE_DESCRIPTION("User mode SPI device interface");
710 MODULE_LICENSE("GPL");
711 MODULE_ALIAS("spi:spidev");