Revert "block: fix accounting bug on cross partition merges"
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / dcache.c
blob83293be4814965373d4c81e5b7d91bc63f3a55c6
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
44 EXPORT_SYMBOL(dcache_lock);
46 static struct kmem_cache *dentry_cache __read_mostly;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 .age_limit = 45,
70 static void __d_free(struct dentry *dentry)
72 WARN_ON(!list_empty(&dentry->d_alias));
73 if (dname_external(dentry))
74 kfree(dentry->d_name.name);
75 kmem_cache_free(dentry_cache, dentry);
78 static void d_callback(struct rcu_head *head)
80 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 __d_free(dentry);
85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
86 * inside dcache_lock.
88 static void d_free(struct dentry *dentry)
90 if (dentry->d_op && dentry->d_op->d_release)
91 dentry->d_op->d_release(dentry);
92 /* if dentry was never inserted into hash, immediate free is OK */
93 if (hlist_unhashed(&dentry->d_hash))
94 __d_free(dentry);
95 else
96 call_rcu(&dentry->d_u.d_rcu, d_callback);
100 * Release the dentry's inode, using the filesystem
101 * d_iput() operation if defined.
103 static void dentry_iput(struct dentry * dentry)
104 __releases(dentry->d_lock)
105 __releases(dcache_lock)
107 struct inode *inode = dentry->d_inode;
108 if (inode) {
109 dentry->d_inode = NULL;
110 list_del_init(&dentry->d_alias);
111 spin_unlock(&dentry->d_lock);
112 spin_unlock(&dcache_lock);
113 if (!inode->i_nlink)
114 fsnotify_inoderemove(inode);
115 if (dentry->d_op && dentry->d_op->d_iput)
116 dentry->d_op->d_iput(dentry, inode);
117 else
118 iput(inode);
119 } else {
120 spin_unlock(&dentry->d_lock);
121 spin_unlock(&dcache_lock);
126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
128 static void dentry_lru_add(struct dentry *dentry)
130 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
131 dentry->d_sb->s_nr_dentry_unused++;
132 dentry_stat.nr_unused++;
135 static void dentry_lru_add_tail(struct dentry *dentry)
137 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
138 dentry->d_sb->s_nr_dentry_unused++;
139 dentry_stat.nr_unused++;
142 static void dentry_lru_del(struct dentry *dentry)
144 if (!list_empty(&dentry->d_lru)) {
145 list_del(&dentry->d_lru);
146 dentry->d_sb->s_nr_dentry_unused--;
147 dentry_stat.nr_unused--;
151 static void dentry_lru_del_init(struct dentry *dentry)
153 if (likely(!list_empty(&dentry->d_lru))) {
154 list_del_init(&dentry->d_lru);
155 dentry->d_sb->s_nr_dentry_unused--;
156 dentry_stat.nr_unused--;
161 * d_kill - kill dentry and return parent
162 * @dentry: dentry to kill
164 * The dentry must already be unhashed and removed from the LRU.
166 * If this is the root of the dentry tree, return NULL.
168 static struct dentry *d_kill(struct dentry *dentry)
169 __releases(dentry->d_lock)
170 __releases(dcache_lock)
172 struct dentry *parent;
174 list_del(&dentry->d_u.d_child);
175 dentry_stat.nr_dentry--; /* For d_free, below */
176 /*drops the locks, at that point nobody can reach this dentry */
177 dentry_iput(dentry);
178 if (IS_ROOT(dentry))
179 parent = NULL;
180 else
181 parent = dentry->d_parent;
182 d_free(dentry);
183 return parent;
187 * This is dput
189 * This is complicated by the fact that we do not want to put
190 * dentries that are no longer on any hash chain on the unused
191 * list: we'd much rather just get rid of them immediately.
193 * However, that implies that we have to traverse the dentry
194 * tree upwards to the parents which might _also_ now be
195 * scheduled for deletion (it may have been only waiting for
196 * its last child to go away).
198 * This tail recursion is done by hand as we don't want to depend
199 * on the compiler to always get this right (gcc generally doesn't).
200 * Real recursion would eat up our stack space.
204 * dput - release a dentry
205 * @dentry: dentry to release
207 * Release a dentry. This will drop the usage count and if appropriate
208 * call the dentry unlink method as well as removing it from the queues and
209 * releasing its resources. If the parent dentries were scheduled for release
210 * they too may now get deleted.
212 * no dcache lock, please.
215 void dput(struct dentry *dentry)
217 if (!dentry)
218 return;
220 repeat:
221 if (atomic_read(&dentry->d_count) == 1)
222 might_sleep();
223 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
224 return;
226 spin_lock(&dentry->d_lock);
227 if (atomic_read(&dentry->d_count)) {
228 spin_unlock(&dentry->d_lock);
229 spin_unlock(&dcache_lock);
230 return;
234 * AV: ->d_delete() is _NOT_ allowed to block now.
236 if (dentry->d_op && dentry->d_op->d_delete) {
237 if (dentry->d_op->d_delete(dentry))
238 goto unhash_it;
240 /* Unreachable? Get rid of it */
241 if (d_unhashed(dentry))
242 goto kill_it;
243 if (list_empty(&dentry->d_lru)) {
244 dentry->d_flags |= DCACHE_REFERENCED;
245 dentry_lru_add(dentry);
247 spin_unlock(&dentry->d_lock);
248 spin_unlock(&dcache_lock);
249 return;
251 unhash_it:
252 __d_drop(dentry);
253 kill_it:
254 /* if dentry was on the d_lru list delete it from there */
255 dentry_lru_del(dentry);
256 dentry = d_kill(dentry);
257 if (dentry)
258 goto repeat;
260 EXPORT_SYMBOL(dput);
263 * d_invalidate - invalidate a dentry
264 * @dentry: dentry to invalidate
266 * Try to invalidate the dentry if it turns out to be
267 * possible. If there are other dentries that can be
268 * reached through this one we can't delete it and we
269 * return -EBUSY. On success we return 0.
271 * no dcache lock.
274 int d_invalidate(struct dentry * dentry)
277 * If it's already been dropped, return OK.
279 spin_lock(&dcache_lock);
280 if (d_unhashed(dentry)) {
281 spin_unlock(&dcache_lock);
282 return 0;
285 * Check whether to do a partial shrink_dcache
286 * to get rid of unused child entries.
288 if (!list_empty(&dentry->d_subdirs)) {
289 spin_unlock(&dcache_lock);
290 shrink_dcache_parent(dentry);
291 spin_lock(&dcache_lock);
295 * Somebody else still using it?
297 * If it's a directory, we can't drop it
298 * for fear of somebody re-populating it
299 * with children (even though dropping it
300 * would make it unreachable from the root,
301 * we might still populate it if it was a
302 * working directory or similar).
304 spin_lock(&dentry->d_lock);
305 if (atomic_read(&dentry->d_count) > 1) {
306 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
307 spin_unlock(&dentry->d_lock);
308 spin_unlock(&dcache_lock);
309 return -EBUSY;
313 __d_drop(dentry);
314 spin_unlock(&dentry->d_lock);
315 spin_unlock(&dcache_lock);
316 return 0;
318 EXPORT_SYMBOL(d_invalidate);
320 /* This should be called _only_ with dcache_lock held */
322 static inline struct dentry * __dget_locked(struct dentry *dentry)
324 atomic_inc(&dentry->d_count);
325 dentry_lru_del_init(dentry);
326 return dentry;
329 struct dentry * dget_locked(struct dentry *dentry)
331 return __dget_locked(dentry);
333 EXPORT_SYMBOL(dget_locked);
336 * d_find_alias - grab a hashed alias of inode
337 * @inode: inode in question
338 * @want_discon: flag, used by d_splice_alias, to request
339 * that only a DISCONNECTED alias be returned.
341 * If inode has a hashed alias, or is a directory and has any alias,
342 * acquire the reference to alias and return it. Otherwise return NULL.
343 * Notice that if inode is a directory there can be only one alias and
344 * it can be unhashed only if it has no children, or if it is the root
345 * of a filesystem.
347 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
348 * any other hashed alias over that one unless @want_discon is set,
349 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
352 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
354 struct list_head *head, *next, *tmp;
355 struct dentry *alias, *discon_alias=NULL;
357 head = &inode->i_dentry;
358 next = inode->i_dentry.next;
359 while (next != head) {
360 tmp = next;
361 next = tmp->next;
362 prefetch(next);
363 alias = list_entry(tmp, struct dentry, d_alias);
364 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
365 if (IS_ROOT(alias) &&
366 (alias->d_flags & DCACHE_DISCONNECTED))
367 discon_alias = alias;
368 else if (!want_discon) {
369 __dget_locked(alias);
370 return alias;
374 if (discon_alias)
375 __dget_locked(discon_alias);
376 return discon_alias;
379 struct dentry * d_find_alias(struct inode *inode)
381 struct dentry *de = NULL;
383 if (!list_empty(&inode->i_dentry)) {
384 spin_lock(&dcache_lock);
385 de = __d_find_alias(inode, 0);
386 spin_unlock(&dcache_lock);
388 return de;
390 EXPORT_SYMBOL(d_find_alias);
393 * Try to kill dentries associated with this inode.
394 * WARNING: you must own a reference to inode.
396 void d_prune_aliases(struct inode *inode)
398 struct dentry *dentry;
399 restart:
400 spin_lock(&dcache_lock);
401 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
402 spin_lock(&dentry->d_lock);
403 if (!atomic_read(&dentry->d_count)) {
404 __dget_locked(dentry);
405 __d_drop(dentry);
406 spin_unlock(&dentry->d_lock);
407 spin_unlock(&dcache_lock);
408 dput(dentry);
409 goto restart;
411 spin_unlock(&dentry->d_lock);
413 spin_unlock(&dcache_lock);
415 EXPORT_SYMBOL(d_prune_aliases);
418 * Throw away a dentry - free the inode, dput the parent. This requires that
419 * the LRU list has already been removed.
421 * Try to prune ancestors as well. This is necessary to prevent
422 * quadratic behavior of shrink_dcache_parent(), but is also expected
423 * to be beneficial in reducing dentry cache fragmentation.
425 static void prune_one_dentry(struct dentry * dentry)
426 __releases(dentry->d_lock)
427 __releases(dcache_lock)
428 __acquires(dcache_lock)
430 __d_drop(dentry);
431 dentry = d_kill(dentry);
434 * Prune ancestors. Locking is simpler than in dput(),
435 * because dcache_lock needs to be taken anyway.
437 spin_lock(&dcache_lock);
438 while (dentry) {
439 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
440 return;
442 if (dentry->d_op && dentry->d_op->d_delete)
443 dentry->d_op->d_delete(dentry);
444 dentry_lru_del_init(dentry);
445 __d_drop(dentry);
446 dentry = d_kill(dentry);
447 spin_lock(&dcache_lock);
452 * Shrink the dentry LRU on a given superblock.
453 * @sb : superblock to shrink dentry LRU.
454 * @count: If count is NULL, we prune all dentries on superblock.
455 * @flags: If flags is non-zero, we need to do special processing based on
456 * which flags are set. This means we don't need to maintain multiple
457 * similar copies of this loop.
459 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
461 LIST_HEAD(referenced);
462 LIST_HEAD(tmp);
463 struct dentry *dentry;
464 int cnt = 0;
466 BUG_ON(!sb);
467 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
468 spin_lock(&dcache_lock);
469 if (count != NULL)
470 /* called from prune_dcache() and shrink_dcache_parent() */
471 cnt = *count;
472 restart:
473 if (count == NULL)
474 list_splice_init(&sb->s_dentry_lru, &tmp);
475 else {
476 while (!list_empty(&sb->s_dentry_lru)) {
477 dentry = list_entry(sb->s_dentry_lru.prev,
478 struct dentry, d_lru);
479 BUG_ON(dentry->d_sb != sb);
481 spin_lock(&dentry->d_lock);
483 * If we are honouring the DCACHE_REFERENCED flag and
484 * the dentry has this flag set, don't free it. Clear
485 * the flag and put it back on the LRU.
487 if ((flags & DCACHE_REFERENCED)
488 && (dentry->d_flags & DCACHE_REFERENCED)) {
489 dentry->d_flags &= ~DCACHE_REFERENCED;
490 list_move(&dentry->d_lru, &referenced);
491 spin_unlock(&dentry->d_lock);
492 } else {
493 list_move_tail(&dentry->d_lru, &tmp);
494 spin_unlock(&dentry->d_lock);
495 cnt--;
496 if (!cnt)
497 break;
499 cond_resched_lock(&dcache_lock);
502 while (!list_empty(&tmp)) {
503 dentry = list_entry(tmp.prev, struct dentry, d_lru);
504 dentry_lru_del_init(dentry);
505 spin_lock(&dentry->d_lock);
507 * We found an inuse dentry which was not removed from
508 * the LRU because of laziness during lookup. Do not free
509 * it - just keep it off the LRU list.
511 if (atomic_read(&dentry->d_count)) {
512 spin_unlock(&dentry->d_lock);
513 continue;
515 prune_one_dentry(dentry);
516 /* dentry->d_lock was dropped in prune_one_dentry() */
517 cond_resched_lock(&dcache_lock);
519 if (count == NULL && !list_empty(&sb->s_dentry_lru))
520 goto restart;
521 if (count != NULL)
522 *count = cnt;
523 if (!list_empty(&referenced))
524 list_splice(&referenced, &sb->s_dentry_lru);
525 spin_unlock(&dcache_lock);
529 * prune_dcache - shrink the dcache
530 * @count: number of entries to try to free
532 * Shrink the dcache. This is done when we need more memory, or simply when we
533 * need to unmount something (at which point we need to unuse all dentries).
535 * This function may fail to free any resources if all the dentries are in use.
537 static void prune_dcache(int count)
539 struct super_block *sb, *p = NULL;
540 int w_count;
541 int unused = dentry_stat.nr_unused;
542 int prune_ratio;
543 int pruned;
545 if (unused == 0 || count == 0)
546 return;
547 spin_lock(&dcache_lock);
548 if (count >= unused)
549 prune_ratio = 1;
550 else
551 prune_ratio = unused / count;
552 spin_lock(&sb_lock);
553 list_for_each_entry(sb, &super_blocks, s_list) {
554 if (list_empty(&sb->s_instances))
555 continue;
556 if (sb->s_nr_dentry_unused == 0)
557 continue;
558 sb->s_count++;
559 /* Now, we reclaim unused dentrins with fairness.
560 * We reclaim them same percentage from each superblock.
561 * We calculate number of dentries to scan on this sb
562 * as follows, but the implementation is arranged to avoid
563 * overflows:
564 * number of dentries to scan on this sb =
565 * count * (number of dentries on this sb /
566 * number of dentries in the machine)
568 spin_unlock(&sb_lock);
569 if (prune_ratio != 1)
570 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
571 else
572 w_count = sb->s_nr_dentry_unused;
573 pruned = w_count;
575 * We need to be sure this filesystem isn't being unmounted,
576 * otherwise we could race with generic_shutdown_super(), and
577 * end up holding a reference to an inode while the filesystem
578 * is unmounted. So we try to get s_umount, and make sure
579 * s_root isn't NULL.
581 if (down_read_trylock(&sb->s_umount)) {
582 if ((sb->s_root != NULL) &&
583 (!list_empty(&sb->s_dentry_lru))) {
584 spin_unlock(&dcache_lock);
585 __shrink_dcache_sb(sb, &w_count,
586 DCACHE_REFERENCED);
587 pruned -= w_count;
588 spin_lock(&dcache_lock);
590 up_read(&sb->s_umount);
592 spin_lock(&sb_lock);
593 if (p)
594 __put_super(p);
595 count -= pruned;
596 p = sb;
597 /* more work left to do? */
598 if (count <= 0)
599 break;
601 if (p)
602 __put_super(p);
603 spin_unlock(&sb_lock);
604 spin_unlock(&dcache_lock);
608 * shrink_dcache_sb - shrink dcache for a superblock
609 * @sb: superblock
611 * Shrink the dcache for the specified super block. This
612 * is used to free the dcache before unmounting a file
613 * system
615 void shrink_dcache_sb(struct super_block * sb)
617 __shrink_dcache_sb(sb, NULL, 0);
619 EXPORT_SYMBOL(shrink_dcache_sb);
622 * destroy a single subtree of dentries for unmount
623 * - see the comments on shrink_dcache_for_umount() for a description of the
624 * locking
626 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
628 struct dentry *parent;
629 unsigned detached = 0;
631 BUG_ON(!IS_ROOT(dentry));
633 /* detach this root from the system */
634 spin_lock(&dcache_lock);
635 dentry_lru_del_init(dentry);
636 __d_drop(dentry);
637 spin_unlock(&dcache_lock);
639 for (;;) {
640 /* descend to the first leaf in the current subtree */
641 while (!list_empty(&dentry->d_subdirs)) {
642 struct dentry *loop;
644 /* this is a branch with children - detach all of them
645 * from the system in one go */
646 spin_lock(&dcache_lock);
647 list_for_each_entry(loop, &dentry->d_subdirs,
648 d_u.d_child) {
649 dentry_lru_del_init(loop);
650 __d_drop(loop);
651 cond_resched_lock(&dcache_lock);
653 spin_unlock(&dcache_lock);
655 /* move to the first child */
656 dentry = list_entry(dentry->d_subdirs.next,
657 struct dentry, d_u.d_child);
660 /* consume the dentries from this leaf up through its parents
661 * until we find one with children or run out altogether */
662 do {
663 struct inode *inode;
665 if (atomic_read(&dentry->d_count) != 0) {
666 printk(KERN_ERR
667 "BUG: Dentry %p{i=%lx,n=%s}"
668 " still in use (%d)"
669 " [unmount of %s %s]\n",
670 dentry,
671 dentry->d_inode ?
672 dentry->d_inode->i_ino : 0UL,
673 dentry->d_name.name,
674 atomic_read(&dentry->d_count),
675 dentry->d_sb->s_type->name,
676 dentry->d_sb->s_id);
677 BUG();
680 if (IS_ROOT(dentry))
681 parent = NULL;
682 else {
683 parent = dentry->d_parent;
684 atomic_dec(&parent->d_count);
687 list_del(&dentry->d_u.d_child);
688 detached++;
690 inode = dentry->d_inode;
691 if (inode) {
692 dentry->d_inode = NULL;
693 list_del_init(&dentry->d_alias);
694 if (dentry->d_op && dentry->d_op->d_iput)
695 dentry->d_op->d_iput(dentry, inode);
696 else
697 iput(inode);
700 d_free(dentry);
702 /* finished when we fall off the top of the tree,
703 * otherwise we ascend to the parent and move to the
704 * next sibling if there is one */
705 if (!parent)
706 goto out;
708 dentry = parent;
710 } while (list_empty(&dentry->d_subdirs));
712 dentry = list_entry(dentry->d_subdirs.next,
713 struct dentry, d_u.d_child);
715 out:
716 /* several dentries were freed, need to correct nr_dentry */
717 spin_lock(&dcache_lock);
718 dentry_stat.nr_dentry -= detached;
719 spin_unlock(&dcache_lock);
723 * destroy the dentries attached to a superblock on unmounting
724 * - we don't need to use dentry->d_lock, and only need dcache_lock when
725 * removing the dentry from the system lists and hashes because:
726 * - the superblock is detached from all mountings and open files, so the
727 * dentry trees will not be rearranged by the VFS
728 * - s_umount is write-locked, so the memory pressure shrinker will ignore
729 * any dentries belonging to this superblock that it comes across
730 * - the filesystem itself is no longer permitted to rearrange the dentries
731 * in this superblock
733 void shrink_dcache_for_umount(struct super_block *sb)
735 struct dentry *dentry;
737 if (down_read_trylock(&sb->s_umount))
738 BUG();
740 dentry = sb->s_root;
741 sb->s_root = NULL;
742 atomic_dec(&dentry->d_count);
743 shrink_dcache_for_umount_subtree(dentry);
745 while (!hlist_empty(&sb->s_anon)) {
746 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
747 shrink_dcache_for_umount_subtree(dentry);
752 * Search for at least 1 mount point in the dentry's subdirs.
753 * We descend to the next level whenever the d_subdirs
754 * list is non-empty and continue searching.
758 * have_submounts - check for mounts over a dentry
759 * @parent: dentry to check.
761 * Return true if the parent or its subdirectories contain
762 * a mount point
765 int have_submounts(struct dentry *parent)
767 struct dentry *this_parent = parent;
768 struct list_head *next;
770 spin_lock(&dcache_lock);
771 if (d_mountpoint(parent))
772 goto positive;
773 repeat:
774 next = this_parent->d_subdirs.next;
775 resume:
776 while (next != &this_parent->d_subdirs) {
777 struct list_head *tmp = next;
778 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
779 next = tmp->next;
780 /* Have we found a mount point ? */
781 if (d_mountpoint(dentry))
782 goto positive;
783 if (!list_empty(&dentry->d_subdirs)) {
784 this_parent = dentry;
785 goto repeat;
789 * All done at this level ... ascend and resume the search.
791 if (this_parent != parent) {
792 next = this_parent->d_u.d_child.next;
793 this_parent = this_parent->d_parent;
794 goto resume;
796 spin_unlock(&dcache_lock);
797 return 0; /* No mount points found in tree */
798 positive:
799 spin_unlock(&dcache_lock);
800 return 1;
802 EXPORT_SYMBOL(have_submounts);
805 * Search the dentry child list for the specified parent,
806 * and move any unused dentries to the end of the unused
807 * list for prune_dcache(). We descend to the next level
808 * whenever the d_subdirs list is non-empty and continue
809 * searching.
811 * It returns zero iff there are no unused children,
812 * otherwise it returns the number of children moved to
813 * the end of the unused list. This may not be the total
814 * number of unused children, because select_parent can
815 * drop the lock and return early due to latency
816 * constraints.
818 static int select_parent(struct dentry * parent)
820 struct dentry *this_parent = parent;
821 struct list_head *next;
822 int found = 0;
824 spin_lock(&dcache_lock);
825 repeat:
826 next = this_parent->d_subdirs.next;
827 resume:
828 while (next != &this_parent->d_subdirs) {
829 struct list_head *tmp = next;
830 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
831 next = tmp->next;
833 dentry_lru_del_init(dentry);
835 * move only zero ref count dentries to the end
836 * of the unused list for prune_dcache
838 if (!atomic_read(&dentry->d_count)) {
839 dentry_lru_add_tail(dentry);
840 found++;
844 * We can return to the caller if we have found some (this
845 * ensures forward progress). We'll be coming back to find
846 * the rest.
848 if (found && need_resched())
849 goto out;
852 * Descend a level if the d_subdirs list is non-empty.
854 if (!list_empty(&dentry->d_subdirs)) {
855 this_parent = dentry;
856 goto repeat;
860 * All done at this level ... ascend and resume the search.
862 if (this_parent != parent) {
863 next = this_parent->d_u.d_child.next;
864 this_parent = this_parent->d_parent;
865 goto resume;
867 out:
868 spin_unlock(&dcache_lock);
869 return found;
873 * shrink_dcache_parent - prune dcache
874 * @parent: parent of entries to prune
876 * Prune the dcache to remove unused children of the parent dentry.
879 void shrink_dcache_parent(struct dentry * parent)
881 struct super_block *sb = parent->d_sb;
882 int found;
884 while ((found = select_parent(parent)) != 0)
885 __shrink_dcache_sb(sb, &found, 0);
887 EXPORT_SYMBOL(shrink_dcache_parent);
890 * Scan `nr' dentries and return the number which remain.
892 * We need to avoid reentering the filesystem if the caller is performing a
893 * GFP_NOFS allocation attempt. One example deadlock is:
895 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
896 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
897 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
899 * In this case we return -1 to tell the caller that we baled.
901 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
903 if (nr) {
904 if (!(gfp_mask & __GFP_FS))
905 return -1;
906 prune_dcache(nr);
908 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
911 static struct shrinker dcache_shrinker = {
912 .shrink = shrink_dcache_memory,
913 .seeks = DEFAULT_SEEKS,
917 * d_alloc - allocate a dcache entry
918 * @parent: parent of entry to allocate
919 * @name: qstr of the name
921 * Allocates a dentry. It returns %NULL if there is insufficient memory
922 * available. On a success the dentry is returned. The name passed in is
923 * copied and the copy passed in may be reused after this call.
926 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
928 struct dentry *dentry;
929 char *dname;
931 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
932 if (!dentry)
933 return NULL;
935 if (name->len > DNAME_INLINE_LEN-1) {
936 dname = kmalloc(name->len + 1, GFP_KERNEL);
937 if (!dname) {
938 kmem_cache_free(dentry_cache, dentry);
939 return NULL;
941 } else {
942 dname = dentry->d_iname;
944 dentry->d_name.name = dname;
946 dentry->d_name.len = name->len;
947 dentry->d_name.hash = name->hash;
948 memcpy(dname, name->name, name->len);
949 dname[name->len] = 0;
951 atomic_set(&dentry->d_count, 1);
952 dentry->d_flags = DCACHE_UNHASHED;
953 spin_lock_init(&dentry->d_lock);
954 dentry->d_inode = NULL;
955 dentry->d_parent = NULL;
956 dentry->d_sb = NULL;
957 dentry->d_op = NULL;
958 dentry->d_fsdata = NULL;
959 dentry->d_mounted = 0;
960 INIT_HLIST_NODE(&dentry->d_hash);
961 INIT_LIST_HEAD(&dentry->d_lru);
962 INIT_LIST_HEAD(&dentry->d_subdirs);
963 INIT_LIST_HEAD(&dentry->d_alias);
965 if (parent) {
966 dentry->d_parent = dget(parent);
967 dentry->d_sb = parent->d_sb;
968 } else {
969 INIT_LIST_HEAD(&dentry->d_u.d_child);
972 spin_lock(&dcache_lock);
973 if (parent)
974 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
975 dentry_stat.nr_dentry++;
976 spin_unlock(&dcache_lock);
978 return dentry;
980 EXPORT_SYMBOL(d_alloc);
982 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
984 struct qstr q;
986 q.name = name;
987 q.len = strlen(name);
988 q.hash = full_name_hash(q.name, q.len);
989 return d_alloc(parent, &q);
991 EXPORT_SYMBOL(d_alloc_name);
993 /* the caller must hold dcache_lock */
994 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
996 if (inode)
997 list_add(&dentry->d_alias, &inode->i_dentry);
998 dentry->d_inode = inode;
999 fsnotify_d_instantiate(dentry, inode);
1003 * d_instantiate - fill in inode information for a dentry
1004 * @entry: dentry to complete
1005 * @inode: inode to attach to this dentry
1007 * Fill in inode information in the entry.
1009 * This turns negative dentries into productive full members
1010 * of society.
1012 * NOTE! This assumes that the inode count has been incremented
1013 * (or otherwise set) by the caller to indicate that it is now
1014 * in use by the dcache.
1017 void d_instantiate(struct dentry *entry, struct inode * inode)
1019 BUG_ON(!list_empty(&entry->d_alias));
1020 spin_lock(&dcache_lock);
1021 __d_instantiate(entry, inode);
1022 spin_unlock(&dcache_lock);
1023 security_d_instantiate(entry, inode);
1025 EXPORT_SYMBOL(d_instantiate);
1028 * d_instantiate_unique - instantiate a non-aliased dentry
1029 * @entry: dentry to instantiate
1030 * @inode: inode to attach to this dentry
1032 * Fill in inode information in the entry. On success, it returns NULL.
1033 * If an unhashed alias of "entry" already exists, then we return the
1034 * aliased dentry instead and drop one reference to inode.
1036 * Note that in order to avoid conflicts with rename() etc, the caller
1037 * had better be holding the parent directory semaphore.
1039 * This also assumes that the inode count has been incremented
1040 * (or otherwise set) by the caller to indicate that it is now
1041 * in use by the dcache.
1043 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1044 struct inode *inode)
1046 struct dentry *alias;
1047 int len = entry->d_name.len;
1048 const char *name = entry->d_name.name;
1049 unsigned int hash = entry->d_name.hash;
1051 if (!inode) {
1052 __d_instantiate(entry, NULL);
1053 return NULL;
1056 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1057 struct qstr *qstr = &alias->d_name;
1059 if (qstr->hash != hash)
1060 continue;
1061 if (alias->d_parent != entry->d_parent)
1062 continue;
1063 if (qstr->len != len)
1064 continue;
1065 if (memcmp(qstr->name, name, len))
1066 continue;
1067 dget_locked(alias);
1068 return alias;
1071 __d_instantiate(entry, inode);
1072 return NULL;
1075 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1077 struct dentry *result;
1079 BUG_ON(!list_empty(&entry->d_alias));
1081 spin_lock(&dcache_lock);
1082 result = __d_instantiate_unique(entry, inode);
1083 spin_unlock(&dcache_lock);
1085 if (!result) {
1086 security_d_instantiate(entry, inode);
1087 return NULL;
1090 BUG_ON(!d_unhashed(result));
1091 iput(inode);
1092 return result;
1095 EXPORT_SYMBOL(d_instantiate_unique);
1098 * d_alloc_root - allocate root dentry
1099 * @root_inode: inode to allocate the root for
1101 * Allocate a root ("/") dentry for the inode given. The inode is
1102 * instantiated and returned. %NULL is returned if there is insufficient
1103 * memory or the inode passed is %NULL.
1106 struct dentry * d_alloc_root(struct inode * root_inode)
1108 struct dentry *res = NULL;
1110 if (root_inode) {
1111 static const struct qstr name = { .name = "/", .len = 1 };
1113 res = d_alloc(NULL, &name);
1114 if (res) {
1115 res->d_sb = root_inode->i_sb;
1116 res->d_parent = res;
1117 d_instantiate(res, root_inode);
1120 return res;
1122 EXPORT_SYMBOL(d_alloc_root);
1124 static inline struct hlist_head *d_hash(struct dentry *parent,
1125 unsigned long hash)
1127 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1128 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1129 return dentry_hashtable + (hash & D_HASHMASK);
1133 * d_obtain_alias - find or allocate a dentry for a given inode
1134 * @inode: inode to allocate the dentry for
1136 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1137 * similar open by handle operations. The returned dentry may be anonymous,
1138 * or may have a full name (if the inode was already in the cache).
1140 * When called on a directory inode, we must ensure that the inode only ever
1141 * has one dentry. If a dentry is found, that is returned instead of
1142 * allocating a new one.
1144 * On successful return, the reference to the inode has been transferred
1145 * to the dentry. In case of an error the reference on the inode is released.
1146 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1147 * be passed in and will be the error will be propagate to the return value,
1148 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1150 struct dentry *d_obtain_alias(struct inode *inode)
1152 static const struct qstr anonstring = { .name = "" };
1153 struct dentry *tmp;
1154 struct dentry *res;
1156 if (!inode)
1157 return ERR_PTR(-ESTALE);
1158 if (IS_ERR(inode))
1159 return ERR_CAST(inode);
1161 res = d_find_alias(inode);
1162 if (res)
1163 goto out_iput;
1165 tmp = d_alloc(NULL, &anonstring);
1166 if (!tmp) {
1167 res = ERR_PTR(-ENOMEM);
1168 goto out_iput;
1170 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1172 spin_lock(&dcache_lock);
1173 res = __d_find_alias(inode, 0);
1174 if (res) {
1175 spin_unlock(&dcache_lock);
1176 dput(tmp);
1177 goto out_iput;
1180 /* attach a disconnected dentry */
1181 spin_lock(&tmp->d_lock);
1182 tmp->d_sb = inode->i_sb;
1183 tmp->d_inode = inode;
1184 tmp->d_flags |= DCACHE_DISCONNECTED;
1185 tmp->d_flags &= ~DCACHE_UNHASHED;
1186 list_add(&tmp->d_alias, &inode->i_dentry);
1187 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1188 spin_unlock(&tmp->d_lock);
1190 spin_unlock(&dcache_lock);
1191 return tmp;
1193 out_iput:
1194 iput(inode);
1195 return res;
1197 EXPORT_SYMBOL(d_obtain_alias);
1200 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1201 * @inode: the inode which may have a disconnected dentry
1202 * @dentry: a negative dentry which we want to point to the inode.
1204 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1205 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1206 * and return it, else simply d_add the inode to the dentry and return NULL.
1208 * This is needed in the lookup routine of any filesystem that is exportable
1209 * (via knfsd) so that we can build dcache paths to directories effectively.
1211 * If a dentry was found and moved, then it is returned. Otherwise NULL
1212 * is returned. This matches the expected return value of ->lookup.
1215 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1217 struct dentry *new = NULL;
1219 if (inode && S_ISDIR(inode->i_mode)) {
1220 spin_lock(&dcache_lock);
1221 new = __d_find_alias(inode, 1);
1222 if (new) {
1223 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1224 spin_unlock(&dcache_lock);
1225 security_d_instantiate(new, inode);
1226 d_move(new, dentry);
1227 iput(inode);
1228 } else {
1229 /* already taking dcache_lock, so d_add() by hand */
1230 __d_instantiate(dentry, inode);
1231 spin_unlock(&dcache_lock);
1232 security_d_instantiate(dentry, inode);
1233 d_rehash(dentry);
1235 } else
1236 d_add(dentry, inode);
1237 return new;
1239 EXPORT_SYMBOL(d_splice_alias);
1242 * d_add_ci - lookup or allocate new dentry with case-exact name
1243 * @inode: the inode case-insensitive lookup has found
1244 * @dentry: the negative dentry that was passed to the parent's lookup func
1245 * @name: the case-exact name to be associated with the returned dentry
1247 * This is to avoid filling the dcache with case-insensitive names to the
1248 * same inode, only the actual correct case is stored in the dcache for
1249 * case-insensitive filesystems.
1251 * For a case-insensitive lookup match and if the the case-exact dentry
1252 * already exists in in the dcache, use it and return it.
1254 * If no entry exists with the exact case name, allocate new dentry with
1255 * the exact case, and return the spliced entry.
1257 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1258 struct qstr *name)
1260 int error;
1261 struct dentry *found;
1262 struct dentry *new;
1265 * First check if a dentry matching the name already exists,
1266 * if not go ahead and create it now.
1268 found = d_hash_and_lookup(dentry->d_parent, name);
1269 if (!found) {
1270 new = d_alloc(dentry->d_parent, name);
1271 if (!new) {
1272 error = -ENOMEM;
1273 goto err_out;
1276 found = d_splice_alias(inode, new);
1277 if (found) {
1278 dput(new);
1279 return found;
1281 return new;
1285 * If a matching dentry exists, and it's not negative use it.
1287 * Decrement the reference count to balance the iget() done
1288 * earlier on.
1290 if (found->d_inode) {
1291 if (unlikely(found->d_inode != inode)) {
1292 /* This can't happen because bad inodes are unhashed. */
1293 BUG_ON(!is_bad_inode(inode));
1294 BUG_ON(!is_bad_inode(found->d_inode));
1296 iput(inode);
1297 return found;
1301 * Negative dentry: instantiate it unless the inode is a directory and
1302 * already has a dentry.
1304 spin_lock(&dcache_lock);
1305 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1306 __d_instantiate(found, inode);
1307 spin_unlock(&dcache_lock);
1308 security_d_instantiate(found, inode);
1309 return found;
1313 * In case a directory already has a (disconnected) entry grab a
1314 * reference to it, move it in place and use it.
1316 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1317 dget_locked(new);
1318 spin_unlock(&dcache_lock);
1319 security_d_instantiate(found, inode);
1320 d_move(new, found);
1321 iput(inode);
1322 dput(found);
1323 return new;
1325 err_out:
1326 iput(inode);
1327 return ERR_PTR(error);
1329 EXPORT_SYMBOL(d_add_ci);
1332 * d_lookup - search for a dentry
1333 * @parent: parent dentry
1334 * @name: qstr of name we wish to find
1335 * Returns: dentry, or NULL
1337 * d_lookup searches the children of the parent dentry for the name in
1338 * question. If the dentry is found its reference count is incremented and the
1339 * dentry is returned. The caller must use dput to free the entry when it has
1340 * finished using it. %NULL is returned if the dentry does not exist.
1342 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1344 struct dentry * dentry = NULL;
1345 unsigned long seq;
1347 do {
1348 seq = read_seqbegin(&rename_lock);
1349 dentry = __d_lookup(parent, name);
1350 if (dentry)
1351 break;
1352 } while (read_seqretry(&rename_lock, seq));
1353 return dentry;
1355 EXPORT_SYMBOL(d_lookup);
1358 * __d_lookup - search for a dentry (racy)
1359 * @parent: parent dentry
1360 * @name: qstr of name we wish to find
1361 * Returns: dentry, or NULL
1363 * __d_lookup is like d_lookup, however it may (rarely) return a
1364 * false-negative result due to unrelated rename activity.
1366 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1367 * however it must be used carefully, eg. with a following d_lookup in
1368 * the case of failure.
1370 * __d_lookup callers must be commented.
1372 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1374 unsigned int len = name->len;
1375 unsigned int hash = name->hash;
1376 const unsigned char *str = name->name;
1377 struct hlist_head *head = d_hash(parent,hash);
1378 struct dentry *found = NULL;
1379 struct hlist_node *node;
1380 struct dentry *dentry;
1383 * The hash list is protected using RCU.
1385 * Take d_lock when comparing a candidate dentry, to avoid races
1386 * with d_move().
1388 * It is possible that concurrent renames can mess up our list
1389 * walk here and result in missing our dentry, resulting in the
1390 * false-negative result. d_lookup() protects against concurrent
1391 * renames using rename_lock seqlock.
1393 * See Documentation/vfs/dcache-locking.txt for more details.
1395 rcu_read_lock();
1397 hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1398 struct qstr *qstr;
1400 if (dentry->d_name.hash != hash)
1401 continue;
1402 if (dentry->d_parent != parent)
1403 continue;
1405 spin_lock(&dentry->d_lock);
1408 * Recheck the dentry after taking the lock - d_move may have
1409 * changed things. Don't bother checking the hash because
1410 * we're about to compare the whole name anyway.
1412 if (dentry->d_parent != parent)
1413 goto next;
1415 /* non-existing due to RCU? */
1416 if (d_unhashed(dentry))
1417 goto next;
1420 * It is safe to compare names since d_move() cannot
1421 * change the qstr (protected by d_lock).
1423 qstr = &dentry->d_name;
1424 if (parent->d_op && parent->d_op->d_compare) {
1425 if (parent->d_op->d_compare(parent, qstr, name))
1426 goto next;
1427 } else {
1428 if (qstr->len != len)
1429 goto next;
1430 if (memcmp(qstr->name, str, len))
1431 goto next;
1434 atomic_inc(&dentry->d_count);
1435 found = dentry;
1436 spin_unlock(&dentry->d_lock);
1437 break;
1438 next:
1439 spin_unlock(&dentry->d_lock);
1441 rcu_read_unlock();
1443 return found;
1447 * d_hash_and_lookup - hash the qstr then search for a dentry
1448 * @dir: Directory to search in
1449 * @name: qstr of name we wish to find
1451 * On hash failure or on lookup failure NULL is returned.
1453 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1455 struct dentry *dentry = NULL;
1458 * Check for a fs-specific hash function. Note that we must
1459 * calculate the standard hash first, as the d_op->d_hash()
1460 * routine may choose to leave the hash value unchanged.
1462 name->hash = full_name_hash(name->name, name->len);
1463 if (dir->d_op && dir->d_op->d_hash) {
1464 if (dir->d_op->d_hash(dir, name) < 0)
1465 goto out;
1467 dentry = d_lookup(dir, name);
1468 out:
1469 return dentry;
1473 * d_validate - verify dentry provided from insecure source
1474 * @dentry: The dentry alleged to be valid child of @dparent
1475 * @dparent: The parent dentry (known to be valid)
1477 * An insecure source has sent us a dentry, here we verify it and dget() it.
1478 * This is used by ncpfs in its readdir implementation.
1479 * Zero is returned in the dentry is invalid.
1482 int d_validate(struct dentry *dentry, struct dentry *dparent)
1484 struct hlist_head *base;
1485 struct hlist_node *lhp;
1487 /* Check whether the ptr might be valid at all.. */
1488 if (!kmem_ptr_validate(dentry_cache, dentry))
1489 goto out;
1491 if (dentry->d_parent != dparent)
1492 goto out;
1494 spin_lock(&dcache_lock);
1495 base = d_hash(dparent, dentry->d_name.hash);
1496 hlist_for_each(lhp,base) {
1497 /* hlist_for_each_entry_rcu() not required for d_hash list
1498 * as it is parsed under dcache_lock
1500 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1501 __dget_locked(dentry);
1502 spin_unlock(&dcache_lock);
1503 return 1;
1506 spin_unlock(&dcache_lock);
1507 out:
1508 return 0;
1510 EXPORT_SYMBOL(d_validate);
1513 * When a file is deleted, we have two options:
1514 * - turn this dentry into a negative dentry
1515 * - unhash this dentry and free it.
1517 * Usually, we want to just turn this into
1518 * a negative dentry, but if anybody else is
1519 * currently using the dentry or the inode
1520 * we can't do that and we fall back on removing
1521 * it from the hash queues and waiting for
1522 * it to be deleted later when it has no users
1526 * d_delete - delete a dentry
1527 * @dentry: The dentry to delete
1529 * Turn the dentry into a negative dentry if possible, otherwise
1530 * remove it from the hash queues so it can be deleted later
1533 void d_delete(struct dentry * dentry)
1535 int isdir = 0;
1537 * Are we the only user?
1539 spin_lock(&dcache_lock);
1540 spin_lock(&dentry->d_lock);
1541 isdir = S_ISDIR(dentry->d_inode->i_mode);
1542 if (atomic_read(&dentry->d_count) == 1) {
1543 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1544 dentry_iput(dentry);
1545 fsnotify_nameremove(dentry, isdir);
1546 return;
1549 if (!d_unhashed(dentry))
1550 __d_drop(dentry);
1552 spin_unlock(&dentry->d_lock);
1553 spin_unlock(&dcache_lock);
1555 fsnotify_nameremove(dentry, isdir);
1557 EXPORT_SYMBOL(d_delete);
1559 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1562 entry->d_flags &= ~DCACHE_UNHASHED;
1563 hlist_add_head_rcu(&entry->d_hash, list);
1566 static void _d_rehash(struct dentry * entry)
1568 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1572 * d_rehash - add an entry back to the hash
1573 * @entry: dentry to add to the hash
1575 * Adds a dentry to the hash according to its name.
1578 void d_rehash(struct dentry * entry)
1580 spin_lock(&dcache_lock);
1581 spin_lock(&entry->d_lock);
1582 _d_rehash(entry);
1583 spin_unlock(&entry->d_lock);
1584 spin_unlock(&dcache_lock);
1586 EXPORT_SYMBOL(d_rehash);
1589 * When switching names, the actual string doesn't strictly have to
1590 * be preserved in the target - because we're dropping the target
1591 * anyway. As such, we can just do a simple memcpy() to copy over
1592 * the new name before we switch.
1594 * Note that we have to be a lot more careful about getting the hash
1595 * switched - we have to switch the hash value properly even if it
1596 * then no longer matches the actual (corrupted) string of the target.
1597 * The hash value has to match the hash queue that the dentry is on..
1599 static void switch_names(struct dentry *dentry, struct dentry *target)
1601 if (dname_external(target)) {
1602 if (dname_external(dentry)) {
1604 * Both external: swap the pointers
1606 swap(target->d_name.name, dentry->d_name.name);
1607 } else {
1609 * dentry:internal, target:external. Steal target's
1610 * storage and make target internal.
1612 memcpy(target->d_iname, dentry->d_name.name,
1613 dentry->d_name.len + 1);
1614 dentry->d_name.name = target->d_name.name;
1615 target->d_name.name = target->d_iname;
1617 } else {
1618 if (dname_external(dentry)) {
1620 * dentry:external, target:internal. Give dentry's
1621 * storage to target and make dentry internal
1623 memcpy(dentry->d_iname, target->d_name.name,
1624 target->d_name.len + 1);
1625 target->d_name.name = dentry->d_name.name;
1626 dentry->d_name.name = dentry->d_iname;
1627 } else {
1629 * Both are internal. Just copy target to dentry
1631 memcpy(dentry->d_iname, target->d_name.name,
1632 target->d_name.len + 1);
1633 dentry->d_name.len = target->d_name.len;
1634 return;
1637 swap(dentry->d_name.len, target->d_name.len);
1641 * We cannibalize "target" when moving dentry on top of it,
1642 * because it's going to be thrown away anyway. We could be more
1643 * polite about it, though.
1645 * This forceful removal will result in ugly /proc output if
1646 * somebody holds a file open that got deleted due to a rename.
1647 * We could be nicer about the deleted file, and let it show
1648 * up under the name it had before it was deleted rather than
1649 * under the original name of the file that was moved on top of it.
1653 * d_move_locked - move a dentry
1654 * @dentry: entry to move
1655 * @target: new dentry
1657 * Update the dcache to reflect the move of a file name. Negative
1658 * dcache entries should not be moved in this way.
1660 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1662 struct hlist_head *list;
1664 if (!dentry->d_inode)
1665 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1667 write_seqlock(&rename_lock);
1669 * XXXX: do we really need to take target->d_lock?
1671 if (target < dentry) {
1672 spin_lock(&target->d_lock);
1673 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1674 } else {
1675 spin_lock(&dentry->d_lock);
1676 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1679 /* Move the dentry to the target hash queue, if on different bucket */
1680 if (d_unhashed(dentry))
1681 goto already_unhashed;
1683 hlist_del_rcu(&dentry->d_hash);
1685 already_unhashed:
1686 list = d_hash(target->d_parent, target->d_name.hash);
1687 __d_rehash(dentry, list);
1689 /* Unhash the target: dput() will then get rid of it */
1690 __d_drop(target);
1692 list_del(&dentry->d_u.d_child);
1693 list_del(&target->d_u.d_child);
1695 /* Switch the names.. */
1696 switch_names(dentry, target);
1697 swap(dentry->d_name.hash, target->d_name.hash);
1699 /* ... and switch the parents */
1700 if (IS_ROOT(dentry)) {
1701 dentry->d_parent = target->d_parent;
1702 target->d_parent = target;
1703 INIT_LIST_HEAD(&target->d_u.d_child);
1704 } else {
1705 swap(dentry->d_parent, target->d_parent);
1707 /* And add them back to the (new) parent lists */
1708 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1711 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1712 spin_unlock(&target->d_lock);
1713 fsnotify_d_move(dentry);
1714 spin_unlock(&dentry->d_lock);
1715 write_sequnlock(&rename_lock);
1719 * d_move - move a dentry
1720 * @dentry: entry to move
1721 * @target: new dentry
1723 * Update the dcache to reflect the move of a file name. Negative
1724 * dcache entries should not be moved in this way.
1727 void d_move(struct dentry * dentry, struct dentry * target)
1729 spin_lock(&dcache_lock);
1730 d_move_locked(dentry, target);
1731 spin_unlock(&dcache_lock);
1733 EXPORT_SYMBOL(d_move);
1736 * d_ancestor - search for an ancestor
1737 * @p1: ancestor dentry
1738 * @p2: child dentry
1740 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1741 * an ancestor of p2, else NULL.
1743 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1745 struct dentry *p;
1747 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1748 if (p->d_parent == p1)
1749 return p;
1751 return NULL;
1755 * This helper attempts to cope with remotely renamed directories
1757 * It assumes that the caller is already holding
1758 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1760 * Note: If ever the locking in lock_rename() changes, then please
1761 * remember to update this too...
1763 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1764 __releases(dcache_lock)
1766 struct mutex *m1 = NULL, *m2 = NULL;
1767 struct dentry *ret;
1769 /* If alias and dentry share a parent, then no extra locks required */
1770 if (alias->d_parent == dentry->d_parent)
1771 goto out_unalias;
1773 /* Check for loops */
1774 ret = ERR_PTR(-ELOOP);
1775 if (d_ancestor(alias, dentry))
1776 goto out_err;
1778 /* See lock_rename() */
1779 ret = ERR_PTR(-EBUSY);
1780 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1781 goto out_err;
1782 m1 = &dentry->d_sb->s_vfs_rename_mutex;
1783 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1784 goto out_err;
1785 m2 = &alias->d_parent->d_inode->i_mutex;
1786 out_unalias:
1787 d_move_locked(alias, dentry);
1788 ret = alias;
1789 out_err:
1790 spin_unlock(&dcache_lock);
1791 if (m2)
1792 mutex_unlock(m2);
1793 if (m1)
1794 mutex_unlock(m1);
1795 return ret;
1799 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1800 * named dentry in place of the dentry to be replaced.
1802 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1804 struct dentry *dparent, *aparent;
1806 switch_names(dentry, anon);
1807 swap(dentry->d_name.hash, anon->d_name.hash);
1809 dparent = dentry->d_parent;
1810 aparent = anon->d_parent;
1812 dentry->d_parent = (aparent == anon) ? dentry : aparent;
1813 list_del(&dentry->d_u.d_child);
1814 if (!IS_ROOT(dentry))
1815 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1816 else
1817 INIT_LIST_HEAD(&dentry->d_u.d_child);
1819 anon->d_parent = (dparent == dentry) ? anon : dparent;
1820 list_del(&anon->d_u.d_child);
1821 if (!IS_ROOT(anon))
1822 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1823 else
1824 INIT_LIST_HEAD(&anon->d_u.d_child);
1826 anon->d_flags &= ~DCACHE_DISCONNECTED;
1830 * d_materialise_unique - introduce an inode into the tree
1831 * @dentry: candidate dentry
1832 * @inode: inode to bind to the dentry, to which aliases may be attached
1834 * Introduces an dentry into the tree, substituting an extant disconnected
1835 * root directory alias in its place if there is one
1837 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1839 struct dentry *actual;
1841 BUG_ON(!d_unhashed(dentry));
1843 spin_lock(&dcache_lock);
1845 if (!inode) {
1846 actual = dentry;
1847 __d_instantiate(dentry, NULL);
1848 goto found_lock;
1851 if (S_ISDIR(inode->i_mode)) {
1852 struct dentry *alias;
1854 /* Does an aliased dentry already exist? */
1855 alias = __d_find_alias(inode, 0);
1856 if (alias) {
1857 actual = alias;
1858 /* Is this an anonymous mountpoint that we could splice
1859 * into our tree? */
1860 if (IS_ROOT(alias)) {
1861 spin_lock(&alias->d_lock);
1862 __d_materialise_dentry(dentry, alias);
1863 __d_drop(alias);
1864 goto found;
1866 /* Nope, but we must(!) avoid directory aliasing */
1867 actual = __d_unalias(dentry, alias);
1868 if (IS_ERR(actual))
1869 dput(alias);
1870 goto out_nolock;
1874 /* Add a unique reference */
1875 actual = __d_instantiate_unique(dentry, inode);
1876 if (!actual)
1877 actual = dentry;
1878 else if (unlikely(!d_unhashed(actual)))
1879 goto shouldnt_be_hashed;
1881 found_lock:
1882 spin_lock(&actual->d_lock);
1883 found:
1884 _d_rehash(actual);
1885 spin_unlock(&actual->d_lock);
1886 spin_unlock(&dcache_lock);
1887 out_nolock:
1888 if (actual == dentry) {
1889 security_d_instantiate(dentry, inode);
1890 return NULL;
1893 iput(inode);
1894 return actual;
1896 shouldnt_be_hashed:
1897 spin_unlock(&dcache_lock);
1898 BUG();
1900 EXPORT_SYMBOL_GPL(d_materialise_unique);
1902 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1904 *buflen -= namelen;
1905 if (*buflen < 0)
1906 return -ENAMETOOLONG;
1907 *buffer -= namelen;
1908 memcpy(*buffer, str, namelen);
1909 return 0;
1912 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1914 return prepend(buffer, buflen, name->name, name->len);
1918 * Prepend path string to a buffer
1920 * @path: the dentry/vfsmount to report
1921 * @root: root vfsmnt/dentry (may be modified by this function)
1922 * @buffer: pointer to the end of the buffer
1923 * @buflen: pointer to buffer length
1925 * Caller holds the dcache_lock.
1927 * If path is not reachable from the supplied root, then the value of
1928 * root is changed (without modifying refcounts).
1930 static int prepend_path(const struct path *path, struct path *root,
1931 char **buffer, int *buflen)
1933 struct dentry *dentry = path->dentry;
1934 struct vfsmount *vfsmnt = path->mnt;
1935 bool slash = false;
1936 int error = 0;
1938 br_read_lock(vfsmount_lock);
1939 while (dentry != root->dentry || vfsmnt != root->mnt) {
1940 struct dentry * parent;
1942 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1943 /* Global root? */
1944 if (vfsmnt->mnt_parent == vfsmnt) {
1945 goto global_root;
1947 dentry = vfsmnt->mnt_mountpoint;
1948 vfsmnt = vfsmnt->mnt_parent;
1949 continue;
1951 parent = dentry->d_parent;
1952 prefetch(parent);
1953 error = prepend_name(buffer, buflen, &dentry->d_name);
1954 if (!error)
1955 error = prepend(buffer, buflen, "/", 1);
1956 if (error)
1957 break;
1959 slash = true;
1960 dentry = parent;
1963 out:
1964 if (!error && !slash)
1965 error = prepend(buffer, buflen, "/", 1);
1967 br_read_unlock(vfsmount_lock);
1968 return error;
1970 global_root:
1972 * Filesystems needing to implement special "root names"
1973 * should do so with ->d_dname()
1975 if (IS_ROOT(dentry) &&
1976 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
1977 WARN(1, "Root dentry has weird name <%.*s>\n",
1978 (int) dentry->d_name.len, dentry->d_name.name);
1980 root->mnt = vfsmnt;
1981 root->dentry = dentry;
1982 goto out;
1986 * __d_path - return the path of a dentry
1987 * @path: the dentry/vfsmount to report
1988 * @root: root vfsmnt/dentry (may be modified by this function)
1989 * @buf: buffer to return value in
1990 * @buflen: buffer length
1992 * Convert a dentry into an ASCII path name.
1994 * Returns a pointer into the buffer or an error code if the
1995 * path was too long.
1997 * "buflen" should be positive. Caller holds the dcache_lock.
1999 * If path is not reachable from the supplied root, then the value of
2000 * root is changed (without modifying refcounts).
2002 char *__d_path(const struct path *path, struct path *root,
2003 char *buf, int buflen)
2005 char *res = buf + buflen;
2006 int error;
2008 prepend(&res, &buflen, "\0", 1);
2009 error = prepend_path(path, root, &res, &buflen);
2010 if (error)
2011 return ERR_PTR(error);
2013 return res;
2017 * same as __d_path but appends "(deleted)" for unlinked files.
2019 static int path_with_deleted(const struct path *path, struct path *root,
2020 char **buf, int *buflen)
2022 prepend(buf, buflen, "\0", 1);
2023 if (d_unlinked(path->dentry)) {
2024 int error = prepend(buf, buflen, " (deleted)", 10);
2025 if (error)
2026 return error;
2029 return prepend_path(path, root, buf, buflen);
2032 static int prepend_unreachable(char **buffer, int *buflen)
2034 return prepend(buffer, buflen, "(unreachable)", 13);
2038 * d_path - return the path of a dentry
2039 * @path: path to report
2040 * @buf: buffer to return value in
2041 * @buflen: buffer length
2043 * Convert a dentry into an ASCII path name. If the entry has been deleted
2044 * the string " (deleted)" is appended. Note that this is ambiguous.
2046 * Returns a pointer into the buffer or an error code if the path was
2047 * too long. Note: Callers should use the returned pointer, not the passed
2048 * in buffer, to use the name! The implementation often starts at an offset
2049 * into the buffer, and may leave 0 bytes at the start.
2051 * "buflen" should be positive.
2053 char *d_path(const struct path *path, char *buf, int buflen)
2055 char *res = buf + buflen;
2056 struct path root;
2057 struct path tmp;
2058 int error;
2061 * We have various synthetic filesystems that never get mounted. On
2062 * these filesystems dentries are never used for lookup purposes, and
2063 * thus don't need to be hashed. They also don't need a name until a
2064 * user wants to identify the object in /proc/pid/fd/. The little hack
2065 * below allows us to generate a name for these objects on demand:
2067 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2068 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2070 get_fs_root(current->fs, &root);
2071 spin_lock(&dcache_lock);
2072 tmp = root;
2073 error = path_with_deleted(path, &tmp, &res, &buflen);
2074 if (error)
2075 res = ERR_PTR(error);
2076 spin_unlock(&dcache_lock);
2077 path_put(&root);
2078 return res;
2080 EXPORT_SYMBOL(d_path);
2083 * d_path_with_unreachable - return the path of a dentry
2084 * @path: path to report
2085 * @buf: buffer to return value in
2086 * @buflen: buffer length
2088 * The difference from d_path() is that this prepends "(unreachable)"
2089 * to paths which are unreachable from the current process' root.
2091 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2093 char *res = buf + buflen;
2094 struct path root;
2095 struct path tmp;
2096 int error;
2098 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2099 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2101 get_fs_root(current->fs, &root);
2102 spin_lock(&dcache_lock);
2103 tmp = root;
2104 error = path_with_deleted(path, &tmp, &res, &buflen);
2105 if (!error && !path_equal(&tmp, &root))
2106 error = prepend_unreachable(&res, &buflen);
2107 spin_unlock(&dcache_lock);
2108 path_put(&root);
2109 if (error)
2110 res = ERR_PTR(error);
2112 return res;
2116 * Helper function for dentry_operations.d_dname() members
2118 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2119 const char *fmt, ...)
2121 va_list args;
2122 char temp[64];
2123 int sz;
2125 va_start(args, fmt);
2126 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2127 va_end(args);
2129 if (sz > sizeof(temp) || sz > buflen)
2130 return ERR_PTR(-ENAMETOOLONG);
2132 buffer += buflen - sz;
2133 return memcpy(buffer, temp, sz);
2137 * Write full pathname from the root of the filesystem into the buffer.
2139 char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2141 char *end = buf + buflen;
2142 char *retval;
2144 prepend(&end, &buflen, "\0", 1);
2145 if (buflen < 1)
2146 goto Elong;
2147 /* Get '/' right */
2148 retval = end-1;
2149 *retval = '/';
2151 while (!IS_ROOT(dentry)) {
2152 struct dentry *parent = dentry->d_parent;
2154 prefetch(parent);
2155 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2156 (prepend(&end, &buflen, "/", 1) != 0))
2157 goto Elong;
2159 retval = end;
2160 dentry = parent;
2162 return retval;
2163 Elong:
2164 return ERR_PTR(-ENAMETOOLONG);
2166 EXPORT_SYMBOL(__dentry_path);
2168 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2170 char *p = NULL;
2171 char *retval;
2173 spin_lock(&dcache_lock);
2174 if (d_unlinked(dentry)) {
2175 p = buf + buflen;
2176 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2177 goto Elong;
2178 buflen++;
2180 retval = __dentry_path(dentry, buf, buflen);
2181 spin_unlock(&dcache_lock);
2182 if (!IS_ERR(retval) && p)
2183 *p = '/'; /* restore '/' overriden with '\0' */
2184 return retval;
2185 Elong:
2186 spin_unlock(&dcache_lock);
2187 return ERR_PTR(-ENAMETOOLONG);
2191 * NOTE! The user-level library version returns a
2192 * character pointer. The kernel system call just
2193 * returns the length of the buffer filled (which
2194 * includes the ending '\0' character), or a negative
2195 * error value. So libc would do something like
2197 * char *getcwd(char * buf, size_t size)
2199 * int retval;
2201 * retval = sys_getcwd(buf, size);
2202 * if (retval >= 0)
2203 * return buf;
2204 * errno = -retval;
2205 * return NULL;
2208 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2210 int error;
2211 struct path pwd, root;
2212 char *page = (char *) __get_free_page(GFP_USER);
2214 if (!page)
2215 return -ENOMEM;
2217 get_fs_root_and_pwd(current->fs, &root, &pwd);
2219 error = -ENOENT;
2220 spin_lock(&dcache_lock);
2221 if (!d_unlinked(pwd.dentry)) {
2222 unsigned long len;
2223 struct path tmp = root;
2224 char *cwd = page + PAGE_SIZE;
2225 int buflen = PAGE_SIZE;
2227 prepend(&cwd, &buflen, "\0", 1);
2228 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2229 spin_unlock(&dcache_lock);
2231 if (error)
2232 goto out;
2234 /* Unreachable from current root */
2235 if (!path_equal(&tmp, &root)) {
2236 error = prepend_unreachable(&cwd, &buflen);
2237 if (error)
2238 goto out;
2241 error = -ERANGE;
2242 len = PAGE_SIZE + page - cwd;
2243 if (len <= size) {
2244 error = len;
2245 if (copy_to_user(buf, cwd, len))
2246 error = -EFAULT;
2248 } else
2249 spin_unlock(&dcache_lock);
2251 out:
2252 path_put(&pwd);
2253 path_put(&root);
2254 free_page((unsigned long) page);
2255 return error;
2259 * Test whether new_dentry is a subdirectory of old_dentry.
2261 * Trivially implemented using the dcache structure
2265 * is_subdir - is new dentry a subdirectory of old_dentry
2266 * @new_dentry: new dentry
2267 * @old_dentry: old dentry
2269 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2270 * Returns 0 otherwise.
2271 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2274 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2276 int result;
2277 unsigned long seq;
2279 if (new_dentry == old_dentry)
2280 return 1;
2283 * Need rcu_readlock to protect against the d_parent trashing
2284 * due to d_move
2286 rcu_read_lock();
2287 do {
2288 /* for restarting inner loop in case of seq retry */
2289 seq = read_seqbegin(&rename_lock);
2290 if (d_ancestor(old_dentry, new_dentry))
2291 result = 1;
2292 else
2293 result = 0;
2294 } while (read_seqretry(&rename_lock, seq));
2295 rcu_read_unlock();
2297 return result;
2300 int path_is_under(struct path *path1, struct path *path2)
2302 struct vfsmount *mnt = path1->mnt;
2303 struct dentry *dentry = path1->dentry;
2304 int res;
2306 br_read_lock(vfsmount_lock);
2307 if (mnt != path2->mnt) {
2308 for (;;) {
2309 if (mnt->mnt_parent == mnt) {
2310 br_read_unlock(vfsmount_lock);
2311 return 0;
2313 if (mnt->mnt_parent == path2->mnt)
2314 break;
2315 mnt = mnt->mnt_parent;
2317 dentry = mnt->mnt_mountpoint;
2319 res = is_subdir(dentry, path2->dentry);
2320 br_read_unlock(vfsmount_lock);
2321 return res;
2323 EXPORT_SYMBOL(path_is_under);
2325 void d_genocide(struct dentry *root)
2327 struct dentry *this_parent = root;
2328 struct list_head *next;
2330 spin_lock(&dcache_lock);
2331 repeat:
2332 next = this_parent->d_subdirs.next;
2333 resume:
2334 while (next != &this_parent->d_subdirs) {
2335 struct list_head *tmp = next;
2336 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2337 next = tmp->next;
2338 if (d_unhashed(dentry)||!dentry->d_inode)
2339 continue;
2340 if (!list_empty(&dentry->d_subdirs)) {
2341 this_parent = dentry;
2342 goto repeat;
2344 atomic_dec(&dentry->d_count);
2346 if (this_parent != root) {
2347 next = this_parent->d_u.d_child.next;
2348 atomic_dec(&this_parent->d_count);
2349 this_parent = this_parent->d_parent;
2350 goto resume;
2352 spin_unlock(&dcache_lock);
2356 * find_inode_number - check for dentry with name
2357 * @dir: directory to check
2358 * @name: Name to find.
2360 * Check whether a dentry already exists for the given name,
2361 * and return the inode number if it has an inode. Otherwise
2362 * 0 is returned.
2364 * This routine is used to post-process directory listings for
2365 * filesystems using synthetic inode numbers, and is necessary
2366 * to keep getcwd() working.
2369 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2371 struct dentry * dentry;
2372 ino_t ino = 0;
2374 dentry = d_hash_and_lookup(dir, name);
2375 if (dentry) {
2376 if (dentry->d_inode)
2377 ino = dentry->d_inode->i_ino;
2378 dput(dentry);
2380 return ino;
2382 EXPORT_SYMBOL(find_inode_number);
2384 static __initdata unsigned long dhash_entries;
2385 static int __init set_dhash_entries(char *str)
2387 if (!str)
2388 return 0;
2389 dhash_entries = simple_strtoul(str, &str, 0);
2390 return 1;
2392 __setup("dhash_entries=", set_dhash_entries);
2394 static void __init dcache_init_early(void)
2396 int loop;
2398 /* If hashes are distributed across NUMA nodes, defer
2399 * hash allocation until vmalloc space is available.
2401 if (hashdist)
2402 return;
2404 dentry_hashtable =
2405 alloc_large_system_hash("Dentry cache",
2406 sizeof(struct hlist_head),
2407 dhash_entries,
2409 HASH_EARLY,
2410 &d_hash_shift,
2411 &d_hash_mask,
2414 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2415 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2418 static void __init dcache_init(void)
2420 int loop;
2423 * A constructor could be added for stable state like the lists,
2424 * but it is probably not worth it because of the cache nature
2425 * of the dcache.
2427 dentry_cache = KMEM_CACHE(dentry,
2428 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2430 register_shrinker(&dcache_shrinker);
2432 /* Hash may have been set up in dcache_init_early */
2433 if (!hashdist)
2434 return;
2436 dentry_hashtable =
2437 alloc_large_system_hash("Dentry cache",
2438 sizeof(struct hlist_head),
2439 dhash_entries,
2442 &d_hash_shift,
2443 &d_hash_mask,
2446 for (loop = 0; loop < (1 << d_hash_shift); loop++)
2447 INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2450 /* SLAB cache for __getname() consumers */
2451 struct kmem_cache *names_cachep __read_mostly;
2452 EXPORT_SYMBOL(names_cachep);
2454 EXPORT_SYMBOL(d_genocide);
2456 void __init vfs_caches_init_early(void)
2458 dcache_init_early();
2459 inode_init_early();
2462 void __init vfs_caches_init(unsigned long mempages)
2464 unsigned long reserve;
2466 /* Base hash sizes on available memory, with a reserve equal to
2467 150% of current kernel size */
2469 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2470 mempages -= reserve;
2472 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2473 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2475 dcache_init();
2476 inode_init();
2477 files_init(mempages);
2478 mnt_init();
2479 bdev_cache_init();
2480 chrdev_init();