lguest: dereferencing freed mem in add_eventfd()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / lguest / lguest_user.c
blob407722a8e0c45868b04b009bcb25e01b0c07ed3a
1 /*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
2 * controls and communicates with the Guest. For example, the first write will
3 * tell us the Guest's memory layout, pagetable, entry point and kernel address
4 * offset. A read will run the Guest until something happens, such as a signal
5 * or the Guest doing a NOTIFY out to the Launcher. :*/
6 #include <linux/uaccess.h>
7 #include <linux/miscdevice.h>
8 #include <linux/fs.h>
9 #include <linux/sched.h>
10 #include <linux/eventfd.h>
11 #include <linux/file.h>
12 #include "lg.h"
14 bool send_notify_to_eventfd(struct lg_cpu *cpu)
16 unsigned int i;
17 struct lg_eventfd_map *map;
19 /* lg->eventfds is RCU-protected */
20 rcu_read_lock();
21 map = rcu_dereference(cpu->lg->eventfds);
22 for (i = 0; i < map->num; i++) {
23 if (map->map[i].addr == cpu->pending_notify) {
24 eventfd_signal(map->map[i].event, 1);
25 cpu->pending_notify = 0;
26 break;
29 rcu_read_unlock();
30 return cpu->pending_notify == 0;
33 static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
35 struct lg_eventfd_map *new, *old = lg->eventfds;
37 if (!addr)
38 return -EINVAL;
40 /* Replace the old array with the new one, carefully: others can
41 * be accessing it at the same time */
42 new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
43 GFP_KERNEL);
44 if (!new)
45 return -ENOMEM;
47 /* First make identical copy. */
48 memcpy(new->map, old->map, sizeof(old->map[0]) * old->num);
49 new->num = old->num;
51 /* Now append new entry. */
52 new->map[new->num].addr = addr;
53 new->map[new->num].event = eventfd_ctx_fdget(fd);
54 if (IS_ERR(new->map[new->num].event)) {
55 int err = PTR_ERR(new->map[new->num].event);
56 kfree(new);
57 return err;
59 new->num++;
61 /* Now put new one in place. */
62 rcu_assign_pointer(lg->eventfds, new);
64 /* We're not in a big hurry. Wait until noone's looking at old
65 * version, then delete it. */
66 synchronize_rcu();
67 kfree(old);
69 return 0;
72 static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
74 unsigned long addr, fd;
75 int err;
77 if (get_user(addr, input) != 0)
78 return -EFAULT;
79 input++;
80 if (get_user(fd, input) != 0)
81 return -EFAULT;
83 mutex_lock(&lguest_lock);
84 err = add_eventfd(lg, addr, fd);
85 mutex_unlock(&lguest_lock);
87 return err;
90 /*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
91 * number to /dev/lguest. */
92 static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
94 unsigned long irq;
96 if (get_user(irq, input) != 0)
97 return -EFAULT;
98 if (irq >= LGUEST_IRQS)
99 return -EINVAL;
101 set_interrupt(cpu, irq);
102 return 0;
105 /*L:040 Once our Guest is initialized, the Launcher makes it run by reading
106 * from /dev/lguest. */
107 static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
109 struct lguest *lg = file->private_data;
110 struct lg_cpu *cpu;
111 unsigned int cpu_id = *o;
113 /* You must write LHREQ_INITIALIZE first! */
114 if (!lg)
115 return -EINVAL;
117 /* Watch out for arbitrary vcpu indexes! */
118 if (cpu_id >= lg->nr_cpus)
119 return -EINVAL;
121 cpu = &lg->cpus[cpu_id];
123 /* If you're not the task which owns the Guest, go away. */
124 if (current != cpu->tsk)
125 return -EPERM;
127 /* If the Guest is already dead, we indicate why */
128 if (lg->dead) {
129 size_t len;
131 /* lg->dead either contains an error code, or a string. */
132 if (IS_ERR(lg->dead))
133 return PTR_ERR(lg->dead);
135 /* We can only return as much as the buffer they read with. */
136 len = min(size, strlen(lg->dead)+1);
137 if (copy_to_user(user, lg->dead, len) != 0)
138 return -EFAULT;
139 return len;
142 /* If we returned from read() last time because the Guest sent I/O,
143 * clear the flag. */
144 if (cpu->pending_notify)
145 cpu->pending_notify = 0;
147 /* Run the Guest until something interesting happens. */
148 return run_guest(cpu, (unsigned long __user *)user);
151 /*L:025 This actually initializes a CPU. For the moment, a Guest is only
152 * uniprocessor, so "id" is always 0. */
153 static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
155 /* We have a limited number the number of CPUs in the lguest struct. */
156 if (id >= ARRAY_SIZE(cpu->lg->cpus))
157 return -EINVAL;
159 /* Set up this CPU's id, and pointer back to the lguest struct. */
160 cpu->id = id;
161 cpu->lg = container_of((cpu - id), struct lguest, cpus[0]);
162 cpu->lg->nr_cpus++;
164 /* Each CPU has a timer it can set. */
165 init_clockdev(cpu);
167 /* We need a complete page for the Guest registers: they are accessible
168 * to the Guest and we can only grant it access to whole pages. */
169 cpu->regs_page = get_zeroed_page(GFP_KERNEL);
170 if (!cpu->regs_page)
171 return -ENOMEM;
173 /* We actually put the registers at the bottom of the page. */
174 cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
176 /* Now we initialize the Guest's registers, handing it the start
177 * address. */
178 lguest_arch_setup_regs(cpu, start_ip);
180 /* We keep a pointer to the Launcher task (ie. current task) for when
181 * other Guests want to wake this one (eg. console input). */
182 cpu->tsk = current;
184 /* We need to keep a pointer to the Launcher's memory map, because if
185 * the Launcher dies we need to clean it up. If we don't keep a
186 * reference, it is destroyed before close() is called. */
187 cpu->mm = get_task_mm(cpu->tsk);
189 /* We remember which CPU's pages this Guest used last, for optimization
190 * when the same Guest runs on the same CPU twice. */
191 cpu->last_pages = NULL;
193 /* No error == success. */
194 return 0;
197 /*L:020 The initialization write supplies 3 pointer sized (32 or 64 bit)
198 * values (in addition to the LHREQ_INITIALIZE value). These are:
200 * base: The start of the Guest-physical memory inside the Launcher memory.
202 * pfnlimit: The highest (Guest-physical) page number the Guest should be
203 * allowed to access. The Guest memory lives inside the Launcher, so it sets
204 * this to ensure the Guest can only reach its own memory.
206 * start: The first instruction to execute ("eip" in x86-speak).
208 static int initialize(struct file *file, const unsigned long __user *input)
210 /* "struct lguest" contains everything we (the Host) know about a
211 * Guest. */
212 struct lguest *lg;
213 int err;
214 unsigned long args[3];
216 /* We grab the Big Lguest lock, which protects against multiple
217 * simultaneous initializations. */
218 mutex_lock(&lguest_lock);
219 /* You can't initialize twice! Close the device and start again... */
220 if (file->private_data) {
221 err = -EBUSY;
222 goto unlock;
225 if (copy_from_user(args, input, sizeof(args)) != 0) {
226 err = -EFAULT;
227 goto unlock;
230 lg = kzalloc(sizeof(*lg), GFP_KERNEL);
231 if (!lg) {
232 err = -ENOMEM;
233 goto unlock;
236 lg->eventfds = kmalloc(sizeof(*lg->eventfds), GFP_KERNEL);
237 if (!lg->eventfds) {
238 err = -ENOMEM;
239 goto free_lg;
241 lg->eventfds->num = 0;
243 /* Populate the easy fields of our "struct lguest" */
244 lg->mem_base = (void __user *)args[0];
245 lg->pfn_limit = args[1];
247 /* This is the first cpu (cpu 0) and it will start booting at args[2] */
248 err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
249 if (err)
250 goto free_eventfds;
252 /* Initialize the Guest's shadow page tables, using the toplevel
253 * address the Launcher gave us. This allocates memory, so can fail. */
254 err = init_guest_pagetable(lg);
255 if (err)
256 goto free_regs;
258 /* We keep our "struct lguest" in the file's private_data. */
259 file->private_data = lg;
261 mutex_unlock(&lguest_lock);
263 /* And because this is a write() call, we return the length used. */
264 return sizeof(args);
266 free_regs:
267 /* FIXME: This should be in free_vcpu */
268 free_page(lg->cpus[0].regs_page);
269 free_eventfds:
270 kfree(lg->eventfds);
271 free_lg:
272 kfree(lg);
273 unlock:
274 mutex_unlock(&lguest_lock);
275 return err;
278 /*L:010 The first operation the Launcher does must be a write. All writes
279 * start with an unsigned long number: for the first write this must be
280 * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
281 * writes of other values to send interrupts.
283 * Note that we overload the "offset" in the /dev/lguest file to indicate what
284 * CPU number we're dealing with. Currently this is always 0, since we only
285 * support uniprocessor Guests, but you can see the beginnings of SMP support
286 * here. */
287 static ssize_t write(struct file *file, const char __user *in,
288 size_t size, loff_t *off)
290 /* Once the Guest is initialized, we hold the "struct lguest" in the
291 * file private data. */
292 struct lguest *lg = file->private_data;
293 const unsigned long __user *input = (const unsigned long __user *)in;
294 unsigned long req;
295 struct lg_cpu *uninitialized_var(cpu);
296 unsigned int cpu_id = *off;
298 /* The first value tells us what this request is. */
299 if (get_user(req, input) != 0)
300 return -EFAULT;
301 input++;
303 /* If you haven't initialized, you must do that first. */
304 if (req != LHREQ_INITIALIZE) {
305 if (!lg || (cpu_id >= lg->nr_cpus))
306 return -EINVAL;
307 cpu = &lg->cpus[cpu_id];
309 /* Once the Guest is dead, you can only read() why it died. */
310 if (lg->dead)
311 return -ENOENT;
314 switch (req) {
315 case LHREQ_INITIALIZE:
316 return initialize(file, input);
317 case LHREQ_IRQ:
318 return user_send_irq(cpu, input);
319 case LHREQ_EVENTFD:
320 return attach_eventfd(lg, input);
321 default:
322 return -EINVAL;
326 /*L:060 The final piece of interface code is the close() routine. It reverses
327 * everything done in initialize(). This is usually called because the
328 * Launcher exited.
330 * Note that the close routine returns 0 or a negative error number: it can't
331 * really fail, but it can whine. I blame Sun for this wart, and K&R C for
332 * letting them do it. :*/
333 static int close(struct inode *inode, struct file *file)
335 struct lguest *lg = file->private_data;
336 unsigned int i;
338 /* If we never successfully initialized, there's nothing to clean up */
339 if (!lg)
340 return 0;
342 /* We need the big lock, to protect from inter-guest I/O and other
343 * Launchers initializing guests. */
344 mutex_lock(&lguest_lock);
346 /* Free up the shadow page tables for the Guest. */
347 free_guest_pagetable(lg);
349 for (i = 0; i < lg->nr_cpus; i++) {
350 /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
351 hrtimer_cancel(&lg->cpus[i].hrt);
352 /* We can free up the register page we allocated. */
353 free_page(lg->cpus[i].regs_page);
354 /* Now all the memory cleanups are done, it's safe to release
355 * the Launcher's memory management structure. */
356 mmput(lg->cpus[i].mm);
359 /* Release any eventfds they registered. */
360 for (i = 0; i < lg->eventfds->num; i++)
361 eventfd_ctx_put(lg->eventfds->map[i].event);
362 kfree(lg->eventfds);
364 /* If lg->dead doesn't contain an error code it will be NULL or a
365 * kmalloc()ed string, either of which is ok to hand to kfree(). */
366 if (!IS_ERR(lg->dead))
367 kfree(lg->dead);
368 /* Free the memory allocated to the lguest_struct */
369 kfree(lg);
370 /* Release lock and exit. */
371 mutex_unlock(&lguest_lock);
373 return 0;
376 /*L:000
377 * Welcome to our journey through the Launcher!
379 * The Launcher is the Host userspace program which sets up, runs and services
380 * the Guest. In fact, many comments in the Drivers which refer to "the Host"
381 * doing things are inaccurate: the Launcher does all the device handling for
382 * the Guest, but the Guest can't know that.
384 * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
385 * shall see more of that later.
387 * We begin our understanding with the Host kernel interface which the Launcher
388 * uses: reading and writing a character device called /dev/lguest. All the
389 * work happens in the read(), write() and close() routines: */
390 static struct file_operations lguest_fops = {
391 .owner = THIS_MODULE,
392 .release = close,
393 .write = write,
394 .read = read,
397 /* This is a textbook example of a "misc" character device. Populate a "struct
398 * miscdevice" and register it with misc_register(). */
399 static struct miscdevice lguest_dev = {
400 .minor = MISC_DYNAMIC_MINOR,
401 .name = "lguest",
402 .fops = &lguest_fops,
405 int __init lguest_device_init(void)
407 return misc_register(&lguest_dev);
410 void __exit lguest_device_remove(void)
412 misc_deregister(&lguest_dev);