4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/syscalls.h>
57 #include <linux/times.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/kprobes.h>
60 #include <linux/delayacct.h>
61 #include <linux/reciprocal_div.h>
62 #include <linux/unistd.h>
67 * Scheduler clock - returns current time in nanosec units.
68 * This is default implementation.
69 * Architectures and sub-architectures can override this.
71 unsigned long long __attribute__((weak
)) sched_clock(void)
73 return (unsigned long long)jiffies
* (1000000000 / HZ
);
77 * Convert user-nice values [ -20 ... 0 ... 19 ]
78 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
82 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
83 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86 * 'User priority' is the nice value converted to something we
87 * can work with better when scaling various scheduler parameters,
88 * it's a [ 0 ... 39 ] range.
90 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
91 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
92 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95 * Some helpers for converting nanosecond timing to jiffy resolution
97 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
98 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104 * These are the 'tuning knobs' of the scheduler:
106 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
107 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
108 * Timeslices get refilled after they expire.
110 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
111 #define DEF_TIMESLICE (100 * HZ / 1000)
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
120 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
127 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
129 sg
->__cpu_power
+= val
;
130 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
134 #define SCALE_PRIO(x, prio) \
135 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
138 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
139 * to time slice values: [800ms ... 100ms ... 5ms]
141 static unsigned int static_prio_timeslice(int static_prio
)
143 if (static_prio
== NICE_TO_PRIO(19))
146 if (static_prio
< NICE_TO_PRIO(0))
147 return SCALE_PRIO(DEF_TIMESLICE
* 4, static_prio
);
149 return SCALE_PRIO(DEF_TIMESLICE
, static_prio
);
152 static inline int rt_policy(int policy
)
154 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
159 static inline int task_has_rt_policy(struct task_struct
*p
)
161 return rt_policy(p
->policy
);
165 * This is the priority-queue data structure of the RT scheduling class:
167 struct rt_prio_array
{
168 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
169 struct list_head queue
[MAX_RT_PRIO
];
173 struct load_weight load
;
174 u64 load_update_start
, load_update_last
;
175 unsigned long delta_fair
, delta_exec
, delta_stat
;
178 /* CFS-related fields in a runqueue */
180 struct load_weight load
;
181 unsigned long nr_running
;
187 unsigned long wait_runtime_overruns
, wait_runtime_underruns
;
189 struct rb_root tasks_timeline
;
190 struct rb_node
*rb_leftmost
;
191 struct rb_node
*rb_load_balance_curr
;
192 #ifdef CONFIG_FAIR_GROUP_SCHED
193 /* 'curr' points to currently running entity on this cfs_rq.
194 * It is set to NULL otherwise (i.e when none are currently running).
196 struct sched_entity
*curr
;
197 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
199 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
200 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
201 * (like users, containers etc.)
203 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
204 * list is used during load balance.
206 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
210 /* Real-Time classes' related field in a runqueue: */
212 struct rt_prio_array active
;
213 int rt_load_balance_idx
;
214 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
218 * This is the main, per-CPU runqueue data structure.
220 * Locking rule: those places that want to lock multiple runqueues
221 * (such as the load balancing or the thread migration code), lock
222 * acquire operations must be ordered by ascending &runqueue.
225 spinlock_t lock
; /* runqueue lock */
228 * nr_running and cpu_load should be in the same cacheline because
229 * remote CPUs use both these fields when doing load calculation.
231 unsigned long nr_running
;
232 #define CPU_LOAD_IDX_MAX 5
233 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
234 unsigned char idle_at_tick
;
236 unsigned char in_nohz_recently
;
238 struct load_stat ls
; /* capture load from *all* tasks on this cpu */
239 unsigned long nr_load_updates
;
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
249 * This is part of a global counter where only the total sum
250 * over all CPUs matters. A task can increase this counter on
251 * one CPU and if it got migrated afterwards it may decrease
252 * it on another CPU. Always updated under the runqueue lock:
254 unsigned long nr_uninterruptible
;
256 struct task_struct
*curr
, *idle
;
257 unsigned long next_balance
;
258 struct mm_struct
*prev_mm
;
260 u64 clock
, prev_clock_raw
;
263 unsigned int clock_warps
, clock_overflows
;
264 unsigned int clock_unstable_events
;
266 struct sched_class
*load_balance_class
;
271 struct sched_domain
*sd
;
273 /* For active balancing */
276 int cpu
; /* cpu of this runqueue */
278 struct task_struct
*migration_thread
;
279 struct list_head migration_queue
;
282 #ifdef CONFIG_SCHEDSTATS
284 struct sched_info rq_sched_info
;
286 /* sys_sched_yield() stats */
287 unsigned long yld_exp_empty
;
288 unsigned long yld_act_empty
;
289 unsigned long yld_both_empty
;
290 unsigned long yld_cnt
;
292 /* schedule() stats */
293 unsigned long sched_switch
;
294 unsigned long sched_cnt
;
295 unsigned long sched_goidle
;
297 /* try_to_wake_up() stats */
298 unsigned long ttwu_cnt
;
299 unsigned long ttwu_local
;
301 struct lock_class_key rq_lock_key
;
304 static DEFINE_PER_CPU(struct rq
, runqueues
) ____cacheline_aligned_in_smp
;
305 static DEFINE_MUTEX(sched_hotcpu_mutex
);
307 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
309 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
312 static inline int cpu_of(struct rq
*rq
)
322 * Per-runqueue clock, as finegrained as the platform can give us:
324 static unsigned long long __rq_clock(struct rq
*rq
)
326 u64 prev_raw
= rq
->prev_clock_raw
;
327 u64 now
= sched_clock();
328 s64 delta
= now
- prev_raw
;
329 u64 clock
= rq
->clock
;
332 * Protect against sched_clock() occasionally going backwards:
334 if (unlikely(delta
< 0)) {
339 * Catch too large forward jumps too:
341 if (unlikely(delta
> 2*TICK_NSEC
)) {
343 rq
->clock_overflows
++;
345 if (unlikely(delta
> rq
->clock_max_delta
))
346 rq
->clock_max_delta
= delta
;
351 rq
->prev_clock_raw
= now
;
357 static inline unsigned long long rq_clock(struct rq
*rq
)
359 int this_cpu
= smp_processor_id();
361 if (this_cpu
== cpu_of(rq
))
362 return __rq_clock(rq
);
368 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
369 * See detach_destroy_domains: synchronize_sched for details.
371 * The domain tree of any CPU may only be accessed from within
372 * preempt-disabled sections.
374 #define for_each_domain(cpu, __sd) \
375 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
377 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
378 #define this_rq() (&__get_cpu_var(runqueues))
379 #define task_rq(p) cpu_rq(task_cpu(p))
380 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
382 #ifdef CONFIG_FAIR_GROUP_SCHED
383 /* Change a task's ->cfs_rq if it moves across CPUs */
384 static inline void set_task_cfs_rq(struct task_struct
*p
)
386 p
->se
.cfs_rq
= &task_rq(p
)->cfs
;
389 static inline void set_task_cfs_rq(struct task_struct
*p
)
394 #ifndef prepare_arch_switch
395 # define prepare_arch_switch(next) do { } while (0)
397 #ifndef finish_arch_switch
398 # define finish_arch_switch(prev) do { } while (0)
401 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
402 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
404 return rq
->curr
== p
;
407 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
411 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
413 #ifdef CONFIG_DEBUG_SPINLOCK
414 /* this is a valid case when another task releases the spinlock */
415 rq
->lock
.owner
= current
;
418 * If we are tracking spinlock dependencies then we have to
419 * fix up the runqueue lock - which gets 'carried over' from
422 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
424 spin_unlock_irq(&rq
->lock
);
427 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
428 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
433 return rq
->curr
== p
;
437 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
441 * We can optimise this out completely for !SMP, because the
442 * SMP rebalancing from interrupt is the only thing that cares
447 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
448 spin_unlock_irq(&rq
->lock
);
450 spin_unlock(&rq
->lock
);
454 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
458 * After ->oncpu is cleared, the task can be moved to a different CPU.
459 * We must ensure this doesn't happen until the switch is completely
465 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
469 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
472 * __task_rq_lock - lock the runqueue a given task resides on.
473 * Must be called interrupts disabled.
475 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
482 spin_lock(&rq
->lock
);
483 if (unlikely(rq
!= task_rq(p
))) {
484 spin_unlock(&rq
->lock
);
485 goto repeat_lock_task
;
491 * task_rq_lock - lock the runqueue a given task resides on and disable
492 * interrupts. Note the ordering: we can safely lookup the task_rq without
493 * explicitly disabling preemption.
495 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
501 local_irq_save(*flags
);
503 spin_lock(&rq
->lock
);
504 if (unlikely(rq
!= task_rq(p
))) {
505 spin_unlock_irqrestore(&rq
->lock
, *flags
);
506 goto repeat_lock_task
;
511 static inline void __task_rq_unlock(struct rq
*rq
)
514 spin_unlock(&rq
->lock
);
517 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
520 spin_unlock_irqrestore(&rq
->lock
, *flags
);
524 * this_rq_lock - lock this runqueue and disable interrupts.
526 static inline struct rq
*this_rq_lock(void)
533 spin_lock(&rq
->lock
);
539 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
541 void sched_clock_unstable_event(void)
546 rq
= task_rq_lock(current
, &flags
);
547 rq
->prev_clock_raw
= sched_clock();
548 rq
->clock_unstable_events
++;
549 task_rq_unlock(rq
, &flags
);
553 * resched_task - mark a task 'to be rescheduled now'.
555 * On UP this means the setting of the need_resched flag, on SMP it
556 * might also involve a cross-CPU call to trigger the scheduler on
561 #ifndef tsk_is_polling
562 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
565 static void resched_task(struct task_struct
*p
)
569 assert_spin_locked(&task_rq(p
)->lock
);
571 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
574 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
577 if (cpu
== smp_processor_id())
580 /* NEED_RESCHED must be visible before we test polling */
582 if (!tsk_is_polling(p
))
583 smp_send_reschedule(cpu
);
586 static void resched_cpu(int cpu
)
588 struct rq
*rq
= cpu_rq(cpu
);
591 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
593 resched_task(cpu_curr(cpu
));
594 spin_unlock_irqrestore(&rq
->lock
, flags
);
597 static inline void resched_task(struct task_struct
*p
)
599 assert_spin_locked(&task_rq(p
)->lock
);
600 set_tsk_need_resched(p
);
604 static u64
div64_likely32(u64 divident
, unsigned long divisor
)
606 #if BITS_PER_LONG == 32
607 if (likely(divident
<= 0xffffffffULL
))
608 return (u32
)divident
/ divisor
;
609 do_div(divident
, divisor
);
613 return divident
/ divisor
;
617 #if BITS_PER_LONG == 32
618 # define WMULT_CONST (~0UL)
620 # define WMULT_CONST (1UL << 32)
623 #define WMULT_SHIFT 32
625 static inline unsigned long
626 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
627 struct load_weight
*lw
)
631 if (unlikely(!lw
->inv_weight
))
632 lw
->inv_weight
= WMULT_CONST
/ lw
->weight
;
634 tmp
= (u64
)delta_exec
* weight
;
636 * Check whether we'd overflow the 64-bit multiplication:
638 if (unlikely(tmp
> WMULT_CONST
)) {
639 tmp
= ((tmp
>> WMULT_SHIFT
/2) * lw
->inv_weight
)
642 tmp
= (tmp
* lw
->inv_weight
) >> WMULT_SHIFT
;
645 return (unsigned long)min(tmp
, (u64
)sysctl_sched_runtime_limit
);
648 static inline unsigned long
649 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
651 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
654 static void update_load_add(struct load_weight
*lw
, unsigned long inc
)
660 static void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
666 static void __update_curr_load(struct rq
*rq
, struct load_stat
*ls
)
668 if (rq
->curr
!= rq
->idle
&& ls
->load
.weight
) {
669 ls
->delta_exec
+= ls
->delta_stat
;
670 ls
->delta_fair
+= calc_delta_fair(ls
->delta_stat
, &ls
->load
);
676 * Update delta_exec, delta_fair fields for rq.
678 * delta_fair clock advances at a rate inversely proportional to
679 * total load (rq->ls.load.weight) on the runqueue, while
680 * delta_exec advances at the same rate as wall-clock (provided
683 * delta_exec / delta_fair is a measure of the (smoothened) load on this
684 * runqueue over any given interval. This (smoothened) load is used
685 * during load balance.
687 * This function is called /before/ updating rq->ls.load
688 * and when switching tasks.
690 static void update_curr_load(struct rq
*rq
, u64 now
)
692 struct load_stat
*ls
= &rq
->ls
;
695 start
= ls
->load_update_start
;
696 ls
->load_update_start
= now
;
697 ls
->delta_stat
+= now
- start
;
699 * Stagger updates to ls->delta_fair. Very frequent updates
702 if (ls
->delta_stat
>= sysctl_sched_stat_granularity
)
703 __update_curr_load(rq
, ls
);
707 * To aid in avoiding the subversion of "niceness" due to uneven distribution
708 * of tasks with abnormal "nice" values across CPUs the contribution that
709 * each task makes to its run queue's load is weighted according to its
710 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
711 * scaled version of the new time slice allocation that they receive on time
716 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
717 * If static_prio_timeslice() is ever changed to break this assumption then
718 * this code will need modification
720 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
721 #define load_weight(lp) \
722 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
723 #define PRIO_TO_LOAD_WEIGHT(prio) \
724 load_weight(static_prio_timeslice(prio))
725 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
726 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
728 #define WEIGHT_IDLEPRIO 2
729 #define WMULT_IDLEPRIO (1 << 31)
732 * Nice levels are multiplicative, with a gentle 10% change for every
733 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
734 * nice 1, it will get ~10% less CPU time than another CPU-bound task
735 * that remained on nice 0.
737 * The "10% effect" is relative and cumulative: from _any_ nice level,
738 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
739 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
740 * If a task goes up by ~10% and another task goes down by ~10% then
741 * the relative distance between them is ~25%.)
743 static const int prio_to_weight
[40] = {
744 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
745 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
746 /* 0 */ NICE_0_LOAD
/* 1024 */,
747 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
748 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
752 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
754 * In cases where the weight does not change often, we can use the
755 * precalculated inverse to speed up arithmetics by turning divisions
756 * into multiplications:
758 static const u32 prio_to_wmult
[40] = {
759 /* -20 */ 48356, 60446, 75558, 94446, 118058,
760 /* -15 */ 147573, 184467, 230589, 288233, 360285,
761 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
762 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
763 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
764 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
765 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
766 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
770 inc_load(struct rq
*rq
, const struct task_struct
*p
, u64 now
)
772 update_curr_load(rq
, now
);
773 update_load_add(&rq
->ls
.load
, p
->se
.load
.weight
);
777 dec_load(struct rq
*rq
, const struct task_struct
*p
, u64 now
)
779 update_curr_load(rq
, now
);
780 update_load_sub(&rq
->ls
.load
, p
->se
.load
.weight
);
783 static inline void inc_nr_running(struct task_struct
*p
, struct rq
*rq
, u64 now
)
786 inc_load(rq
, p
, now
);
789 static inline void dec_nr_running(struct task_struct
*p
, struct rq
*rq
, u64 now
)
792 dec_load(rq
, p
, now
);
795 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
798 * runqueue iterator, to support SMP load-balancing between different
799 * scheduling classes, without having to expose their internal data
800 * structures to the load-balancing proper:
804 struct task_struct
*(*start
)(void *);
805 struct task_struct
*(*next
)(void *);
808 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
809 unsigned long max_nr_move
, unsigned long max_load_move
,
810 struct sched_domain
*sd
, enum cpu_idle_type idle
,
811 int *all_pinned
, unsigned long *load_moved
,
812 int this_best_prio
, int best_prio
, int best_prio_seen
,
813 struct rq_iterator
*iterator
);
815 #include "sched_stats.h"
816 #include "sched_rt.c"
817 #include "sched_fair.c"
818 #include "sched_idletask.c"
819 #ifdef CONFIG_SCHED_DEBUG
820 # include "sched_debug.c"
823 #define sched_class_highest (&rt_sched_class)
825 static void set_load_weight(struct task_struct
*p
)
827 task_rq(p
)->cfs
.wait_runtime
-= p
->se
.wait_runtime
;
828 p
->se
.wait_runtime
= 0;
830 if (task_has_rt_policy(p
)) {
831 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
832 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
837 * SCHED_IDLE tasks get minimal weight:
839 if (p
->policy
== SCHED_IDLE
) {
840 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
841 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
845 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
846 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
850 enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
, u64 now
)
852 sched_info_queued(p
);
853 p
->sched_class
->enqueue_task(rq
, p
, wakeup
, now
);
858 dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
, u64 now
)
860 p
->sched_class
->dequeue_task(rq
, p
, sleep
, now
);
865 * __normal_prio - return the priority that is based on the static prio
867 static inline int __normal_prio(struct task_struct
*p
)
869 return p
->static_prio
;
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
879 static inline int normal_prio(struct task_struct
*p
)
883 if (task_has_rt_policy(p
))
884 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
886 prio
= __normal_prio(p
);
891 * Calculate the current priority, i.e. the priority
892 * taken into account by the scheduler. This value might
893 * be boosted by RT tasks, or might be boosted by
894 * interactivity modifiers. Will be RT if the task got
895 * RT-boosted. If not then it returns p->normal_prio.
897 static int effective_prio(struct task_struct
*p
)
899 p
->normal_prio
= normal_prio(p
);
901 * If we are RT tasks or we were boosted to RT priority,
902 * keep the priority unchanged. Otherwise, update priority
903 * to the normal priority:
905 if (!rt_prio(p
->prio
))
906 return p
->normal_prio
;
911 * activate_task - move a task to the runqueue.
913 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
915 u64 now
= rq_clock(rq
);
917 if (p
->state
== TASK_UNINTERRUPTIBLE
)
918 rq
->nr_uninterruptible
--;
920 enqueue_task(rq
, p
, wakeup
, now
);
921 inc_nr_running(p
, rq
, now
);
925 * activate_idle_task - move idle task to the _front_ of runqueue.
927 static inline void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
929 u64 now
= rq_clock(rq
);
931 if (p
->state
== TASK_UNINTERRUPTIBLE
)
932 rq
->nr_uninterruptible
--;
934 enqueue_task(rq
, p
, 0, now
);
935 inc_nr_running(p
, rq
, now
);
939 * deactivate_task - remove a task from the runqueue.
941 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
943 u64 now
= rq_clock(rq
);
945 if (p
->state
== TASK_UNINTERRUPTIBLE
)
946 rq
->nr_uninterruptible
++;
948 dequeue_task(rq
, p
, sleep
, now
);
949 dec_nr_running(p
, rq
, now
);
953 * task_curr - is this task currently executing on a CPU?
954 * @p: the task in question.
956 inline int task_curr(const struct task_struct
*p
)
958 return cpu_curr(task_cpu(p
)) == p
;
961 /* Used instead of source_load when we know the type == 0 */
962 unsigned long weighted_cpuload(const int cpu
)
964 return cpu_rq(cpu
)->ls
.load
.weight
;
967 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
970 task_thread_info(p
)->cpu
= cpu
;
977 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
979 int old_cpu
= task_cpu(p
);
980 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
981 u64 clock_offset
, fair_clock_offset
;
983 clock_offset
= old_rq
->clock
- new_rq
->clock
;
984 fair_clock_offset
= old_rq
->cfs
.fair_clock
-
985 new_rq
->cfs
.fair_clock
;
986 if (p
->se
.wait_start
)
987 p
->se
.wait_start
-= clock_offset
;
988 if (p
->se
.wait_start_fair
)
989 p
->se
.wait_start_fair
-= fair_clock_offset
;
990 if (p
->se
.sleep_start
)
991 p
->se
.sleep_start
-= clock_offset
;
992 if (p
->se
.block_start
)
993 p
->se
.block_start
-= clock_offset
;
994 if (p
->se
.sleep_start_fair
)
995 p
->se
.sleep_start_fair
-= fair_clock_offset
;
997 __set_task_cpu(p
, new_cpu
);
1000 struct migration_req
{
1001 struct list_head list
;
1003 struct task_struct
*task
;
1006 struct completion done
;
1010 * The task's runqueue lock must be held.
1011 * Returns true if you have to wait for migration thread.
1014 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1016 struct rq
*rq
= task_rq(p
);
1019 * If the task is not on a runqueue (and not running), then
1020 * it is sufficient to simply update the task's cpu field.
1022 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1023 set_task_cpu(p
, dest_cpu
);
1027 init_completion(&req
->done
);
1029 req
->dest_cpu
= dest_cpu
;
1030 list_add(&req
->list
, &rq
->migration_queue
);
1036 * wait_task_inactive - wait for a thread to unschedule.
1038 * The caller must ensure that the task *will* unschedule sometime soon,
1039 * else this function might spin for a *long* time. This function can't
1040 * be called with interrupts off, or it may introduce deadlock with
1041 * smp_call_function() if an IPI is sent by the same process we are
1042 * waiting to become inactive.
1044 void wait_task_inactive(struct task_struct
*p
)
1046 unsigned long flags
;
1052 * We do the initial early heuristics without holding
1053 * any task-queue locks at all. We'll only try to get
1054 * the runqueue lock when things look like they will
1060 * If the task is actively running on another CPU
1061 * still, just relax and busy-wait without holding
1064 * NOTE! Since we don't hold any locks, it's not
1065 * even sure that "rq" stays as the right runqueue!
1066 * But we don't care, since "task_running()" will
1067 * return false if the runqueue has changed and p
1068 * is actually now running somewhere else!
1070 while (task_running(rq
, p
))
1074 * Ok, time to look more closely! We need the rq
1075 * lock now, to be *sure*. If we're wrong, we'll
1076 * just go back and repeat.
1078 rq
= task_rq_lock(p
, &flags
);
1079 running
= task_running(rq
, p
);
1080 on_rq
= p
->se
.on_rq
;
1081 task_rq_unlock(rq
, &flags
);
1084 * Was it really running after all now that we
1085 * checked with the proper locks actually held?
1087 * Oops. Go back and try again..
1089 if (unlikely(running
)) {
1095 * It's not enough that it's not actively running,
1096 * it must be off the runqueue _entirely_, and not
1099 * So if it wa still runnable (but just not actively
1100 * running right now), it's preempted, and we should
1101 * yield - it could be a while.
1103 if (unlikely(on_rq
)) {
1109 * Ahh, all good. It wasn't running, and it wasn't
1110 * runnable, which means that it will never become
1111 * running in the future either. We're all done!
1116 * kick_process - kick a running thread to enter/exit the kernel
1117 * @p: the to-be-kicked thread
1119 * Cause a process which is running on another CPU to enter
1120 * kernel-mode, without any delay. (to get signals handled.)
1122 * NOTE: this function doesnt have to take the runqueue lock,
1123 * because all it wants to ensure is that the remote task enters
1124 * the kernel. If the IPI races and the task has been migrated
1125 * to another CPU then no harm is done and the purpose has been
1128 void kick_process(struct task_struct
*p
)
1134 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1135 smp_send_reschedule(cpu
);
1140 * Return a low guess at the load of a migration-source cpu weighted
1141 * according to the scheduling class and "nice" value.
1143 * We want to under-estimate the load of migration sources, to
1144 * balance conservatively.
1146 static inline unsigned long source_load(int cpu
, int type
)
1148 struct rq
*rq
= cpu_rq(cpu
);
1149 unsigned long total
= weighted_cpuload(cpu
);
1154 return min(rq
->cpu_load
[type
-1], total
);
1158 * Return a high guess at the load of a migration-target cpu weighted
1159 * according to the scheduling class and "nice" value.
1161 static inline unsigned long target_load(int cpu
, int type
)
1163 struct rq
*rq
= cpu_rq(cpu
);
1164 unsigned long total
= weighted_cpuload(cpu
);
1169 return max(rq
->cpu_load
[type
-1], total
);
1173 * Return the average load per task on the cpu's run queue
1175 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1177 struct rq
*rq
= cpu_rq(cpu
);
1178 unsigned long total
= weighted_cpuload(cpu
);
1179 unsigned long n
= rq
->nr_running
;
1181 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1185 * find_idlest_group finds and returns the least busy CPU group within the
1188 static struct sched_group
*
1189 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1191 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1192 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1193 int load_idx
= sd
->forkexec_idx
;
1194 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1197 unsigned long load
, avg_load
;
1201 /* Skip over this group if it has no CPUs allowed */
1202 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1205 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1207 /* Tally up the load of all CPUs in the group */
1210 for_each_cpu_mask(i
, group
->cpumask
) {
1211 /* Bias balancing toward cpus of our domain */
1213 load
= source_load(i
, load_idx
);
1215 load
= target_load(i
, load_idx
);
1220 /* Adjust by relative CPU power of the group */
1221 avg_load
= sg_div_cpu_power(group
,
1222 avg_load
* SCHED_LOAD_SCALE
);
1225 this_load
= avg_load
;
1227 } else if (avg_load
< min_load
) {
1228 min_load
= avg_load
;
1232 group
= group
->next
;
1233 } while (group
!= sd
->groups
);
1235 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1241 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1244 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1247 unsigned long load
, min_load
= ULONG_MAX
;
1251 /* Traverse only the allowed CPUs */
1252 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1254 for_each_cpu_mask(i
, tmp
) {
1255 load
= weighted_cpuload(i
);
1257 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1267 * sched_balance_self: balance the current task (running on cpu) in domains
1268 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1271 * Balance, ie. select the least loaded group.
1273 * Returns the target CPU number, or the same CPU if no balancing is needed.
1275 * preempt must be disabled.
1277 static int sched_balance_self(int cpu
, int flag
)
1279 struct task_struct
*t
= current
;
1280 struct sched_domain
*tmp
, *sd
= NULL
;
1282 for_each_domain(cpu
, tmp
) {
1284 * If power savings logic is enabled for a domain, stop there.
1286 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1288 if (tmp
->flags
& flag
)
1294 struct sched_group
*group
;
1295 int new_cpu
, weight
;
1297 if (!(sd
->flags
& flag
)) {
1303 group
= find_idlest_group(sd
, t
, cpu
);
1309 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1310 if (new_cpu
== -1 || new_cpu
== cpu
) {
1311 /* Now try balancing at a lower domain level of cpu */
1316 /* Now try balancing at a lower domain level of new_cpu */
1319 weight
= cpus_weight(span
);
1320 for_each_domain(cpu
, tmp
) {
1321 if (weight
<= cpus_weight(tmp
->span
))
1323 if (tmp
->flags
& flag
)
1326 /* while loop will break here if sd == NULL */
1332 #endif /* CONFIG_SMP */
1335 * wake_idle() will wake a task on an idle cpu if task->cpu is
1336 * not idle and an idle cpu is available. The span of cpus to
1337 * search starts with cpus closest then further out as needed,
1338 * so we always favor a closer, idle cpu.
1340 * Returns the CPU we should wake onto.
1342 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1343 static int wake_idle(int cpu
, struct task_struct
*p
)
1346 struct sched_domain
*sd
;
1350 * If it is idle, then it is the best cpu to run this task.
1352 * This cpu is also the best, if it has more than one task already.
1353 * Siblings must be also busy(in most cases) as they didn't already
1354 * pickup the extra load from this cpu and hence we need not check
1355 * sibling runqueue info. This will avoid the checks and cache miss
1356 * penalities associated with that.
1358 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1361 for_each_domain(cpu
, sd
) {
1362 if (sd
->flags
& SD_WAKE_IDLE
) {
1363 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1364 for_each_cpu_mask(i
, tmp
) {
1375 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1382 * try_to_wake_up - wake up a thread
1383 * @p: the to-be-woken-up thread
1384 * @state: the mask of task states that can be woken
1385 * @sync: do a synchronous wakeup?
1387 * Put it on the run-queue if it's not already there. The "current"
1388 * thread is always on the run-queue (except when the actual
1389 * re-schedule is in progress), and as such you're allowed to do
1390 * the simpler "current->state = TASK_RUNNING" to mark yourself
1391 * runnable without the overhead of this.
1393 * returns failure only if the task is already active.
1395 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1397 int cpu
, this_cpu
, success
= 0;
1398 unsigned long flags
;
1402 struct sched_domain
*sd
, *this_sd
= NULL
;
1403 unsigned long load
, this_load
;
1407 rq
= task_rq_lock(p
, &flags
);
1408 old_state
= p
->state
;
1409 if (!(old_state
& state
))
1416 this_cpu
= smp_processor_id();
1419 if (unlikely(task_running(rq
, p
)))
1424 schedstat_inc(rq
, ttwu_cnt
);
1425 if (cpu
== this_cpu
) {
1426 schedstat_inc(rq
, ttwu_local
);
1430 for_each_domain(this_cpu
, sd
) {
1431 if (cpu_isset(cpu
, sd
->span
)) {
1432 schedstat_inc(sd
, ttwu_wake_remote
);
1438 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1442 * Check for affine wakeup and passive balancing possibilities.
1445 int idx
= this_sd
->wake_idx
;
1446 unsigned int imbalance
;
1448 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1450 load
= source_load(cpu
, idx
);
1451 this_load
= target_load(this_cpu
, idx
);
1453 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1455 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1456 unsigned long tl
= this_load
;
1457 unsigned long tl_per_task
;
1459 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1462 * If sync wakeup then subtract the (maximum possible)
1463 * effect of the currently running task from the load
1464 * of the current CPU:
1467 tl
-= current
->se
.load
.weight
;
1470 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1471 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1473 * This domain has SD_WAKE_AFFINE and
1474 * p is cache cold in this domain, and
1475 * there is no bad imbalance.
1477 schedstat_inc(this_sd
, ttwu_move_affine
);
1483 * Start passive balancing when half the imbalance_pct
1486 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1487 if (imbalance
*this_load
<= 100*load
) {
1488 schedstat_inc(this_sd
, ttwu_move_balance
);
1494 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1496 new_cpu
= wake_idle(new_cpu
, p
);
1497 if (new_cpu
!= cpu
) {
1498 set_task_cpu(p
, new_cpu
);
1499 task_rq_unlock(rq
, &flags
);
1500 /* might preempt at this point */
1501 rq
= task_rq_lock(p
, &flags
);
1502 old_state
= p
->state
;
1503 if (!(old_state
& state
))
1508 this_cpu
= smp_processor_id();
1513 #endif /* CONFIG_SMP */
1514 activate_task(rq
, p
, 1);
1516 * Sync wakeups (i.e. those types of wakeups where the waker
1517 * has indicated that it will leave the CPU in short order)
1518 * don't trigger a preemption, if the woken up task will run on
1519 * this cpu. (in this case the 'I will reschedule' promise of
1520 * the waker guarantees that the freshly woken up task is going
1521 * to be considered on this CPU.)
1523 if (!sync
|| cpu
!= this_cpu
)
1524 check_preempt_curr(rq
, p
);
1528 p
->state
= TASK_RUNNING
;
1530 task_rq_unlock(rq
, &flags
);
1535 int fastcall
wake_up_process(struct task_struct
*p
)
1537 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1538 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1540 EXPORT_SYMBOL(wake_up_process
);
1542 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1544 return try_to_wake_up(p
, state
, 0);
1548 * Perform scheduler related setup for a newly forked process p.
1549 * p is forked by current.
1551 * __sched_fork() is basic setup used by init_idle() too:
1553 static void __sched_fork(struct task_struct
*p
)
1555 p
->se
.wait_start_fair
= 0;
1556 p
->se
.wait_start
= 0;
1557 p
->se
.exec_start
= 0;
1558 p
->se
.sum_exec_runtime
= 0;
1559 p
->se
.delta_exec
= 0;
1560 p
->se
.delta_fair_run
= 0;
1561 p
->se
.delta_fair_sleep
= 0;
1562 p
->se
.wait_runtime
= 0;
1563 p
->se
.sum_wait_runtime
= 0;
1564 p
->se
.sum_sleep_runtime
= 0;
1565 p
->se
.sleep_start
= 0;
1566 p
->se
.sleep_start_fair
= 0;
1567 p
->se
.block_start
= 0;
1568 p
->se
.sleep_max
= 0;
1569 p
->se
.block_max
= 0;
1572 p
->se
.wait_runtime_overruns
= 0;
1573 p
->se
.wait_runtime_underruns
= 0;
1575 INIT_LIST_HEAD(&p
->run_list
);
1579 * We mark the process as running here, but have not actually
1580 * inserted it onto the runqueue yet. This guarantees that
1581 * nobody will actually run it, and a signal or other external
1582 * event cannot wake it up and insert it on the runqueue either.
1584 p
->state
= TASK_RUNNING
;
1588 * fork()/clone()-time setup:
1590 void sched_fork(struct task_struct
*p
, int clone_flags
)
1592 int cpu
= get_cpu();
1597 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1599 __set_task_cpu(p
, cpu
);
1602 * Make sure we do not leak PI boosting priority to the child:
1604 p
->prio
= current
->normal_prio
;
1606 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1607 if (likely(sched_info_on()))
1608 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1610 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1613 #ifdef CONFIG_PREEMPT
1614 /* Want to start with kernel preemption disabled. */
1615 task_thread_info(p
)->preempt_count
= 1;
1621 * After fork, child runs first. (default) If set to 0 then
1622 * parent will (try to) run first.
1624 unsigned int __read_mostly sysctl_sched_child_runs_first
= 1;
1627 * wake_up_new_task - wake up a newly created task for the first time.
1629 * This function will do some initial scheduler statistics housekeeping
1630 * that must be done for every newly created context, then puts the task
1631 * on the runqueue and wakes it.
1633 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1635 unsigned long flags
;
1639 rq
= task_rq_lock(p
, &flags
);
1640 BUG_ON(p
->state
!= TASK_RUNNING
);
1641 this_cpu
= smp_processor_id(); /* parent's CPU */
1643 p
->prio
= effective_prio(p
);
1645 if (!sysctl_sched_child_runs_first
|| (clone_flags
& CLONE_VM
) ||
1646 task_cpu(p
) != this_cpu
|| !current
->se
.on_rq
) {
1647 activate_task(rq
, p
, 0);
1650 * Let the scheduling class do new task startup
1651 * management (if any):
1653 p
->sched_class
->task_new(rq
, p
);
1655 check_preempt_curr(rq
, p
);
1656 task_rq_unlock(rq
, &flags
);
1660 * prepare_task_switch - prepare to switch tasks
1661 * @rq: the runqueue preparing to switch
1662 * @next: the task we are going to switch to.
1664 * This is called with the rq lock held and interrupts off. It must
1665 * be paired with a subsequent finish_task_switch after the context
1668 * prepare_task_switch sets up locking and calls architecture specific
1671 static inline void prepare_task_switch(struct rq
*rq
, struct task_struct
*next
)
1673 prepare_lock_switch(rq
, next
);
1674 prepare_arch_switch(next
);
1678 * finish_task_switch - clean up after a task-switch
1679 * @rq: runqueue associated with task-switch
1680 * @prev: the thread we just switched away from.
1682 * finish_task_switch must be called after the context switch, paired
1683 * with a prepare_task_switch call before the context switch.
1684 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1685 * and do any other architecture-specific cleanup actions.
1687 * Note that we may have delayed dropping an mm in context_switch(). If
1688 * so, we finish that here outside of the runqueue lock. (Doing it
1689 * with the lock held can cause deadlocks; see schedule() for
1692 static inline void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1693 __releases(rq
->lock
)
1695 struct mm_struct
*mm
= rq
->prev_mm
;
1701 * A task struct has one reference for the use as "current".
1702 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1703 * schedule one last time. The schedule call will never return, and
1704 * the scheduled task must drop that reference.
1705 * The test for TASK_DEAD must occur while the runqueue locks are
1706 * still held, otherwise prev could be scheduled on another cpu, die
1707 * there before we look at prev->state, and then the reference would
1709 * Manfred Spraul <manfred@colorfullife.com>
1711 prev_state
= prev
->state
;
1712 finish_arch_switch(prev
);
1713 finish_lock_switch(rq
, prev
);
1716 if (unlikely(prev_state
== TASK_DEAD
)) {
1718 * Remove function-return probe instances associated with this
1719 * task and put them back on the free list.
1721 kprobe_flush_task(prev
);
1722 put_task_struct(prev
);
1727 * schedule_tail - first thing a freshly forked thread must call.
1728 * @prev: the thread we just switched away from.
1730 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1731 __releases(rq
->lock
)
1733 struct rq
*rq
= this_rq();
1735 finish_task_switch(rq
, prev
);
1736 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1737 /* In this case, finish_task_switch does not reenable preemption */
1740 if (current
->set_child_tid
)
1741 put_user(current
->pid
, current
->set_child_tid
);
1745 * context_switch - switch to the new MM and the new
1746 * thread's register state.
1749 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1750 struct task_struct
*next
)
1752 struct mm_struct
*mm
, *oldmm
;
1754 prepare_task_switch(rq
, next
);
1756 oldmm
= prev
->active_mm
;
1758 * For paravirt, this is coupled with an exit in switch_to to
1759 * combine the page table reload and the switch backend into
1762 arch_enter_lazy_cpu_mode();
1764 if (unlikely(!mm
)) {
1765 next
->active_mm
= oldmm
;
1766 atomic_inc(&oldmm
->mm_count
);
1767 enter_lazy_tlb(oldmm
, next
);
1769 switch_mm(oldmm
, mm
, next
);
1771 if (unlikely(!prev
->mm
)) {
1772 prev
->active_mm
= NULL
;
1773 rq
->prev_mm
= oldmm
;
1776 * Since the runqueue lock will be released by the next
1777 * task (which is an invalid locking op but in the case
1778 * of the scheduler it's an obvious special-case), so we
1779 * do an early lockdep release here:
1781 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1782 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1785 /* Here we just switch the register state and the stack. */
1786 switch_to(prev
, next
, prev
);
1790 * this_rq must be evaluated again because prev may have moved
1791 * CPUs since it called schedule(), thus the 'rq' on its stack
1792 * frame will be invalid.
1794 finish_task_switch(this_rq(), prev
);
1798 * nr_running, nr_uninterruptible and nr_context_switches:
1800 * externally visible scheduler statistics: current number of runnable
1801 * threads, current number of uninterruptible-sleeping threads, total
1802 * number of context switches performed since bootup.
1804 unsigned long nr_running(void)
1806 unsigned long i
, sum
= 0;
1808 for_each_online_cpu(i
)
1809 sum
+= cpu_rq(i
)->nr_running
;
1814 unsigned long nr_uninterruptible(void)
1816 unsigned long i
, sum
= 0;
1818 for_each_possible_cpu(i
)
1819 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1822 * Since we read the counters lockless, it might be slightly
1823 * inaccurate. Do not allow it to go below zero though:
1825 if (unlikely((long)sum
< 0))
1831 unsigned long long nr_context_switches(void)
1834 unsigned long long sum
= 0;
1836 for_each_possible_cpu(i
)
1837 sum
+= cpu_rq(i
)->nr_switches
;
1842 unsigned long nr_iowait(void)
1844 unsigned long i
, sum
= 0;
1846 for_each_possible_cpu(i
)
1847 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1852 unsigned long nr_active(void)
1854 unsigned long i
, running
= 0, uninterruptible
= 0;
1856 for_each_online_cpu(i
) {
1857 running
+= cpu_rq(i
)->nr_running
;
1858 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1861 if (unlikely((long)uninterruptible
< 0))
1862 uninterruptible
= 0;
1864 return running
+ uninterruptible
;
1868 * Update rq->cpu_load[] statistics. This function is usually called every
1869 * scheduler tick (TICK_NSEC).
1871 static void update_cpu_load(struct rq
*this_rq
)
1873 u64 fair_delta64
, exec_delta64
, idle_delta64
, sample_interval64
, tmp64
;
1874 unsigned long total_load
= this_rq
->ls
.load
.weight
;
1875 unsigned long this_load
= total_load
;
1876 struct load_stat
*ls
= &this_rq
->ls
;
1877 u64 now
= __rq_clock(this_rq
);
1880 this_rq
->nr_load_updates
++;
1881 if (unlikely(!(sysctl_sched_features
& SCHED_FEAT_PRECISE_CPU_LOAD
)))
1884 /* Update delta_fair/delta_exec fields first */
1885 update_curr_load(this_rq
, now
);
1887 fair_delta64
= ls
->delta_fair
+ 1;
1890 exec_delta64
= ls
->delta_exec
+ 1;
1893 sample_interval64
= now
- ls
->load_update_last
;
1894 ls
->load_update_last
= now
;
1896 if ((s64
)sample_interval64
< (s64
)TICK_NSEC
)
1897 sample_interval64
= TICK_NSEC
;
1899 if (exec_delta64
> sample_interval64
)
1900 exec_delta64
= sample_interval64
;
1902 idle_delta64
= sample_interval64
- exec_delta64
;
1904 tmp64
= div64_64(SCHED_LOAD_SCALE
* exec_delta64
, fair_delta64
);
1905 tmp64
= div64_64(tmp64
* exec_delta64
, sample_interval64
);
1907 this_load
= (unsigned long)tmp64
;
1911 /* Update our load: */
1912 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
1913 unsigned long old_load
, new_load
;
1915 /* scale is effectively 1 << i now, and >> i divides by scale */
1917 old_load
= this_rq
->cpu_load
[i
];
1918 new_load
= this_load
;
1920 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
1927 * double_rq_lock - safely lock two runqueues
1929 * Note this does not disable interrupts like task_rq_lock,
1930 * you need to do so manually before calling.
1932 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1933 __acquires(rq1
->lock
)
1934 __acquires(rq2
->lock
)
1936 BUG_ON(!irqs_disabled());
1938 spin_lock(&rq1
->lock
);
1939 __acquire(rq2
->lock
); /* Fake it out ;) */
1942 spin_lock(&rq1
->lock
);
1943 spin_lock(&rq2
->lock
);
1945 spin_lock(&rq2
->lock
);
1946 spin_lock(&rq1
->lock
);
1952 * double_rq_unlock - safely unlock two runqueues
1954 * Note this does not restore interrupts like task_rq_unlock,
1955 * you need to do so manually after calling.
1957 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1958 __releases(rq1
->lock
)
1959 __releases(rq2
->lock
)
1961 spin_unlock(&rq1
->lock
);
1963 spin_unlock(&rq2
->lock
);
1965 __release(rq2
->lock
);
1969 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1971 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1972 __releases(this_rq
->lock
)
1973 __acquires(busiest
->lock
)
1974 __acquires(this_rq
->lock
)
1976 if (unlikely(!irqs_disabled())) {
1977 /* printk() doesn't work good under rq->lock */
1978 spin_unlock(&this_rq
->lock
);
1981 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1982 if (busiest
< this_rq
) {
1983 spin_unlock(&this_rq
->lock
);
1984 spin_lock(&busiest
->lock
);
1985 spin_lock(&this_rq
->lock
);
1987 spin_lock(&busiest
->lock
);
1992 * If dest_cpu is allowed for this process, migrate the task to it.
1993 * This is accomplished by forcing the cpu_allowed mask to only
1994 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1995 * the cpu_allowed mask is restored.
1997 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
1999 struct migration_req req
;
2000 unsigned long flags
;
2003 rq
= task_rq_lock(p
, &flags
);
2004 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2005 || unlikely(cpu_is_offline(dest_cpu
)))
2008 /* force the process onto the specified CPU */
2009 if (migrate_task(p
, dest_cpu
, &req
)) {
2010 /* Need to wait for migration thread (might exit: take ref). */
2011 struct task_struct
*mt
= rq
->migration_thread
;
2013 get_task_struct(mt
);
2014 task_rq_unlock(rq
, &flags
);
2015 wake_up_process(mt
);
2016 put_task_struct(mt
);
2017 wait_for_completion(&req
.done
);
2022 task_rq_unlock(rq
, &flags
);
2026 * sched_exec - execve() is a valuable balancing opportunity, because at
2027 * this point the task has the smallest effective memory and cache footprint.
2029 void sched_exec(void)
2031 int new_cpu
, this_cpu
= get_cpu();
2032 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2034 if (new_cpu
!= this_cpu
)
2035 sched_migrate_task(current
, new_cpu
);
2039 * pull_task - move a task from a remote runqueue to the local runqueue.
2040 * Both runqueues must be locked.
2042 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2043 struct rq
*this_rq
, int this_cpu
)
2045 deactivate_task(src_rq
, p
, 0);
2046 set_task_cpu(p
, this_cpu
);
2047 activate_task(this_rq
, p
, 0);
2049 * Note that idle threads have a prio of MAX_PRIO, for this test
2050 * to be always true for them.
2052 check_preempt_curr(this_rq
, p
);
2056 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2059 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2060 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2064 * We do not migrate tasks that are:
2065 * 1) running (obviously), or
2066 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2067 * 3) are cache-hot on their current CPU.
2069 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2073 if (task_running(rq
, p
))
2077 * Aggressive migration if too many balance attempts have failed:
2079 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
2085 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2086 unsigned long max_nr_move
, unsigned long max_load_move
,
2087 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2088 int *all_pinned
, unsigned long *load_moved
,
2089 int this_best_prio
, int best_prio
, int best_prio_seen
,
2090 struct rq_iterator
*iterator
)
2092 int pulled
= 0, pinned
= 0, skip_for_load
;
2093 struct task_struct
*p
;
2094 long rem_load_move
= max_load_move
;
2096 if (max_nr_move
== 0 || max_load_move
== 0)
2102 * Start the load-balancing iterator:
2104 p
= iterator
->start(iterator
->arg
);
2109 * To help distribute high priority tasks accross CPUs we don't
2110 * skip a task if it will be the highest priority task (i.e. smallest
2111 * prio value) on its new queue regardless of its load weight
2113 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2114 SCHED_LOAD_SCALE_FUZZ
;
2115 if (skip_for_load
&& p
->prio
< this_best_prio
)
2116 skip_for_load
= !best_prio_seen
&& p
->prio
== best_prio
;
2117 if (skip_for_load
||
2118 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2120 best_prio_seen
|= p
->prio
== best_prio
;
2121 p
= iterator
->next(iterator
->arg
);
2125 pull_task(busiest
, p
, this_rq
, this_cpu
);
2127 rem_load_move
-= p
->se
.load
.weight
;
2130 * We only want to steal up to the prescribed number of tasks
2131 * and the prescribed amount of weighted load.
2133 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2134 if (p
->prio
< this_best_prio
)
2135 this_best_prio
= p
->prio
;
2136 p
= iterator
->next(iterator
->arg
);
2141 * Right now, this is the only place pull_task() is called,
2142 * so we can safely collect pull_task() stats here rather than
2143 * inside pull_task().
2145 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2148 *all_pinned
= pinned
;
2149 *load_moved
= max_load_move
- rem_load_move
;
2154 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2155 * load from busiest to this_rq, as part of a balancing operation within
2156 * "domain". Returns the number of tasks moved.
2158 * Called with both runqueues locked.
2160 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2161 unsigned long max_nr_move
, unsigned long max_load_move
,
2162 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2165 struct sched_class
*class = sched_class_highest
;
2166 unsigned long load_moved
, total_nr_moved
= 0, nr_moved
;
2167 long rem_load_move
= max_load_move
;
2170 nr_moved
= class->load_balance(this_rq
, this_cpu
, busiest
,
2171 max_nr_move
, (unsigned long)rem_load_move
,
2172 sd
, idle
, all_pinned
, &load_moved
);
2173 total_nr_moved
+= nr_moved
;
2174 max_nr_move
-= nr_moved
;
2175 rem_load_move
-= load_moved
;
2176 class = class->next
;
2177 } while (class && max_nr_move
&& rem_load_move
> 0);
2179 return total_nr_moved
;
2183 * find_busiest_group finds and returns the busiest CPU group within the
2184 * domain. It calculates and returns the amount of weighted load which
2185 * should be moved to restore balance via the imbalance parameter.
2187 static struct sched_group
*
2188 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2189 unsigned long *imbalance
, enum cpu_idle_type idle
,
2190 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2192 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2193 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2194 unsigned long max_pull
;
2195 unsigned long busiest_load_per_task
, busiest_nr_running
;
2196 unsigned long this_load_per_task
, this_nr_running
;
2198 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2199 int power_savings_balance
= 1;
2200 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2201 unsigned long min_nr_running
= ULONG_MAX
;
2202 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2205 max_load
= this_load
= total_load
= total_pwr
= 0;
2206 busiest_load_per_task
= busiest_nr_running
= 0;
2207 this_load_per_task
= this_nr_running
= 0;
2208 if (idle
== CPU_NOT_IDLE
)
2209 load_idx
= sd
->busy_idx
;
2210 else if (idle
== CPU_NEWLY_IDLE
)
2211 load_idx
= sd
->newidle_idx
;
2213 load_idx
= sd
->idle_idx
;
2216 unsigned long load
, group_capacity
;
2219 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2220 unsigned long sum_nr_running
, sum_weighted_load
;
2222 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2225 balance_cpu
= first_cpu(group
->cpumask
);
2227 /* Tally up the load of all CPUs in the group */
2228 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2230 for_each_cpu_mask(i
, group
->cpumask
) {
2233 if (!cpu_isset(i
, *cpus
))
2238 if (*sd_idle
&& !idle_cpu(i
))
2241 /* Bias balancing toward cpus of our domain */
2243 if (idle_cpu(i
) && !first_idle_cpu
) {
2248 load
= target_load(i
, load_idx
);
2250 load
= source_load(i
, load_idx
);
2253 sum_nr_running
+= rq
->nr_running
;
2254 sum_weighted_load
+= weighted_cpuload(i
);
2258 * First idle cpu or the first cpu(busiest) in this sched group
2259 * is eligible for doing load balancing at this and above
2262 if (local_group
&& balance_cpu
!= this_cpu
&& balance
) {
2267 total_load
+= avg_load
;
2268 total_pwr
+= group
->__cpu_power
;
2270 /* Adjust by relative CPU power of the group */
2271 avg_load
= sg_div_cpu_power(group
,
2272 avg_load
* SCHED_LOAD_SCALE
);
2274 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2277 this_load
= avg_load
;
2279 this_nr_running
= sum_nr_running
;
2280 this_load_per_task
= sum_weighted_load
;
2281 } else if (avg_load
> max_load
&&
2282 sum_nr_running
> group_capacity
) {
2283 max_load
= avg_load
;
2285 busiest_nr_running
= sum_nr_running
;
2286 busiest_load_per_task
= sum_weighted_load
;
2289 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2291 * Busy processors will not participate in power savings
2294 if (idle
== CPU_NOT_IDLE
||
2295 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2299 * If the local group is idle or completely loaded
2300 * no need to do power savings balance at this domain
2302 if (local_group
&& (this_nr_running
>= group_capacity
||
2304 power_savings_balance
= 0;
2307 * If a group is already running at full capacity or idle,
2308 * don't include that group in power savings calculations
2310 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2315 * Calculate the group which has the least non-idle load.
2316 * This is the group from where we need to pick up the load
2319 if ((sum_nr_running
< min_nr_running
) ||
2320 (sum_nr_running
== min_nr_running
&&
2321 first_cpu(group
->cpumask
) <
2322 first_cpu(group_min
->cpumask
))) {
2324 min_nr_running
= sum_nr_running
;
2325 min_load_per_task
= sum_weighted_load
/
2330 * Calculate the group which is almost near its
2331 * capacity but still has some space to pick up some load
2332 * from other group and save more power
2334 if (sum_nr_running
<= group_capacity
- 1) {
2335 if (sum_nr_running
> leader_nr_running
||
2336 (sum_nr_running
== leader_nr_running
&&
2337 first_cpu(group
->cpumask
) >
2338 first_cpu(group_leader
->cpumask
))) {
2339 group_leader
= group
;
2340 leader_nr_running
= sum_nr_running
;
2345 group
= group
->next
;
2346 } while (group
!= sd
->groups
);
2348 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2351 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2353 if (this_load
>= avg_load
||
2354 100*max_load
<= sd
->imbalance_pct
*this_load
)
2357 busiest_load_per_task
/= busiest_nr_running
;
2359 * We're trying to get all the cpus to the average_load, so we don't
2360 * want to push ourselves above the average load, nor do we wish to
2361 * reduce the max loaded cpu below the average load, as either of these
2362 * actions would just result in more rebalancing later, and ping-pong
2363 * tasks around. Thus we look for the minimum possible imbalance.
2364 * Negative imbalances (*we* are more loaded than anyone else) will
2365 * be counted as no imbalance for these purposes -- we can't fix that
2366 * by pulling tasks to us. Be careful of negative numbers as they'll
2367 * appear as very large values with unsigned longs.
2369 if (max_load
<= busiest_load_per_task
)
2373 * In the presence of smp nice balancing, certain scenarios can have
2374 * max load less than avg load(as we skip the groups at or below
2375 * its cpu_power, while calculating max_load..)
2377 if (max_load
< avg_load
) {
2379 goto small_imbalance
;
2382 /* Don't want to pull so many tasks that a group would go idle */
2383 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2385 /* How much load to actually move to equalise the imbalance */
2386 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2387 (avg_load
- this_load
) * this->__cpu_power
)
2391 * if *imbalance is less than the average load per runnable task
2392 * there is no gaurantee that any tasks will be moved so we'll have
2393 * a think about bumping its value to force at least one task to be
2396 if (*imbalance
+ SCHED_LOAD_SCALE_FUZZ
< busiest_load_per_task
/2) {
2397 unsigned long tmp
, pwr_now
, pwr_move
;
2401 pwr_move
= pwr_now
= 0;
2403 if (this_nr_running
) {
2404 this_load_per_task
/= this_nr_running
;
2405 if (busiest_load_per_task
> this_load_per_task
)
2408 this_load_per_task
= SCHED_LOAD_SCALE
;
2410 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2411 busiest_load_per_task
* imbn
) {
2412 *imbalance
= busiest_load_per_task
;
2417 * OK, we don't have enough imbalance to justify moving tasks,
2418 * however we may be able to increase total CPU power used by
2422 pwr_now
+= busiest
->__cpu_power
*
2423 min(busiest_load_per_task
, max_load
);
2424 pwr_now
+= this->__cpu_power
*
2425 min(this_load_per_task
, this_load
);
2426 pwr_now
/= SCHED_LOAD_SCALE
;
2428 /* Amount of load we'd subtract */
2429 tmp
= sg_div_cpu_power(busiest
,
2430 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2432 pwr_move
+= busiest
->__cpu_power
*
2433 min(busiest_load_per_task
, max_load
- tmp
);
2435 /* Amount of load we'd add */
2436 if (max_load
* busiest
->__cpu_power
<
2437 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2438 tmp
= sg_div_cpu_power(this,
2439 max_load
* busiest
->__cpu_power
);
2441 tmp
= sg_div_cpu_power(this,
2442 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2443 pwr_move
+= this->__cpu_power
*
2444 min(this_load_per_task
, this_load
+ tmp
);
2445 pwr_move
/= SCHED_LOAD_SCALE
;
2447 /* Move if we gain throughput */
2448 if (pwr_move
<= pwr_now
)
2451 *imbalance
= busiest_load_per_task
;
2457 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2458 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2461 if (this == group_leader
&& group_leader
!= group_min
) {
2462 *imbalance
= min_load_per_task
;
2472 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2475 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2476 unsigned long imbalance
, cpumask_t
*cpus
)
2478 struct rq
*busiest
= NULL
, *rq
;
2479 unsigned long max_load
= 0;
2482 for_each_cpu_mask(i
, group
->cpumask
) {
2485 if (!cpu_isset(i
, *cpus
))
2489 wl
= weighted_cpuload(i
);
2491 if (rq
->nr_running
== 1 && wl
> imbalance
)
2494 if (wl
> max_load
) {
2504 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2505 * so long as it is large enough.
2507 #define MAX_PINNED_INTERVAL 512
2509 static inline unsigned long minus_1_or_zero(unsigned long n
)
2511 return n
> 0 ? n
- 1 : 0;
2515 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2516 * tasks if there is an imbalance.
2518 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2519 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2522 int nr_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2523 struct sched_group
*group
;
2524 unsigned long imbalance
;
2526 cpumask_t cpus
= CPU_MASK_ALL
;
2527 unsigned long flags
;
2530 * When power savings policy is enabled for the parent domain, idle
2531 * sibling can pick up load irrespective of busy siblings. In this case,
2532 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2533 * portraying it as CPU_NOT_IDLE.
2535 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2536 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2539 schedstat_inc(sd
, lb_cnt
[idle
]);
2542 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2549 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2553 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2555 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2559 BUG_ON(busiest
== this_rq
);
2561 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2564 if (busiest
->nr_running
> 1) {
2566 * Attempt to move tasks. If find_busiest_group has found
2567 * an imbalance but busiest->nr_running <= 1, the group is
2568 * still unbalanced. nr_moved simply stays zero, so it is
2569 * correctly treated as an imbalance.
2571 local_irq_save(flags
);
2572 double_rq_lock(this_rq
, busiest
);
2573 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2574 minus_1_or_zero(busiest
->nr_running
),
2575 imbalance
, sd
, idle
, &all_pinned
);
2576 double_rq_unlock(this_rq
, busiest
);
2577 local_irq_restore(flags
);
2580 * some other cpu did the load balance for us.
2582 if (nr_moved
&& this_cpu
!= smp_processor_id())
2583 resched_cpu(this_cpu
);
2585 /* All tasks on this runqueue were pinned by CPU affinity */
2586 if (unlikely(all_pinned
)) {
2587 cpu_clear(cpu_of(busiest
), cpus
);
2588 if (!cpus_empty(cpus
))
2595 schedstat_inc(sd
, lb_failed
[idle
]);
2596 sd
->nr_balance_failed
++;
2598 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2600 spin_lock_irqsave(&busiest
->lock
, flags
);
2602 /* don't kick the migration_thread, if the curr
2603 * task on busiest cpu can't be moved to this_cpu
2605 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2606 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2608 goto out_one_pinned
;
2611 if (!busiest
->active_balance
) {
2612 busiest
->active_balance
= 1;
2613 busiest
->push_cpu
= this_cpu
;
2616 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2618 wake_up_process(busiest
->migration_thread
);
2621 * We've kicked active balancing, reset the failure
2624 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2627 sd
->nr_balance_failed
= 0;
2629 if (likely(!active_balance
)) {
2630 /* We were unbalanced, so reset the balancing interval */
2631 sd
->balance_interval
= sd
->min_interval
;
2634 * If we've begun active balancing, start to back off. This
2635 * case may not be covered by the all_pinned logic if there
2636 * is only 1 task on the busy runqueue (because we don't call
2639 if (sd
->balance_interval
< sd
->max_interval
)
2640 sd
->balance_interval
*= 2;
2643 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2644 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2649 schedstat_inc(sd
, lb_balanced
[idle
]);
2651 sd
->nr_balance_failed
= 0;
2654 /* tune up the balancing interval */
2655 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2656 (sd
->balance_interval
< sd
->max_interval
))
2657 sd
->balance_interval
*= 2;
2659 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2660 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2666 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2667 * tasks if there is an imbalance.
2669 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2670 * this_rq is locked.
2673 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2675 struct sched_group
*group
;
2676 struct rq
*busiest
= NULL
;
2677 unsigned long imbalance
;
2680 cpumask_t cpus
= CPU_MASK_ALL
;
2683 * When power savings policy is enabled for the parent domain, idle
2684 * sibling can pick up load irrespective of busy siblings. In this case,
2685 * let the state of idle sibling percolate up as IDLE, instead of
2686 * portraying it as CPU_NOT_IDLE.
2688 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2689 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2692 schedstat_inc(sd
, lb_cnt
[CPU_NEWLY_IDLE
]);
2694 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2695 &sd_idle
, &cpus
, NULL
);
2697 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2701 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2704 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2708 BUG_ON(busiest
== this_rq
);
2710 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2713 if (busiest
->nr_running
> 1) {
2714 /* Attempt to move tasks */
2715 double_lock_balance(this_rq
, busiest
);
2716 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2717 minus_1_or_zero(busiest
->nr_running
),
2718 imbalance
, sd
, CPU_NEWLY_IDLE
, NULL
);
2719 spin_unlock(&busiest
->lock
);
2722 cpu_clear(cpu_of(busiest
), cpus
);
2723 if (!cpus_empty(cpus
))
2729 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2730 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2731 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2734 sd
->nr_balance_failed
= 0;
2739 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2740 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2741 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2743 sd
->nr_balance_failed
= 0;
2749 * idle_balance is called by schedule() if this_cpu is about to become
2750 * idle. Attempts to pull tasks from other CPUs.
2752 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2754 struct sched_domain
*sd
;
2755 int pulled_task
= -1;
2756 unsigned long next_balance
= jiffies
+ HZ
;
2758 for_each_domain(this_cpu
, sd
) {
2759 unsigned long interval
;
2761 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2764 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2765 /* If we've pulled tasks over stop searching: */
2766 pulled_task
= load_balance_newidle(this_cpu
,
2769 interval
= msecs_to_jiffies(sd
->balance_interval
);
2770 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2771 next_balance
= sd
->last_balance
+ interval
;
2775 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2777 * We are going idle. next_balance may be set based on
2778 * a busy processor. So reset next_balance.
2780 this_rq
->next_balance
= next_balance
;
2785 * active_load_balance is run by migration threads. It pushes running tasks
2786 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2787 * running on each physical CPU where possible, and avoids physical /
2788 * logical imbalances.
2790 * Called with busiest_rq locked.
2792 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2794 int target_cpu
= busiest_rq
->push_cpu
;
2795 struct sched_domain
*sd
;
2796 struct rq
*target_rq
;
2798 /* Is there any task to move? */
2799 if (busiest_rq
->nr_running
<= 1)
2802 target_rq
= cpu_rq(target_cpu
);
2805 * This condition is "impossible", if it occurs
2806 * we need to fix it. Originally reported by
2807 * Bjorn Helgaas on a 128-cpu setup.
2809 BUG_ON(busiest_rq
== target_rq
);
2811 /* move a task from busiest_rq to target_rq */
2812 double_lock_balance(busiest_rq
, target_rq
);
2814 /* Search for an sd spanning us and the target CPU. */
2815 for_each_domain(target_cpu
, sd
) {
2816 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2817 cpu_isset(busiest_cpu
, sd
->span
))
2822 schedstat_inc(sd
, alb_cnt
);
2824 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1,
2825 RTPRIO_TO_LOAD_WEIGHT(100), sd
, CPU_IDLE
,
2827 schedstat_inc(sd
, alb_pushed
);
2829 schedstat_inc(sd
, alb_failed
);
2831 spin_unlock(&target_rq
->lock
);
2836 atomic_t load_balancer
;
2838 } nohz ____cacheline_aligned
= {
2839 .load_balancer
= ATOMIC_INIT(-1),
2840 .cpu_mask
= CPU_MASK_NONE
,
2844 * This routine will try to nominate the ilb (idle load balancing)
2845 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2846 * load balancing on behalf of all those cpus. If all the cpus in the system
2847 * go into this tickless mode, then there will be no ilb owner (as there is
2848 * no need for one) and all the cpus will sleep till the next wakeup event
2851 * For the ilb owner, tick is not stopped. And this tick will be used
2852 * for idle load balancing. ilb owner will still be part of
2855 * While stopping the tick, this cpu will become the ilb owner if there
2856 * is no other owner. And will be the owner till that cpu becomes busy
2857 * or if all cpus in the system stop their ticks at which point
2858 * there is no need for ilb owner.
2860 * When the ilb owner becomes busy, it nominates another owner, during the
2861 * next busy scheduler_tick()
2863 int select_nohz_load_balancer(int stop_tick
)
2865 int cpu
= smp_processor_id();
2868 cpu_set(cpu
, nohz
.cpu_mask
);
2869 cpu_rq(cpu
)->in_nohz_recently
= 1;
2872 * If we are going offline and still the leader, give up!
2874 if (cpu_is_offline(cpu
) &&
2875 atomic_read(&nohz
.load_balancer
) == cpu
) {
2876 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2881 /* time for ilb owner also to sleep */
2882 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
2883 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2884 atomic_set(&nohz
.load_balancer
, -1);
2888 if (atomic_read(&nohz
.load_balancer
) == -1) {
2889 /* make me the ilb owner */
2890 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
2892 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
2895 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
2898 cpu_clear(cpu
, nohz
.cpu_mask
);
2900 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2901 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2908 static DEFINE_SPINLOCK(balancing
);
2911 * It checks each scheduling domain to see if it is due to be balanced,
2912 * and initiates a balancing operation if so.
2914 * Balancing parameters are set up in arch_init_sched_domains.
2916 static inline void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
2919 struct rq
*rq
= cpu_rq(cpu
);
2920 unsigned long interval
;
2921 struct sched_domain
*sd
;
2922 /* Earliest time when we have to do rebalance again */
2923 unsigned long next_balance
= jiffies
+ 60*HZ
;
2925 for_each_domain(cpu
, sd
) {
2926 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2929 interval
= sd
->balance_interval
;
2930 if (idle
!= CPU_IDLE
)
2931 interval
*= sd
->busy_factor
;
2933 /* scale ms to jiffies */
2934 interval
= msecs_to_jiffies(interval
);
2935 if (unlikely(!interval
))
2937 if (interval
> HZ
*NR_CPUS
/10)
2938 interval
= HZ
*NR_CPUS
/10;
2941 if (sd
->flags
& SD_SERIALIZE
) {
2942 if (!spin_trylock(&balancing
))
2946 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
2947 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
2949 * We've pulled tasks over so either we're no
2950 * longer idle, or one of our SMT siblings is
2953 idle
= CPU_NOT_IDLE
;
2955 sd
->last_balance
= jiffies
;
2957 if (sd
->flags
& SD_SERIALIZE
)
2958 spin_unlock(&balancing
);
2960 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2961 next_balance
= sd
->last_balance
+ interval
;
2964 * Stop the load balance at this level. There is another
2965 * CPU in our sched group which is doing load balancing more
2971 rq
->next_balance
= next_balance
;
2975 * run_rebalance_domains is triggered when needed from the scheduler tick.
2976 * In CONFIG_NO_HZ case, the idle load balance owner will do the
2977 * rebalancing for all the cpus for whom scheduler ticks are stopped.
2979 static void run_rebalance_domains(struct softirq_action
*h
)
2981 int this_cpu
= smp_processor_id();
2982 struct rq
*this_rq
= cpu_rq(this_cpu
);
2983 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
2984 CPU_IDLE
: CPU_NOT_IDLE
;
2986 rebalance_domains(this_cpu
, idle
);
2990 * If this cpu is the owner for idle load balancing, then do the
2991 * balancing on behalf of the other idle cpus whose ticks are
2994 if (this_rq
->idle_at_tick
&&
2995 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
2996 cpumask_t cpus
= nohz
.cpu_mask
;
3000 cpu_clear(this_cpu
, cpus
);
3001 for_each_cpu_mask(balance_cpu
, cpus
) {
3003 * If this cpu gets work to do, stop the load balancing
3004 * work being done for other cpus. Next load
3005 * balancing owner will pick it up.
3010 rebalance_domains(balance_cpu
, SCHED_IDLE
);
3012 rq
= cpu_rq(balance_cpu
);
3013 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3014 this_rq
->next_balance
= rq
->next_balance
;
3021 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3023 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3024 * idle load balancing owner or decide to stop the periodic load balancing,
3025 * if the whole system is idle.
3027 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3031 * If we were in the nohz mode recently and busy at the current
3032 * scheduler tick, then check if we need to nominate new idle
3035 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3036 rq
->in_nohz_recently
= 0;
3038 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3039 cpu_clear(cpu
, nohz
.cpu_mask
);
3040 atomic_set(&nohz
.load_balancer
, -1);
3043 if (atomic_read(&nohz
.load_balancer
) == -1) {
3045 * simple selection for now: Nominate the
3046 * first cpu in the nohz list to be the next
3049 * TBD: Traverse the sched domains and nominate
3050 * the nearest cpu in the nohz.cpu_mask.
3052 int ilb
= first_cpu(nohz
.cpu_mask
);
3060 * If this cpu is idle and doing idle load balancing for all the
3061 * cpus with ticks stopped, is it time for that to stop?
3063 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3064 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3070 * If this cpu is idle and the idle load balancing is done by
3071 * someone else, then no need raise the SCHED_SOFTIRQ
3073 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3074 cpu_isset(cpu
, nohz
.cpu_mask
))
3077 if (time_after_eq(jiffies
, rq
->next_balance
))
3078 raise_softirq(SCHED_SOFTIRQ
);
3081 #else /* CONFIG_SMP */
3084 * on UP we do not need to balance between CPUs:
3086 static inline void idle_balance(int cpu
, struct rq
*rq
)
3090 /* Avoid "used but not defined" warning on UP */
3091 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3092 unsigned long max_nr_move
, unsigned long max_load_move
,
3093 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3094 int *all_pinned
, unsigned long *load_moved
,
3095 int this_best_prio
, int best_prio
, int best_prio_seen
,
3096 struct rq_iterator
*iterator
)
3105 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3107 EXPORT_PER_CPU_SYMBOL(kstat
);
3110 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3111 * that have not yet been banked in case the task is currently running.
3113 unsigned long long task_sched_runtime(struct task_struct
*p
)
3115 unsigned long flags
;
3119 rq
= task_rq_lock(p
, &flags
);
3120 ns
= p
->se
.sum_exec_runtime
;
3121 if (rq
->curr
== p
) {
3122 delta_exec
= rq_clock(rq
) - p
->se
.exec_start
;
3123 if ((s64
)delta_exec
> 0)
3126 task_rq_unlock(rq
, &flags
);
3132 * Account user cpu time to a process.
3133 * @p: the process that the cpu time gets accounted to
3134 * @hardirq_offset: the offset to subtract from hardirq_count()
3135 * @cputime: the cpu time spent in user space since the last update
3137 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3139 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3142 p
->utime
= cputime_add(p
->utime
, cputime
);
3144 /* Add user time to cpustat. */
3145 tmp
= cputime_to_cputime64(cputime
);
3146 if (TASK_NICE(p
) > 0)
3147 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3149 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3153 * Account system cpu time to a process.
3154 * @p: the process that the cpu time gets accounted to
3155 * @hardirq_offset: the offset to subtract from hardirq_count()
3156 * @cputime: the cpu time spent in kernel space since the last update
3158 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3161 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3162 struct rq
*rq
= this_rq();
3165 p
->stime
= cputime_add(p
->stime
, cputime
);
3167 /* Add system time to cpustat. */
3168 tmp
= cputime_to_cputime64(cputime
);
3169 if (hardirq_count() - hardirq_offset
)
3170 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3171 else if (softirq_count())
3172 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3173 else if (p
!= rq
->idle
)
3174 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3175 else if (atomic_read(&rq
->nr_iowait
) > 0)
3176 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3178 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3179 /* Account for system time used */
3180 acct_update_integrals(p
);
3184 * Account for involuntary wait time.
3185 * @p: the process from which the cpu time has been stolen
3186 * @steal: the cpu time spent in involuntary wait
3188 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3190 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3191 cputime64_t tmp
= cputime_to_cputime64(steal
);
3192 struct rq
*rq
= this_rq();
3194 if (p
== rq
->idle
) {
3195 p
->stime
= cputime_add(p
->stime
, steal
);
3196 if (atomic_read(&rq
->nr_iowait
) > 0)
3197 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3199 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3201 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3205 * This function gets called by the timer code, with HZ frequency.
3206 * We call it with interrupts disabled.
3208 * It also gets called by the fork code, when changing the parent's
3211 void scheduler_tick(void)
3213 int cpu
= smp_processor_id();
3214 struct rq
*rq
= cpu_rq(cpu
);
3215 struct task_struct
*curr
= rq
->curr
;
3217 spin_lock(&rq
->lock
);
3218 if (curr
!= rq
->idle
) /* FIXME: needed? */
3219 curr
->sched_class
->task_tick(rq
, curr
);
3220 update_cpu_load(rq
);
3221 spin_unlock(&rq
->lock
);
3224 rq
->idle_at_tick
= idle_cpu(cpu
);
3225 trigger_load_balance(rq
, cpu
);
3229 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3231 void fastcall
add_preempt_count(int val
)
3236 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3238 preempt_count() += val
;
3240 * Spinlock count overflowing soon?
3242 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3245 EXPORT_SYMBOL(add_preempt_count
);
3247 void fastcall
sub_preempt_count(int val
)
3252 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3255 * Is the spinlock portion underflowing?
3257 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3258 !(preempt_count() & PREEMPT_MASK
)))
3261 preempt_count() -= val
;
3263 EXPORT_SYMBOL(sub_preempt_count
);
3268 * Print scheduling while atomic bug:
3270 static noinline
void __schedule_bug(struct task_struct
*prev
)
3272 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3273 prev
->comm
, preempt_count(), prev
->pid
);
3274 debug_show_held_locks(prev
);
3275 if (irqs_disabled())
3276 print_irqtrace_events(prev
);
3281 * Various schedule()-time debugging checks and statistics:
3283 static inline void schedule_debug(struct task_struct
*prev
)
3286 * Test if we are atomic. Since do_exit() needs to call into
3287 * schedule() atomically, we ignore that path for now.
3288 * Otherwise, whine if we are scheduling when we should not be.
3290 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3291 __schedule_bug(prev
);
3293 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3295 schedstat_inc(this_rq(), sched_cnt
);
3299 * Pick up the highest-prio task:
3301 static inline struct task_struct
*
3302 pick_next_task(struct rq
*rq
, struct task_struct
*prev
, u64 now
)
3304 struct sched_class
*class;
3305 struct task_struct
*p
;
3308 * Optimization: we know that if all tasks are in
3309 * the fair class we can call that function directly:
3311 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3312 p
= fair_sched_class
.pick_next_task(rq
, now
);
3317 class = sched_class_highest
;
3319 p
= class->pick_next_task(rq
, now
);
3323 * Will never be NULL as the idle class always
3324 * returns a non-NULL p:
3326 class = class->next
;
3331 * schedule() is the main scheduler function.
3333 asmlinkage
void __sched
schedule(void)
3335 struct task_struct
*prev
, *next
;
3343 cpu
= smp_processor_id();
3347 switch_count
= &prev
->nivcsw
;
3349 release_kernel_lock(prev
);
3350 need_resched_nonpreemptible
:
3352 schedule_debug(prev
);
3354 spin_lock_irq(&rq
->lock
);
3355 clear_tsk_need_resched(prev
);
3357 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3358 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3359 unlikely(signal_pending(prev
)))) {
3360 prev
->state
= TASK_RUNNING
;
3362 deactivate_task(rq
, prev
, 1);
3364 switch_count
= &prev
->nvcsw
;
3367 if (unlikely(!rq
->nr_running
))
3368 idle_balance(cpu
, rq
);
3370 now
= __rq_clock(rq
);
3371 prev
->sched_class
->put_prev_task(rq
, prev
, now
);
3372 next
= pick_next_task(rq
, prev
, now
);
3374 sched_info_switch(prev
, next
);
3376 if (likely(prev
!= next
)) {
3381 context_switch(rq
, prev
, next
); /* unlocks the rq */
3383 spin_unlock_irq(&rq
->lock
);
3385 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3386 cpu
= smp_processor_id();
3388 goto need_resched_nonpreemptible
;
3390 preempt_enable_no_resched();
3391 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3394 EXPORT_SYMBOL(schedule
);
3396 #ifdef CONFIG_PREEMPT
3398 * this is the entry point to schedule() from in-kernel preemption
3399 * off of preempt_enable. Kernel preemptions off return from interrupt
3400 * occur there and call schedule directly.
3402 asmlinkage
void __sched
preempt_schedule(void)
3404 struct thread_info
*ti
= current_thread_info();
3405 #ifdef CONFIG_PREEMPT_BKL
3406 struct task_struct
*task
= current
;
3407 int saved_lock_depth
;
3410 * If there is a non-zero preempt_count or interrupts are disabled,
3411 * we do not want to preempt the current task. Just return..
3413 if (likely(ti
->preempt_count
|| irqs_disabled()))
3417 add_preempt_count(PREEMPT_ACTIVE
);
3419 * We keep the big kernel semaphore locked, but we
3420 * clear ->lock_depth so that schedule() doesnt
3421 * auto-release the semaphore:
3423 #ifdef CONFIG_PREEMPT_BKL
3424 saved_lock_depth
= task
->lock_depth
;
3425 task
->lock_depth
= -1;
3428 #ifdef CONFIG_PREEMPT_BKL
3429 task
->lock_depth
= saved_lock_depth
;
3431 sub_preempt_count(PREEMPT_ACTIVE
);
3433 /* we could miss a preemption opportunity between schedule and now */
3435 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3438 EXPORT_SYMBOL(preempt_schedule
);
3441 * this is the entry point to schedule() from kernel preemption
3442 * off of irq context.
3443 * Note, that this is called and return with irqs disabled. This will
3444 * protect us against recursive calling from irq.
3446 asmlinkage
void __sched
preempt_schedule_irq(void)
3448 struct thread_info
*ti
= current_thread_info();
3449 #ifdef CONFIG_PREEMPT_BKL
3450 struct task_struct
*task
= current
;
3451 int saved_lock_depth
;
3453 /* Catch callers which need to be fixed */
3454 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3457 add_preempt_count(PREEMPT_ACTIVE
);
3459 * We keep the big kernel semaphore locked, but we
3460 * clear ->lock_depth so that schedule() doesnt
3461 * auto-release the semaphore:
3463 #ifdef CONFIG_PREEMPT_BKL
3464 saved_lock_depth
= task
->lock_depth
;
3465 task
->lock_depth
= -1;
3469 local_irq_disable();
3470 #ifdef CONFIG_PREEMPT_BKL
3471 task
->lock_depth
= saved_lock_depth
;
3473 sub_preempt_count(PREEMPT_ACTIVE
);
3475 /* we could miss a preemption opportunity between schedule and now */
3477 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3481 #endif /* CONFIG_PREEMPT */
3483 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3486 return try_to_wake_up(curr
->private, mode
, sync
);
3488 EXPORT_SYMBOL(default_wake_function
);
3491 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3492 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3493 * number) then we wake all the non-exclusive tasks and one exclusive task.
3495 * There are circumstances in which we can try to wake a task which has already
3496 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3497 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3499 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3500 int nr_exclusive
, int sync
, void *key
)
3502 struct list_head
*tmp
, *next
;
3504 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3505 wait_queue_t
*curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3506 unsigned flags
= curr
->flags
;
3508 if (curr
->func(curr
, mode
, sync
, key
) &&
3509 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3515 * __wake_up - wake up threads blocked on a waitqueue.
3517 * @mode: which threads
3518 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3519 * @key: is directly passed to the wakeup function
3521 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3522 int nr_exclusive
, void *key
)
3524 unsigned long flags
;
3526 spin_lock_irqsave(&q
->lock
, flags
);
3527 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3528 spin_unlock_irqrestore(&q
->lock
, flags
);
3530 EXPORT_SYMBOL(__wake_up
);
3533 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3535 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3537 __wake_up_common(q
, mode
, 1, 0, NULL
);
3541 * __wake_up_sync - wake up threads blocked on a waitqueue.
3543 * @mode: which threads
3544 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3546 * The sync wakeup differs that the waker knows that it will schedule
3547 * away soon, so while the target thread will be woken up, it will not
3548 * be migrated to another CPU - ie. the two threads are 'synchronized'
3549 * with each other. This can prevent needless bouncing between CPUs.
3551 * On UP it can prevent extra preemption.
3554 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3556 unsigned long flags
;
3562 if (unlikely(!nr_exclusive
))
3565 spin_lock_irqsave(&q
->lock
, flags
);
3566 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3567 spin_unlock_irqrestore(&q
->lock
, flags
);
3569 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3571 void fastcall
complete(struct completion
*x
)
3573 unsigned long flags
;
3575 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3577 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3579 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3581 EXPORT_SYMBOL(complete
);
3583 void fastcall
complete_all(struct completion
*x
)
3585 unsigned long flags
;
3587 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3588 x
->done
+= UINT_MAX
/2;
3589 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3591 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3593 EXPORT_SYMBOL(complete_all
);
3595 void fastcall __sched
wait_for_completion(struct completion
*x
)
3599 spin_lock_irq(&x
->wait
.lock
);
3601 DECLARE_WAITQUEUE(wait
, current
);
3603 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3604 __add_wait_queue_tail(&x
->wait
, &wait
);
3606 __set_current_state(TASK_UNINTERRUPTIBLE
);
3607 spin_unlock_irq(&x
->wait
.lock
);
3609 spin_lock_irq(&x
->wait
.lock
);
3611 __remove_wait_queue(&x
->wait
, &wait
);
3614 spin_unlock_irq(&x
->wait
.lock
);
3616 EXPORT_SYMBOL(wait_for_completion
);
3618 unsigned long fastcall __sched
3619 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3623 spin_lock_irq(&x
->wait
.lock
);
3625 DECLARE_WAITQUEUE(wait
, current
);
3627 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3628 __add_wait_queue_tail(&x
->wait
, &wait
);
3630 __set_current_state(TASK_UNINTERRUPTIBLE
);
3631 spin_unlock_irq(&x
->wait
.lock
);
3632 timeout
= schedule_timeout(timeout
);
3633 spin_lock_irq(&x
->wait
.lock
);
3635 __remove_wait_queue(&x
->wait
, &wait
);
3639 __remove_wait_queue(&x
->wait
, &wait
);
3643 spin_unlock_irq(&x
->wait
.lock
);
3646 EXPORT_SYMBOL(wait_for_completion_timeout
);
3648 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3654 spin_lock_irq(&x
->wait
.lock
);
3656 DECLARE_WAITQUEUE(wait
, current
);
3658 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3659 __add_wait_queue_tail(&x
->wait
, &wait
);
3661 if (signal_pending(current
)) {
3663 __remove_wait_queue(&x
->wait
, &wait
);
3666 __set_current_state(TASK_INTERRUPTIBLE
);
3667 spin_unlock_irq(&x
->wait
.lock
);
3669 spin_lock_irq(&x
->wait
.lock
);
3671 __remove_wait_queue(&x
->wait
, &wait
);
3675 spin_unlock_irq(&x
->wait
.lock
);
3679 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3681 unsigned long fastcall __sched
3682 wait_for_completion_interruptible_timeout(struct completion
*x
,
3683 unsigned long timeout
)
3687 spin_lock_irq(&x
->wait
.lock
);
3689 DECLARE_WAITQUEUE(wait
, current
);
3691 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3692 __add_wait_queue_tail(&x
->wait
, &wait
);
3694 if (signal_pending(current
)) {
3695 timeout
= -ERESTARTSYS
;
3696 __remove_wait_queue(&x
->wait
, &wait
);
3699 __set_current_state(TASK_INTERRUPTIBLE
);
3700 spin_unlock_irq(&x
->wait
.lock
);
3701 timeout
= schedule_timeout(timeout
);
3702 spin_lock_irq(&x
->wait
.lock
);
3704 __remove_wait_queue(&x
->wait
, &wait
);
3708 __remove_wait_queue(&x
->wait
, &wait
);
3712 spin_unlock_irq(&x
->wait
.lock
);
3715 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3718 sleep_on_head(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3720 spin_lock_irqsave(&q
->lock
, *flags
);
3721 __add_wait_queue(q
, wait
);
3722 spin_unlock(&q
->lock
);
3726 sleep_on_tail(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3728 spin_lock_irq(&q
->lock
);
3729 __remove_wait_queue(q
, wait
);
3730 spin_unlock_irqrestore(&q
->lock
, *flags
);
3733 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3735 unsigned long flags
;
3738 init_waitqueue_entry(&wait
, current
);
3740 current
->state
= TASK_INTERRUPTIBLE
;
3742 sleep_on_head(q
, &wait
, &flags
);
3744 sleep_on_tail(q
, &wait
, &flags
);
3746 EXPORT_SYMBOL(interruptible_sleep_on
);
3749 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3751 unsigned long flags
;
3754 init_waitqueue_entry(&wait
, current
);
3756 current
->state
= TASK_INTERRUPTIBLE
;
3758 sleep_on_head(q
, &wait
, &flags
);
3759 timeout
= schedule_timeout(timeout
);
3760 sleep_on_tail(q
, &wait
, &flags
);
3764 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3766 void __sched
sleep_on(wait_queue_head_t
*q
)
3768 unsigned long flags
;
3771 init_waitqueue_entry(&wait
, current
);
3773 current
->state
= TASK_UNINTERRUPTIBLE
;
3775 sleep_on_head(q
, &wait
, &flags
);
3777 sleep_on_tail(q
, &wait
, &flags
);
3779 EXPORT_SYMBOL(sleep_on
);
3781 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3783 unsigned long flags
;
3786 init_waitqueue_entry(&wait
, current
);
3788 current
->state
= TASK_UNINTERRUPTIBLE
;
3790 sleep_on_head(q
, &wait
, &flags
);
3791 timeout
= schedule_timeout(timeout
);
3792 sleep_on_tail(q
, &wait
, &flags
);
3796 EXPORT_SYMBOL(sleep_on_timeout
);
3798 #ifdef CONFIG_RT_MUTEXES
3801 * rt_mutex_setprio - set the current priority of a task
3803 * @prio: prio value (kernel-internal form)
3805 * This function changes the 'effective' priority of a task. It does
3806 * not touch ->normal_prio like __setscheduler().
3808 * Used by the rt_mutex code to implement priority inheritance logic.
3810 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3812 unsigned long flags
;
3817 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3819 rq
= task_rq_lock(p
, &flags
);
3823 on_rq
= p
->se
.on_rq
;
3825 dequeue_task(rq
, p
, 0, now
);
3828 p
->sched_class
= &rt_sched_class
;
3830 p
->sched_class
= &fair_sched_class
;
3835 enqueue_task(rq
, p
, 0, now
);
3837 * Reschedule if we are currently running on this runqueue and
3838 * our priority decreased, or if we are not currently running on
3839 * this runqueue and our priority is higher than the current's
3841 if (task_running(rq
, p
)) {
3842 if (p
->prio
> oldprio
)
3843 resched_task(rq
->curr
);
3845 check_preempt_curr(rq
, p
);
3848 task_rq_unlock(rq
, &flags
);
3853 void set_user_nice(struct task_struct
*p
, long nice
)
3855 int old_prio
, delta
, on_rq
;
3856 unsigned long flags
;
3860 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3863 * We have to be careful, if called from sys_setpriority(),
3864 * the task might be in the middle of scheduling on another CPU.
3866 rq
= task_rq_lock(p
, &flags
);
3869 * The RT priorities are set via sched_setscheduler(), but we still
3870 * allow the 'normal' nice value to be set - but as expected
3871 * it wont have any effect on scheduling until the task is
3872 * SCHED_FIFO/SCHED_RR:
3874 if (task_has_rt_policy(p
)) {
3875 p
->static_prio
= NICE_TO_PRIO(nice
);
3878 on_rq
= p
->se
.on_rq
;
3880 dequeue_task(rq
, p
, 0, now
);
3881 dec_load(rq
, p
, now
);
3884 p
->static_prio
= NICE_TO_PRIO(nice
);
3887 p
->prio
= effective_prio(p
);
3888 delta
= p
->prio
- old_prio
;
3891 enqueue_task(rq
, p
, 0, now
);
3892 inc_load(rq
, p
, now
);
3894 * If the task increased its priority or is running and
3895 * lowered its priority, then reschedule its CPU:
3897 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3898 resched_task(rq
->curr
);
3901 task_rq_unlock(rq
, &flags
);
3903 EXPORT_SYMBOL(set_user_nice
);
3906 * can_nice - check if a task can reduce its nice value
3910 int can_nice(const struct task_struct
*p
, const int nice
)
3912 /* convert nice value [19,-20] to rlimit style value [1,40] */
3913 int nice_rlim
= 20 - nice
;
3915 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3916 capable(CAP_SYS_NICE
));
3919 #ifdef __ARCH_WANT_SYS_NICE
3922 * sys_nice - change the priority of the current process.
3923 * @increment: priority increment
3925 * sys_setpriority is a more generic, but much slower function that
3926 * does similar things.
3928 asmlinkage
long sys_nice(int increment
)
3933 * Setpriority might change our priority at the same moment.
3934 * We don't have to worry. Conceptually one call occurs first
3935 * and we have a single winner.
3937 if (increment
< -40)
3942 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3948 if (increment
< 0 && !can_nice(current
, nice
))
3951 retval
= security_task_setnice(current
, nice
);
3955 set_user_nice(current
, nice
);
3962 * task_prio - return the priority value of a given task.
3963 * @p: the task in question.
3965 * This is the priority value as seen by users in /proc.
3966 * RT tasks are offset by -200. Normal tasks are centered
3967 * around 0, value goes from -16 to +15.
3969 int task_prio(const struct task_struct
*p
)
3971 return p
->prio
- MAX_RT_PRIO
;
3975 * task_nice - return the nice value of a given task.
3976 * @p: the task in question.
3978 int task_nice(const struct task_struct
*p
)
3980 return TASK_NICE(p
);
3982 EXPORT_SYMBOL_GPL(task_nice
);
3985 * idle_cpu - is a given cpu idle currently?
3986 * @cpu: the processor in question.
3988 int idle_cpu(int cpu
)
3990 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
3994 * idle_task - return the idle task for a given cpu.
3995 * @cpu: the processor in question.
3997 struct task_struct
*idle_task(int cpu
)
3999 return cpu_rq(cpu
)->idle
;
4003 * find_process_by_pid - find a process with a matching PID value.
4004 * @pid: the pid in question.
4006 static inline struct task_struct
*find_process_by_pid(pid_t pid
)
4008 return pid
? find_task_by_pid(pid
) : current
;
4011 /* Actually do priority change: must hold rq lock. */
4013 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4015 BUG_ON(p
->se
.on_rq
);
4018 switch (p
->policy
) {
4022 p
->sched_class
= &fair_sched_class
;
4026 p
->sched_class
= &rt_sched_class
;
4030 p
->rt_priority
= prio
;
4031 p
->normal_prio
= normal_prio(p
);
4032 /* we are holding p->pi_lock already */
4033 p
->prio
= rt_mutex_getprio(p
);
4038 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4039 * @p: the task in question.
4040 * @policy: new policy.
4041 * @param: structure containing the new RT priority.
4043 * NOTE that the task may be already dead.
4045 int sched_setscheduler(struct task_struct
*p
, int policy
,
4046 struct sched_param
*param
)
4048 int retval
, oldprio
, oldpolicy
= -1, on_rq
;
4049 unsigned long flags
;
4052 /* may grab non-irq protected spin_locks */
4053 BUG_ON(in_interrupt());
4055 /* double check policy once rq lock held */
4057 policy
= oldpolicy
= p
->policy
;
4058 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4059 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4060 policy
!= SCHED_IDLE
)
4063 * Valid priorities for SCHED_FIFO and SCHED_RR are
4064 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4065 * SCHED_BATCH and SCHED_IDLE is 0.
4067 if (param
->sched_priority
< 0 ||
4068 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4069 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4071 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4075 * Allow unprivileged RT tasks to decrease priority:
4077 if (!capable(CAP_SYS_NICE
)) {
4078 if (rt_policy(policy
)) {
4079 unsigned long rlim_rtprio
;
4081 if (!lock_task_sighand(p
, &flags
))
4083 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4084 unlock_task_sighand(p
, &flags
);
4086 /* can't set/change the rt policy */
4087 if (policy
!= p
->policy
&& !rlim_rtprio
)
4090 /* can't increase priority */
4091 if (param
->sched_priority
> p
->rt_priority
&&
4092 param
->sched_priority
> rlim_rtprio
)
4096 * Like positive nice levels, dont allow tasks to
4097 * move out of SCHED_IDLE either:
4099 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4102 /* can't change other user's priorities */
4103 if ((current
->euid
!= p
->euid
) &&
4104 (current
->euid
!= p
->uid
))
4108 retval
= security_task_setscheduler(p
, policy
, param
);
4112 * make sure no PI-waiters arrive (or leave) while we are
4113 * changing the priority of the task:
4115 spin_lock_irqsave(&p
->pi_lock
, flags
);
4117 * To be able to change p->policy safely, the apropriate
4118 * runqueue lock must be held.
4120 rq
= __task_rq_lock(p
);
4121 /* recheck policy now with rq lock held */
4122 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4123 policy
= oldpolicy
= -1;
4124 __task_rq_unlock(rq
);
4125 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4128 on_rq
= p
->se
.on_rq
;
4130 deactivate_task(rq
, p
, 0);
4132 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4134 activate_task(rq
, p
, 0);
4136 * Reschedule if we are currently running on this runqueue and
4137 * our priority decreased, or if we are not currently running on
4138 * this runqueue and our priority is higher than the current's
4140 if (task_running(rq
, p
)) {
4141 if (p
->prio
> oldprio
)
4142 resched_task(rq
->curr
);
4144 check_preempt_curr(rq
, p
);
4147 __task_rq_unlock(rq
);
4148 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4150 rt_mutex_adjust_pi(p
);
4154 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4157 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4159 struct sched_param lparam
;
4160 struct task_struct
*p
;
4163 if (!param
|| pid
< 0)
4165 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4170 p
= find_process_by_pid(pid
);
4172 retval
= sched_setscheduler(p
, policy
, &lparam
);
4179 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4180 * @pid: the pid in question.
4181 * @policy: new policy.
4182 * @param: structure containing the new RT priority.
4184 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4185 struct sched_param __user
*param
)
4187 /* negative values for policy are not valid */
4191 return do_sched_setscheduler(pid
, policy
, param
);
4195 * sys_sched_setparam - set/change the RT priority of a thread
4196 * @pid: the pid in question.
4197 * @param: structure containing the new RT priority.
4199 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4201 return do_sched_setscheduler(pid
, -1, param
);
4205 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4206 * @pid: the pid in question.
4208 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4210 struct task_struct
*p
;
4211 int retval
= -EINVAL
;
4217 read_lock(&tasklist_lock
);
4218 p
= find_process_by_pid(pid
);
4220 retval
= security_task_getscheduler(p
);
4224 read_unlock(&tasklist_lock
);
4231 * sys_sched_getscheduler - get the RT priority of a thread
4232 * @pid: the pid in question.
4233 * @param: structure containing the RT priority.
4235 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4237 struct sched_param lp
;
4238 struct task_struct
*p
;
4239 int retval
= -EINVAL
;
4241 if (!param
|| pid
< 0)
4244 read_lock(&tasklist_lock
);
4245 p
= find_process_by_pid(pid
);
4250 retval
= security_task_getscheduler(p
);
4254 lp
.sched_priority
= p
->rt_priority
;
4255 read_unlock(&tasklist_lock
);
4258 * This one might sleep, we cannot do it with a spinlock held ...
4260 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4266 read_unlock(&tasklist_lock
);
4270 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4272 cpumask_t cpus_allowed
;
4273 struct task_struct
*p
;
4276 mutex_lock(&sched_hotcpu_mutex
);
4277 read_lock(&tasklist_lock
);
4279 p
= find_process_by_pid(pid
);
4281 read_unlock(&tasklist_lock
);
4282 mutex_unlock(&sched_hotcpu_mutex
);
4287 * It is not safe to call set_cpus_allowed with the
4288 * tasklist_lock held. We will bump the task_struct's
4289 * usage count and then drop tasklist_lock.
4292 read_unlock(&tasklist_lock
);
4295 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4296 !capable(CAP_SYS_NICE
))
4299 retval
= security_task_setscheduler(p
, 0, NULL
);
4303 cpus_allowed
= cpuset_cpus_allowed(p
);
4304 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4305 retval
= set_cpus_allowed(p
, new_mask
);
4309 mutex_unlock(&sched_hotcpu_mutex
);
4313 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4314 cpumask_t
*new_mask
)
4316 if (len
< sizeof(cpumask_t
)) {
4317 memset(new_mask
, 0, sizeof(cpumask_t
));
4318 } else if (len
> sizeof(cpumask_t
)) {
4319 len
= sizeof(cpumask_t
);
4321 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4325 * sys_sched_setaffinity - set the cpu affinity of a process
4326 * @pid: pid of the process
4327 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4328 * @user_mask_ptr: user-space pointer to the new cpu mask
4330 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4331 unsigned long __user
*user_mask_ptr
)
4336 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4340 return sched_setaffinity(pid
, new_mask
);
4344 * Represents all cpu's present in the system
4345 * In systems capable of hotplug, this map could dynamically grow
4346 * as new cpu's are detected in the system via any platform specific
4347 * method, such as ACPI for e.g.
4350 cpumask_t cpu_present_map __read_mostly
;
4351 EXPORT_SYMBOL(cpu_present_map
);
4354 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4355 EXPORT_SYMBOL(cpu_online_map
);
4357 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4358 EXPORT_SYMBOL(cpu_possible_map
);
4361 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4363 struct task_struct
*p
;
4366 mutex_lock(&sched_hotcpu_mutex
);
4367 read_lock(&tasklist_lock
);
4370 p
= find_process_by_pid(pid
);
4374 retval
= security_task_getscheduler(p
);
4378 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4381 read_unlock(&tasklist_lock
);
4382 mutex_unlock(&sched_hotcpu_mutex
);
4390 * sys_sched_getaffinity - get the cpu affinity of a process
4391 * @pid: pid of the process
4392 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4393 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4395 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4396 unsigned long __user
*user_mask_ptr
)
4401 if (len
< sizeof(cpumask_t
))
4404 ret
= sched_getaffinity(pid
, &mask
);
4408 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4411 return sizeof(cpumask_t
);
4415 * sys_sched_yield - yield the current processor to other threads.
4417 * This function yields the current CPU to other tasks. If there are no
4418 * other threads running on this CPU then this function will return.
4420 asmlinkage
long sys_sched_yield(void)
4422 struct rq
*rq
= this_rq_lock();
4424 schedstat_inc(rq
, yld_cnt
);
4425 if (unlikely(rq
->nr_running
== 1))
4426 schedstat_inc(rq
, yld_act_empty
);
4428 current
->sched_class
->yield_task(rq
, current
);
4431 * Since we are going to call schedule() anyway, there's
4432 * no need to preempt or enable interrupts:
4434 __release(rq
->lock
);
4435 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4436 _raw_spin_unlock(&rq
->lock
);
4437 preempt_enable_no_resched();
4444 static void __cond_resched(void)
4446 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4447 __might_sleep(__FILE__
, __LINE__
);
4450 * The BKS might be reacquired before we have dropped
4451 * PREEMPT_ACTIVE, which could trigger a second
4452 * cond_resched() call.
4455 add_preempt_count(PREEMPT_ACTIVE
);
4457 sub_preempt_count(PREEMPT_ACTIVE
);
4458 } while (need_resched());
4461 int __sched
cond_resched(void)
4463 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4464 system_state
== SYSTEM_RUNNING
) {
4470 EXPORT_SYMBOL(cond_resched
);
4473 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4474 * call schedule, and on return reacquire the lock.
4476 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4477 * operations here to prevent schedule() from being called twice (once via
4478 * spin_unlock(), once by hand).
4480 int cond_resched_lock(spinlock_t
*lock
)
4484 if (need_lockbreak(lock
)) {
4490 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4491 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4492 _raw_spin_unlock(lock
);
4493 preempt_enable_no_resched();
4500 EXPORT_SYMBOL(cond_resched_lock
);
4502 int __sched
cond_resched_softirq(void)
4504 BUG_ON(!in_softirq());
4506 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4514 EXPORT_SYMBOL(cond_resched_softirq
);
4517 * yield - yield the current processor to other threads.
4519 * This is a shortcut for kernel-space yielding - it marks the
4520 * thread runnable and calls sys_sched_yield().
4522 void __sched
yield(void)
4524 set_current_state(TASK_RUNNING
);
4527 EXPORT_SYMBOL(yield
);
4530 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4531 * that process accounting knows that this is a task in IO wait state.
4533 * But don't do that if it is a deliberate, throttling IO wait (this task
4534 * has set its backing_dev_info: the queue against which it should throttle)
4536 void __sched
io_schedule(void)
4538 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4540 delayacct_blkio_start();
4541 atomic_inc(&rq
->nr_iowait
);
4543 atomic_dec(&rq
->nr_iowait
);
4544 delayacct_blkio_end();
4546 EXPORT_SYMBOL(io_schedule
);
4548 long __sched
io_schedule_timeout(long timeout
)
4550 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4553 delayacct_blkio_start();
4554 atomic_inc(&rq
->nr_iowait
);
4555 ret
= schedule_timeout(timeout
);
4556 atomic_dec(&rq
->nr_iowait
);
4557 delayacct_blkio_end();
4562 * sys_sched_get_priority_max - return maximum RT priority.
4563 * @policy: scheduling class.
4565 * this syscall returns the maximum rt_priority that can be used
4566 * by a given scheduling class.
4568 asmlinkage
long sys_sched_get_priority_max(int policy
)
4575 ret
= MAX_USER_RT_PRIO
-1;
4587 * sys_sched_get_priority_min - return minimum RT priority.
4588 * @policy: scheduling class.
4590 * this syscall returns the minimum rt_priority that can be used
4591 * by a given scheduling class.
4593 asmlinkage
long sys_sched_get_priority_min(int policy
)
4611 * sys_sched_rr_get_interval - return the default timeslice of a process.
4612 * @pid: pid of the process.
4613 * @interval: userspace pointer to the timeslice value.
4615 * this syscall writes the default timeslice value of a given process
4616 * into the user-space timespec buffer. A value of '0' means infinity.
4619 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4621 struct task_struct
*p
;
4622 int retval
= -EINVAL
;
4629 read_lock(&tasklist_lock
);
4630 p
= find_process_by_pid(pid
);
4634 retval
= security_task_getscheduler(p
);
4638 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4639 0 : static_prio_timeslice(p
->static_prio
), &t
);
4640 read_unlock(&tasklist_lock
);
4641 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4645 read_unlock(&tasklist_lock
);
4649 static const char stat_nam
[] = "RSDTtZX";
4651 static void show_task(struct task_struct
*p
)
4653 unsigned long free
= 0;
4656 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4657 printk("%-13.13s %c", p
->comm
,
4658 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4659 #if BITS_PER_LONG == 32
4660 if (state
== TASK_RUNNING
)
4661 printk(" running ");
4663 printk(" %08lx ", thread_saved_pc(p
));
4665 if (state
== TASK_RUNNING
)
4666 printk(" running task ");
4668 printk(" %016lx ", thread_saved_pc(p
));
4670 #ifdef CONFIG_DEBUG_STACK_USAGE
4672 unsigned long *n
= end_of_stack(p
);
4675 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4678 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4680 if (state
!= TASK_RUNNING
)
4681 show_stack(p
, NULL
);
4684 void show_state_filter(unsigned long state_filter
)
4686 struct task_struct
*g
, *p
;
4688 #if BITS_PER_LONG == 32
4690 " task PC stack pid father\n");
4693 " task PC stack pid father\n");
4695 read_lock(&tasklist_lock
);
4696 do_each_thread(g
, p
) {
4698 * reset the NMI-timeout, listing all files on a slow
4699 * console might take alot of time:
4701 touch_nmi_watchdog();
4702 if (!state_filter
|| (p
->state
& state_filter
))
4704 } while_each_thread(g
, p
);
4706 touch_all_softlockup_watchdogs();
4708 #ifdef CONFIG_SCHED_DEBUG
4709 sysrq_sched_debug_show();
4711 read_unlock(&tasklist_lock
);
4713 * Only show locks if all tasks are dumped:
4715 if (state_filter
== -1)
4716 debug_show_all_locks();
4719 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4721 idle
->sched_class
= &idle_sched_class
;
4725 * init_idle - set up an idle thread for a given CPU
4726 * @idle: task in question
4727 * @cpu: cpu the idle task belongs to
4729 * NOTE: this function does not set the idle thread's NEED_RESCHED
4730 * flag, to make booting more robust.
4732 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4734 struct rq
*rq
= cpu_rq(cpu
);
4735 unsigned long flags
;
4738 idle
->se
.exec_start
= sched_clock();
4740 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4741 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4742 __set_task_cpu(idle
, cpu
);
4744 spin_lock_irqsave(&rq
->lock
, flags
);
4745 rq
->curr
= rq
->idle
= idle
;
4746 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4749 spin_unlock_irqrestore(&rq
->lock
, flags
);
4751 /* Set the preempt count _outside_ the spinlocks! */
4752 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4753 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4755 task_thread_info(idle
)->preempt_count
= 0;
4758 * The idle tasks have their own, simple scheduling class:
4760 idle
->sched_class
= &idle_sched_class
;
4764 * In a system that switches off the HZ timer nohz_cpu_mask
4765 * indicates which cpus entered this state. This is used
4766 * in the rcu update to wait only for active cpus. For system
4767 * which do not switch off the HZ timer nohz_cpu_mask should
4768 * always be CPU_MASK_NONE.
4770 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4773 * Increase the granularity value when there are more CPUs,
4774 * because with more CPUs the 'effective latency' as visible
4775 * to users decreases. But the relationship is not linear,
4776 * so pick a second-best guess by going with the log2 of the
4779 * This idea comes from the SD scheduler of Con Kolivas:
4781 static inline void sched_init_granularity(void)
4783 unsigned int factor
= 1 + ilog2(num_online_cpus());
4784 const unsigned long gran_limit
= 100000000;
4786 sysctl_sched_granularity
*= factor
;
4787 if (sysctl_sched_granularity
> gran_limit
)
4788 sysctl_sched_granularity
= gran_limit
;
4790 sysctl_sched_runtime_limit
= sysctl_sched_granularity
* 4;
4791 sysctl_sched_wakeup_granularity
= sysctl_sched_granularity
/ 2;
4796 * This is how migration works:
4798 * 1) we queue a struct migration_req structure in the source CPU's
4799 * runqueue and wake up that CPU's migration thread.
4800 * 2) we down() the locked semaphore => thread blocks.
4801 * 3) migration thread wakes up (implicitly it forces the migrated
4802 * thread off the CPU)
4803 * 4) it gets the migration request and checks whether the migrated
4804 * task is still in the wrong runqueue.
4805 * 5) if it's in the wrong runqueue then the migration thread removes
4806 * it and puts it into the right queue.
4807 * 6) migration thread up()s the semaphore.
4808 * 7) we wake up and the migration is done.
4812 * Change a given task's CPU affinity. Migrate the thread to a
4813 * proper CPU and schedule it away if the CPU it's executing on
4814 * is removed from the allowed bitmask.
4816 * NOTE: the caller must have a valid reference to the task, the
4817 * task must not exit() & deallocate itself prematurely. The
4818 * call is not atomic; no spinlocks may be held.
4820 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4822 struct migration_req req
;
4823 unsigned long flags
;
4827 rq
= task_rq_lock(p
, &flags
);
4828 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4833 p
->cpus_allowed
= new_mask
;
4834 /* Can the task run on the task's current CPU? If so, we're done */
4835 if (cpu_isset(task_cpu(p
), new_mask
))
4838 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4839 /* Need help from migration thread: drop lock and wait. */
4840 task_rq_unlock(rq
, &flags
);
4841 wake_up_process(rq
->migration_thread
);
4842 wait_for_completion(&req
.done
);
4843 tlb_migrate_finish(p
->mm
);
4847 task_rq_unlock(rq
, &flags
);
4851 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4854 * Move (not current) task off this cpu, onto dest cpu. We're doing
4855 * this because either it can't run here any more (set_cpus_allowed()
4856 * away from this CPU, or CPU going down), or because we're
4857 * attempting to rebalance this task on exec (sched_exec).
4859 * So we race with normal scheduler movements, but that's OK, as long
4860 * as the task is no longer on this CPU.
4862 * Returns non-zero if task was successfully migrated.
4864 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4866 struct rq
*rq_dest
, *rq_src
;
4869 if (unlikely(cpu_is_offline(dest_cpu
)))
4872 rq_src
= cpu_rq(src_cpu
);
4873 rq_dest
= cpu_rq(dest_cpu
);
4875 double_rq_lock(rq_src
, rq_dest
);
4876 /* Already moved. */
4877 if (task_cpu(p
) != src_cpu
)
4879 /* Affinity changed (again). */
4880 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4883 on_rq
= p
->se
.on_rq
;
4885 deactivate_task(rq_src
, p
, 0);
4886 set_task_cpu(p
, dest_cpu
);
4888 activate_task(rq_dest
, p
, 0);
4889 check_preempt_curr(rq_dest
, p
);
4893 double_rq_unlock(rq_src
, rq_dest
);
4898 * migration_thread - this is a highprio system thread that performs
4899 * thread migration by bumping thread off CPU then 'pushing' onto
4902 static int migration_thread(void *data
)
4904 int cpu
= (long)data
;
4908 BUG_ON(rq
->migration_thread
!= current
);
4910 set_current_state(TASK_INTERRUPTIBLE
);
4911 while (!kthread_should_stop()) {
4912 struct migration_req
*req
;
4913 struct list_head
*head
;
4915 spin_lock_irq(&rq
->lock
);
4917 if (cpu_is_offline(cpu
)) {
4918 spin_unlock_irq(&rq
->lock
);
4922 if (rq
->active_balance
) {
4923 active_load_balance(rq
, cpu
);
4924 rq
->active_balance
= 0;
4927 head
= &rq
->migration_queue
;
4929 if (list_empty(head
)) {
4930 spin_unlock_irq(&rq
->lock
);
4932 set_current_state(TASK_INTERRUPTIBLE
);
4935 req
= list_entry(head
->next
, struct migration_req
, list
);
4936 list_del_init(head
->next
);
4938 spin_unlock(&rq
->lock
);
4939 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
4942 complete(&req
->done
);
4944 __set_current_state(TASK_RUNNING
);
4948 /* Wait for kthread_stop */
4949 set_current_state(TASK_INTERRUPTIBLE
);
4950 while (!kthread_should_stop()) {
4952 set_current_state(TASK_INTERRUPTIBLE
);
4954 __set_current_state(TASK_RUNNING
);
4958 #ifdef CONFIG_HOTPLUG_CPU
4960 * Figure out where task on dead CPU should go, use force if neccessary.
4961 * NOTE: interrupts should be disabled by the caller
4963 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
4965 unsigned long flags
;
4972 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
4973 cpus_and(mask
, mask
, p
->cpus_allowed
);
4974 dest_cpu
= any_online_cpu(mask
);
4976 /* On any allowed CPU? */
4977 if (dest_cpu
== NR_CPUS
)
4978 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
4980 /* No more Mr. Nice Guy. */
4981 if (dest_cpu
== NR_CPUS
) {
4982 rq
= task_rq_lock(p
, &flags
);
4983 cpus_setall(p
->cpus_allowed
);
4984 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
4985 task_rq_unlock(rq
, &flags
);
4988 * Don't tell them about moving exiting tasks or
4989 * kernel threads (both mm NULL), since they never
4992 if (p
->mm
&& printk_ratelimit())
4993 printk(KERN_INFO
"process %d (%s) no "
4994 "longer affine to cpu%d\n",
4995 p
->pid
, p
->comm
, dead_cpu
);
4997 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5002 * While a dead CPU has no uninterruptible tasks queued at this point,
5003 * it might still have a nonzero ->nr_uninterruptible counter, because
5004 * for performance reasons the counter is not stricly tracking tasks to
5005 * their home CPUs. So we just add the counter to another CPU's counter,
5006 * to keep the global sum constant after CPU-down:
5008 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5010 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5011 unsigned long flags
;
5013 local_irq_save(flags
);
5014 double_rq_lock(rq_src
, rq_dest
);
5015 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5016 rq_src
->nr_uninterruptible
= 0;
5017 double_rq_unlock(rq_src
, rq_dest
);
5018 local_irq_restore(flags
);
5021 /* Run through task list and migrate tasks from the dead cpu. */
5022 static void migrate_live_tasks(int src_cpu
)
5024 struct task_struct
*p
, *t
;
5026 write_lock_irq(&tasklist_lock
);
5028 do_each_thread(t
, p
) {
5032 if (task_cpu(p
) == src_cpu
)
5033 move_task_off_dead_cpu(src_cpu
, p
);
5034 } while_each_thread(t
, p
);
5036 write_unlock_irq(&tasklist_lock
);
5040 * Schedules idle task to be the next runnable task on current CPU.
5041 * It does so by boosting its priority to highest possible and adding it to
5042 * the _front_ of the runqueue. Used by CPU offline code.
5044 void sched_idle_next(void)
5046 int this_cpu
= smp_processor_id();
5047 struct rq
*rq
= cpu_rq(this_cpu
);
5048 struct task_struct
*p
= rq
->idle
;
5049 unsigned long flags
;
5051 /* cpu has to be offline */
5052 BUG_ON(cpu_online(this_cpu
));
5055 * Strictly not necessary since rest of the CPUs are stopped by now
5056 * and interrupts disabled on the current cpu.
5058 spin_lock_irqsave(&rq
->lock
, flags
);
5060 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5062 /* Add idle task to the _front_ of its priority queue: */
5063 activate_idle_task(p
, rq
);
5065 spin_unlock_irqrestore(&rq
->lock
, flags
);
5069 * Ensures that the idle task is using init_mm right before its cpu goes
5072 void idle_task_exit(void)
5074 struct mm_struct
*mm
= current
->active_mm
;
5076 BUG_ON(cpu_online(smp_processor_id()));
5079 switch_mm(mm
, &init_mm
, current
);
5083 /* called under rq->lock with disabled interrupts */
5084 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5086 struct rq
*rq
= cpu_rq(dead_cpu
);
5088 /* Must be exiting, otherwise would be on tasklist. */
5089 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5091 /* Cannot have done final schedule yet: would have vanished. */
5092 BUG_ON(p
->state
== TASK_DEAD
);
5097 * Drop lock around migration; if someone else moves it,
5098 * that's OK. No task can be added to this CPU, so iteration is
5100 * NOTE: interrupts should be left disabled --dev@
5102 spin_unlock(&rq
->lock
);
5103 move_task_off_dead_cpu(dead_cpu
, p
);
5104 spin_lock(&rq
->lock
);
5109 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5110 static void migrate_dead_tasks(unsigned int dead_cpu
)
5112 struct rq
*rq
= cpu_rq(dead_cpu
);
5113 struct task_struct
*next
;
5116 if (!rq
->nr_running
)
5118 next
= pick_next_task(rq
, rq
->curr
, rq_clock(rq
));
5121 migrate_dead(dead_cpu
, next
);
5124 #endif /* CONFIG_HOTPLUG_CPU */
5127 * migration_call - callback that gets triggered when a CPU is added.
5128 * Here we can start up the necessary migration thread for the new CPU.
5130 static int __cpuinit
5131 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5133 struct task_struct
*p
;
5134 int cpu
= (long)hcpu
;
5135 unsigned long flags
;
5139 case CPU_LOCK_ACQUIRE
:
5140 mutex_lock(&sched_hotcpu_mutex
);
5143 case CPU_UP_PREPARE
:
5144 case CPU_UP_PREPARE_FROZEN
:
5145 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5148 kthread_bind(p
, cpu
);
5149 /* Must be high prio: stop_machine expects to yield to it. */
5150 rq
= task_rq_lock(p
, &flags
);
5151 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5152 task_rq_unlock(rq
, &flags
);
5153 cpu_rq(cpu
)->migration_thread
= p
;
5157 case CPU_ONLINE_FROZEN
:
5158 /* Strictly unneccessary, as first user will wake it. */
5159 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5162 #ifdef CONFIG_HOTPLUG_CPU
5163 case CPU_UP_CANCELED
:
5164 case CPU_UP_CANCELED_FROZEN
:
5165 if (!cpu_rq(cpu
)->migration_thread
)
5167 /* Unbind it from offline cpu so it can run. Fall thru. */
5168 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5169 any_online_cpu(cpu_online_map
));
5170 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5171 cpu_rq(cpu
)->migration_thread
= NULL
;
5175 case CPU_DEAD_FROZEN
:
5176 migrate_live_tasks(cpu
);
5178 kthread_stop(rq
->migration_thread
);
5179 rq
->migration_thread
= NULL
;
5180 /* Idle task back to normal (off runqueue, low prio) */
5181 rq
= task_rq_lock(rq
->idle
, &flags
);
5182 deactivate_task(rq
, rq
->idle
, 0);
5183 rq
->idle
->static_prio
= MAX_PRIO
;
5184 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5185 rq
->idle
->sched_class
= &idle_sched_class
;
5186 migrate_dead_tasks(cpu
);
5187 task_rq_unlock(rq
, &flags
);
5188 migrate_nr_uninterruptible(rq
);
5189 BUG_ON(rq
->nr_running
!= 0);
5191 /* No need to migrate the tasks: it was best-effort if
5192 * they didn't take sched_hotcpu_mutex. Just wake up
5193 * the requestors. */
5194 spin_lock_irq(&rq
->lock
);
5195 while (!list_empty(&rq
->migration_queue
)) {
5196 struct migration_req
*req
;
5198 req
= list_entry(rq
->migration_queue
.next
,
5199 struct migration_req
, list
);
5200 list_del_init(&req
->list
);
5201 complete(&req
->done
);
5203 spin_unlock_irq(&rq
->lock
);
5206 case CPU_LOCK_RELEASE
:
5207 mutex_unlock(&sched_hotcpu_mutex
);
5213 /* Register at highest priority so that task migration (migrate_all_tasks)
5214 * happens before everything else.
5216 static struct notifier_block __cpuinitdata migration_notifier
= {
5217 .notifier_call
= migration_call
,
5221 int __init
migration_init(void)
5223 void *cpu
= (void *)(long)smp_processor_id();
5226 /* Start one for the boot CPU: */
5227 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5228 BUG_ON(err
== NOTIFY_BAD
);
5229 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5230 register_cpu_notifier(&migration_notifier
);
5238 /* Number of possible processor ids */
5239 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5240 EXPORT_SYMBOL(nr_cpu_ids
);
5242 #undef SCHED_DOMAIN_DEBUG
5243 #ifdef SCHED_DOMAIN_DEBUG
5244 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5249 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5253 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5258 struct sched_group
*group
= sd
->groups
;
5259 cpumask_t groupmask
;
5261 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5262 cpus_clear(groupmask
);
5265 for (i
= 0; i
< level
+ 1; i
++)
5267 printk("domain %d: ", level
);
5269 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5270 printk("does not load-balance\n");
5272 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5277 printk("span %s\n", str
);
5279 if (!cpu_isset(cpu
, sd
->span
))
5280 printk(KERN_ERR
"ERROR: domain->span does not contain "
5282 if (!cpu_isset(cpu
, group
->cpumask
))
5283 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5287 for (i
= 0; i
< level
+ 2; i
++)
5293 printk(KERN_ERR
"ERROR: group is NULL\n");
5297 if (!group
->__cpu_power
) {
5299 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5303 if (!cpus_weight(group
->cpumask
)) {
5305 printk(KERN_ERR
"ERROR: empty group\n");
5308 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5310 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5313 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5315 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5318 group
= group
->next
;
5319 } while (group
!= sd
->groups
);
5322 if (!cpus_equal(sd
->span
, groupmask
))
5323 printk(KERN_ERR
"ERROR: groups don't span "
5331 if (!cpus_subset(groupmask
, sd
->span
))
5332 printk(KERN_ERR
"ERROR: parent span is not a superset "
5333 "of domain->span\n");
5338 # define sched_domain_debug(sd, cpu) do { } while (0)
5341 static int sd_degenerate(struct sched_domain
*sd
)
5343 if (cpus_weight(sd
->span
) == 1)
5346 /* Following flags need at least 2 groups */
5347 if (sd
->flags
& (SD_LOAD_BALANCE
|
5348 SD_BALANCE_NEWIDLE
|
5352 SD_SHARE_PKG_RESOURCES
)) {
5353 if (sd
->groups
!= sd
->groups
->next
)
5357 /* Following flags don't use groups */
5358 if (sd
->flags
& (SD_WAKE_IDLE
|
5367 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5369 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5371 if (sd_degenerate(parent
))
5374 if (!cpus_equal(sd
->span
, parent
->span
))
5377 /* Does parent contain flags not in child? */
5378 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5379 if (cflags
& SD_WAKE_AFFINE
)
5380 pflags
&= ~SD_WAKE_BALANCE
;
5381 /* Flags needing groups don't count if only 1 group in parent */
5382 if (parent
->groups
== parent
->groups
->next
) {
5383 pflags
&= ~(SD_LOAD_BALANCE
|
5384 SD_BALANCE_NEWIDLE
|
5388 SD_SHARE_PKG_RESOURCES
);
5390 if (~cflags
& pflags
)
5397 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5398 * hold the hotplug lock.
5400 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5402 struct rq
*rq
= cpu_rq(cpu
);
5403 struct sched_domain
*tmp
;
5405 /* Remove the sched domains which do not contribute to scheduling. */
5406 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5407 struct sched_domain
*parent
= tmp
->parent
;
5410 if (sd_parent_degenerate(tmp
, parent
)) {
5411 tmp
->parent
= parent
->parent
;
5413 parent
->parent
->child
= tmp
;
5417 if (sd
&& sd_degenerate(sd
)) {
5423 sched_domain_debug(sd
, cpu
);
5425 rcu_assign_pointer(rq
->sd
, sd
);
5428 /* cpus with isolated domains */
5429 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5431 /* Setup the mask of cpus configured for isolated domains */
5432 static int __init
isolated_cpu_setup(char *str
)
5434 int ints
[NR_CPUS
], i
;
5436 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5437 cpus_clear(cpu_isolated_map
);
5438 for (i
= 1; i
<= ints
[0]; i
++)
5439 if (ints
[i
] < NR_CPUS
)
5440 cpu_set(ints
[i
], cpu_isolated_map
);
5444 __setup ("isolcpus=", isolated_cpu_setup
);
5447 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5448 * to a function which identifies what group(along with sched group) a CPU
5449 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5450 * (due to the fact that we keep track of groups covered with a cpumask_t).
5452 * init_sched_build_groups will build a circular linked list of the groups
5453 * covered by the given span, and will set each group's ->cpumask correctly,
5454 * and ->cpu_power to 0.
5457 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5458 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5459 struct sched_group
**sg
))
5461 struct sched_group
*first
= NULL
, *last
= NULL
;
5462 cpumask_t covered
= CPU_MASK_NONE
;
5465 for_each_cpu_mask(i
, span
) {
5466 struct sched_group
*sg
;
5467 int group
= group_fn(i
, cpu_map
, &sg
);
5470 if (cpu_isset(i
, covered
))
5473 sg
->cpumask
= CPU_MASK_NONE
;
5474 sg
->__cpu_power
= 0;
5476 for_each_cpu_mask(j
, span
) {
5477 if (group_fn(j
, cpu_map
, NULL
) != group
)
5480 cpu_set(j
, covered
);
5481 cpu_set(j
, sg
->cpumask
);
5492 #define SD_NODES_PER_DOMAIN 16
5497 * find_next_best_node - find the next node to include in a sched_domain
5498 * @node: node whose sched_domain we're building
5499 * @used_nodes: nodes already in the sched_domain
5501 * Find the next node to include in a given scheduling domain. Simply
5502 * finds the closest node not already in the @used_nodes map.
5504 * Should use nodemask_t.
5506 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5508 int i
, n
, val
, min_val
, best_node
= 0;
5512 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5513 /* Start at @node */
5514 n
= (node
+ i
) % MAX_NUMNODES
;
5516 if (!nr_cpus_node(n
))
5519 /* Skip already used nodes */
5520 if (test_bit(n
, used_nodes
))
5523 /* Simple min distance search */
5524 val
= node_distance(node
, n
);
5526 if (val
< min_val
) {
5532 set_bit(best_node
, used_nodes
);
5537 * sched_domain_node_span - get a cpumask for a node's sched_domain
5538 * @node: node whose cpumask we're constructing
5539 * @size: number of nodes to include in this span
5541 * Given a node, construct a good cpumask for its sched_domain to span. It
5542 * should be one that prevents unnecessary balancing, but also spreads tasks
5545 static cpumask_t
sched_domain_node_span(int node
)
5547 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5548 cpumask_t span
, nodemask
;
5552 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5554 nodemask
= node_to_cpumask(node
);
5555 cpus_or(span
, span
, nodemask
);
5556 set_bit(node
, used_nodes
);
5558 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5559 int next_node
= find_next_best_node(node
, used_nodes
);
5561 nodemask
= node_to_cpumask(next_node
);
5562 cpus_or(span
, span
, nodemask
);
5569 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5572 * SMT sched-domains:
5574 #ifdef CONFIG_SCHED_SMT
5575 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5576 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5578 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5579 struct sched_group
**sg
)
5582 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5588 * multi-core sched-domains:
5590 #ifdef CONFIG_SCHED_MC
5591 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5592 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5595 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5596 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5597 struct sched_group
**sg
)
5600 cpumask_t mask
= cpu_sibling_map
[cpu
];
5601 cpus_and(mask
, mask
, *cpu_map
);
5602 group
= first_cpu(mask
);
5604 *sg
= &per_cpu(sched_group_core
, group
);
5607 #elif defined(CONFIG_SCHED_MC)
5608 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5609 struct sched_group
**sg
)
5612 *sg
= &per_cpu(sched_group_core
, cpu
);
5617 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5618 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5620 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5621 struct sched_group
**sg
)
5624 #ifdef CONFIG_SCHED_MC
5625 cpumask_t mask
= cpu_coregroup_map(cpu
);
5626 cpus_and(mask
, mask
, *cpu_map
);
5627 group
= first_cpu(mask
);
5628 #elif defined(CONFIG_SCHED_SMT)
5629 cpumask_t mask
= cpu_sibling_map
[cpu
];
5630 cpus_and(mask
, mask
, *cpu_map
);
5631 group
= first_cpu(mask
);
5636 *sg
= &per_cpu(sched_group_phys
, group
);
5642 * The init_sched_build_groups can't handle what we want to do with node
5643 * groups, so roll our own. Now each node has its own list of groups which
5644 * gets dynamically allocated.
5646 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5647 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5649 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5650 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5652 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5653 struct sched_group
**sg
)
5655 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5658 cpus_and(nodemask
, nodemask
, *cpu_map
);
5659 group
= first_cpu(nodemask
);
5662 *sg
= &per_cpu(sched_group_allnodes
, group
);
5666 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5668 struct sched_group
*sg
= group_head
;
5674 for_each_cpu_mask(j
, sg
->cpumask
) {
5675 struct sched_domain
*sd
;
5677 sd
= &per_cpu(phys_domains
, j
);
5678 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5680 * Only add "power" once for each
5686 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5689 if (sg
!= group_head
)
5695 /* Free memory allocated for various sched_group structures */
5696 static void free_sched_groups(const cpumask_t
*cpu_map
)
5700 for_each_cpu_mask(cpu
, *cpu_map
) {
5701 struct sched_group
**sched_group_nodes
5702 = sched_group_nodes_bycpu
[cpu
];
5704 if (!sched_group_nodes
)
5707 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5708 cpumask_t nodemask
= node_to_cpumask(i
);
5709 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5711 cpus_and(nodemask
, nodemask
, *cpu_map
);
5712 if (cpus_empty(nodemask
))
5722 if (oldsg
!= sched_group_nodes
[i
])
5725 kfree(sched_group_nodes
);
5726 sched_group_nodes_bycpu
[cpu
] = NULL
;
5730 static void free_sched_groups(const cpumask_t
*cpu_map
)
5736 * Initialize sched groups cpu_power.
5738 * cpu_power indicates the capacity of sched group, which is used while
5739 * distributing the load between different sched groups in a sched domain.
5740 * Typically cpu_power for all the groups in a sched domain will be same unless
5741 * there are asymmetries in the topology. If there are asymmetries, group
5742 * having more cpu_power will pickup more load compared to the group having
5745 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5746 * the maximum number of tasks a group can handle in the presence of other idle
5747 * or lightly loaded groups in the same sched domain.
5749 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
5751 struct sched_domain
*child
;
5752 struct sched_group
*group
;
5754 WARN_ON(!sd
|| !sd
->groups
);
5756 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
5761 sd
->groups
->__cpu_power
= 0;
5764 * For perf policy, if the groups in child domain share resources
5765 * (for example cores sharing some portions of the cache hierarchy
5766 * or SMT), then set this domain groups cpu_power such that each group
5767 * can handle only one task, when there are other idle groups in the
5768 * same sched domain.
5770 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
5772 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
5773 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
5778 * add cpu_power of each child group to this groups cpu_power
5780 group
= child
->groups
;
5782 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
5783 group
= group
->next
;
5784 } while (group
!= child
->groups
);
5788 * Build sched domains for a given set of cpus and attach the sched domains
5789 * to the individual cpus
5791 static int build_sched_domains(const cpumask_t
*cpu_map
)
5795 struct sched_group
**sched_group_nodes
= NULL
;
5796 int sd_allnodes
= 0;
5799 * Allocate the per-node list of sched groups
5801 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
5803 if (!sched_group_nodes
) {
5804 printk(KERN_WARNING
"Can not alloc sched group node list\n");
5807 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
5811 * Set up domains for cpus specified by the cpu_map.
5813 for_each_cpu_mask(i
, *cpu_map
) {
5814 struct sched_domain
*sd
= NULL
, *p
;
5815 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
5817 cpus_and(nodemask
, nodemask
, *cpu_map
);
5820 if (cpus_weight(*cpu_map
) >
5821 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
5822 sd
= &per_cpu(allnodes_domains
, i
);
5823 *sd
= SD_ALLNODES_INIT
;
5824 sd
->span
= *cpu_map
;
5825 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
5831 sd
= &per_cpu(node_domains
, i
);
5833 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
5837 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5841 sd
= &per_cpu(phys_domains
, i
);
5843 sd
->span
= nodemask
;
5847 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
5849 #ifdef CONFIG_SCHED_MC
5851 sd
= &per_cpu(core_domains
, i
);
5853 sd
->span
= cpu_coregroup_map(i
);
5854 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5857 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
5860 #ifdef CONFIG_SCHED_SMT
5862 sd
= &per_cpu(cpu_domains
, i
);
5863 *sd
= SD_SIBLING_INIT
;
5864 sd
->span
= cpu_sibling_map
[i
];
5865 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5868 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
5872 #ifdef CONFIG_SCHED_SMT
5873 /* Set up CPU (sibling) groups */
5874 for_each_cpu_mask(i
, *cpu_map
) {
5875 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
5876 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
5877 if (i
!= first_cpu(this_sibling_map
))
5880 init_sched_build_groups(this_sibling_map
, cpu_map
,
5885 #ifdef CONFIG_SCHED_MC
5886 /* Set up multi-core groups */
5887 for_each_cpu_mask(i
, *cpu_map
) {
5888 cpumask_t this_core_map
= cpu_coregroup_map(i
);
5889 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
5890 if (i
!= first_cpu(this_core_map
))
5892 init_sched_build_groups(this_core_map
, cpu_map
,
5893 &cpu_to_core_group
);
5897 /* Set up physical groups */
5898 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5899 cpumask_t nodemask
= node_to_cpumask(i
);
5901 cpus_and(nodemask
, nodemask
, *cpu_map
);
5902 if (cpus_empty(nodemask
))
5905 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
5909 /* Set up node groups */
5911 init_sched_build_groups(*cpu_map
, cpu_map
,
5912 &cpu_to_allnodes_group
);
5914 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5915 /* Set up node groups */
5916 struct sched_group
*sg
, *prev
;
5917 cpumask_t nodemask
= node_to_cpumask(i
);
5918 cpumask_t domainspan
;
5919 cpumask_t covered
= CPU_MASK_NONE
;
5922 cpus_and(nodemask
, nodemask
, *cpu_map
);
5923 if (cpus_empty(nodemask
)) {
5924 sched_group_nodes
[i
] = NULL
;
5928 domainspan
= sched_domain_node_span(i
);
5929 cpus_and(domainspan
, domainspan
, *cpu_map
);
5931 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
5933 printk(KERN_WARNING
"Can not alloc domain group for "
5937 sched_group_nodes
[i
] = sg
;
5938 for_each_cpu_mask(j
, nodemask
) {
5939 struct sched_domain
*sd
;
5941 sd
= &per_cpu(node_domains
, j
);
5944 sg
->__cpu_power
= 0;
5945 sg
->cpumask
= nodemask
;
5947 cpus_or(covered
, covered
, nodemask
);
5950 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
5951 cpumask_t tmp
, notcovered
;
5952 int n
= (i
+ j
) % MAX_NUMNODES
;
5954 cpus_complement(notcovered
, covered
);
5955 cpus_and(tmp
, notcovered
, *cpu_map
);
5956 cpus_and(tmp
, tmp
, domainspan
);
5957 if (cpus_empty(tmp
))
5960 nodemask
= node_to_cpumask(n
);
5961 cpus_and(tmp
, tmp
, nodemask
);
5962 if (cpus_empty(tmp
))
5965 sg
= kmalloc_node(sizeof(struct sched_group
),
5969 "Can not alloc domain group for node %d\n", j
);
5972 sg
->__cpu_power
= 0;
5974 sg
->next
= prev
->next
;
5975 cpus_or(covered
, covered
, tmp
);
5982 /* Calculate CPU power for physical packages and nodes */
5983 #ifdef CONFIG_SCHED_SMT
5984 for_each_cpu_mask(i
, *cpu_map
) {
5985 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
5987 init_sched_groups_power(i
, sd
);
5990 #ifdef CONFIG_SCHED_MC
5991 for_each_cpu_mask(i
, *cpu_map
) {
5992 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
5994 init_sched_groups_power(i
, sd
);
5998 for_each_cpu_mask(i
, *cpu_map
) {
5999 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6001 init_sched_groups_power(i
, sd
);
6005 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6006 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6009 struct sched_group
*sg
;
6011 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6012 init_numa_sched_groups_power(sg
);
6016 /* Attach the domains */
6017 for_each_cpu_mask(i
, *cpu_map
) {
6018 struct sched_domain
*sd
;
6019 #ifdef CONFIG_SCHED_SMT
6020 sd
= &per_cpu(cpu_domains
, i
);
6021 #elif defined(CONFIG_SCHED_MC)
6022 sd
= &per_cpu(core_domains
, i
);
6024 sd
= &per_cpu(phys_domains
, i
);
6026 cpu_attach_domain(sd
, i
);
6033 free_sched_groups(cpu_map
);
6038 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6040 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6042 cpumask_t cpu_default_map
;
6046 * Setup mask for cpus without special case scheduling requirements.
6047 * For now this just excludes isolated cpus, but could be used to
6048 * exclude other special cases in the future.
6050 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6052 err
= build_sched_domains(&cpu_default_map
);
6057 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6059 free_sched_groups(cpu_map
);
6063 * Detach sched domains from a group of cpus specified in cpu_map
6064 * These cpus will now be attached to the NULL domain
6066 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6070 for_each_cpu_mask(i
, *cpu_map
)
6071 cpu_attach_domain(NULL
, i
);
6072 synchronize_sched();
6073 arch_destroy_sched_domains(cpu_map
);
6077 * Partition sched domains as specified by the cpumasks below.
6078 * This attaches all cpus from the cpumasks to the NULL domain,
6079 * waits for a RCU quiescent period, recalculates sched
6080 * domain information and then attaches them back to the
6081 * correct sched domains
6082 * Call with hotplug lock held
6084 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6086 cpumask_t change_map
;
6089 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6090 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6091 cpus_or(change_map
, *partition1
, *partition2
);
6093 /* Detach sched domains from all of the affected cpus */
6094 detach_destroy_domains(&change_map
);
6095 if (!cpus_empty(*partition1
))
6096 err
= build_sched_domains(partition1
);
6097 if (!err
&& !cpus_empty(*partition2
))
6098 err
= build_sched_domains(partition2
);
6103 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6104 int arch_reinit_sched_domains(void)
6108 mutex_lock(&sched_hotcpu_mutex
);
6109 detach_destroy_domains(&cpu_online_map
);
6110 err
= arch_init_sched_domains(&cpu_online_map
);
6111 mutex_unlock(&sched_hotcpu_mutex
);
6116 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6120 if (buf
[0] != '0' && buf
[0] != '1')
6124 sched_smt_power_savings
= (buf
[0] == '1');
6126 sched_mc_power_savings
= (buf
[0] == '1');
6128 ret
= arch_reinit_sched_domains();
6130 return ret
? ret
: count
;
6133 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6137 #ifdef CONFIG_SCHED_SMT
6139 err
= sysfs_create_file(&cls
->kset
.kobj
,
6140 &attr_sched_smt_power_savings
.attr
);
6142 #ifdef CONFIG_SCHED_MC
6143 if (!err
&& mc_capable())
6144 err
= sysfs_create_file(&cls
->kset
.kobj
,
6145 &attr_sched_mc_power_savings
.attr
);
6151 #ifdef CONFIG_SCHED_MC
6152 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6154 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6156 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6157 const char *buf
, size_t count
)
6159 return sched_power_savings_store(buf
, count
, 0);
6161 SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6162 sched_mc_power_savings_store
);
6165 #ifdef CONFIG_SCHED_SMT
6166 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6168 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6170 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6171 const char *buf
, size_t count
)
6173 return sched_power_savings_store(buf
, count
, 1);
6175 SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6176 sched_smt_power_savings_store
);
6180 * Force a reinitialization of the sched domains hierarchy. The domains
6181 * and groups cannot be updated in place without racing with the balancing
6182 * code, so we temporarily attach all running cpus to the NULL domain
6183 * which will prevent rebalancing while the sched domains are recalculated.
6185 static int update_sched_domains(struct notifier_block
*nfb
,
6186 unsigned long action
, void *hcpu
)
6189 case CPU_UP_PREPARE
:
6190 case CPU_UP_PREPARE_FROZEN
:
6191 case CPU_DOWN_PREPARE
:
6192 case CPU_DOWN_PREPARE_FROZEN
:
6193 detach_destroy_domains(&cpu_online_map
);
6196 case CPU_UP_CANCELED
:
6197 case CPU_UP_CANCELED_FROZEN
:
6198 case CPU_DOWN_FAILED
:
6199 case CPU_DOWN_FAILED_FROZEN
:
6201 case CPU_ONLINE_FROZEN
:
6203 case CPU_DEAD_FROZEN
:
6205 * Fall through and re-initialise the domains.
6212 /* The hotplug lock is already held by cpu_up/cpu_down */
6213 arch_init_sched_domains(&cpu_online_map
);
6218 void __init
sched_init_smp(void)
6220 cpumask_t non_isolated_cpus
;
6222 mutex_lock(&sched_hotcpu_mutex
);
6223 arch_init_sched_domains(&cpu_online_map
);
6224 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6225 if (cpus_empty(non_isolated_cpus
))
6226 cpu_set(smp_processor_id(), non_isolated_cpus
);
6227 mutex_unlock(&sched_hotcpu_mutex
);
6228 /* XXX: Theoretical race here - CPU may be hotplugged now */
6229 hotcpu_notifier(update_sched_domains
, 0);
6231 /* Move init over to a non-isolated CPU */
6232 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6234 sched_init_granularity();
6237 void __init
sched_init_smp(void)
6239 sched_init_granularity();
6241 #endif /* CONFIG_SMP */
6243 int in_sched_functions(unsigned long addr
)
6245 /* Linker adds these: start and end of __sched functions */
6246 extern char __sched_text_start
[], __sched_text_end
[];
6248 return in_lock_functions(addr
) ||
6249 (addr
>= (unsigned long)__sched_text_start
6250 && addr
< (unsigned long)__sched_text_end
);
6253 static inline void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6255 cfs_rq
->tasks_timeline
= RB_ROOT
;
6256 cfs_rq
->fair_clock
= 1;
6257 #ifdef CONFIG_FAIR_GROUP_SCHED
6262 void __init
sched_init(void)
6264 u64 now
= sched_clock();
6265 int highest_cpu
= 0;
6269 * Link up the scheduling class hierarchy:
6271 rt_sched_class
.next
= &fair_sched_class
;
6272 fair_sched_class
.next
= &idle_sched_class
;
6273 idle_sched_class
.next
= NULL
;
6275 for_each_possible_cpu(i
) {
6276 struct rt_prio_array
*array
;
6280 spin_lock_init(&rq
->lock
);
6281 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6284 init_cfs_rq(&rq
->cfs
, rq
);
6285 #ifdef CONFIG_FAIR_GROUP_SCHED
6286 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6287 list_add(&rq
->cfs
.leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6289 rq
->ls
.load_update_last
= now
;
6290 rq
->ls
.load_update_start
= now
;
6292 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6293 rq
->cpu_load
[j
] = 0;
6296 rq
->active_balance
= 0;
6297 rq
->next_balance
= jiffies
;
6300 rq
->migration_thread
= NULL
;
6301 INIT_LIST_HEAD(&rq
->migration_queue
);
6303 atomic_set(&rq
->nr_iowait
, 0);
6305 array
= &rq
->rt
.active
;
6306 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6307 INIT_LIST_HEAD(array
->queue
+ j
);
6308 __clear_bit(j
, array
->bitmap
);
6311 /* delimiter for bitsearch: */
6312 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6315 set_load_weight(&init_task
);
6318 nr_cpu_ids
= highest_cpu
+ 1;
6319 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6322 #ifdef CONFIG_RT_MUTEXES
6323 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6327 * The boot idle thread does lazy MMU switching as well:
6329 atomic_inc(&init_mm
.mm_count
);
6330 enter_lazy_tlb(&init_mm
, current
);
6333 * Make us the idle thread. Technically, schedule() should not be
6334 * called from this thread, however somewhere below it might be,
6335 * but because we are the idle thread, we just pick up running again
6336 * when this runqueue becomes "idle".
6338 init_idle(current
, smp_processor_id());
6340 * During early bootup we pretend to be a normal task:
6342 current
->sched_class
= &fair_sched_class
;
6345 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6346 void __might_sleep(char *file
, int line
)
6349 static unsigned long prev_jiffy
; /* ratelimiting */
6351 if ((in_atomic() || irqs_disabled()) &&
6352 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6353 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6355 prev_jiffy
= jiffies
;
6356 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6357 " context at %s:%d\n", file
, line
);
6358 printk("in_atomic():%d, irqs_disabled():%d\n",
6359 in_atomic(), irqs_disabled());
6360 debug_show_held_locks(current
);
6361 if (irqs_disabled())
6362 print_irqtrace_events(current
);
6367 EXPORT_SYMBOL(__might_sleep
);
6370 #ifdef CONFIG_MAGIC_SYSRQ
6371 void normalize_rt_tasks(void)
6373 struct task_struct
*g
, *p
;
6374 unsigned long flags
;
6378 read_lock_irq(&tasklist_lock
);
6379 do_each_thread(g
, p
) {
6381 p
->se
.wait_runtime
= 0;
6382 p
->se
.wait_start_fair
= 0;
6383 p
->se
.wait_start
= 0;
6384 p
->se
.exec_start
= 0;
6385 p
->se
.sleep_start
= 0;
6386 p
->se
.sleep_start_fair
= 0;
6387 p
->se
.block_start
= 0;
6388 task_rq(p
)->cfs
.fair_clock
= 0;
6389 task_rq(p
)->clock
= 0;
6393 * Renice negative nice level userspace
6396 if (TASK_NICE(p
) < 0 && p
->mm
)
6397 set_user_nice(p
, 0);
6401 spin_lock_irqsave(&p
->pi_lock
, flags
);
6402 rq
= __task_rq_lock(p
);
6405 * Do not touch the migration thread:
6407 if (p
== rq
->migration_thread
)
6411 on_rq
= p
->se
.on_rq
;
6413 deactivate_task(task_rq(p
), p
, 0);
6414 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6416 activate_task(task_rq(p
), p
, 0);
6417 resched_task(rq
->curr
);
6422 __task_rq_unlock(rq
);
6423 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6424 } while_each_thread(g
, p
);
6426 read_unlock_irq(&tasklist_lock
);
6429 #endif /* CONFIG_MAGIC_SYSRQ */
6433 * These functions are only useful for the IA64 MCA handling.
6435 * They can only be called when the whole system has been
6436 * stopped - every CPU needs to be quiescent, and no scheduling
6437 * activity can take place. Using them for anything else would
6438 * be a serious bug, and as a result, they aren't even visible
6439 * under any other configuration.
6443 * curr_task - return the current task for a given cpu.
6444 * @cpu: the processor in question.
6446 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6448 struct task_struct
*curr_task(int cpu
)
6450 return cpu_curr(cpu
);
6454 * set_curr_task - set the current task for a given cpu.
6455 * @cpu: the processor in question.
6456 * @p: the task pointer to set.
6458 * Description: This function must only be used when non-maskable interrupts
6459 * are serviced on a separate stack. It allows the architecture to switch the
6460 * notion of the current task on a cpu in a non-blocking manner. This function
6461 * must be called with all CPU's synchronized, and interrupts disabled, the
6462 * and caller must save the original value of the current task (see
6463 * curr_task() above) and restore that value before reenabling interrupts and
6464 * re-starting the system.
6466 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6468 void set_curr_task(int cpu
, struct task_struct
*p
)