spi_mpc83xx.c: support QE enabled 83xx CPU's like mpc832x
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / auditsc.c
blobb7640a5f382aa6e766fc09785242466ef693fbb6
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <asm/types.h>
49 #include <linux/fs.h>
50 #include <linux/namei.h>
51 #include <linux/mm.h>
52 #include <linux/module.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/selinux.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
70 #include "audit.h"
72 extern struct list_head audit_filter_list[];
74 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
75 * for saving names from getname(). */
76 #define AUDIT_NAMES 20
78 /* Indicates that audit should log the full pathname. */
79 #define AUDIT_NAME_FULL -1
81 /* number of audit rules */
82 int audit_n_rules;
84 /* determines whether we collect data for signals sent */
85 int audit_signals;
87 /* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
92 struct audit_names {
93 const char *name;
94 int name_len; /* number of name's characters to log */
95 unsigned name_put; /* call __putname() for this name */
96 unsigned long ino;
97 dev_t dev;
98 umode_t mode;
99 uid_t uid;
100 gid_t gid;
101 dev_t rdev;
102 u32 osid;
105 struct audit_aux_data {
106 struct audit_aux_data *next;
107 int type;
110 #define AUDIT_AUX_IPCPERM 0
112 /* Number of target pids per aux struct. */
113 #define AUDIT_AUX_PIDS 16
115 struct audit_aux_data_mq_open {
116 struct audit_aux_data d;
117 int oflag;
118 mode_t mode;
119 struct mq_attr attr;
122 struct audit_aux_data_mq_sendrecv {
123 struct audit_aux_data d;
124 mqd_t mqdes;
125 size_t msg_len;
126 unsigned int msg_prio;
127 struct timespec abs_timeout;
130 struct audit_aux_data_mq_notify {
131 struct audit_aux_data d;
132 mqd_t mqdes;
133 struct sigevent notification;
136 struct audit_aux_data_mq_getsetattr {
137 struct audit_aux_data d;
138 mqd_t mqdes;
139 struct mq_attr mqstat;
142 struct audit_aux_data_ipcctl {
143 struct audit_aux_data d;
144 struct ipc_perm p;
145 unsigned long qbytes;
146 uid_t uid;
147 gid_t gid;
148 mode_t mode;
149 u32 osid;
152 struct audit_aux_data_execve {
153 struct audit_aux_data d;
154 int argc;
155 int envc;
156 char mem[0];
159 struct audit_aux_data_socketcall {
160 struct audit_aux_data d;
161 int nargs;
162 unsigned long args[0];
165 struct audit_aux_data_sockaddr {
166 struct audit_aux_data d;
167 int len;
168 char a[0];
171 struct audit_aux_data_fd_pair {
172 struct audit_aux_data d;
173 int fd[2];
176 struct audit_aux_data_path {
177 struct audit_aux_data d;
178 struct dentry *dentry;
179 struct vfsmount *mnt;
182 struct audit_aux_data_pids {
183 struct audit_aux_data d;
184 pid_t target_pid[AUDIT_AUX_PIDS];
185 u32 target_sid[AUDIT_AUX_PIDS];
186 int pid_count;
189 /* The per-task audit context. */
190 struct audit_context {
191 int dummy; /* must be the first element */
192 int in_syscall; /* 1 if task is in a syscall */
193 enum audit_state state;
194 unsigned int serial; /* serial number for record */
195 struct timespec ctime; /* time of syscall entry */
196 uid_t loginuid; /* login uid (identity) */
197 int major; /* syscall number */
198 unsigned long argv[4]; /* syscall arguments */
199 int return_valid; /* return code is valid */
200 long return_code;/* syscall return code */
201 int auditable; /* 1 if record should be written */
202 int name_count;
203 struct audit_names names[AUDIT_NAMES];
204 char * filterkey; /* key for rule that triggered record */
205 struct dentry * pwd;
206 struct vfsmount * pwdmnt;
207 struct audit_context *previous; /* For nested syscalls */
208 struct audit_aux_data *aux;
209 struct audit_aux_data *aux_pids;
211 /* Save things to print about task_struct */
212 pid_t pid, ppid;
213 uid_t uid, euid, suid, fsuid;
214 gid_t gid, egid, sgid, fsgid;
215 unsigned long personality;
216 int arch;
218 pid_t target_pid;
219 u32 target_sid;
221 #if AUDIT_DEBUG
222 int put_count;
223 int ino_count;
224 #endif
227 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
228 static inline int open_arg(int flags, int mask)
230 int n = ACC_MODE(flags);
231 if (flags & (O_TRUNC | O_CREAT))
232 n |= AUDIT_PERM_WRITE;
233 return n & mask;
236 static int audit_match_perm(struct audit_context *ctx, int mask)
238 unsigned n = ctx->major;
239 switch (audit_classify_syscall(ctx->arch, n)) {
240 case 0: /* native */
241 if ((mask & AUDIT_PERM_WRITE) &&
242 audit_match_class(AUDIT_CLASS_WRITE, n))
243 return 1;
244 if ((mask & AUDIT_PERM_READ) &&
245 audit_match_class(AUDIT_CLASS_READ, n))
246 return 1;
247 if ((mask & AUDIT_PERM_ATTR) &&
248 audit_match_class(AUDIT_CLASS_CHATTR, n))
249 return 1;
250 return 0;
251 case 1: /* 32bit on biarch */
252 if ((mask & AUDIT_PERM_WRITE) &&
253 audit_match_class(AUDIT_CLASS_WRITE_32, n))
254 return 1;
255 if ((mask & AUDIT_PERM_READ) &&
256 audit_match_class(AUDIT_CLASS_READ_32, n))
257 return 1;
258 if ((mask & AUDIT_PERM_ATTR) &&
259 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
260 return 1;
261 return 0;
262 case 2: /* open */
263 return mask & ACC_MODE(ctx->argv[1]);
264 case 3: /* openat */
265 return mask & ACC_MODE(ctx->argv[2]);
266 case 4: /* socketcall */
267 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
268 case 5: /* execve */
269 return mask & AUDIT_PERM_EXEC;
270 default:
271 return 0;
275 /* Determine if any context name data matches a rule's watch data */
276 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
277 * otherwise. */
278 static int audit_filter_rules(struct task_struct *tsk,
279 struct audit_krule *rule,
280 struct audit_context *ctx,
281 struct audit_names *name,
282 enum audit_state *state)
284 int i, j, need_sid = 1;
285 u32 sid;
287 for (i = 0; i < rule->field_count; i++) {
288 struct audit_field *f = &rule->fields[i];
289 int result = 0;
291 switch (f->type) {
292 case AUDIT_PID:
293 result = audit_comparator(tsk->pid, f->op, f->val);
294 break;
295 case AUDIT_PPID:
296 if (ctx) {
297 if (!ctx->ppid)
298 ctx->ppid = sys_getppid();
299 result = audit_comparator(ctx->ppid, f->op, f->val);
301 break;
302 case AUDIT_UID:
303 result = audit_comparator(tsk->uid, f->op, f->val);
304 break;
305 case AUDIT_EUID:
306 result = audit_comparator(tsk->euid, f->op, f->val);
307 break;
308 case AUDIT_SUID:
309 result = audit_comparator(tsk->suid, f->op, f->val);
310 break;
311 case AUDIT_FSUID:
312 result = audit_comparator(tsk->fsuid, f->op, f->val);
313 break;
314 case AUDIT_GID:
315 result = audit_comparator(tsk->gid, f->op, f->val);
316 break;
317 case AUDIT_EGID:
318 result = audit_comparator(tsk->egid, f->op, f->val);
319 break;
320 case AUDIT_SGID:
321 result = audit_comparator(tsk->sgid, f->op, f->val);
322 break;
323 case AUDIT_FSGID:
324 result = audit_comparator(tsk->fsgid, f->op, f->val);
325 break;
326 case AUDIT_PERS:
327 result = audit_comparator(tsk->personality, f->op, f->val);
328 break;
329 case AUDIT_ARCH:
330 if (ctx)
331 result = audit_comparator(ctx->arch, f->op, f->val);
332 break;
334 case AUDIT_EXIT:
335 if (ctx && ctx->return_valid)
336 result = audit_comparator(ctx->return_code, f->op, f->val);
337 break;
338 case AUDIT_SUCCESS:
339 if (ctx && ctx->return_valid) {
340 if (f->val)
341 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
342 else
343 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
345 break;
346 case AUDIT_DEVMAJOR:
347 if (name)
348 result = audit_comparator(MAJOR(name->dev),
349 f->op, f->val);
350 else if (ctx) {
351 for (j = 0; j < ctx->name_count; j++) {
352 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
353 ++result;
354 break;
358 break;
359 case AUDIT_DEVMINOR:
360 if (name)
361 result = audit_comparator(MINOR(name->dev),
362 f->op, f->val);
363 else if (ctx) {
364 for (j = 0; j < ctx->name_count; j++) {
365 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
366 ++result;
367 break;
371 break;
372 case AUDIT_INODE:
373 if (name)
374 result = (name->ino == f->val);
375 else if (ctx) {
376 for (j = 0; j < ctx->name_count; j++) {
377 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
378 ++result;
379 break;
383 break;
384 case AUDIT_WATCH:
385 if (name && rule->watch->ino != (unsigned long)-1)
386 result = (name->dev == rule->watch->dev &&
387 name->ino == rule->watch->ino);
388 break;
389 case AUDIT_LOGINUID:
390 result = 0;
391 if (ctx)
392 result = audit_comparator(ctx->loginuid, f->op, f->val);
393 break;
394 case AUDIT_SUBJ_USER:
395 case AUDIT_SUBJ_ROLE:
396 case AUDIT_SUBJ_TYPE:
397 case AUDIT_SUBJ_SEN:
398 case AUDIT_SUBJ_CLR:
399 /* NOTE: this may return negative values indicating
400 a temporary error. We simply treat this as a
401 match for now to avoid losing information that
402 may be wanted. An error message will also be
403 logged upon error */
404 if (f->se_rule) {
405 if (need_sid) {
406 selinux_get_task_sid(tsk, &sid);
407 need_sid = 0;
409 result = selinux_audit_rule_match(sid, f->type,
410 f->op,
411 f->se_rule,
412 ctx);
414 break;
415 case AUDIT_OBJ_USER:
416 case AUDIT_OBJ_ROLE:
417 case AUDIT_OBJ_TYPE:
418 case AUDIT_OBJ_LEV_LOW:
419 case AUDIT_OBJ_LEV_HIGH:
420 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
421 also applies here */
422 if (f->se_rule) {
423 /* Find files that match */
424 if (name) {
425 result = selinux_audit_rule_match(
426 name->osid, f->type, f->op,
427 f->se_rule, ctx);
428 } else if (ctx) {
429 for (j = 0; j < ctx->name_count; j++) {
430 if (selinux_audit_rule_match(
431 ctx->names[j].osid,
432 f->type, f->op,
433 f->se_rule, ctx)) {
434 ++result;
435 break;
439 /* Find ipc objects that match */
440 if (ctx) {
441 struct audit_aux_data *aux;
442 for (aux = ctx->aux; aux;
443 aux = aux->next) {
444 if (aux->type == AUDIT_IPC) {
445 struct audit_aux_data_ipcctl *axi = (void *)aux;
446 if (selinux_audit_rule_match(axi->osid, f->type, f->op, f->se_rule, ctx)) {
447 ++result;
448 break;
454 break;
455 case AUDIT_ARG0:
456 case AUDIT_ARG1:
457 case AUDIT_ARG2:
458 case AUDIT_ARG3:
459 if (ctx)
460 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
461 break;
462 case AUDIT_FILTERKEY:
463 /* ignore this field for filtering */
464 result = 1;
465 break;
466 case AUDIT_PERM:
467 result = audit_match_perm(ctx, f->val);
468 break;
471 if (!result)
472 return 0;
474 if (rule->filterkey)
475 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
476 switch (rule->action) {
477 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
478 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
480 return 1;
483 /* At process creation time, we can determine if system-call auditing is
484 * completely disabled for this task. Since we only have the task
485 * structure at this point, we can only check uid and gid.
487 static enum audit_state audit_filter_task(struct task_struct *tsk)
489 struct audit_entry *e;
490 enum audit_state state;
492 rcu_read_lock();
493 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
494 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
495 rcu_read_unlock();
496 return state;
499 rcu_read_unlock();
500 return AUDIT_BUILD_CONTEXT;
503 /* At syscall entry and exit time, this filter is called if the
504 * audit_state is not low enough that auditing cannot take place, but is
505 * also not high enough that we already know we have to write an audit
506 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
508 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
509 struct audit_context *ctx,
510 struct list_head *list)
512 struct audit_entry *e;
513 enum audit_state state;
515 if (audit_pid && tsk->tgid == audit_pid)
516 return AUDIT_DISABLED;
518 rcu_read_lock();
519 if (!list_empty(list)) {
520 int word = AUDIT_WORD(ctx->major);
521 int bit = AUDIT_BIT(ctx->major);
523 list_for_each_entry_rcu(e, list, list) {
524 if ((e->rule.mask[word] & bit) == bit &&
525 audit_filter_rules(tsk, &e->rule, ctx, NULL,
526 &state)) {
527 rcu_read_unlock();
528 return state;
532 rcu_read_unlock();
533 return AUDIT_BUILD_CONTEXT;
536 /* At syscall exit time, this filter is called if any audit_names[] have been
537 * collected during syscall processing. We only check rules in sublists at hash
538 * buckets applicable to the inode numbers in audit_names[].
539 * Regarding audit_state, same rules apply as for audit_filter_syscall().
541 enum audit_state audit_filter_inodes(struct task_struct *tsk,
542 struct audit_context *ctx)
544 int i;
545 struct audit_entry *e;
546 enum audit_state state;
548 if (audit_pid && tsk->tgid == audit_pid)
549 return AUDIT_DISABLED;
551 rcu_read_lock();
552 for (i = 0; i < ctx->name_count; i++) {
553 int word = AUDIT_WORD(ctx->major);
554 int bit = AUDIT_BIT(ctx->major);
555 struct audit_names *n = &ctx->names[i];
556 int h = audit_hash_ino((u32)n->ino);
557 struct list_head *list = &audit_inode_hash[h];
559 if (list_empty(list))
560 continue;
562 list_for_each_entry_rcu(e, list, list) {
563 if ((e->rule.mask[word] & bit) == bit &&
564 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
565 rcu_read_unlock();
566 return state;
570 rcu_read_unlock();
571 return AUDIT_BUILD_CONTEXT;
574 void audit_set_auditable(struct audit_context *ctx)
576 ctx->auditable = 1;
579 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
580 int return_valid,
581 int return_code)
583 struct audit_context *context = tsk->audit_context;
585 if (likely(!context))
586 return NULL;
587 context->return_valid = return_valid;
588 context->return_code = return_code;
590 if (context->in_syscall && !context->dummy && !context->auditable) {
591 enum audit_state state;
593 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
594 if (state == AUDIT_RECORD_CONTEXT) {
595 context->auditable = 1;
596 goto get_context;
599 state = audit_filter_inodes(tsk, context);
600 if (state == AUDIT_RECORD_CONTEXT)
601 context->auditable = 1;
605 get_context:
607 tsk->audit_context = NULL;
608 return context;
611 static inline void audit_free_names(struct audit_context *context)
613 int i;
615 #if AUDIT_DEBUG == 2
616 if (context->auditable
617 ||context->put_count + context->ino_count != context->name_count) {
618 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
619 " name_count=%d put_count=%d"
620 " ino_count=%d [NOT freeing]\n",
621 __FILE__, __LINE__,
622 context->serial, context->major, context->in_syscall,
623 context->name_count, context->put_count,
624 context->ino_count);
625 for (i = 0; i < context->name_count; i++) {
626 printk(KERN_ERR "names[%d] = %p = %s\n", i,
627 context->names[i].name,
628 context->names[i].name ?: "(null)");
630 dump_stack();
631 return;
633 #endif
634 #if AUDIT_DEBUG
635 context->put_count = 0;
636 context->ino_count = 0;
637 #endif
639 for (i = 0; i < context->name_count; i++) {
640 if (context->names[i].name && context->names[i].name_put)
641 __putname(context->names[i].name);
643 context->name_count = 0;
644 if (context->pwd)
645 dput(context->pwd);
646 if (context->pwdmnt)
647 mntput(context->pwdmnt);
648 context->pwd = NULL;
649 context->pwdmnt = NULL;
652 static inline void audit_free_aux(struct audit_context *context)
654 struct audit_aux_data *aux;
656 while ((aux = context->aux)) {
657 if (aux->type == AUDIT_AVC_PATH) {
658 struct audit_aux_data_path *axi = (void *)aux;
659 dput(axi->dentry);
660 mntput(axi->mnt);
663 context->aux = aux->next;
664 kfree(aux);
666 while ((aux = context->aux_pids)) {
667 context->aux_pids = aux->next;
668 kfree(aux);
672 static inline void audit_zero_context(struct audit_context *context,
673 enum audit_state state)
675 uid_t loginuid = context->loginuid;
677 memset(context, 0, sizeof(*context));
678 context->state = state;
679 context->loginuid = loginuid;
682 static inline struct audit_context *audit_alloc_context(enum audit_state state)
684 struct audit_context *context;
686 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
687 return NULL;
688 audit_zero_context(context, state);
689 return context;
693 * audit_alloc - allocate an audit context block for a task
694 * @tsk: task
696 * Filter on the task information and allocate a per-task audit context
697 * if necessary. Doing so turns on system call auditing for the
698 * specified task. This is called from copy_process, so no lock is
699 * needed.
701 int audit_alloc(struct task_struct *tsk)
703 struct audit_context *context;
704 enum audit_state state;
706 if (likely(!audit_enabled))
707 return 0; /* Return if not auditing. */
709 state = audit_filter_task(tsk);
710 if (likely(state == AUDIT_DISABLED))
711 return 0;
713 if (!(context = audit_alloc_context(state))) {
714 audit_log_lost("out of memory in audit_alloc");
715 return -ENOMEM;
718 /* Preserve login uid */
719 context->loginuid = -1;
720 if (current->audit_context)
721 context->loginuid = current->audit_context->loginuid;
723 tsk->audit_context = context;
724 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
725 return 0;
728 static inline void audit_free_context(struct audit_context *context)
730 struct audit_context *previous;
731 int count = 0;
733 do {
734 previous = context->previous;
735 if (previous || (count && count < 10)) {
736 ++count;
737 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
738 " freeing multiple contexts (%d)\n",
739 context->serial, context->major,
740 context->name_count, count);
742 audit_free_names(context);
743 audit_free_aux(context);
744 kfree(context->filterkey);
745 kfree(context);
746 context = previous;
747 } while (context);
748 if (count >= 10)
749 printk(KERN_ERR "audit: freed %d contexts\n", count);
752 void audit_log_task_context(struct audit_buffer *ab)
754 char *ctx = NULL;
755 unsigned len;
756 int error;
757 u32 sid;
759 selinux_get_task_sid(current, &sid);
760 if (!sid)
761 return;
763 error = selinux_sid_to_string(sid, &ctx, &len);
764 if (error) {
765 if (error != -EINVAL)
766 goto error_path;
767 return;
770 audit_log_format(ab, " subj=%s", ctx);
771 kfree(ctx);
772 return;
774 error_path:
775 audit_panic("error in audit_log_task_context");
776 return;
779 EXPORT_SYMBOL(audit_log_task_context);
781 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
783 char name[sizeof(tsk->comm)];
784 struct mm_struct *mm = tsk->mm;
785 struct vm_area_struct *vma;
787 /* tsk == current */
789 get_task_comm(name, tsk);
790 audit_log_format(ab, " comm=");
791 audit_log_untrustedstring(ab, name);
793 if (mm) {
794 down_read(&mm->mmap_sem);
795 vma = mm->mmap;
796 while (vma) {
797 if ((vma->vm_flags & VM_EXECUTABLE) &&
798 vma->vm_file) {
799 audit_log_d_path(ab, "exe=",
800 vma->vm_file->f_path.dentry,
801 vma->vm_file->f_path.mnt);
802 break;
804 vma = vma->vm_next;
806 up_read(&mm->mmap_sem);
808 audit_log_task_context(ab);
811 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
812 u32 sid)
814 struct audit_buffer *ab;
815 char *s = NULL;
816 u32 len;
817 int rc = 0;
819 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
820 if (!ab)
821 return 1;
823 if (selinux_sid_to_string(sid, &s, &len)) {
824 audit_log_format(ab, "opid=%d obj=(none)", pid);
825 rc = 1;
826 } else
827 audit_log_format(ab, "opid=%d obj=%s", pid, s);
828 audit_log_end(ab);
829 kfree(s);
831 return rc;
834 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
836 int i, call_panic = 0;
837 struct audit_buffer *ab;
838 struct audit_aux_data *aux;
839 const char *tty;
841 /* tsk == current */
842 context->pid = tsk->pid;
843 if (!context->ppid)
844 context->ppid = sys_getppid();
845 context->uid = tsk->uid;
846 context->gid = tsk->gid;
847 context->euid = tsk->euid;
848 context->suid = tsk->suid;
849 context->fsuid = tsk->fsuid;
850 context->egid = tsk->egid;
851 context->sgid = tsk->sgid;
852 context->fsgid = tsk->fsgid;
853 context->personality = tsk->personality;
855 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
856 if (!ab)
857 return; /* audit_panic has been called */
858 audit_log_format(ab, "arch=%x syscall=%d",
859 context->arch, context->major);
860 if (context->personality != PER_LINUX)
861 audit_log_format(ab, " per=%lx", context->personality);
862 if (context->return_valid)
863 audit_log_format(ab, " success=%s exit=%ld",
864 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
865 context->return_code);
867 mutex_lock(&tty_mutex);
868 read_lock(&tasklist_lock);
869 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
870 tty = tsk->signal->tty->name;
871 else
872 tty = "(none)";
873 read_unlock(&tasklist_lock);
874 audit_log_format(ab,
875 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
876 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
877 " euid=%u suid=%u fsuid=%u"
878 " egid=%u sgid=%u fsgid=%u tty=%s",
879 context->argv[0],
880 context->argv[1],
881 context->argv[2],
882 context->argv[3],
883 context->name_count,
884 context->ppid,
885 context->pid,
886 context->loginuid,
887 context->uid,
888 context->gid,
889 context->euid, context->suid, context->fsuid,
890 context->egid, context->sgid, context->fsgid, tty);
892 mutex_unlock(&tty_mutex);
894 audit_log_task_info(ab, tsk);
895 if (context->filterkey) {
896 audit_log_format(ab, " key=");
897 audit_log_untrustedstring(ab, context->filterkey);
898 } else
899 audit_log_format(ab, " key=(null)");
900 audit_log_end(ab);
902 for (aux = context->aux; aux; aux = aux->next) {
904 ab = audit_log_start(context, GFP_KERNEL, aux->type);
905 if (!ab)
906 continue; /* audit_panic has been called */
908 switch (aux->type) {
909 case AUDIT_MQ_OPEN: {
910 struct audit_aux_data_mq_open *axi = (void *)aux;
911 audit_log_format(ab,
912 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
913 "mq_msgsize=%ld mq_curmsgs=%ld",
914 axi->oflag, axi->mode, axi->attr.mq_flags,
915 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
916 axi->attr.mq_curmsgs);
917 break; }
919 case AUDIT_MQ_SENDRECV: {
920 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
921 audit_log_format(ab,
922 "mqdes=%d msg_len=%zd msg_prio=%u "
923 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
924 axi->mqdes, axi->msg_len, axi->msg_prio,
925 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
926 break; }
928 case AUDIT_MQ_NOTIFY: {
929 struct audit_aux_data_mq_notify *axi = (void *)aux;
930 audit_log_format(ab,
931 "mqdes=%d sigev_signo=%d",
932 axi->mqdes,
933 axi->notification.sigev_signo);
934 break; }
936 case AUDIT_MQ_GETSETATTR: {
937 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
938 audit_log_format(ab,
939 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
940 "mq_curmsgs=%ld ",
941 axi->mqdes,
942 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
943 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
944 break; }
946 case AUDIT_IPC: {
947 struct audit_aux_data_ipcctl *axi = (void *)aux;
948 audit_log_format(ab,
949 "ouid=%u ogid=%u mode=%x",
950 axi->uid, axi->gid, axi->mode);
951 if (axi->osid != 0) {
952 char *ctx = NULL;
953 u32 len;
954 if (selinux_sid_to_string(
955 axi->osid, &ctx, &len)) {
956 audit_log_format(ab, " osid=%u",
957 axi->osid);
958 call_panic = 1;
959 } else
960 audit_log_format(ab, " obj=%s", ctx);
961 kfree(ctx);
963 break; }
965 case AUDIT_IPC_SET_PERM: {
966 struct audit_aux_data_ipcctl *axi = (void *)aux;
967 audit_log_format(ab,
968 "qbytes=%lx ouid=%u ogid=%u mode=%x",
969 axi->qbytes, axi->uid, axi->gid, axi->mode);
970 break; }
972 case AUDIT_EXECVE: {
973 struct audit_aux_data_execve *axi = (void *)aux;
974 int i;
975 const char *p;
976 for (i = 0, p = axi->mem; i < axi->argc; i++) {
977 audit_log_format(ab, "a%d=", i);
978 p = audit_log_untrustedstring(ab, p);
979 audit_log_format(ab, "\n");
981 break; }
983 case AUDIT_SOCKETCALL: {
984 int i;
985 struct audit_aux_data_socketcall *axs = (void *)aux;
986 audit_log_format(ab, "nargs=%d", axs->nargs);
987 for (i=0; i<axs->nargs; i++)
988 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
989 break; }
991 case AUDIT_SOCKADDR: {
992 struct audit_aux_data_sockaddr *axs = (void *)aux;
994 audit_log_format(ab, "saddr=");
995 audit_log_hex(ab, axs->a, axs->len);
996 break; }
998 case AUDIT_AVC_PATH: {
999 struct audit_aux_data_path *axi = (void *)aux;
1000 audit_log_d_path(ab, "path=", axi->dentry, axi->mnt);
1001 break; }
1003 case AUDIT_FD_PAIR: {
1004 struct audit_aux_data_fd_pair *axs = (void *)aux;
1005 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1006 break; }
1009 audit_log_end(ab);
1012 for (aux = context->aux_pids; aux; aux = aux->next) {
1013 struct audit_aux_data_pids *axs = (void *)aux;
1014 int i;
1016 for (i = 0; i < axs->pid_count; i++)
1017 if (audit_log_pid_context(context, axs->target_pid[i],
1018 axs->target_sid[i]))
1019 call_panic = 1;
1022 if (context->target_pid &&
1023 audit_log_pid_context(context, context->target_pid,
1024 context->target_sid))
1025 call_panic = 1;
1027 if (context->pwd && context->pwdmnt) {
1028 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1029 if (ab) {
1030 audit_log_d_path(ab, "cwd=", context->pwd, context->pwdmnt);
1031 audit_log_end(ab);
1034 for (i = 0; i < context->name_count; i++) {
1035 struct audit_names *n = &context->names[i];
1037 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1038 if (!ab)
1039 continue; /* audit_panic has been called */
1041 audit_log_format(ab, "item=%d", i);
1043 if (n->name) {
1044 switch(n->name_len) {
1045 case AUDIT_NAME_FULL:
1046 /* log the full path */
1047 audit_log_format(ab, " name=");
1048 audit_log_untrustedstring(ab, n->name);
1049 break;
1050 case 0:
1051 /* name was specified as a relative path and the
1052 * directory component is the cwd */
1053 audit_log_d_path(ab, " name=", context->pwd,
1054 context->pwdmnt);
1055 break;
1056 default:
1057 /* log the name's directory component */
1058 audit_log_format(ab, " name=");
1059 audit_log_n_untrustedstring(ab, n->name_len,
1060 n->name);
1062 } else
1063 audit_log_format(ab, " name=(null)");
1065 if (n->ino != (unsigned long)-1) {
1066 audit_log_format(ab, " inode=%lu"
1067 " dev=%02x:%02x mode=%#o"
1068 " ouid=%u ogid=%u rdev=%02x:%02x",
1069 n->ino,
1070 MAJOR(n->dev),
1071 MINOR(n->dev),
1072 n->mode,
1073 n->uid,
1074 n->gid,
1075 MAJOR(n->rdev),
1076 MINOR(n->rdev));
1078 if (n->osid != 0) {
1079 char *ctx = NULL;
1080 u32 len;
1081 if (selinux_sid_to_string(
1082 n->osid, &ctx, &len)) {
1083 audit_log_format(ab, " osid=%u", n->osid);
1084 call_panic = 2;
1085 } else
1086 audit_log_format(ab, " obj=%s", ctx);
1087 kfree(ctx);
1090 audit_log_end(ab);
1092 if (call_panic)
1093 audit_panic("error converting sid to string");
1097 * audit_free - free a per-task audit context
1098 * @tsk: task whose audit context block to free
1100 * Called from copy_process and do_exit
1102 void audit_free(struct task_struct *tsk)
1104 struct audit_context *context;
1106 context = audit_get_context(tsk, 0, 0);
1107 if (likely(!context))
1108 return;
1110 /* Check for system calls that do not go through the exit
1111 * function (e.g., exit_group), then free context block.
1112 * We use GFP_ATOMIC here because we might be doing this
1113 * in the context of the idle thread */
1114 /* that can happen only if we are called from do_exit() */
1115 if (context->in_syscall && context->auditable)
1116 audit_log_exit(context, tsk);
1118 audit_free_context(context);
1122 * audit_syscall_entry - fill in an audit record at syscall entry
1123 * @tsk: task being audited
1124 * @arch: architecture type
1125 * @major: major syscall type (function)
1126 * @a1: additional syscall register 1
1127 * @a2: additional syscall register 2
1128 * @a3: additional syscall register 3
1129 * @a4: additional syscall register 4
1131 * Fill in audit context at syscall entry. This only happens if the
1132 * audit context was created when the task was created and the state or
1133 * filters demand the audit context be built. If the state from the
1134 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1135 * then the record will be written at syscall exit time (otherwise, it
1136 * will only be written if another part of the kernel requests that it
1137 * be written).
1139 void audit_syscall_entry(int arch, int major,
1140 unsigned long a1, unsigned long a2,
1141 unsigned long a3, unsigned long a4)
1143 struct task_struct *tsk = current;
1144 struct audit_context *context = tsk->audit_context;
1145 enum audit_state state;
1147 BUG_ON(!context);
1150 * This happens only on certain architectures that make system
1151 * calls in kernel_thread via the entry.S interface, instead of
1152 * with direct calls. (If you are porting to a new
1153 * architecture, hitting this condition can indicate that you
1154 * got the _exit/_leave calls backward in entry.S.)
1156 * i386 no
1157 * x86_64 no
1158 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1160 * This also happens with vm86 emulation in a non-nested manner
1161 * (entries without exits), so this case must be caught.
1163 if (context->in_syscall) {
1164 struct audit_context *newctx;
1166 #if AUDIT_DEBUG
1167 printk(KERN_ERR
1168 "audit(:%d) pid=%d in syscall=%d;"
1169 " entering syscall=%d\n",
1170 context->serial, tsk->pid, context->major, major);
1171 #endif
1172 newctx = audit_alloc_context(context->state);
1173 if (newctx) {
1174 newctx->previous = context;
1175 context = newctx;
1176 tsk->audit_context = newctx;
1177 } else {
1178 /* If we can't alloc a new context, the best we
1179 * can do is to leak memory (any pending putname
1180 * will be lost). The only other alternative is
1181 * to abandon auditing. */
1182 audit_zero_context(context, context->state);
1185 BUG_ON(context->in_syscall || context->name_count);
1187 if (!audit_enabled)
1188 return;
1190 context->arch = arch;
1191 context->major = major;
1192 context->argv[0] = a1;
1193 context->argv[1] = a2;
1194 context->argv[2] = a3;
1195 context->argv[3] = a4;
1197 state = context->state;
1198 context->dummy = !audit_n_rules;
1199 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1200 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1201 if (likely(state == AUDIT_DISABLED))
1202 return;
1204 context->serial = 0;
1205 context->ctime = CURRENT_TIME;
1206 context->in_syscall = 1;
1207 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1208 context->ppid = 0;
1212 * audit_syscall_exit - deallocate audit context after a system call
1213 * @tsk: task being audited
1214 * @valid: success/failure flag
1215 * @return_code: syscall return value
1217 * Tear down after system call. If the audit context has been marked as
1218 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1219 * filtering, or because some other part of the kernel write an audit
1220 * message), then write out the syscall information. In call cases,
1221 * free the names stored from getname().
1223 void audit_syscall_exit(int valid, long return_code)
1225 struct task_struct *tsk = current;
1226 struct audit_context *context;
1228 context = audit_get_context(tsk, valid, return_code);
1230 if (likely(!context))
1231 return;
1233 if (context->in_syscall && context->auditable)
1234 audit_log_exit(context, tsk);
1236 context->in_syscall = 0;
1237 context->auditable = 0;
1239 if (context->previous) {
1240 struct audit_context *new_context = context->previous;
1241 context->previous = NULL;
1242 audit_free_context(context);
1243 tsk->audit_context = new_context;
1244 } else {
1245 audit_free_names(context);
1246 audit_free_aux(context);
1247 context->aux = NULL;
1248 context->aux_pids = NULL;
1249 context->target_pid = 0;
1250 context->target_sid = 0;
1251 kfree(context->filterkey);
1252 context->filterkey = NULL;
1253 tsk->audit_context = context;
1258 * audit_getname - add a name to the list
1259 * @name: name to add
1261 * Add a name to the list of audit names for this context.
1262 * Called from fs/namei.c:getname().
1264 void __audit_getname(const char *name)
1266 struct audit_context *context = current->audit_context;
1268 if (IS_ERR(name) || !name)
1269 return;
1271 if (!context->in_syscall) {
1272 #if AUDIT_DEBUG == 2
1273 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1274 __FILE__, __LINE__, context->serial, name);
1275 dump_stack();
1276 #endif
1277 return;
1279 BUG_ON(context->name_count >= AUDIT_NAMES);
1280 context->names[context->name_count].name = name;
1281 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1282 context->names[context->name_count].name_put = 1;
1283 context->names[context->name_count].ino = (unsigned long)-1;
1284 context->names[context->name_count].osid = 0;
1285 ++context->name_count;
1286 if (!context->pwd) {
1287 read_lock(&current->fs->lock);
1288 context->pwd = dget(current->fs->pwd);
1289 context->pwdmnt = mntget(current->fs->pwdmnt);
1290 read_unlock(&current->fs->lock);
1295 /* audit_putname - intercept a putname request
1296 * @name: name to intercept and delay for putname
1298 * If we have stored the name from getname in the audit context,
1299 * then we delay the putname until syscall exit.
1300 * Called from include/linux/fs.h:putname().
1302 void audit_putname(const char *name)
1304 struct audit_context *context = current->audit_context;
1306 BUG_ON(!context);
1307 if (!context->in_syscall) {
1308 #if AUDIT_DEBUG == 2
1309 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1310 __FILE__, __LINE__, context->serial, name);
1311 if (context->name_count) {
1312 int i;
1313 for (i = 0; i < context->name_count; i++)
1314 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1315 context->names[i].name,
1316 context->names[i].name ?: "(null)");
1318 #endif
1319 __putname(name);
1321 #if AUDIT_DEBUG
1322 else {
1323 ++context->put_count;
1324 if (context->put_count > context->name_count) {
1325 printk(KERN_ERR "%s:%d(:%d): major=%d"
1326 " in_syscall=%d putname(%p) name_count=%d"
1327 " put_count=%d\n",
1328 __FILE__, __LINE__,
1329 context->serial, context->major,
1330 context->in_syscall, name, context->name_count,
1331 context->put_count);
1332 dump_stack();
1335 #endif
1338 static int audit_inc_name_count(struct audit_context *context,
1339 const struct inode *inode)
1341 if (context->name_count >= AUDIT_NAMES) {
1342 if (inode)
1343 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1344 "dev=%02x:%02x, inode=%lu",
1345 MAJOR(inode->i_sb->s_dev),
1346 MINOR(inode->i_sb->s_dev),
1347 inode->i_ino);
1349 else
1350 printk(KERN_DEBUG "name_count maxed, losing inode data");
1351 return 1;
1353 context->name_count++;
1354 #if AUDIT_DEBUG
1355 context->ino_count++;
1356 #endif
1357 return 0;
1360 /* Copy inode data into an audit_names. */
1361 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1363 name->ino = inode->i_ino;
1364 name->dev = inode->i_sb->s_dev;
1365 name->mode = inode->i_mode;
1366 name->uid = inode->i_uid;
1367 name->gid = inode->i_gid;
1368 name->rdev = inode->i_rdev;
1369 selinux_get_inode_sid(inode, &name->osid);
1373 * audit_inode - store the inode and device from a lookup
1374 * @name: name being audited
1375 * @inode: inode being audited
1377 * Called from fs/namei.c:path_lookup().
1379 void __audit_inode(const char *name, const struct inode *inode)
1381 int idx;
1382 struct audit_context *context = current->audit_context;
1384 if (!context->in_syscall)
1385 return;
1386 if (context->name_count
1387 && context->names[context->name_count-1].name
1388 && context->names[context->name_count-1].name == name)
1389 idx = context->name_count - 1;
1390 else if (context->name_count > 1
1391 && context->names[context->name_count-2].name
1392 && context->names[context->name_count-2].name == name)
1393 idx = context->name_count - 2;
1394 else {
1395 /* FIXME: how much do we care about inodes that have no
1396 * associated name? */
1397 if (audit_inc_name_count(context, inode))
1398 return;
1399 idx = context->name_count - 1;
1400 context->names[idx].name = NULL;
1402 audit_copy_inode(&context->names[idx], inode);
1406 * audit_inode_child - collect inode info for created/removed objects
1407 * @dname: inode's dentry name
1408 * @inode: inode being audited
1409 * @parent: inode of dentry parent
1411 * For syscalls that create or remove filesystem objects, audit_inode
1412 * can only collect information for the filesystem object's parent.
1413 * This call updates the audit context with the child's information.
1414 * Syscalls that create a new filesystem object must be hooked after
1415 * the object is created. Syscalls that remove a filesystem object
1416 * must be hooked prior, in order to capture the target inode during
1417 * unsuccessful attempts.
1419 void __audit_inode_child(const char *dname, const struct inode *inode,
1420 const struct inode *parent)
1422 int idx;
1423 struct audit_context *context = current->audit_context;
1424 const char *found_parent = NULL, *found_child = NULL;
1425 int dirlen = 0;
1427 if (!context->in_syscall)
1428 return;
1430 /* determine matching parent */
1431 if (!dname)
1432 goto add_names;
1434 /* parent is more likely, look for it first */
1435 for (idx = 0; idx < context->name_count; idx++) {
1436 struct audit_names *n = &context->names[idx];
1438 if (!n->name)
1439 continue;
1441 if (n->ino == parent->i_ino &&
1442 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1443 n->name_len = dirlen; /* update parent data in place */
1444 found_parent = n->name;
1445 goto add_names;
1449 /* no matching parent, look for matching child */
1450 for (idx = 0; idx < context->name_count; idx++) {
1451 struct audit_names *n = &context->names[idx];
1453 if (!n->name)
1454 continue;
1456 /* strcmp() is the more likely scenario */
1457 if (!strcmp(dname, n->name) ||
1458 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1459 if (inode)
1460 audit_copy_inode(n, inode);
1461 else
1462 n->ino = (unsigned long)-1;
1463 found_child = n->name;
1464 goto add_names;
1468 add_names:
1469 if (!found_parent) {
1470 if (audit_inc_name_count(context, parent))
1471 return;
1472 idx = context->name_count - 1;
1473 context->names[idx].name = NULL;
1474 audit_copy_inode(&context->names[idx], parent);
1477 if (!found_child) {
1478 if (audit_inc_name_count(context, inode))
1479 return;
1480 idx = context->name_count - 1;
1482 /* Re-use the name belonging to the slot for a matching parent
1483 * directory. All names for this context are relinquished in
1484 * audit_free_names() */
1485 if (found_parent) {
1486 context->names[idx].name = found_parent;
1487 context->names[idx].name_len = AUDIT_NAME_FULL;
1488 /* don't call __putname() */
1489 context->names[idx].name_put = 0;
1490 } else {
1491 context->names[idx].name = NULL;
1494 if (inode)
1495 audit_copy_inode(&context->names[idx], inode);
1496 else
1497 context->names[idx].ino = (unsigned long)-1;
1502 * auditsc_get_stamp - get local copies of audit_context values
1503 * @ctx: audit_context for the task
1504 * @t: timespec to store time recorded in the audit_context
1505 * @serial: serial value that is recorded in the audit_context
1507 * Also sets the context as auditable.
1509 void auditsc_get_stamp(struct audit_context *ctx,
1510 struct timespec *t, unsigned int *serial)
1512 if (!ctx->serial)
1513 ctx->serial = audit_serial();
1514 t->tv_sec = ctx->ctime.tv_sec;
1515 t->tv_nsec = ctx->ctime.tv_nsec;
1516 *serial = ctx->serial;
1517 ctx->auditable = 1;
1521 * audit_set_loginuid - set a task's audit_context loginuid
1522 * @task: task whose audit context is being modified
1523 * @loginuid: loginuid value
1525 * Returns 0.
1527 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1529 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1531 struct audit_context *context = task->audit_context;
1533 if (context) {
1534 /* Only log if audit is enabled */
1535 if (context->in_syscall) {
1536 struct audit_buffer *ab;
1538 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1539 if (ab) {
1540 audit_log_format(ab, "login pid=%d uid=%u "
1541 "old auid=%u new auid=%u",
1542 task->pid, task->uid,
1543 context->loginuid, loginuid);
1544 audit_log_end(ab);
1547 context->loginuid = loginuid;
1549 return 0;
1553 * audit_get_loginuid - get the loginuid for an audit_context
1554 * @ctx: the audit_context
1556 * Returns the context's loginuid or -1 if @ctx is NULL.
1558 uid_t audit_get_loginuid(struct audit_context *ctx)
1560 return ctx ? ctx->loginuid : -1;
1563 EXPORT_SYMBOL(audit_get_loginuid);
1566 * __audit_mq_open - record audit data for a POSIX MQ open
1567 * @oflag: open flag
1568 * @mode: mode bits
1569 * @u_attr: queue attributes
1571 * Returns 0 for success or NULL context or < 0 on error.
1573 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
1575 struct audit_aux_data_mq_open *ax;
1576 struct audit_context *context = current->audit_context;
1578 if (!audit_enabled)
1579 return 0;
1581 if (likely(!context))
1582 return 0;
1584 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1585 if (!ax)
1586 return -ENOMEM;
1588 if (u_attr != NULL) {
1589 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
1590 kfree(ax);
1591 return -EFAULT;
1593 } else
1594 memset(&ax->attr, 0, sizeof(ax->attr));
1596 ax->oflag = oflag;
1597 ax->mode = mode;
1599 ax->d.type = AUDIT_MQ_OPEN;
1600 ax->d.next = context->aux;
1601 context->aux = (void *)ax;
1602 return 0;
1606 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
1607 * @mqdes: MQ descriptor
1608 * @msg_len: Message length
1609 * @msg_prio: Message priority
1610 * @u_abs_timeout: Message timeout in absolute time
1612 * Returns 0 for success or NULL context or < 0 on error.
1614 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
1615 const struct timespec __user *u_abs_timeout)
1617 struct audit_aux_data_mq_sendrecv *ax;
1618 struct audit_context *context = current->audit_context;
1620 if (!audit_enabled)
1621 return 0;
1623 if (likely(!context))
1624 return 0;
1626 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1627 if (!ax)
1628 return -ENOMEM;
1630 if (u_abs_timeout != NULL) {
1631 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1632 kfree(ax);
1633 return -EFAULT;
1635 } else
1636 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1638 ax->mqdes = mqdes;
1639 ax->msg_len = msg_len;
1640 ax->msg_prio = msg_prio;
1642 ax->d.type = AUDIT_MQ_SENDRECV;
1643 ax->d.next = context->aux;
1644 context->aux = (void *)ax;
1645 return 0;
1649 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
1650 * @mqdes: MQ descriptor
1651 * @msg_len: Message length
1652 * @u_msg_prio: Message priority
1653 * @u_abs_timeout: Message timeout in absolute time
1655 * Returns 0 for success or NULL context or < 0 on error.
1657 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
1658 unsigned int __user *u_msg_prio,
1659 const struct timespec __user *u_abs_timeout)
1661 struct audit_aux_data_mq_sendrecv *ax;
1662 struct audit_context *context = current->audit_context;
1664 if (!audit_enabled)
1665 return 0;
1667 if (likely(!context))
1668 return 0;
1670 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1671 if (!ax)
1672 return -ENOMEM;
1674 if (u_msg_prio != NULL) {
1675 if (get_user(ax->msg_prio, u_msg_prio)) {
1676 kfree(ax);
1677 return -EFAULT;
1679 } else
1680 ax->msg_prio = 0;
1682 if (u_abs_timeout != NULL) {
1683 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
1684 kfree(ax);
1685 return -EFAULT;
1687 } else
1688 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
1690 ax->mqdes = mqdes;
1691 ax->msg_len = msg_len;
1693 ax->d.type = AUDIT_MQ_SENDRECV;
1694 ax->d.next = context->aux;
1695 context->aux = (void *)ax;
1696 return 0;
1700 * __audit_mq_notify - record audit data for a POSIX MQ notify
1701 * @mqdes: MQ descriptor
1702 * @u_notification: Notification event
1704 * Returns 0 for success or NULL context or < 0 on error.
1707 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
1709 struct audit_aux_data_mq_notify *ax;
1710 struct audit_context *context = current->audit_context;
1712 if (!audit_enabled)
1713 return 0;
1715 if (likely(!context))
1716 return 0;
1718 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1719 if (!ax)
1720 return -ENOMEM;
1722 if (u_notification != NULL) {
1723 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
1724 kfree(ax);
1725 return -EFAULT;
1727 } else
1728 memset(&ax->notification, 0, sizeof(ax->notification));
1730 ax->mqdes = mqdes;
1732 ax->d.type = AUDIT_MQ_NOTIFY;
1733 ax->d.next = context->aux;
1734 context->aux = (void *)ax;
1735 return 0;
1739 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
1740 * @mqdes: MQ descriptor
1741 * @mqstat: MQ flags
1743 * Returns 0 for success or NULL context or < 0 on error.
1745 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
1747 struct audit_aux_data_mq_getsetattr *ax;
1748 struct audit_context *context = current->audit_context;
1750 if (!audit_enabled)
1751 return 0;
1753 if (likely(!context))
1754 return 0;
1756 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1757 if (!ax)
1758 return -ENOMEM;
1760 ax->mqdes = mqdes;
1761 ax->mqstat = *mqstat;
1763 ax->d.type = AUDIT_MQ_GETSETATTR;
1764 ax->d.next = context->aux;
1765 context->aux = (void *)ax;
1766 return 0;
1770 * audit_ipc_obj - record audit data for ipc object
1771 * @ipcp: ipc permissions
1773 * Returns 0 for success or NULL context or < 0 on error.
1775 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
1777 struct audit_aux_data_ipcctl *ax;
1778 struct audit_context *context = current->audit_context;
1780 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1781 if (!ax)
1782 return -ENOMEM;
1784 ax->uid = ipcp->uid;
1785 ax->gid = ipcp->gid;
1786 ax->mode = ipcp->mode;
1787 selinux_get_ipc_sid(ipcp, &ax->osid);
1789 ax->d.type = AUDIT_IPC;
1790 ax->d.next = context->aux;
1791 context->aux = (void *)ax;
1792 return 0;
1796 * audit_ipc_set_perm - record audit data for new ipc permissions
1797 * @qbytes: msgq bytes
1798 * @uid: msgq user id
1799 * @gid: msgq group id
1800 * @mode: msgq mode (permissions)
1802 * Returns 0 for success or NULL context or < 0 on error.
1804 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1806 struct audit_aux_data_ipcctl *ax;
1807 struct audit_context *context = current->audit_context;
1809 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1810 if (!ax)
1811 return -ENOMEM;
1813 ax->qbytes = qbytes;
1814 ax->uid = uid;
1815 ax->gid = gid;
1816 ax->mode = mode;
1818 ax->d.type = AUDIT_IPC_SET_PERM;
1819 ax->d.next = context->aux;
1820 context->aux = (void *)ax;
1821 return 0;
1824 int audit_bprm(struct linux_binprm *bprm)
1826 struct audit_aux_data_execve *ax;
1827 struct audit_context *context = current->audit_context;
1828 unsigned long p, next;
1829 void *to;
1831 if (likely(!audit_enabled || !context || context->dummy))
1832 return 0;
1834 ax = kmalloc(sizeof(*ax) + PAGE_SIZE * MAX_ARG_PAGES - bprm->p,
1835 GFP_KERNEL);
1836 if (!ax)
1837 return -ENOMEM;
1839 ax->argc = bprm->argc;
1840 ax->envc = bprm->envc;
1841 for (p = bprm->p, to = ax->mem; p < MAX_ARG_PAGES*PAGE_SIZE; p = next) {
1842 struct page *page = bprm->page[p / PAGE_SIZE];
1843 void *kaddr = kmap(page);
1844 next = (p + PAGE_SIZE) & ~(PAGE_SIZE - 1);
1845 memcpy(to, kaddr + (p & (PAGE_SIZE - 1)), next - p);
1846 to += next - p;
1847 kunmap(page);
1850 ax->d.type = AUDIT_EXECVE;
1851 ax->d.next = context->aux;
1852 context->aux = (void *)ax;
1853 return 0;
1858 * audit_socketcall - record audit data for sys_socketcall
1859 * @nargs: number of args
1860 * @args: args array
1862 * Returns 0 for success or NULL context or < 0 on error.
1864 int audit_socketcall(int nargs, unsigned long *args)
1866 struct audit_aux_data_socketcall *ax;
1867 struct audit_context *context = current->audit_context;
1869 if (likely(!context || context->dummy))
1870 return 0;
1872 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
1873 if (!ax)
1874 return -ENOMEM;
1876 ax->nargs = nargs;
1877 memcpy(ax->args, args, nargs * sizeof(unsigned long));
1879 ax->d.type = AUDIT_SOCKETCALL;
1880 ax->d.next = context->aux;
1881 context->aux = (void *)ax;
1882 return 0;
1886 * __audit_fd_pair - record audit data for pipe and socketpair
1887 * @fd1: the first file descriptor
1888 * @fd2: the second file descriptor
1890 * Returns 0 for success or NULL context or < 0 on error.
1892 int __audit_fd_pair(int fd1, int fd2)
1894 struct audit_context *context = current->audit_context;
1895 struct audit_aux_data_fd_pair *ax;
1897 if (likely(!context)) {
1898 return 0;
1901 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
1902 if (!ax) {
1903 return -ENOMEM;
1906 ax->fd[0] = fd1;
1907 ax->fd[1] = fd2;
1909 ax->d.type = AUDIT_FD_PAIR;
1910 ax->d.next = context->aux;
1911 context->aux = (void *)ax;
1912 return 0;
1916 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
1917 * @len: data length in user space
1918 * @a: data address in kernel space
1920 * Returns 0 for success or NULL context or < 0 on error.
1922 int audit_sockaddr(int len, void *a)
1924 struct audit_aux_data_sockaddr *ax;
1925 struct audit_context *context = current->audit_context;
1927 if (likely(!context || context->dummy))
1928 return 0;
1930 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
1931 if (!ax)
1932 return -ENOMEM;
1934 ax->len = len;
1935 memcpy(ax->a, a, len);
1937 ax->d.type = AUDIT_SOCKADDR;
1938 ax->d.next = context->aux;
1939 context->aux = (void *)ax;
1940 return 0;
1943 void __audit_ptrace(struct task_struct *t)
1945 struct audit_context *context = current->audit_context;
1947 context->target_pid = t->pid;
1948 selinux_get_task_sid(t, &context->target_sid);
1952 * audit_avc_path - record the granting or denial of permissions
1953 * @dentry: dentry to record
1954 * @mnt: mnt to record
1956 * Returns 0 for success or NULL context or < 0 on error.
1958 * Called from security/selinux/avc.c::avc_audit()
1960 int audit_avc_path(struct dentry *dentry, struct vfsmount *mnt)
1962 struct audit_aux_data_path *ax;
1963 struct audit_context *context = current->audit_context;
1965 if (likely(!context))
1966 return 0;
1968 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
1969 if (!ax)
1970 return -ENOMEM;
1972 ax->dentry = dget(dentry);
1973 ax->mnt = mntget(mnt);
1975 ax->d.type = AUDIT_AVC_PATH;
1976 ax->d.next = context->aux;
1977 context->aux = (void *)ax;
1978 return 0;
1982 * audit_signal_info - record signal info for shutting down audit subsystem
1983 * @sig: signal value
1984 * @t: task being signaled
1986 * If the audit subsystem is being terminated, record the task (pid)
1987 * and uid that is doing that.
1989 int __audit_signal_info(int sig, struct task_struct *t)
1991 struct audit_aux_data_pids *axp;
1992 struct task_struct *tsk = current;
1993 struct audit_context *ctx = tsk->audit_context;
1994 extern pid_t audit_sig_pid;
1995 extern uid_t audit_sig_uid;
1996 extern u32 audit_sig_sid;
1998 if (audit_pid && t->tgid == audit_pid &&
1999 (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1)) {
2000 audit_sig_pid = tsk->pid;
2001 if (ctx)
2002 audit_sig_uid = ctx->loginuid;
2003 else
2004 audit_sig_uid = tsk->uid;
2005 selinux_get_task_sid(tsk, &audit_sig_sid);
2008 if (!audit_signals) /* audit_context checked in wrapper */
2009 return 0;
2011 /* optimize the common case by putting first signal recipient directly
2012 * in audit_context */
2013 if (!ctx->target_pid) {
2014 ctx->target_pid = t->tgid;
2015 selinux_get_task_sid(t, &ctx->target_sid);
2016 return 0;
2019 axp = (void *)ctx->aux_pids;
2020 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2021 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2022 if (!axp)
2023 return -ENOMEM;
2025 axp->d.type = AUDIT_OBJ_PID;
2026 axp->d.next = ctx->aux_pids;
2027 ctx->aux_pids = (void *)axp;
2029 BUG_ON(axp->pid_count > AUDIT_AUX_PIDS);
2031 axp->target_pid[axp->pid_count] = t->tgid;
2032 selinux_get_task_sid(t, &axp->target_sid[axp->pid_count]);
2033 axp->pid_count++;
2035 return 0;
2039 * audit_core_dumps - record information about processes that end abnormally
2040 * @signr: signal value
2042 * If a process ends with a core dump, something fishy is going on and we
2043 * should record the event for investigation.
2045 void audit_core_dumps(long signr)
2047 struct audit_buffer *ab;
2048 u32 sid;
2050 if (!audit_enabled)
2051 return;
2053 if (signr == SIGQUIT) /* don't care for those */
2054 return;
2056 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2057 audit_log_format(ab, "auid=%u uid=%u gid=%u",
2058 audit_get_loginuid(current->audit_context),
2059 current->uid, current->gid);
2060 selinux_get_task_sid(current, &sid);
2061 if (sid) {
2062 char *ctx = NULL;
2063 u32 len;
2065 if (selinux_sid_to_string(sid, &ctx, &len))
2066 audit_log_format(ab, " ssid=%u", sid);
2067 else
2068 audit_log_format(ab, " subj=%s", ctx);
2069 kfree(ctx);
2071 audit_log_format(ab, " pid=%d comm=", current->pid);
2072 audit_log_untrustedstring(ab, current->comm);
2073 audit_log_format(ab, " sig=%ld", signr);
2074 audit_log_end(ab);