2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
42 #include "transaction.h"
43 #include "btrfs_inode.h"
45 #include "print-tree.h"
47 #include "ordered-data.h"
50 #include "compression.h"
53 struct btrfs_iget_args
{
55 struct btrfs_root
*root
;
58 static const struct inode_operations btrfs_dir_inode_operations
;
59 static const struct inode_operations btrfs_symlink_inode_operations
;
60 static const struct inode_operations btrfs_dir_ro_inode_operations
;
61 static const struct inode_operations btrfs_special_inode_operations
;
62 static const struct inode_operations btrfs_file_inode_operations
;
63 static const struct address_space_operations btrfs_aops
;
64 static const struct address_space_operations btrfs_symlink_aops
;
65 static const struct file_operations btrfs_dir_file_operations
;
66 static struct extent_io_ops btrfs_extent_io_ops
;
68 static struct kmem_cache
*btrfs_inode_cachep
;
69 struct kmem_cache
*btrfs_trans_handle_cachep
;
70 struct kmem_cache
*btrfs_transaction_cachep
;
71 struct kmem_cache
*btrfs_path_cachep
;
74 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
75 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
76 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
77 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
78 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
79 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
80 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
81 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
84 static void btrfs_truncate(struct inode
*inode
);
85 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
86 static noinline
int cow_file_range(struct inode
*inode
,
87 struct page
*locked_page
,
88 u64 start
, u64 end
, int *page_started
,
89 unsigned long *nr_written
, int unlock
);
91 static int btrfs_init_inode_security(struct inode
*inode
, struct inode
*dir
)
95 err
= btrfs_init_acl(inode
, dir
);
97 err
= btrfs_xattr_security_init(inode
, dir
);
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
106 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
107 struct btrfs_root
*root
, struct inode
*inode
,
108 u64 start
, size_t size
, size_t compressed_size
,
109 struct page
**compressed_pages
)
111 struct btrfs_key key
;
112 struct btrfs_path
*path
;
113 struct extent_buffer
*leaf
;
114 struct page
*page
= NULL
;
117 struct btrfs_file_extent_item
*ei
;
120 size_t cur_size
= size
;
122 unsigned long offset
;
123 int use_compress
= 0;
125 if (compressed_size
&& compressed_pages
) {
127 cur_size
= compressed_size
;
130 path
= btrfs_alloc_path();
134 path
->leave_spinning
= 1;
135 btrfs_set_trans_block_group(trans
, inode
);
137 key
.objectid
= inode
->i_ino
;
139 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
140 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
142 inode_add_bytes(inode
, size
);
143 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
150 leaf
= path
->nodes
[0];
151 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
152 struct btrfs_file_extent_item
);
153 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
154 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
155 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
156 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
157 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
158 ptr
= btrfs_file_extent_inline_start(ei
);
163 while (compressed_size
> 0) {
164 cpage
= compressed_pages
[i
];
165 cur_size
= min_t(unsigned long, compressed_size
,
168 kaddr
= kmap_atomic(cpage
, KM_USER0
);
169 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
170 kunmap_atomic(kaddr
, KM_USER0
);
174 compressed_size
-= cur_size
;
176 btrfs_set_file_extent_compression(leaf
, ei
,
177 BTRFS_COMPRESS_ZLIB
);
179 page
= find_get_page(inode
->i_mapping
,
180 start
>> PAGE_CACHE_SHIFT
);
181 btrfs_set_file_extent_compression(leaf
, ei
, 0);
182 kaddr
= kmap_atomic(page
, KM_USER0
);
183 offset
= start
& (PAGE_CACHE_SIZE
- 1);
184 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
185 kunmap_atomic(kaddr
, KM_USER0
);
186 page_cache_release(page
);
188 btrfs_mark_buffer_dirty(leaf
);
189 btrfs_free_path(path
);
191 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
192 btrfs_update_inode(trans
, root
, inode
);
195 btrfs_free_path(path
);
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
205 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
206 struct btrfs_root
*root
,
207 struct inode
*inode
, u64 start
, u64 end
,
208 size_t compressed_size
,
209 struct page
**compressed_pages
)
211 u64 isize
= i_size_read(inode
);
212 u64 actual_end
= min(end
+ 1, isize
);
213 u64 inline_len
= actual_end
- start
;
214 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
215 ~((u64
)root
->sectorsize
- 1);
217 u64 data_len
= inline_len
;
221 data_len
= compressed_size
;
224 actual_end
>= PAGE_CACHE_SIZE
||
225 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
227 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
229 data_len
> root
->fs_info
->max_inline
) {
233 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
234 aligned_end
, aligned_end
, start
,
238 if (isize
> actual_end
)
239 inline_len
= min_t(u64
, isize
, actual_end
);
240 ret
= insert_inline_extent(trans
, root
, inode
, start
,
241 inline_len
, compressed_size
,
244 btrfs_drop_extent_cache(inode
, start
, aligned_end
- 1, 0);
248 struct async_extent
{
253 unsigned long nr_pages
;
254 struct list_head list
;
259 struct btrfs_root
*root
;
260 struct page
*locked_page
;
263 struct list_head extents
;
264 struct btrfs_work work
;
267 static noinline
int add_async_extent(struct async_cow
*cow
,
268 u64 start
, u64 ram_size
,
271 unsigned long nr_pages
)
273 struct async_extent
*async_extent
;
275 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
276 async_extent
->start
= start
;
277 async_extent
->ram_size
= ram_size
;
278 async_extent
->compressed_size
= compressed_size
;
279 async_extent
->pages
= pages
;
280 async_extent
->nr_pages
= nr_pages
;
281 list_add_tail(&async_extent
->list
, &cow
->extents
);
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
301 static noinline
int compress_file_range(struct inode
*inode
,
302 struct page
*locked_page
,
304 struct async_cow
*async_cow
,
307 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
308 struct btrfs_trans_handle
*trans
;
312 u64 blocksize
= root
->sectorsize
;
314 u64 isize
= i_size_read(inode
);
316 struct page
**pages
= NULL
;
317 unsigned long nr_pages
;
318 unsigned long nr_pages_ret
= 0;
319 unsigned long total_compressed
= 0;
320 unsigned long total_in
= 0;
321 unsigned long max_compressed
= 128 * 1024;
322 unsigned long max_uncompressed
= 128 * 1024;
328 actual_end
= min_t(u64
, isize
, end
+ 1);
331 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
332 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
344 if (actual_end
<= start
)
345 goto cleanup_and_bail_uncompressed
;
347 total_compressed
= actual_end
- start
;
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
359 total_compressed
= min(total_compressed
, max_uncompressed
);
360 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
361 num_bytes
= max(blocksize
, num_bytes
);
362 disk_num_bytes
= num_bytes
;
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
371 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
372 btrfs_test_opt(root
, COMPRESS
)) {
374 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
376 ret
= btrfs_zlib_compress_pages(inode
->i_mapping
, start
,
377 total_compressed
, pages
,
378 nr_pages
, &nr_pages_ret
,
384 unsigned long offset
= total_compressed
&
385 (PAGE_CACHE_SIZE
- 1);
386 struct page
*page
= pages
[nr_pages_ret
- 1];
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
393 kaddr
= kmap_atomic(page
, KM_USER0
);
394 memset(kaddr
+ offset
, 0,
395 PAGE_CACHE_SIZE
- offset
);
396 kunmap_atomic(kaddr
, KM_USER0
);
402 trans
= btrfs_join_transaction(root
, 1);
404 btrfs_set_trans_block_group(trans
, inode
);
406 /* lets try to make an inline extent */
407 if (ret
|| total_in
< (actual_end
- start
)) {
408 /* we didn't compress the entire range, try
409 * to make an uncompressed inline extent.
411 ret
= cow_file_range_inline(trans
, root
, inode
,
412 start
, end
, 0, NULL
);
414 /* try making a compressed inline extent */
415 ret
= cow_file_range_inline(trans
, root
, inode
,
417 total_compressed
, pages
);
419 btrfs_end_transaction(trans
, root
);
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
426 extent_clear_unlock_delalloc(inode
,
427 &BTRFS_I(inode
)->io_tree
,
429 EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
430 EXTENT_CLEAR_DELALLOC
|
431 EXTENT_CLEAR_ACCOUNTING
|
432 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
);
440 * we aren't doing an inline extent round the compressed size
441 * up to a block size boundary so the allocator does sane
444 total_compressed
= (total_compressed
+ blocksize
- 1) &
448 * one last check to make sure the compression is really a
449 * win, compare the page count read with the blocks on disk
451 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
452 ~(PAGE_CACHE_SIZE
- 1);
453 if (total_compressed
>= total_in
) {
456 disk_num_bytes
= total_compressed
;
457 num_bytes
= total_in
;
460 if (!will_compress
&& pages
) {
462 * the compression code ran but failed to make things smaller,
463 * free any pages it allocated and our page pointer array
465 for (i
= 0; i
< nr_pages_ret
; i
++) {
466 WARN_ON(pages
[i
]->mapping
);
467 page_cache_release(pages
[i
]);
471 total_compressed
= 0;
474 /* flag the file so we don't compress in the future */
475 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
480 /* the async work queues will take care of doing actual
481 * allocation on disk for these compressed pages,
482 * and will submit them to the elevator.
484 add_async_extent(async_cow
, start
, num_bytes
,
485 total_compressed
, pages
, nr_pages_ret
);
487 if (start
+ num_bytes
< end
&& start
+ num_bytes
< actual_end
) {
494 cleanup_and_bail_uncompressed
:
496 * No compression, but we still need to write the pages in
497 * the file we've been given so far. redirty the locked
498 * page if it corresponds to our extent and set things up
499 * for the async work queue to run cow_file_range to do
500 * the normal delalloc dance
502 if (page_offset(locked_page
) >= start
&&
503 page_offset(locked_page
) <= end
) {
504 __set_page_dirty_nobuffers(locked_page
);
505 /* unlocked later on in the async handlers */
507 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0);
515 for (i
= 0; i
< nr_pages_ret
; i
++) {
516 WARN_ON(pages
[i
]->mapping
);
517 page_cache_release(pages
[i
]);
525 * phase two of compressed writeback. This is the ordered portion
526 * of the code, which only gets called in the order the work was
527 * queued. We walk all the async extents created by compress_file_range
528 * and send them down to the disk.
530 static noinline
int submit_compressed_extents(struct inode
*inode
,
531 struct async_cow
*async_cow
)
533 struct async_extent
*async_extent
;
535 struct btrfs_trans_handle
*trans
;
536 struct btrfs_key ins
;
537 struct extent_map
*em
;
538 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
539 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
540 struct extent_io_tree
*io_tree
;
543 if (list_empty(&async_cow
->extents
))
546 trans
= btrfs_join_transaction(root
, 1);
548 while (!list_empty(&async_cow
->extents
)) {
549 async_extent
= list_entry(async_cow
->extents
.next
,
550 struct async_extent
, list
);
551 list_del(&async_extent
->list
);
553 io_tree
= &BTRFS_I(inode
)->io_tree
;
556 /* did the compression code fall back to uncompressed IO? */
557 if (!async_extent
->pages
) {
558 int page_started
= 0;
559 unsigned long nr_written
= 0;
561 lock_extent(io_tree
, async_extent
->start
,
562 async_extent
->start
+
563 async_extent
->ram_size
- 1, GFP_NOFS
);
565 /* allocate blocks */
566 ret
= cow_file_range(inode
, async_cow
->locked_page
,
568 async_extent
->start
+
569 async_extent
->ram_size
- 1,
570 &page_started
, &nr_written
, 0);
573 * if page_started, cow_file_range inserted an
574 * inline extent and took care of all the unlocking
575 * and IO for us. Otherwise, we need to submit
576 * all those pages down to the drive.
578 if (!page_started
&& !ret
)
579 extent_write_locked_range(io_tree
,
580 inode
, async_extent
->start
,
581 async_extent
->start
+
582 async_extent
->ram_size
- 1,
590 lock_extent(io_tree
, async_extent
->start
,
591 async_extent
->start
+ async_extent
->ram_size
- 1,
594 * here we're doing allocation and writeback of the
597 btrfs_drop_extent_cache(inode
, async_extent
->start
,
598 async_extent
->start
+
599 async_extent
->ram_size
- 1, 0);
601 ret
= btrfs_reserve_extent(trans
, root
,
602 async_extent
->compressed_size
,
603 async_extent
->compressed_size
,
608 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
609 WARN_ON(async_extent
->pages
[i
]->mapping
);
610 page_cache_release(async_extent
->pages
[i
]);
612 kfree(async_extent
->pages
);
613 async_extent
->nr_pages
= 0;
614 async_extent
->pages
= NULL
;
615 unlock_extent(io_tree
, async_extent
->start
,
616 async_extent
->start
+
617 async_extent
->ram_size
- 1, GFP_NOFS
);
621 em
= alloc_extent_map(GFP_NOFS
);
622 em
->start
= async_extent
->start
;
623 em
->len
= async_extent
->ram_size
;
624 em
->orig_start
= em
->start
;
626 em
->block_start
= ins
.objectid
;
627 em
->block_len
= ins
.offset
;
628 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
629 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
630 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
633 write_lock(&em_tree
->lock
);
634 ret
= add_extent_mapping(em_tree
, em
);
635 write_unlock(&em_tree
->lock
);
636 if (ret
!= -EEXIST
) {
640 btrfs_drop_extent_cache(inode
, async_extent
->start
,
641 async_extent
->start
+
642 async_extent
->ram_size
- 1, 0);
645 ret
= btrfs_add_ordered_extent(inode
, async_extent
->start
,
647 async_extent
->ram_size
,
649 BTRFS_ORDERED_COMPRESSED
);
652 btrfs_end_transaction(trans
, root
);
655 * clear dirty, set writeback and unlock the pages.
657 extent_clear_unlock_delalloc(inode
,
658 &BTRFS_I(inode
)->io_tree
,
660 async_extent
->start
+
661 async_extent
->ram_size
- 1,
662 NULL
, EXTENT_CLEAR_UNLOCK_PAGE
|
663 EXTENT_CLEAR_UNLOCK
|
664 EXTENT_CLEAR_DELALLOC
|
665 EXTENT_CLEAR_DIRTY
| EXTENT_SET_WRITEBACK
);
667 ret
= btrfs_submit_compressed_write(inode
,
669 async_extent
->ram_size
,
671 ins
.offset
, async_extent
->pages
,
672 async_extent
->nr_pages
);
675 trans
= btrfs_join_transaction(root
, 1);
676 alloc_hint
= ins
.objectid
+ ins
.offset
;
681 btrfs_end_transaction(trans
, root
);
686 * when extent_io.c finds a delayed allocation range in the file,
687 * the call backs end up in this code. The basic idea is to
688 * allocate extents on disk for the range, and create ordered data structs
689 * in ram to track those extents.
691 * locked_page is the page that writepage had locked already. We use
692 * it to make sure we don't do extra locks or unlocks.
694 * *page_started is set to one if we unlock locked_page and do everything
695 * required to start IO on it. It may be clean and already done with
698 static noinline
int cow_file_range(struct inode
*inode
,
699 struct page
*locked_page
,
700 u64 start
, u64 end
, int *page_started
,
701 unsigned long *nr_written
,
704 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
705 struct btrfs_trans_handle
*trans
;
708 unsigned long ram_size
;
711 u64 blocksize
= root
->sectorsize
;
713 u64 isize
= i_size_read(inode
);
714 struct btrfs_key ins
;
715 struct extent_map
*em
;
716 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
719 trans
= btrfs_join_transaction(root
, 1);
721 btrfs_set_trans_block_group(trans
, inode
);
723 actual_end
= min_t(u64
, isize
, end
+ 1);
725 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
726 num_bytes
= max(blocksize
, num_bytes
);
727 disk_num_bytes
= num_bytes
;
731 /* lets try to make an inline extent */
732 ret
= cow_file_range_inline(trans
, root
, inode
,
733 start
, end
, 0, NULL
);
735 extent_clear_unlock_delalloc(inode
,
736 &BTRFS_I(inode
)->io_tree
,
738 EXTENT_CLEAR_UNLOCK_PAGE
|
739 EXTENT_CLEAR_UNLOCK
|
740 EXTENT_CLEAR_DELALLOC
|
741 EXTENT_CLEAR_ACCOUNTING
|
743 EXTENT_SET_WRITEBACK
|
744 EXTENT_END_WRITEBACK
);
745 *nr_written
= *nr_written
+
746 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
753 BUG_ON(disk_num_bytes
>
754 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
757 read_lock(&BTRFS_I(inode
)->extent_tree
.lock
);
758 em
= search_extent_mapping(&BTRFS_I(inode
)->extent_tree
,
762 * if block start isn't an actual block number then find the
763 * first block in this inode and use that as a hint. If that
764 * block is also bogus then just don't worry about it.
766 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
768 em
= search_extent_mapping(em_tree
, 0, 0);
769 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
770 alloc_hint
= em
->block_start
;
774 alloc_hint
= em
->block_start
;
778 read_unlock(&BTRFS_I(inode
)->extent_tree
.lock
);
779 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
781 while (disk_num_bytes
> 0) {
784 cur_alloc_size
= min(disk_num_bytes
, root
->fs_info
->max_extent
);
785 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
786 root
->sectorsize
, 0, alloc_hint
,
790 em
= alloc_extent_map(GFP_NOFS
);
792 em
->orig_start
= em
->start
;
793 ram_size
= ins
.offset
;
794 em
->len
= ins
.offset
;
796 em
->block_start
= ins
.objectid
;
797 em
->block_len
= ins
.offset
;
798 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
799 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
802 write_lock(&em_tree
->lock
);
803 ret
= add_extent_mapping(em_tree
, em
);
804 write_unlock(&em_tree
->lock
);
805 if (ret
!= -EEXIST
) {
809 btrfs_drop_extent_cache(inode
, start
,
810 start
+ ram_size
- 1, 0);
813 cur_alloc_size
= ins
.offset
;
814 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
815 ram_size
, cur_alloc_size
, 0);
818 if (root
->root_key
.objectid
==
819 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
820 ret
= btrfs_reloc_clone_csums(inode
, start
,
825 if (disk_num_bytes
< cur_alloc_size
)
828 /* we're not doing compressed IO, don't unlock the first
829 * page (which the caller expects to stay locked), don't
830 * clear any dirty bits and don't set any writeback bits
832 * Do set the Private2 bit so we know this page was properly
833 * setup for writepage
835 op
= unlock
? EXTENT_CLEAR_UNLOCK_PAGE
: 0;
836 op
|= EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
839 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
840 start
, start
+ ram_size
- 1,
842 disk_num_bytes
-= cur_alloc_size
;
843 num_bytes
-= cur_alloc_size
;
844 alloc_hint
= ins
.objectid
+ ins
.offset
;
845 start
+= cur_alloc_size
;
849 btrfs_end_transaction(trans
, root
);
855 * work queue call back to started compression on a file and pages
857 static noinline
void async_cow_start(struct btrfs_work
*work
)
859 struct async_cow
*async_cow
;
861 async_cow
= container_of(work
, struct async_cow
, work
);
863 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
864 async_cow
->start
, async_cow
->end
, async_cow
,
867 async_cow
->inode
= NULL
;
871 * work queue call back to submit previously compressed pages
873 static noinline
void async_cow_submit(struct btrfs_work
*work
)
875 struct async_cow
*async_cow
;
876 struct btrfs_root
*root
;
877 unsigned long nr_pages
;
879 async_cow
= container_of(work
, struct async_cow
, work
);
881 root
= async_cow
->root
;
882 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
885 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
887 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
889 waitqueue_active(&root
->fs_info
->async_submit_wait
))
890 wake_up(&root
->fs_info
->async_submit_wait
);
892 if (async_cow
->inode
)
893 submit_compressed_extents(async_cow
->inode
, async_cow
);
896 static noinline
void async_cow_free(struct btrfs_work
*work
)
898 struct async_cow
*async_cow
;
899 async_cow
= container_of(work
, struct async_cow
, work
);
903 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
904 u64 start
, u64 end
, int *page_started
,
905 unsigned long *nr_written
)
907 struct async_cow
*async_cow
;
908 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
909 unsigned long nr_pages
;
911 int limit
= 10 * 1024 * 1042;
913 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
914 1, 0, NULL
, GFP_NOFS
);
915 while (start
< end
) {
916 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
917 async_cow
->inode
= inode
;
918 async_cow
->root
= root
;
919 async_cow
->locked_page
= locked_page
;
920 async_cow
->start
= start
;
922 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
925 cur_end
= min(end
, start
+ 512 * 1024 - 1);
927 async_cow
->end
= cur_end
;
928 INIT_LIST_HEAD(&async_cow
->extents
);
930 async_cow
->work
.func
= async_cow_start
;
931 async_cow
->work
.ordered_func
= async_cow_submit
;
932 async_cow
->work
.ordered_free
= async_cow_free
;
933 async_cow
->work
.flags
= 0;
935 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
937 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
939 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
942 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
943 wait_event(root
->fs_info
->async_submit_wait
,
944 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
948 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
949 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
950 wait_event(root
->fs_info
->async_submit_wait
,
951 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
955 *nr_written
+= nr_pages
;
962 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
963 u64 bytenr
, u64 num_bytes
)
966 struct btrfs_ordered_sum
*sums
;
969 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
970 bytenr
+ num_bytes
- 1, &list
);
971 if (ret
== 0 && list_empty(&list
))
974 while (!list_empty(&list
)) {
975 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
976 list_del(&sums
->list
);
983 * when nowcow writeback call back. This checks for snapshots or COW copies
984 * of the extents that exist in the file, and COWs the file as required.
986 * If no cow copies or snapshots exist, we write directly to the existing
989 static noinline
int run_delalloc_nocow(struct inode
*inode
,
990 struct page
*locked_page
,
991 u64 start
, u64 end
, int *page_started
, int force
,
992 unsigned long *nr_written
)
994 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
995 struct btrfs_trans_handle
*trans
;
996 struct extent_buffer
*leaf
;
997 struct btrfs_path
*path
;
998 struct btrfs_file_extent_item
*fi
;
999 struct btrfs_key found_key
;
1012 path
= btrfs_alloc_path();
1014 trans
= btrfs_join_transaction(root
, 1);
1017 cow_start
= (u64
)-1;
1020 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
1023 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1024 leaf
= path
->nodes
[0];
1025 btrfs_item_key_to_cpu(leaf
, &found_key
,
1026 path
->slots
[0] - 1);
1027 if (found_key
.objectid
== inode
->i_ino
&&
1028 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1033 leaf
= path
->nodes
[0];
1034 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1035 ret
= btrfs_next_leaf(root
, path
);
1040 leaf
= path
->nodes
[0];
1046 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1048 if (found_key
.objectid
> inode
->i_ino
||
1049 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1050 found_key
.offset
> end
)
1053 if (found_key
.offset
> cur_offset
) {
1054 extent_end
= found_key
.offset
;
1059 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1060 struct btrfs_file_extent_item
);
1061 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1063 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1064 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1065 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1066 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1067 extent_end
= found_key
.offset
+
1068 btrfs_file_extent_num_bytes(leaf
, fi
);
1069 if (extent_end
<= start
) {
1073 if (disk_bytenr
== 0)
1075 if (btrfs_file_extent_compression(leaf
, fi
) ||
1076 btrfs_file_extent_encryption(leaf
, fi
) ||
1077 btrfs_file_extent_other_encoding(leaf
, fi
))
1079 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1081 if (btrfs_extent_readonly(root
, disk_bytenr
))
1083 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1085 extent_offset
, disk_bytenr
))
1087 disk_bytenr
+= extent_offset
;
1088 disk_bytenr
+= cur_offset
- found_key
.offset
;
1089 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1091 * force cow if csum exists in the range.
1092 * this ensure that csum for a given extent are
1093 * either valid or do not exist.
1095 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1098 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1099 extent_end
= found_key
.offset
+
1100 btrfs_file_extent_inline_len(leaf
, fi
);
1101 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1106 if (extent_end
<= start
) {
1111 if (cow_start
== (u64
)-1)
1112 cow_start
= cur_offset
;
1113 cur_offset
= extent_end
;
1114 if (cur_offset
> end
)
1120 btrfs_release_path(root
, path
);
1121 if (cow_start
!= (u64
)-1) {
1122 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1123 found_key
.offset
- 1, page_started
,
1126 cow_start
= (u64
)-1;
1129 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1130 struct extent_map
*em
;
1131 struct extent_map_tree
*em_tree
;
1132 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1133 em
= alloc_extent_map(GFP_NOFS
);
1134 em
->start
= cur_offset
;
1135 em
->orig_start
= em
->start
;
1136 em
->len
= num_bytes
;
1137 em
->block_len
= num_bytes
;
1138 em
->block_start
= disk_bytenr
;
1139 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1140 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1142 write_lock(&em_tree
->lock
);
1143 ret
= add_extent_mapping(em_tree
, em
);
1144 write_unlock(&em_tree
->lock
);
1145 if (ret
!= -EEXIST
) {
1146 free_extent_map(em
);
1149 btrfs_drop_extent_cache(inode
, em
->start
,
1150 em
->start
+ em
->len
- 1, 0);
1152 type
= BTRFS_ORDERED_PREALLOC
;
1154 type
= BTRFS_ORDERED_NOCOW
;
1157 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1158 num_bytes
, num_bytes
, type
);
1161 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1162 cur_offset
, cur_offset
+ num_bytes
- 1,
1163 locked_page
, EXTENT_CLEAR_UNLOCK_PAGE
|
1164 EXTENT_CLEAR_UNLOCK
| EXTENT_CLEAR_DELALLOC
|
1165 EXTENT_SET_PRIVATE2
);
1166 cur_offset
= extent_end
;
1167 if (cur_offset
> end
)
1170 btrfs_release_path(root
, path
);
1172 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1173 cow_start
= cur_offset
;
1174 if (cow_start
!= (u64
)-1) {
1175 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1176 page_started
, nr_written
, 1);
1180 ret
= btrfs_end_transaction(trans
, root
);
1182 btrfs_free_path(path
);
1187 * extent_io.c call back to do delayed allocation processing
1189 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1190 u64 start
, u64 end
, int *page_started
,
1191 unsigned long *nr_written
)
1194 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1196 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1197 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1198 page_started
, 1, nr_written
);
1199 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1200 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1201 page_started
, 0, nr_written
);
1202 else if (!btrfs_test_opt(root
, COMPRESS
))
1203 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1204 page_started
, nr_written
, 1);
1206 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1207 page_started
, nr_written
);
1211 static int btrfs_split_extent_hook(struct inode
*inode
,
1212 struct extent_state
*orig
, u64 split
)
1214 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1217 if (!(orig
->state
& EXTENT_DELALLOC
))
1220 size
= orig
->end
- orig
->start
+ 1;
1221 if (size
> root
->fs_info
->max_extent
) {
1225 new_size
= orig
->end
- split
+ 1;
1226 num_extents
= div64_u64(size
+ root
->fs_info
->max_extent
- 1,
1227 root
->fs_info
->max_extent
);
1230 * if we break a large extent up then leave oustanding_extents
1231 * be, since we've already accounted for the large extent.
1233 if (div64_u64(new_size
+ root
->fs_info
->max_extent
- 1,
1234 root
->fs_info
->max_extent
) < num_extents
)
1238 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1239 BTRFS_I(inode
)->outstanding_extents
++;
1240 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1246 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1247 * extents so we can keep track of new extents that are just merged onto old
1248 * extents, such as when we are doing sequential writes, so we can properly
1249 * account for the metadata space we'll need.
1251 static int btrfs_merge_extent_hook(struct inode
*inode
,
1252 struct extent_state
*new,
1253 struct extent_state
*other
)
1255 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1256 u64 new_size
, old_size
;
1259 /* not delalloc, ignore it */
1260 if (!(other
->state
& EXTENT_DELALLOC
))
1263 old_size
= other
->end
- other
->start
+ 1;
1264 if (new->start
< other
->start
)
1265 new_size
= other
->end
- new->start
+ 1;
1267 new_size
= new->end
- other
->start
+ 1;
1269 /* we're not bigger than the max, unreserve the space and go */
1270 if (new_size
<= root
->fs_info
->max_extent
) {
1271 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1272 BTRFS_I(inode
)->outstanding_extents
--;
1273 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1278 * If we grew by another max_extent, just return, we want to keep that
1281 num_extents
= div64_u64(old_size
+ root
->fs_info
->max_extent
- 1,
1282 root
->fs_info
->max_extent
);
1283 if (div64_u64(new_size
+ root
->fs_info
->max_extent
- 1,
1284 root
->fs_info
->max_extent
) > num_extents
)
1287 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1288 BTRFS_I(inode
)->outstanding_extents
--;
1289 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1295 * extent_io.c set_bit_hook, used to track delayed allocation
1296 * bytes in this file, and to maintain the list of inodes that
1297 * have pending delalloc work to be done.
1299 static int btrfs_set_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1300 unsigned long old
, unsigned long bits
)
1304 * set_bit and clear bit hooks normally require _irqsave/restore
1305 * but in this case, we are only testeing for the DELALLOC
1306 * bit, which is only set or cleared with irqs on
1308 if (!(old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1309 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1311 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1312 BTRFS_I(inode
)->outstanding_extents
++;
1313 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1314 btrfs_delalloc_reserve_space(root
, inode
, end
- start
+ 1);
1315 spin_lock(&root
->fs_info
->delalloc_lock
);
1316 BTRFS_I(inode
)->delalloc_bytes
+= end
- start
+ 1;
1317 root
->fs_info
->delalloc_bytes
+= end
- start
+ 1;
1318 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1319 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1320 &root
->fs_info
->delalloc_inodes
);
1322 spin_unlock(&root
->fs_info
->delalloc_lock
);
1328 * extent_io.c clear_bit_hook, see set_bit_hook for why
1330 static int btrfs_clear_bit_hook(struct inode
*inode
,
1331 struct extent_state
*state
, unsigned long bits
)
1334 * set_bit and clear bit hooks normally require _irqsave/restore
1335 * but in this case, we are only testeing for the DELALLOC
1336 * bit, which is only set or cleared with irqs on
1338 if ((state
->state
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1339 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1341 if (bits
& EXTENT_DO_ACCOUNTING
) {
1342 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
1343 BTRFS_I(inode
)->outstanding_extents
--;
1344 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
1345 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
1348 spin_lock(&root
->fs_info
->delalloc_lock
);
1349 if (state
->end
- state
->start
+ 1 >
1350 root
->fs_info
->delalloc_bytes
) {
1351 printk(KERN_INFO
"btrfs warning: delalloc account "
1353 (unsigned long long)
1354 state
->end
- state
->start
+ 1,
1355 (unsigned long long)
1356 root
->fs_info
->delalloc_bytes
);
1357 btrfs_delalloc_free_space(root
, inode
, (u64
)-1);
1358 root
->fs_info
->delalloc_bytes
= 0;
1359 BTRFS_I(inode
)->delalloc_bytes
= 0;
1361 btrfs_delalloc_free_space(root
, inode
,
1364 root
->fs_info
->delalloc_bytes
-= state
->end
-
1366 BTRFS_I(inode
)->delalloc_bytes
-= state
->end
-
1369 if (BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1370 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1371 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1373 spin_unlock(&root
->fs_info
->delalloc_lock
);
1379 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1380 * we don't create bios that span stripes or chunks
1382 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1383 size_t size
, struct bio
*bio
,
1384 unsigned long bio_flags
)
1386 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1387 struct btrfs_mapping_tree
*map_tree
;
1388 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1393 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1396 length
= bio
->bi_size
;
1397 map_tree
= &root
->fs_info
->mapping_tree
;
1398 map_length
= length
;
1399 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1400 &map_length
, NULL
, 0);
1402 if (map_length
< length
+ size
)
1408 * in order to insert checksums into the metadata in large chunks,
1409 * we wait until bio submission time. All the pages in the bio are
1410 * checksummed and sums are attached onto the ordered extent record.
1412 * At IO completion time the cums attached on the ordered extent record
1413 * are inserted into the btree
1415 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1416 struct bio
*bio
, int mirror_num
,
1417 unsigned long bio_flags
)
1419 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1422 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1428 * in order to insert checksums into the metadata in large chunks,
1429 * we wait until bio submission time. All the pages in the bio are
1430 * checksummed and sums are attached onto the ordered extent record.
1432 * At IO completion time the cums attached on the ordered extent record
1433 * are inserted into the btree
1435 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1436 int mirror_num
, unsigned long bio_flags
)
1438 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1439 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1443 * extent_io.c submission hook. This does the right thing for csum calculation
1444 * on write, or reading the csums from the tree before a read
1446 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1447 int mirror_num
, unsigned long bio_flags
)
1449 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1453 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1455 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1458 if (!(rw
& (1 << BIO_RW
))) {
1459 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1460 return btrfs_submit_compressed_read(inode
, bio
,
1461 mirror_num
, bio_flags
);
1462 } else if (!skip_sum
)
1463 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1465 } else if (!skip_sum
) {
1466 /* csum items have already been cloned */
1467 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1469 /* we're doing a write, do the async checksumming */
1470 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1471 inode
, rw
, bio
, mirror_num
,
1472 bio_flags
, __btrfs_submit_bio_start
,
1473 __btrfs_submit_bio_done
);
1477 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1481 * given a list of ordered sums record them in the inode. This happens
1482 * at IO completion time based on sums calculated at bio submission time.
1484 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1485 struct inode
*inode
, u64 file_offset
,
1486 struct list_head
*list
)
1488 struct btrfs_ordered_sum
*sum
;
1490 btrfs_set_trans_block_group(trans
, inode
);
1492 list_for_each_entry(sum
, list
, list
) {
1493 btrfs_csum_file_blocks(trans
,
1494 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1499 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
)
1501 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1503 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1507 /* see btrfs_writepage_start_hook for details on why this is required */
1508 struct btrfs_writepage_fixup
{
1510 struct btrfs_work work
;
1513 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1515 struct btrfs_writepage_fixup
*fixup
;
1516 struct btrfs_ordered_extent
*ordered
;
1518 struct inode
*inode
;
1522 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1526 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1527 ClearPageChecked(page
);
1531 inode
= page
->mapping
->host
;
1532 page_start
= page_offset(page
);
1533 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1535 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1537 /* already ordered? We're done */
1538 if (PagePrivate2(page
))
1541 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1543 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
,
1544 page_end
, GFP_NOFS
);
1546 btrfs_start_ordered_extent(inode
, ordered
, 1);
1550 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
1551 ClearPageChecked(page
);
1553 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1556 page_cache_release(page
);
1560 * There are a few paths in the higher layers of the kernel that directly
1561 * set the page dirty bit without asking the filesystem if it is a
1562 * good idea. This causes problems because we want to make sure COW
1563 * properly happens and the data=ordered rules are followed.
1565 * In our case any range that doesn't have the ORDERED bit set
1566 * hasn't been properly setup for IO. We kick off an async process
1567 * to fix it up. The async helper will wait for ordered extents, set
1568 * the delalloc bit and make it safe to write the page.
1570 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1572 struct inode
*inode
= page
->mapping
->host
;
1573 struct btrfs_writepage_fixup
*fixup
;
1574 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1576 /* this page is properly in the ordered list */
1577 if (TestClearPagePrivate2(page
))
1580 if (PageChecked(page
))
1583 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1587 SetPageChecked(page
);
1588 page_cache_get(page
);
1589 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1591 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1595 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1596 struct inode
*inode
, u64 file_pos
,
1597 u64 disk_bytenr
, u64 disk_num_bytes
,
1598 u64 num_bytes
, u64 ram_bytes
,
1600 u8 compression
, u8 encryption
,
1601 u16 other_encoding
, int extent_type
)
1603 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1604 struct btrfs_file_extent_item
*fi
;
1605 struct btrfs_path
*path
;
1606 struct extent_buffer
*leaf
;
1607 struct btrfs_key ins
;
1611 path
= btrfs_alloc_path();
1614 path
->leave_spinning
= 1;
1617 * we may be replacing one extent in the tree with another.
1618 * The new extent is pinned in the extent map, and we don't want
1619 * to drop it from the cache until it is completely in the btree.
1621 * So, tell btrfs_drop_extents to leave this extent in the cache.
1622 * the caller is expected to unpin it and allow it to be merged
1625 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1626 file_pos
+ num_bytes
, locked_end
,
1627 file_pos
, &hint
, 0);
1630 ins
.objectid
= inode
->i_ino
;
1631 ins
.offset
= file_pos
;
1632 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1633 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1635 leaf
= path
->nodes
[0];
1636 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1637 struct btrfs_file_extent_item
);
1638 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1639 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1640 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1641 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1642 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1643 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1644 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1645 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1646 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1647 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1649 btrfs_unlock_up_safe(path
, 1);
1650 btrfs_set_lock_blocking(leaf
);
1652 btrfs_mark_buffer_dirty(leaf
);
1654 inode_add_bytes(inode
, num_bytes
);
1656 ins
.objectid
= disk_bytenr
;
1657 ins
.offset
= disk_num_bytes
;
1658 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1659 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1660 root
->root_key
.objectid
,
1661 inode
->i_ino
, file_pos
, &ins
);
1663 btrfs_free_path(path
);
1669 * helper function for btrfs_finish_ordered_io, this
1670 * just reads in some of the csum leaves to prime them into ram
1671 * before we start the transaction. It limits the amount of btree
1672 * reads required while inside the transaction.
1674 static noinline
void reada_csum(struct btrfs_root
*root
,
1675 struct btrfs_path
*path
,
1676 struct btrfs_ordered_extent
*ordered_extent
)
1678 struct btrfs_ordered_sum
*sum
;
1681 sum
= list_entry(ordered_extent
->list
.next
, struct btrfs_ordered_sum
,
1683 bytenr
= sum
->sums
[0].bytenr
;
1686 * we don't care about the results, the point of this search is
1687 * just to get the btree leaves into ram
1689 btrfs_lookup_csum(NULL
, root
->fs_info
->csum_root
, path
, bytenr
, 0);
1692 /* as ordered data IO finishes, this gets called so we can finish
1693 * an ordered extent if the range of bytes in the file it covers are
1696 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1698 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1699 struct btrfs_trans_handle
*trans
;
1700 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1701 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1702 struct btrfs_path
*path
;
1706 ret
= btrfs_dec_test_ordered_pending(inode
, start
, end
- start
+ 1);
1711 * before we join the transaction, try to do some of our IO.
1712 * This will limit the amount of IO that we have to do with
1713 * the transaction running. We're unlikely to need to do any
1714 * IO if the file extents are new, the disk_i_size checks
1715 * covers the most common case.
1717 if (start
< BTRFS_I(inode
)->disk_i_size
) {
1718 path
= btrfs_alloc_path();
1720 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
1723 ordered_extent
= btrfs_lookup_ordered_extent(inode
,
1725 if (!list_empty(&ordered_extent
->list
)) {
1726 btrfs_release_path(root
, path
);
1727 reada_csum(root
, path
, ordered_extent
);
1729 btrfs_free_path(path
);
1733 trans
= btrfs_join_transaction(root
, 1);
1735 if (!ordered_extent
)
1736 ordered_extent
= btrfs_lookup_ordered_extent(inode
, start
);
1737 BUG_ON(!ordered_extent
);
1738 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
))
1741 lock_extent(io_tree
, ordered_extent
->file_offset
,
1742 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1745 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1747 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1749 ret
= btrfs_mark_extent_written(trans
, root
, inode
,
1750 ordered_extent
->file_offset
,
1751 ordered_extent
->file_offset
+
1752 ordered_extent
->len
);
1755 ret
= insert_reserved_file_extent(trans
, inode
,
1756 ordered_extent
->file_offset
,
1757 ordered_extent
->start
,
1758 ordered_extent
->disk_len
,
1759 ordered_extent
->len
,
1760 ordered_extent
->len
,
1761 ordered_extent
->file_offset
+
1762 ordered_extent
->len
,
1764 BTRFS_FILE_EXTENT_REG
);
1765 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
1766 ordered_extent
->file_offset
,
1767 ordered_extent
->len
);
1770 unlock_extent(io_tree
, ordered_extent
->file_offset
,
1771 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1774 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1775 &ordered_extent
->list
);
1777 mutex_lock(&BTRFS_I(inode
)->extent_mutex
);
1778 btrfs_ordered_update_i_size(inode
, ordered_extent
);
1779 btrfs_update_inode(trans
, root
, inode
);
1780 btrfs_remove_ordered_extent(inode
, ordered_extent
);
1781 mutex_unlock(&BTRFS_I(inode
)->extent_mutex
);
1784 btrfs_put_ordered_extent(ordered_extent
);
1785 /* once for the tree */
1786 btrfs_put_ordered_extent(ordered_extent
);
1788 btrfs_end_transaction(trans
, root
);
1792 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1793 struct extent_state
*state
, int uptodate
)
1795 ClearPagePrivate2(page
);
1796 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1800 * When IO fails, either with EIO or csum verification fails, we
1801 * try other mirrors that might have a good copy of the data. This
1802 * io_failure_record is used to record state as we go through all the
1803 * mirrors. If another mirror has good data, the page is set up to date
1804 * and things continue. If a good mirror can't be found, the original
1805 * bio end_io callback is called to indicate things have failed.
1807 struct io_failure_record
{
1812 unsigned long bio_flags
;
1816 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1817 struct page
*page
, u64 start
, u64 end
,
1818 struct extent_state
*state
)
1820 struct io_failure_record
*failrec
= NULL
;
1822 struct extent_map
*em
;
1823 struct inode
*inode
= page
->mapping
->host
;
1824 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1825 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1832 ret
= get_state_private(failure_tree
, start
, &private);
1834 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1837 failrec
->start
= start
;
1838 failrec
->len
= end
- start
+ 1;
1839 failrec
->last_mirror
= 0;
1840 failrec
->bio_flags
= 0;
1842 read_lock(&em_tree
->lock
);
1843 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1844 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1845 free_extent_map(em
);
1848 read_unlock(&em_tree
->lock
);
1850 if (!em
|| IS_ERR(em
)) {
1854 logical
= start
- em
->start
;
1855 logical
= em
->block_start
+ logical
;
1856 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1857 logical
= em
->block_start
;
1858 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1860 failrec
->logical
= logical
;
1861 free_extent_map(em
);
1862 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1863 EXTENT_DIRTY
, GFP_NOFS
);
1864 set_state_private(failure_tree
, start
,
1865 (u64
)(unsigned long)failrec
);
1867 failrec
= (struct io_failure_record
*)(unsigned long)private;
1869 num_copies
= btrfs_num_copies(
1870 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1871 failrec
->logical
, failrec
->len
);
1872 failrec
->last_mirror
++;
1874 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1875 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1878 if (state
&& state
->start
!= failrec
->start
)
1880 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1882 if (!state
|| failrec
->last_mirror
> num_copies
) {
1883 set_state_private(failure_tree
, failrec
->start
, 0);
1884 clear_extent_bits(failure_tree
, failrec
->start
,
1885 failrec
->start
+ failrec
->len
- 1,
1886 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1890 bio
= bio_alloc(GFP_NOFS
, 1);
1891 bio
->bi_private
= state
;
1892 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1893 bio
->bi_sector
= failrec
->logical
>> 9;
1894 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1897 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1898 if (failed_bio
->bi_rw
& (1 << BIO_RW
))
1903 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1904 failrec
->last_mirror
,
1905 failrec
->bio_flags
);
1910 * each time an IO finishes, we do a fast check in the IO failure tree
1911 * to see if we need to process or clean up an io_failure_record
1913 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1916 u64 private_failure
;
1917 struct io_failure_record
*failure
;
1921 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1922 (u64
)-1, 1, EXTENT_DIRTY
)) {
1923 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1924 start
, &private_failure
);
1926 failure
= (struct io_failure_record
*)(unsigned long)
1928 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1930 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1932 failure
->start
+ failure
->len
- 1,
1933 EXTENT_DIRTY
| EXTENT_LOCKED
,
1942 * when reads are done, we need to check csums to verify the data is correct
1943 * if there's a match, we allow the bio to finish. If not, we go through
1944 * the io_failure_record routines to find good copies
1946 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1947 struct extent_state
*state
)
1949 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1950 struct inode
*inode
= page
->mapping
->host
;
1951 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1953 u64
private = ~(u32
)0;
1955 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1958 if (PageChecked(page
)) {
1959 ClearPageChecked(page
);
1963 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1966 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1967 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
1968 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1973 if (state
&& state
->start
== start
) {
1974 private = state
->private;
1977 ret
= get_state_private(io_tree
, start
, &private);
1979 kaddr
= kmap_atomic(page
, KM_USER0
);
1983 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1984 btrfs_csum_final(csum
, (char *)&csum
);
1985 if (csum
!= private)
1988 kunmap_atomic(kaddr
, KM_USER0
);
1990 /* if the io failure tree for this inode is non-empty,
1991 * check to see if we've recovered from a failed IO
1993 btrfs_clean_io_failures(inode
, start
);
1997 if (printk_ratelimit()) {
1998 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1999 "private %llu\n", page
->mapping
->host
->i_ino
,
2000 (unsigned long long)start
, csum
,
2001 (unsigned long long)private);
2003 memset(kaddr
+ offset
, 1, end
- start
+ 1);
2004 flush_dcache_page(page
);
2005 kunmap_atomic(kaddr
, KM_USER0
);
2012 * This creates an orphan entry for the given inode in case something goes
2013 * wrong in the middle of an unlink/truncate.
2015 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2017 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2020 spin_lock(&root
->list_lock
);
2022 /* already on the orphan list, we're good */
2023 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2024 spin_unlock(&root
->list_lock
);
2028 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2030 spin_unlock(&root
->list_lock
);
2033 * insert an orphan item to track this unlinked/truncated file
2035 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
2041 * We have done the truncate/delete so we can go ahead and remove the orphan
2042 * item for this particular inode.
2044 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
2046 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2049 spin_lock(&root
->list_lock
);
2051 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
2052 spin_unlock(&root
->list_lock
);
2056 list_del_init(&BTRFS_I(inode
)->i_orphan
);
2058 spin_unlock(&root
->list_lock
);
2062 spin_unlock(&root
->list_lock
);
2064 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
2070 * this cleans up any orphans that may be left on the list from the last use
2073 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
2075 struct btrfs_path
*path
;
2076 struct extent_buffer
*leaf
;
2077 struct btrfs_item
*item
;
2078 struct btrfs_key key
, found_key
;
2079 struct btrfs_trans_handle
*trans
;
2080 struct inode
*inode
;
2081 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
2083 path
= btrfs_alloc_path();
2088 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
2089 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
2090 key
.offset
= (u64
)-1;
2094 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2096 printk(KERN_ERR
"Error searching slot for orphan: %d"
2102 * if ret == 0 means we found what we were searching for, which
2103 * is weird, but possible, so only screw with path if we didnt
2104 * find the key and see if we have stuff that matches
2107 if (path
->slots
[0] == 0)
2112 /* pull out the item */
2113 leaf
= path
->nodes
[0];
2114 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
2115 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2117 /* make sure the item matches what we want */
2118 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
2120 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
2123 /* release the path since we're done with it */
2124 btrfs_release_path(root
, path
);
2127 * this is where we are basically btrfs_lookup, without the
2128 * crossing root thing. we store the inode number in the
2129 * offset of the orphan item.
2131 found_key
.objectid
= found_key
.offset
;
2132 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
2133 found_key
.offset
= 0;
2134 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
);
2139 * add this inode to the orphan list so btrfs_orphan_del does
2140 * the proper thing when we hit it
2142 spin_lock(&root
->list_lock
);
2143 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
2144 spin_unlock(&root
->list_lock
);
2147 * if this is a bad inode, means we actually succeeded in
2148 * removing the inode, but not the orphan record, which means
2149 * we need to manually delete the orphan since iput will just
2150 * do a destroy_inode
2152 if (is_bad_inode(inode
)) {
2153 trans
= btrfs_start_transaction(root
, 1);
2154 btrfs_orphan_del(trans
, inode
);
2155 btrfs_end_transaction(trans
, root
);
2160 /* if we have links, this was a truncate, lets do that */
2161 if (inode
->i_nlink
) {
2163 btrfs_truncate(inode
);
2168 /* this will do delete_inode and everything for us */
2173 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2175 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2177 btrfs_free_path(path
);
2181 * very simple check to peek ahead in the leaf looking for xattrs. If we
2182 * don't find any xattrs, we know there can't be any acls.
2184 * slot is the slot the inode is in, objectid is the objectid of the inode
2186 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2187 int slot
, u64 objectid
)
2189 u32 nritems
= btrfs_header_nritems(leaf
);
2190 struct btrfs_key found_key
;
2194 while (slot
< nritems
) {
2195 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2197 /* we found a different objectid, there must not be acls */
2198 if (found_key
.objectid
!= objectid
)
2201 /* we found an xattr, assume we've got an acl */
2202 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2206 * we found a key greater than an xattr key, there can't
2207 * be any acls later on
2209 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2216 * it goes inode, inode backrefs, xattrs, extents,
2217 * so if there are a ton of hard links to an inode there can
2218 * be a lot of backrefs. Don't waste time searching too hard,
2219 * this is just an optimization
2224 /* we hit the end of the leaf before we found an xattr or
2225 * something larger than an xattr. We have to assume the inode
2232 * read an inode from the btree into the in-memory inode
2234 static void btrfs_read_locked_inode(struct inode
*inode
)
2236 struct btrfs_path
*path
;
2237 struct extent_buffer
*leaf
;
2238 struct btrfs_inode_item
*inode_item
;
2239 struct btrfs_timespec
*tspec
;
2240 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2241 struct btrfs_key location
;
2243 u64 alloc_group_block
;
2247 path
= btrfs_alloc_path();
2249 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2251 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2255 leaf
= path
->nodes
[0];
2256 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2257 struct btrfs_inode_item
);
2259 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2260 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2261 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2262 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2263 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2265 tspec
= btrfs_inode_atime(inode_item
);
2266 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2267 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2269 tspec
= btrfs_inode_mtime(inode_item
);
2270 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2271 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2273 tspec
= btrfs_inode_ctime(inode_item
);
2274 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2275 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2277 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2278 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2279 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2280 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2282 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2284 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2285 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2287 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2290 * try to precache a NULL acl entry for files that don't have
2291 * any xattrs or acls
2293 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2295 cache_no_acl(inode
);
2297 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2298 alloc_group_block
, 0);
2299 btrfs_free_path(path
);
2302 switch (inode
->i_mode
& S_IFMT
) {
2304 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2305 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2306 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2307 inode
->i_fop
= &btrfs_file_operations
;
2308 inode
->i_op
= &btrfs_file_inode_operations
;
2311 inode
->i_fop
= &btrfs_dir_file_operations
;
2312 if (root
== root
->fs_info
->tree_root
)
2313 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2315 inode
->i_op
= &btrfs_dir_inode_operations
;
2318 inode
->i_op
= &btrfs_symlink_inode_operations
;
2319 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2320 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2323 inode
->i_op
= &btrfs_special_inode_operations
;
2324 init_special_inode(inode
, inode
->i_mode
, rdev
);
2328 btrfs_update_iflags(inode
);
2332 btrfs_free_path(path
);
2333 make_bad_inode(inode
);
2337 * given a leaf and an inode, copy the inode fields into the leaf
2339 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2340 struct extent_buffer
*leaf
,
2341 struct btrfs_inode_item
*item
,
2342 struct inode
*inode
)
2344 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2345 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2346 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2347 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2348 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2350 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2351 inode
->i_atime
.tv_sec
);
2352 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2353 inode
->i_atime
.tv_nsec
);
2355 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2356 inode
->i_mtime
.tv_sec
);
2357 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2358 inode
->i_mtime
.tv_nsec
);
2360 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2361 inode
->i_ctime
.tv_sec
);
2362 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2363 inode
->i_ctime
.tv_nsec
);
2365 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2366 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2367 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2368 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2369 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2370 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2371 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2375 * copy everything in the in-memory inode into the btree.
2377 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2378 struct btrfs_root
*root
, struct inode
*inode
)
2380 struct btrfs_inode_item
*inode_item
;
2381 struct btrfs_path
*path
;
2382 struct extent_buffer
*leaf
;
2385 path
= btrfs_alloc_path();
2387 path
->leave_spinning
= 1;
2388 ret
= btrfs_lookup_inode(trans
, root
, path
,
2389 &BTRFS_I(inode
)->location
, 1);
2396 btrfs_unlock_up_safe(path
, 1);
2397 leaf
= path
->nodes
[0];
2398 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2399 struct btrfs_inode_item
);
2401 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2402 btrfs_mark_buffer_dirty(leaf
);
2403 btrfs_set_inode_last_trans(trans
, inode
);
2406 btrfs_free_path(path
);
2412 * unlink helper that gets used here in inode.c and in the tree logging
2413 * recovery code. It remove a link in a directory with a given name, and
2414 * also drops the back refs in the inode to the directory
2416 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2417 struct btrfs_root
*root
,
2418 struct inode
*dir
, struct inode
*inode
,
2419 const char *name
, int name_len
)
2421 struct btrfs_path
*path
;
2423 struct extent_buffer
*leaf
;
2424 struct btrfs_dir_item
*di
;
2425 struct btrfs_key key
;
2428 path
= btrfs_alloc_path();
2434 path
->leave_spinning
= 1;
2435 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2436 name
, name_len
, -1);
2445 leaf
= path
->nodes
[0];
2446 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2447 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2450 btrfs_release_path(root
, path
);
2452 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2454 dir
->i_ino
, &index
);
2456 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2457 "inode %lu parent %lu\n", name_len
, name
,
2458 inode
->i_ino
, dir
->i_ino
);
2462 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2463 index
, name
, name_len
, -1);
2472 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2473 btrfs_release_path(root
, path
);
2475 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2477 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2479 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2483 btrfs_free_path(path
);
2487 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2488 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2489 btrfs_update_inode(trans
, root
, dir
);
2490 btrfs_drop_nlink(inode
);
2491 ret
= btrfs_update_inode(trans
, root
, inode
);
2496 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2498 struct btrfs_root
*root
;
2499 struct btrfs_trans_handle
*trans
;
2500 struct inode
*inode
= dentry
->d_inode
;
2502 unsigned long nr
= 0;
2504 root
= BTRFS_I(dir
)->root
;
2507 * 5 items for unlink inode
2510 ret
= btrfs_reserve_metadata_space(root
, 6);
2514 trans
= btrfs_start_transaction(root
, 1);
2515 if (IS_ERR(trans
)) {
2516 btrfs_unreserve_metadata_space(root
, 6);
2517 return PTR_ERR(trans
);
2520 btrfs_set_trans_block_group(trans
, dir
);
2522 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2524 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2525 dentry
->d_name
.name
, dentry
->d_name
.len
);
2527 if (inode
->i_nlink
== 0)
2528 ret
= btrfs_orphan_add(trans
, inode
);
2530 nr
= trans
->blocks_used
;
2532 btrfs_end_transaction_throttle(trans
, root
);
2533 btrfs_unreserve_metadata_space(root
, 6);
2534 btrfs_btree_balance_dirty(root
, nr
);
2538 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
2539 struct btrfs_root
*root
,
2540 struct inode
*dir
, u64 objectid
,
2541 const char *name
, int name_len
)
2543 struct btrfs_path
*path
;
2544 struct extent_buffer
*leaf
;
2545 struct btrfs_dir_item
*di
;
2546 struct btrfs_key key
;
2550 path
= btrfs_alloc_path();
2554 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2555 name
, name_len
, -1);
2556 BUG_ON(!di
|| IS_ERR(di
));
2558 leaf
= path
->nodes
[0];
2559 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2560 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2561 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2563 btrfs_release_path(root
, path
);
2565 ret
= btrfs_del_root_ref(trans
, root
->fs_info
->tree_root
,
2566 objectid
, root
->root_key
.objectid
,
2567 dir
->i_ino
, &index
, name
, name_len
);
2569 BUG_ON(ret
!= -ENOENT
);
2570 di
= btrfs_search_dir_index_item(root
, path
, dir
->i_ino
,
2572 BUG_ON(!di
|| IS_ERR(di
));
2574 leaf
= path
->nodes
[0];
2575 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2576 btrfs_release_path(root
, path
);
2580 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2581 index
, name
, name_len
, -1);
2582 BUG_ON(!di
|| IS_ERR(di
));
2584 leaf
= path
->nodes
[0];
2585 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2586 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
2587 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2589 btrfs_release_path(root
, path
);
2591 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2592 dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2593 ret
= btrfs_update_inode(trans
, root
, dir
);
2595 dir
->i_sb
->s_dirt
= 1;
2597 btrfs_free_path(path
);
2601 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2603 struct inode
*inode
= dentry
->d_inode
;
2606 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2607 struct btrfs_trans_handle
*trans
;
2608 unsigned long nr
= 0;
2610 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2611 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
2614 ret
= btrfs_reserve_metadata_space(root
, 5);
2618 trans
= btrfs_start_transaction(root
, 1);
2619 if (IS_ERR(trans
)) {
2620 btrfs_unreserve_metadata_space(root
, 5);
2621 return PTR_ERR(trans
);
2624 btrfs_set_trans_block_group(trans
, dir
);
2626 if (unlikely(inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
2627 err
= btrfs_unlink_subvol(trans
, root
, dir
,
2628 BTRFS_I(inode
)->location
.objectid
,
2629 dentry
->d_name
.name
,
2630 dentry
->d_name
.len
);
2634 err
= btrfs_orphan_add(trans
, inode
);
2638 /* now the directory is empty */
2639 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2640 dentry
->d_name
.name
, dentry
->d_name
.len
);
2642 btrfs_i_size_write(inode
, 0);
2644 nr
= trans
->blocks_used
;
2645 ret
= btrfs_end_transaction_throttle(trans
, root
);
2646 btrfs_unreserve_metadata_space(root
, 5);
2647 btrfs_btree_balance_dirty(root
, nr
);
2656 * when truncating bytes in a file, it is possible to avoid reading
2657 * the leaves that contain only checksum items. This can be the
2658 * majority of the IO required to delete a large file, but it must
2659 * be done carefully.
2661 * The keys in the level just above the leaves are checked to make sure
2662 * the lowest key in a given leaf is a csum key, and starts at an offset
2663 * after the new size.
2665 * Then the key for the next leaf is checked to make sure it also has
2666 * a checksum item for the same file. If it does, we know our target leaf
2667 * contains only checksum items, and it can be safely freed without reading
2670 * This is just an optimization targeted at large files. It may do
2671 * nothing. It will return 0 unless things went badly.
2673 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
2674 struct btrfs_root
*root
,
2675 struct btrfs_path
*path
,
2676 struct inode
*inode
, u64 new_size
)
2678 struct btrfs_key key
;
2681 struct btrfs_key found_key
;
2682 struct btrfs_key other_key
;
2683 struct btrfs_leaf_ref
*ref
;
2687 path
->lowest_level
= 1;
2688 key
.objectid
= inode
->i_ino
;
2689 key
.type
= BTRFS_CSUM_ITEM_KEY
;
2690 key
.offset
= new_size
;
2692 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2696 if (path
->nodes
[1] == NULL
) {
2701 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
2702 nritems
= btrfs_header_nritems(path
->nodes
[1]);
2707 if (path
->slots
[1] >= nritems
)
2710 /* did we find a key greater than anything we want to delete? */
2711 if (found_key
.objectid
> inode
->i_ino
||
2712 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
2715 /* we check the next key in the node to make sure the leave contains
2716 * only checksum items. This comparison doesn't work if our
2717 * leaf is the last one in the node
2719 if (path
->slots
[1] + 1 >= nritems
) {
2721 /* search forward from the last key in the node, this
2722 * will bring us into the next node in the tree
2724 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
2726 /* unlikely, but we inc below, so check to be safe */
2727 if (found_key
.offset
== (u64
)-1)
2730 /* search_forward needs a path with locks held, do the
2731 * search again for the original key. It is possible
2732 * this will race with a balance and return a path that
2733 * we could modify, but this drop is just an optimization
2734 * and is allowed to miss some leaves.
2736 btrfs_release_path(root
, path
);
2739 /* setup a max key for search_forward */
2740 other_key
.offset
= (u64
)-1;
2741 other_key
.type
= key
.type
;
2742 other_key
.objectid
= key
.objectid
;
2744 path
->keep_locks
= 1;
2745 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
2747 path
->keep_locks
= 0;
2748 if (ret
|| found_key
.objectid
!= key
.objectid
||
2749 found_key
.type
!= key
.type
) {
2754 key
.offset
= found_key
.offset
;
2755 btrfs_release_path(root
, path
);
2760 /* we know there's one more slot after us in the tree,
2761 * read that key so we can verify it is also a checksum item
2763 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
2765 if (found_key
.objectid
< inode
->i_ino
)
2768 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
2772 * if the key for the next leaf isn't a csum key from this objectid,
2773 * we can't be sure there aren't good items inside this leaf.
2776 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
2779 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
2780 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
2782 * it is safe to delete this leaf, it contains only
2783 * csum items from this inode at an offset >= new_size
2785 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
2788 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
2789 ref
= btrfs_alloc_leaf_ref(root
, 0);
2791 ref
->root_gen
= root
->root_key
.offset
;
2792 ref
->bytenr
= leaf_start
;
2794 ref
->generation
= leaf_gen
;
2797 btrfs_sort_leaf_ref(ref
);
2799 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
2801 btrfs_free_leaf_ref(root
, ref
);
2807 btrfs_release_path(root
, path
);
2809 if (other_key
.objectid
== inode
->i_ino
&&
2810 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
2811 key
.offset
= other_key
.offset
;
2817 /* fixup any changes we've made to the path */
2818 path
->lowest_level
= 0;
2819 path
->keep_locks
= 0;
2820 btrfs_release_path(root
, path
);
2827 * this can truncate away extent items, csum items and directory items.
2828 * It starts at a high offset and removes keys until it can't find
2829 * any higher than new_size
2831 * csum items that cross the new i_size are truncated to the new size
2834 * min_type is the minimum key type to truncate down to. If set to 0, this
2835 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2837 noinline
int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2838 struct btrfs_root
*root
,
2839 struct inode
*inode
,
2840 u64 new_size
, u32 min_type
)
2843 struct btrfs_path
*path
;
2844 struct btrfs_key key
;
2845 struct btrfs_key found_key
;
2846 u32 found_type
= (u8
)-1;
2847 struct extent_buffer
*leaf
;
2848 struct btrfs_file_extent_item
*fi
;
2849 u64 extent_start
= 0;
2850 u64 extent_num_bytes
= 0;
2851 u64 extent_offset
= 0;
2855 int pending_del_nr
= 0;
2856 int pending_del_slot
= 0;
2857 int extent_type
= -1;
2859 u64 mask
= root
->sectorsize
- 1;
2862 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
2863 path
= btrfs_alloc_path();
2867 /* FIXME, add redo link to tree so we don't leak on crash */
2868 key
.objectid
= inode
->i_ino
;
2869 key
.offset
= (u64
)-1;
2873 path
->leave_spinning
= 1;
2874 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2879 /* there are no items in the tree for us to truncate, we're
2882 if (path
->slots
[0] == 0) {
2891 leaf
= path
->nodes
[0];
2892 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2893 found_type
= btrfs_key_type(&found_key
);
2896 if (found_key
.objectid
!= inode
->i_ino
)
2899 if (found_type
< min_type
)
2902 item_end
= found_key
.offset
;
2903 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
2904 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2905 struct btrfs_file_extent_item
);
2906 extent_type
= btrfs_file_extent_type(leaf
, fi
);
2907 encoding
= btrfs_file_extent_compression(leaf
, fi
);
2908 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
2909 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
2911 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2913 btrfs_file_extent_num_bytes(leaf
, fi
);
2914 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2915 item_end
+= btrfs_file_extent_inline_len(leaf
,
2920 if (item_end
< new_size
) {
2921 if (found_type
== BTRFS_DIR_ITEM_KEY
)
2922 found_type
= BTRFS_INODE_ITEM_KEY
;
2923 else if (found_type
== BTRFS_EXTENT_ITEM_KEY
)
2924 found_type
= BTRFS_EXTENT_DATA_KEY
;
2925 else if (found_type
== BTRFS_EXTENT_DATA_KEY
)
2926 found_type
= BTRFS_XATTR_ITEM_KEY
;
2927 else if (found_type
== BTRFS_XATTR_ITEM_KEY
)
2928 found_type
= BTRFS_INODE_REF_KEY
;
2929 else if (found_type
)
2933 btrfs_set_key_type(&key
, found_type
);
2936 if (found_key
.offset
>= new_size
)
2942 /* FIXME, shrink the extent if the ref count is only 1 */
2943 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
2946 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2948 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
2949 if (!del_item
&& !encoding
) {
2950 u64 orig_num_bytes
=
2951 btrfs_file_extent_num_bytes(leaf
, fi
);
2952 extent_num_bytes
= new_size
-
2953 found_key
.offset
+ root
->sectorsize
- 1;
2954 extent_num_bytes
= extent_num_bytes
&
2955 ~((u64
)root
->sectorsize
- 1);
2956 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2958 num_dec
= (orig_num_bytes
-
2960 if (root
->ref_cows
&& extent_start
!= 0)
2961 inode_sub_bytes(inode
, num_dec
);
2962 btrfs_mark_buffer_dirty(leaf
);
2965 btrfs_file_extent_disk_num_bytes(leaf
,
2967 extent_offset
= found_key
.offset
-
2968 btrfs_file_extent_offset(leaf
, fi
);
2970 /* FIXME blocksize != 4096 */
2971 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
2972 if (extent_start
!= 0) {
2975 inode_sub_bytes(inode
, num_dec
);
2978 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2980 * we can't truncate inline items that have had
2984 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
2985 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
2986 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
2987 u32 size
= new_size
- found_key
.offset
;
2989 if (root
->ref_cows
) {
2990 inode_sub_bytes(inode
, item_end
+ 1 -
2994 btrfs_file_extent_calc_inline_size(size
);
2995 ret
= btrfs_truncate_item(trans
, root
, path
,
2998 } else if (root
->ref_cows
) {
2999 inode_sub_bytes(inode
, item_end
+ 1 -
3005 if (!pending_del_nr
) {
3006 /* no pending yet, add ourselves */
3007 pending_del_slot
= path
->slots
[0];
3009 } else if (pending_del_nr
&&
3010 path
->slots
[0] + 1 == pending_del_slot
) {
3011 /* hop on the pending chunk */
3013 pending_del_slot
= path
->slots
[0];
3020 if (found_extent
&& root
->ref_cows
) {
3021 btrfs_set_path_blocking(path
);
3022 ret
= btrfs_free_extent(trans
, root
, extent_start
,
3023 extent_num_bytes
, 0,
3024 btrfs_header_owner(leaf
),
3025 inode
->i_ino
, extent_offset
);
3029 if (path
->slots
[0] == 0) {
3032 btrfs_release_path(root
, path
);
3033 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3039 if (pending_del_nr
&&
3040 path
->slots
[0] + 1 != pending_del_slot
) {
3041 struct btrfs_key debug
;
3043 btrfs_item_key_to_cpu(path
->nodes
[0], &debug
,
3045 ret
= btrfs_del_items(trans
, root
, path
,
3050 btrfs_release_path(root
, path
);
3051 if (found_type
== BTRFS_INODE_ITEM_KEY
)
3058 if (pending_del_nr
) {
3059 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
3062 btrfs_free_path(path
);
3067 * taken from block_truncate_page, but does cow as it zeros out
3068 * any bytes left in the last page in the file.
3070 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
3072 struct inode
*inode
= mapping
->host
;
3073 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3074 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3075 struct btrfs_ordered_extent
*ordered
;
3077 u32 blocksize
= root
->sectorsize
;
3078 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
3079 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3085 if ((offset
& (blocksize
- 1)) == 0)
3087 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
3091 ret
= btrfs_reserve_metadata_for_delalloc(root
, inode
, 1);
3097 page
= grab_cache_page(mapping
, index
);
3099 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
3100 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
3104 page_start
= page_offset(page
);
3105 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
3107 if (!PageUptodate(page
)) {
3108 ret
= btrfs_readpage(NULL
, page
);
3110 if (page
->mapping
!= mapping
) {
3112 page_cache_release(page
);
3115 if (!PageUptodate(page
)) {
3120 wait_on_page_writeback(page
);
3122 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
3123 set_page_extent_mapped(page
);
3125 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
3127 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
3129 page_cache_release(page
);
3130 btrfs_start_ordered_extent(inode
, ordered
, 1);
3131 btrfs_put_ordered_extent(ordered
);
3135 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
3136 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
3139 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
3141 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
3146 if (offset
!= PAGE_CACHE_SIZE
) {
3148 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
3149 flush_dcache_page(page
);
3152 ClearPageChecked(page
);
3153 set_page_dirty(page
);
3154 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
3158 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
3159 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
3161 page_cache_release(page
);
3166 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
3168 struct btrfs_trans_handle
*trans
;
3169 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3170 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3171 struct extent_map
*em
;
3172 u64 mask
= root
->sectorsize
- 1;
3173 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
3174 u64 block_end
= (size
+ mask
) & ~mask
;
3180 if (size
<= hole_start
)
3183 err
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
3188 struct btrfs_ordered_extent
*ordered
;
3189 btrfs_wait_ordered_range(inode
, hole_start
,
3190 block_end
- hole_start
);
3191 lock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
3192 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
3195 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
3196 btrfs_put_ordered_extent(ordered
);
3199 trans
= btrfs_start_transaction(root
, 1);
3200 btrfs_set_trans_block_group(trans
, inode
);
3202 cur_offset
= hole_start
;
3204 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
3205 block_end
- cur_offset
, 0);
3206 BUG_ON(IS_ERR(em
) || !em
);
3207 last_byte
= min(extent_map_end(em
), block_end
);
3208 last_byte
= (last_byte
+ mask
) & ~mask
;
3209 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
3211 hole_size
= last_byte
- cur_offset
;
3212 err
= btrfs_drop_extents(trans
, root
, inode
,
3214 cur_offset
+ hole_size
,
3216 cur_offset
, &hint_byte
, 1);
3220 err
= btrfs_reserve_metadata_space(root
, 1);
3224 err
= btrfs_insert_file_extent(trans
, root
,
3225 inode
->i_ino
, cur_offset
, 0,
3226 0, hole_size
, 0, hole_size
,
3228 btrfs_drop_extent_cache(inode
, hole_start
,
3230 btrfs_unreserve_metadata_space(root
, 1);
3232 free_extent_map(em
);
3233 cur_offset
= last_byte
;
3234 if (err
|| cur_offset
>= block_end
)
3238 btrfs_end_transaction(trans
, root
);
3239 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
3243 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
3245 struct inode
*inode
= dentry
->d_inode
;
3248 err
= inode_change_ok(inode
, attr
);
3252 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
3253 if (attr
->ia_size
> inode
->i_size
) {
3254 err
= btrfs_cont_expand(inode
, attr
->ia_size
);
3257 } else if (inode
->i_size
> 0 &&
3258 attr
->ia_size
== 0) {
3260 /* we're truncating a file that used to have good
3261 * data down to zero. Make sure it gets into
3262 * the ordered flush list so that any new writes
3263 * get down to disk quickly.
3265 BTRFS_I(inode
)->ordered_data_close
= 1;
3269 err
= inode_setattr(inode
, attr
);
3271 if (!err
&& ((attr
->ia_valid
& ATTR_MODE
)))
3272 err
= btrfs_acl_chmod(inode
);
3276 void btrfs_delete_inode(struct inode
*inode
)
3278 struct btrfs_trans_handle
*trans
;
3279 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3283 truncate_inode_pages(&inode
->i_data
, 0);
3284 if (is_bad_inode(inode
)) {
3285 btrfs_orphan_del(NULL
, inode
);
3288 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3290 if (inode
->i_nlink
> 0) {
3291 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0);
3295 btrfs_i_size_write(inode
, 0);
3296 trans
= btrfs_join_transaction(root
, 1);
3298 btrfs_set_trans_block_group(trans
, inode
);
3299 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
, 0);
3301 btrfs_orphan_del(NULL
, inode
);
3302 goto no_delete_lock
;
3305 btrfs_orphan_del(trans
, inode
);
3307 nr
= trans
->blocks_used
;
3310 btrfs_end_transaction(trans
, root
);
3311 btrfs_btree_balance_dirty(root
, nr
);
3315 nr
= trans
->blocks_used
;
3316 btrfs_end_transaction(trans
, root
);
3317 btrfs_btree_balance_dirty(root
, nr
);
3323 * this returns the key found in the dir entry in the location pointer.
3324 * If no dir entries were found, location->objectid is 0.
3326 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3327 struct btrfs_key
*location
)
3329 const char *name
= dentry
->d_name
.name
;
3330 int namelen
= dentry
->d_name
.len
;
3331 struct btrfs_dir_item
*di
;
3332 struct btrfs_path
*path
;
3333 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3336 path
= btrfs_alloc_path();
3339 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3344 if (!di
|| IS_ERR(di
))
3347 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3349 btrfs_free_path(path
);
3352 location
->objectid
= 0;
3357 * when we hit a tree root in a directory, the btrfs part of the inode
3358 * needs to be changed to reflect the root directory of the tree root. This
3359 * is kind of like crossing a mount point.
3361 static int fixup_tree_root_location(struct btrfs_root
*root
,
3363 struct dentry
*dentry
,
3364 struct btrfs_key
*location
,
3365 struct btrfs_root
**sub_root
)
3367 struct btrfs_path
*path
;
3368 struct btrfs_root
*new_root
;
3369 struct btrfs_root_ref
*ref
;
3370 struct extent_buffer
*leaf
;
3374 path
= btrfs_alloc_path();
3381 ret
= btrfs_find_root_ref(root
->fs_info
->tree_root
, path
,
3382 BTRFS_I(dir
)->root
->root_key
.objectid
,
3383 location
->objectid
);
3390 leaf
= path
->nodes
[0];
3391 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
3392 if (btrfs_root_ref_dirid(leaf
, ref
) != dir
->i_ino
||
3393 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
3396 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
3397 (unsigned long)(ref
+ 1),
3398 dentry
->d_name
.len
);
3402 btrfs_release_path(root
->fs_info
->tree_root
, path
);
3404 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, location
);
3405 if (IS_ERR(new_root
)) {
3406 err
= PTR_ERR(new_root
);
3410 if (btrfs_root_refs(&new_root
->root_item
) == 0) {
3415 *sub_root
= new_root
;
3416 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
3417 location
->type
= BTRFS_INODE_ITEM_KEY
;
3418 location
->offset
= 0;
3421 btrfs_free_path(path
);
3425 static void inode_tree_add(struct inode
*inode
)
3427 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3428 struct btrfs_inode
*entry
;
3430 struct rb_node
*parent
;
3432 p
= &root
->inode_tree
.rb_node
;
3435 if (hlist_unhashed(&inode
->i_hash
))
3438 spin_lock(&root
->inode_lock
);
3441 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3443 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3444 p
= &parent
->rb_left
;
3445 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3446 p
= &parent
->rb_right
;
3448 WARN_ON(!(entry
->vfs_inode
.i_state
&
3449 (I_WILL_FREE
| I_FREEING
| I_CLEAR
)));
3450 rb_erase(parent
, &root
->inode_tree
);
3451 RB_CLEAR_NODE(parent
);
3452 spin_unlock(&root
->inode_lock
);
3456 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3457 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3458 spin_unlock(&root
->inode_lock
);
3461 static void inode_tree_del(struct inode
*inode
)
3463 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3466 spin_lock(&root
->inode_lock
);
3467 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3468 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3469 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3470 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3472 spin_unlock(&root
->inode_lock
);
3474 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
3475 synchronize_srcu(&root
->fs_info
->subvol_srcu
);
3476 spin_lock(&root
->inode_lock
);
3477 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
3478 spin_unlock(&root
->inode_lock
);
3480 btrfs_add_dead_root(root
);
3484 int btrfs_invalidate_inodes(struct btrfs_root
*root
)
3486 struct rb_node
*node
;
3487 struct rb_node
*prev
;
3488 struct btrfs_inode
*entry
;
3489 struct inode
*inode
;
3492 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
3494 spin_lock(&root
->inode_lock
);
3496 node
= root
->inode_tree
.rb_node
;
3500 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3502 if (objectid
< entry
->vfs_inode
.i_ino
)
3503 node
= node
->rb_left
;
3504 else if (objectid
> entry
->vfs_inode
.i_ino
)
3505 node
= node
->rb_right
;
3511 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
3512 if (objectid
<= entry
->vfs_inode
.i_ino
) {
3516 prev
= rb_next(prev
);
3520 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
3521 objectid
= entry
->vfs_inode
.i_ino
+ 1;
3522 inode
= igrab(&entry
->vfs_inode
);
3524 spin_unlock(&root
->inode_lock
);
3525 if (atomic_read(&inode
->i_count
) > 1)
3526 d_prune_aliases(inode
);
3528 * btrfs_drop_inode will remove it from
3529 * the inode cache when its usage count
3534 spin_lock(&root
->inode_lock
);
3538 if (cond_resched_lock(&root
->inode_lock
))
3541 node
= rb_next(node
);
3543 spin_unlock(&root
->inode_lock
);
3547 static noinline
void init_btrfs_i(struct inode
*inode
)
3549 struct btrfs_inode
*bi
= BTRFS_I(inode
);
3554 bi
->last_sub_trans
= 0;
3555 bi
->logged_trans
= 0;
3556 bi
->delalloc_bytes
= 0;
3557 bi
->reserved_bytes
= 0;
3558 bi
->disk_i_size
= 0;
3560 bi
->index_cnt
= (u64
)-1;
3561 bi
->last_unlink_trans
= 0;
3562 bi
->ordered_data_close
= 0;
3563 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
, GFP_NOFS
);
3564 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
,
3565 inode
->i_mapping
, GFP_NOFS
);
3566 extent_io_tree_init(&BTRFS_I(inode
)->io_failure_tree
,
3567 inode
->i_mapping
, GFP_NOFS
);
3568 INIT_LIST_HEAD(&BTRFS_I(inode
)->delalloc_inodes
);
3569 INIT_LIST_HEAD(&BTRFS_I(inode
)->ordered_operations
);
3570 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3571 btrfs_ordered_inode_tree_init(&BTRFS_I(inode
)->ordered_tree
);
3572 mutex_init(&BTRFS_I(inode
)->extent_mutex
);
3573 mutex_init(&BTRFS_I(inode
)->log_mutex
);
3576 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3578 struct btrfs_iget_args
*args
= p
;
3579 inode
->i_ino
= args
->ino
;
3580 init_btrfs_i(inode
);
3581 BTRFS_I(inode
)->root
= args
->root
;
3582 btrfs_set_inode_space_info(args
->root
, inode
);
3586 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3588 struct btrfs_iget_args
*args
= opaque
;
3589 return args
->ino
== inode
->i_ino
&&
3590 args
->root
== BTRFS_I(inode
)->root
;
3593 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3595 struct btrfs_root
*root
)
3597 struct inode
*inode
;
3598 struct btrfs_iget_args args
;
3599 args
.ino
= objectid
;
3602 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3603 btrfs_init_locked_inode
,
3608 /* Get an inode object given its location and corresponding root.
3609 * Returns in *is_new if the inode was read from disk
3611 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3612 struct btrfs_root
*root
)
3614 struct inode
*inode
;
3616 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3618 return ERR_PTR(-ENOMEM
);
3620 if (inode
->i_state
& I_NEW
) {
3621 BTRFS_I(inode
)->root
= root
;
3622 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3623 btrfs_read_locked_inode(inode
);
3625 inode_tree_add(inode
);
3626 unlock_new_inode(inode
);
3632 static struct inode
*new_simple_dir(struct super_block
*s
,
3633 struct btrfs_key
*key
,
3634 struct btrfs_root
*root
)
3636 struct inode
*inode
= new_inode(s
);
3639 return ERR_PTR(-ENOMEM
);
3641 init_btrfs_i(inode
);
3643 BTRFS_I(inode
)->root
= root
;
3644 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
3645 BTRFS_I(inode
)->dummy_inode
= 1;
3647 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
3648 inode
->i_op
= &simple_dir_inode_operations
;
3649 inode
->i_fop
= &simple_dir_operations
;
3650 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
3651 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3656 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3658 struct inode
*inode
;
3659 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3660 struct btrfs_root
*sub_root
= root
;
3661 struct btrfs_key location
;
3665 dentry
->d_op
= &btrfs_dentry_operations
;
3667 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3668 return ERR_PTR(-ENAMETOOLONG
);
3670 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3673 return ERR_PTR(ret
);
3675 if (location
.objectid
== 0)
3678 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
3679 inode
= btrfs_iget(dir
->i_sb
, &location
, root
);
3683 BUG_ON(location
.type
!= BTRFS_ROOT_ITEM_KEY
);
3685 index
= srcu_read_lock(&root
->fs_info
->subvol_srcu
);
3686 ret
= fixup_tree_root_location(root
, dir
, dentry
,
3687 &location
, &sub_root
);
3690 inode
= ERR_PTR(ret
);
3692 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
3694 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
);
3696 srcu_read_unlock(&root
->fs_info
->subvol_srcu
, index
);
3701 static int btrfs_dentry_delete(struct dentry
*dentry
)
3703 struct btrfs_root
*root
;
3705 if (!dentry
->d_inode
&& !IS_ROOT(dentry
))
3706 dentry
= dentry
->d_parent
;
3708 if (dentry
->d_inode
) {
3709 root
= BTRFS_I(dentry
->d_inode
)->root
;
3710 if (btrfs_root_refs(&root
->root_item
) == 0)
3716 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3717 struct nameidata
*nd
)
3719 struct inode
*inode
;
3721 inode
= btrfs_lookup_dentry(dir
, dentry
);
3723 return ERR_CAST(inode
);
3725 return d_splice_alias(inode
, dentry
);
3728 static unsigned char btrfs_filetype_table
[] = {
3729 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
3732 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
3735 struct inode
*inode
= filp
->f_dentry
->d_inode
;
3736 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3737 struct btrfs_item
*item
;
3738 struct btrfs_dir_item
*di
;
3739 struct btrfs_key key
;
3740 struct btrfs_key found_key
;
3741 struct btrfs_path
*path
;
3744 struct extent_buffer
*leaf
;
3747 unsigned char d_type
;
3752 int key_type
= BTRFS_DIR_INDEX_KEY
;
3757 /* FIXME, use a real flag for deciding about the key type */
3758 if (root
->fs_info
->tree_root
== root
)
3759 key_type
= BTRFS_DIR_ITEM_KEY
;
3761 /* special case for "." */
3762 if (filp
->f_pos
== 0) {
3763 over
= filldir(dirent
, ".", 1,
3770 /* special case for .., just use the back ref */
3771 if (filp
->f_pos
== 1) {
3772 u64 pino
= parent_ino(filp
->f_path
.dentry
);
3773 over
= filldir(dirent
, "..", 2,
3779 path
= btrfs_alloc_path();
3782 btrfs_set_key_type(&key
, key_type
);
3783 key
.offset
= filp
->f_pos
;
3784 key
.objectid
= inode
->i_ino
;
3786 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3792 leaf
= path
->nodes
[0];
3793 nritems
= btrfs_header_nritems(leaf
);
3794 slot
= path
->slots
[0];
3795 if (advance
|| slot
>= nritems
) {
3796 if (slot
>= nritems
- 1) {
3797 ret
= btrfs_next_leaf(root
, path
);
3800 leaf
= path
->nodes
[0];
3801 nritems
= btrfs_header_nritems(leaf
);
3802 slot
= path
->slots
[0];
3810 item
= btrfs_item_nr(leaf
, slot
);
3811 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3813 if (found_key
.objectid
!= key
.objectid
)
3815 if (btrfs_key_type(&found_key
) != key_type
)
3817 if (found_key
.offset
< filp
->f_pos
)
3820 filp
->f_pos
= found_key
.offset
;
3822 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
3824 di_total
= btrfs_item_size(leaf
, item
);
3826 while (di_cur
< di_total
) {
3827 struct btrfs_key location
;
3829 name_len
= btrfs_dir_name_len(leaf
, di
);
3830 if (name_len
<= sizeof(tmp_name
)) {
3831 name_ptr
= tmp_name
;
3833 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
3839 read_extent_buffer(leaf
, name_ptr
,
3840 (unsigned long)(di
+ 1), name_len
);
3842 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
3843 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
3845 /* is this a reference to our own snapshot? If so
3848 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
3849 location
.objectid
== root
->root_key
.objectid
) {
3853 over
= filldir(dirent
, name_ptr
, name_len
,
3854 found_key
.offset
, location
.objectid
,
3858 if (name_ptr
!= tmp_name
)
3863 di_len
= btrfs_dir_name_len(leaf
, di
) +
3864 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
3866 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
3870 /* Reached end of directory/root. Bump pos past the last item. */
3871 if (key_type
== BTRFS_DIR_INDEX_KEY
)
3872 filp
->f_pos
= INT_LIMIT(off_t
);
3878 btrfs_free_path(path
);
3882 int btrfs_write_inode(struct inode
*inode
, int wait
)
3884 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3885 struct btrfs_trans_handle
*trans
;
3888 if (root
->fs_info
->btree_inode
== inode
)
3892 trans
= btrfs_join_transaction(root
, 1);
3893 btrfs_set_trans_block_group(trans
, inode
);
3894 ret
= btrfs_commit_transaction(trans
, root
);
3900 * This is somewhat expensive, updating the tree every time the
3901 * inode changes. But, it is most likely to find the inode in cache.
3902 * FIXME, needs more benchmarking...there are no reasons other than performance
3903 * to keep or drop this code.
3905 void btrfs_dirty_inode(struct inode
*inode
)
3907 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3908 struct btrfs_trans_handle
*trans
;
3910 trans
= btrfs_join_transaction(root
, 1);
3911 btrfs_set_trans_block_group(trans
, inode
);
3912 btrfs_update_inode(trans
, root
, inode
);
3913 btrfs_end_transaction(trans
, root
);
3917 * find the highest existing sequence number in a directory
3918 * and then set the in-memory index_cnt variable to reflect
3919 * free sequence numbers
3921 static int btrfs_set_inode_index_count(struct inode
*inode
)
3923 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3924 struct btrfs_key key
, found_key
;
3925 struct btrfs_path
*path
;
3926 struct extent_buffer
*leaf
;
3929 key
.objectid
= inode
->i_ino
;
3930 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
3931 key
.offset
= (u64
)-1;
3933 path
= btrfs_alloc_path();
3937 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3940 /* FIXME: we should be able to handle this */
3946 * MAGIC NUMBER EXPLANATION:
3947 * since we search a directory based on f_pos we have to start at 2
3948 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3949 * else has to start at 2
3951 if (path
->slots
[0] == 0) {
3952 BTRFS_I(inode
)->index_cnt
= 2;
3958 leaf
= path
->nodes
[0];
3959 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3961 if (found_key
.objectid
!= inode
->i_ino
||
3962 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
3963 BTRFS_I(inode
)->index_cnt
= 2;
3967 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
3969 btrfs_free_path(path
);
3974 * helper to find a free sequence number in a given directory. This current
3975 * code is very simple, later versions will do smarter things in the btree
3977 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
3981 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
3982 ret
= btrfs_set_inode_index_count(dir
);
3987 *index
= BTRFS_I(dir
)->index_cnt
;
3988 BTRFS_I(dir
)->index_cnt
++;
3993 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
3994 struct btrfs_root
*root
,
3996 const char *name
, int name_len
,
3997 u64 ref_objectid
, u64 objectid
,
3998 u64 alloc_hint
, int mode
, u64
*index
)
4000 struct inode
*inode
;
4001 struct btrfs_inode_item
*inode_item
;
4002 struct btrfs_key
*location
;
4003 struct btrfs_path
*path
;
4004 struct btrfs_inode_ref
*ref
;
4005 struct btrfs_key key
[2];
4011 path
= btrfs_alloc_path();
4014 inode
= new_inode(root
->fs_info
->sb
);
4016 return ERR_PTR(-ENOMEM
);
4019 ret
= btrfs_set_inode_index(dir
, index
);
4022 return ERR_PTR(ret
);
4026 * index_cnt is ignored for everything but a dir,
4027 * btrfs_get_inode_index_count has an explanation for the magic
4030 init_btrfs_i(inode
);
4031 BTRFS_I(inode
)->index_cnt
= 2;
4032 BTRFS_I(inode
)->root
= root
;
4033 BTRFS_I(inode
)->generation
= trans
->transid
;
4034 btrfs_set_inode_space_info(root
, inode
);
4040 BTRFS_I(inode
)->block_group
=
4041 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
4043 key
[0].objectid
= objectid
;
4044 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
4047 key
[1].objectid
= objectid
;
4048 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
4049 key
[1].offset
= ref_objectid
;
4051 sizes
[0] = sizeof(struct btrfs_inode_item
);
4052 sizes
[1] = name_len
+ sizeof(*ref
);
4054 path
->leave_spinning
= 1;
4055 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
4059 inode
->i_uid
= current_fsuid();
4061 if (dir
&& (dir
->i_mode
& S_ISGID
)) {
4062 inode
->i_gid
= dir
->i_gid
;
4066 inode
->i_gid
= current_fsgid();
4068 inode
->i_mode
= mode
;
4069 inode
->i_ino
= objectid
;
4070 inode_set_bytes(inode
, 0);
4071 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
4072 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4073 struct btrfs_inode_item
);
4074 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
4076 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
4077 struct btrfs_inode_ref
);
4078 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
4079 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
4080 ptr
= (unsigned long)(ref
+ 1);
4081 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
4083 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4084 btrfs_free_path(path
);
4086 location
= &BTRFS_I(inode
)->location
;
4087 location
->objectid
= objectid
;
4088 location
->offset
= 0;
4089 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
4091 btrfs_inherit_iflags(inode
, dir
);
4093 if ((mode
& S_IFREG
)) {
4094 if (btrfs_test_opt(root
, NODATASUM
))
4095 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
4096 if (btrfs_test_opt(root
, NODATACOW
))
4097 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
4100 insert_inode_hash(inode
);
4101 inode_tree_add(inode
);
4105 BTRFS_I(dir
)->index_cnt
--;
4106 btrfs_free_path(path
);
4108 return ERR_PTR(ret
);
4111 static inline u8
btrfs_inode_type(struct inode
*inode
)
4113 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
4117 * utility function to add 'inode' into 'parent_inode' with
4118 * a give name and a given sequence number.
4119 * if 'add_backref' is true, also insert a backref from the
4120 * inode to the parent directory.
4122 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
4123 struct inode
*parent_inode
, struct inode
*inode
,
4124 const char *name
, int name_len
, int add_backref
, u64 index
)
4127 struct btrfs_key key
;
4128 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
4130 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4131 memcpy(&key
, &BTRFS_I(inode
)->root
->root_key
, sizeof(key
));
4133 key
.objectid
= inode
->i_ino
;
4134 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
4138 if (unlikely(inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
4139 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
4140 key
.objectid
, root
->root_key
.objectid
,
4141 parent_inode
->i_ino
,
4142 index
, name
, name_len
);
4143 } else if (add_backref
) {
4144 ret
= btrfs_insert_inode_ref(trans
, root
,
4145 name
, name_len
, inode
->i_ino
,
4146 parent_inode
->i_ino
, index
);
4150 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
4151 parent_inode
->i_ino
, &key
,
4152 btrfs_inode_type(inode
), index
);
4155 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
4157 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
4158 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
4163 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
4164 struct dentry
*dentry
, struct inode
*inode
,
4165 int backref
, u64 index
)
4167 int err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
4168 inode
, dentry
->d_name
.name
,
4169 dentry
->d_name
.len
, backref
, index
);
4171 d_instantiate(dentry
, inode
);
4179 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
4180 int mode
, dev_t rdev
)
4182 struct btrfs_trans_handle
*trans
;
4183 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4184 struct inode
*inode
= NULL
;
4188 unsigned long nr
= 0;
4191 if (!new_valid_dev(rdev
))
4195 * 2 for inode item and ref
4197 * 1 for xattr if selinux is on
4199 err
= btrfs_reserve_metadata_space(root
, 5);
4203 trans
= btrfs_start_transaction(root
, 1);
4206 btrfs_set_trans_block_group(trans
, dir
);
4208 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4214 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4216 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4217 BTRFS_I(dir
)->block_group
, mode
, &index
);
4218 err
= PTR_ERR(inode
);
4222 err
= btrfs_init_inode_security(inode
, dir
);
4228 btrfs_set_trans_block_group(trans
, inode
);
4229 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4233 inode
->i_op
= &btrfs_special_inode_operations
;
4234 init_special_inode(inode
, inode
->i_mode
, rdev
);
4235 btrfs_update_inode(trans
, root
, inode
);
4237 btrfs_update_inode_block_group(trans
, inode
);
4238 btrfs_update_inode_block_group(trans
, dir
);
4240 nr
= trans
->blocks_used
;
4241 btrfs_end_transaction_throttle(trans
, root
);
4243 btrfs_unreserve_metadata_space(root
, 5);
4245 inode_dec_link_count(inode
);
4248 btrfs_btree_balance_dirty(root
, nr
);
4252 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
4253 int mode
, struct nameidata
*nd
)
4255 struct btrfs_trans_handle
*trans
;
4256 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4257 struct inode
*inode
= NULL
;
4260 unsigned long nr
= 0;
4265 * 2 for inode item and ref
4267 * 1 for xattr if selinux is on
4269 err
= btrfs_reserve_metadata_space(root
, 5);
4273 trans
= btrfs_start_transaction(root
, 1);
4276 btrfs_set_trans_block_group(trans
, dir
);
4278 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4284 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4286 dentry
->d_parent
->d_inode
->i_ino
,
4287 objectid
, BTRFS_I(dir
)->block_group
, mode
,
4289 err
= PTR_ERR(inode
);
4293 err
= btrfs_init_inode_security(inode
, dir
);
4299 btrfs_set_trans_block_group(trans
, inode
);
4300 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4304 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4305 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4306 inode
->i_fop
= &btrfs_file_operations
;
4307 inode
->i_op
= &btrfs_file_inode_operations
;
4308 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4310 btrfs_update_inode_block_group(trans
, inode
);
4311 btrfs_update_inode_block_group(trans
, dir
);
4313 nr
= trans
->blocks_used
;
4314 btrfs_end_transaction_throttle(trans
, root
);
4316 btrfs_unreserve_metadata_space(root
, 5);
4318 inode_dec_link_count(inode
);
4321 btrfs_btree_balance_dirty(root
, nr
);
4325 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
4326 struct dentry
*dentry
)
4328 struct btrfs_trans_handle
*trans
;
4329 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4330 struct inode
*inode
= old_dentry
->d_inode
;
4332 unsigned long nr
= 0;
4336 if (inode
->i_nlink
== 0)
4340 * 1 item for inode ref
4341 * 2 items for dir items
4343 err
= btrfs_reserve_metadata_space(root
, 3);
4347 btrfs_inc_nlink(inode
);
4349 err
= btrfs_set_inode_index(dir
, &index
);
4353 trans
= btrfs_start_transaction(root
, 1);
4355 btrfs_set_trans_block_group(trans
, dir
);
4356 atomic_inc(&inode
->i_count
);
4358 err
= btrfs_add_nondir(trans
, dentry
, inode
, 1, index
);
4363 btrfs_update_inode_block_group(trans
, dir
);
4364 err
= btrfs_update_inode(trans
, root
, inode
);
4366 btrfs_log_new_name(trans
, inode
, NULL
, dentry
->d_parent
);
4369 nr
= trans
->blocks_used
;
4370 btrfs_end_transaction_throttle(trans
, root
);
4372 btrfs_unreserve_metadata_space(root
, 3);
4374 inode_dec_link_count(inode
);
4377 btrfs_btree_balance_dirty(root
, nr
);
4381 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
4383 struct inode
*inode
= NULL
;
4384 struct btrfs_trans_handle
*trans
;
4385 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4387 int drop_on_err
= 0;
4390 unsigned long nr
= 1;
4393 * 2 items for inode and ref
4394 * 2 items for dir items
4395 * 1 for xattr if selinux is on
4397 err
= btrfs_reserve_metadata_space(root
, 5);
4401 trans
= btrfs_start_transaction(root
, 1);
4406 btrfs_set_trans_block_group(trans
, dir
);
4408 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4414 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4416 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4417 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
4419 if (IS_ERR(inode
)) {
4420 err
= PTR_ERR(inode
);
4426 err
= btrfs_init_inode_security(inode
, dir
);
4430 inode
->i_op
= &btrfs_dir_inode_operations
;
4431 inode
->i_fop
= &btrfs_dir_file_operations
;
4432 btrfs_set_trans_block_group(trans
, inode
);
4434 btrfs_i_size_write(inode
, 0);
4435 err
= btrfs_update_inode(trans
, root
, inode
);
4439 err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
4440 inode
, dentry
->d_name
.name
,
4441 dentry
->d_name
.len
, 0, index
);
4445 d_instantiate(dentry
, inode
);
4447 btrfs_update_inode_block_group(trans
, inode
);
4448 btrfs_update_inode_block_group(trans
, dir
);
4451 nr
= trans
->blocks_used
;
4452 btrfs_end_transaction_throttle(trans
, root
);
4455 btrfs_unreserve_metadata_space(root
, 5);
4458 btrfs_btree_balance_dirty(root
, nr
);
4462 /* helper for btfs_get_extent. Given an existing extent in the tree,
4463 * and an extent that you want to insert, deal with overlap and insert
4464 * the new extent into the tree.
4466 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
4467 struct extent_map
*existing
,
4468 struct extent_map
*em
,
4469 u64 map_start
, u64 map_len
)
4473 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
4474 start_diff
= map_start
- em
->start
;
4475 em
->start
= map_start
;
4477 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
4478 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
4479 em
->block_start
+= start_diff
;
4480 em
->block_len
-= start_diff
;
4482 return add_extent_mapping(em_tree
, em
);
4485 static noinline
int uncompress_inline(struct btrfs_path
*path
,
4486 struct inode
*inode
, struct page
*page
,
4487 size_t pg_offset
, u64 extent_offset
,
4488 struct btrfs_file_extent_item
*item
)
4491 struct extent_buffer
*leaf
= path
->nodes
[0];
4494 unsigned long inline_size
;
4497 WARN_ON(pg_offset
!= 0);
4498 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4499 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4500 btrfs_item_nr(leaf
, path
->slots
[0]));
4501 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4502 ptr
= btrfs_file_extent_inline_start(item
);
4504 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4506 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4507 ret
= btrfs_zlib_decompress(tmp
, page
, extent_offset
,
4508 inline_size
, max_size
);
4510 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4511 unsigned long copy_size
= min_t(u64
,
4512 PAGE_CACHE_SIZE
- pg_offset
,
4513 max_size
- extent_offset
);
4514 memset(kaddr
+ pg_offset
, 0, copy_size
);
4515 kunmap_atomic(kaddr
, KM_USER0
);
4522 * a bit scary, this does extent mapping from logical file offset to the disk.
4523 * the ugly parts come from merging extents from the disk with the in-ram
4524 * representation. This gets more complex because of the data=ordered code,
4525 * where the in-ram extents might be locked pending data=ordered completion.
4527 * This also copies inline extents directly into the page.
4530 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4531 size_t pg_offset
, u64 start
, u64 len
,
4537 u64 extent_start
= 0;
4539 u64 objectid
= inode
->i_ino
;
4541 struct btrfs_path
*path
= NULL
;
4542 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4543 struct btrfs_file_extent_item
*item
;
4544 struct extent_buffer
*leaf
;
4545 struct btrfs_key found_key
;
4546 struct extent_map
*em
= NULL
;
4547 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4548 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4549 struct btrfs_trans_handle
*trans
= NULL
;
4553 read_lock(&em_tree
->lock
);
4554 em
= lookup_extent_mapping(em_tree
, start
, len
);
4556 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4557 read_unlock(&em_tree
->lock
);
4560 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4561 free_extent_map(em
);
4562 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4563 free_extent_map(em
);
4567 em
= alloc_extent_map(GFP_NOFS
);
4572 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4573 em
->start
= EXTENT_MAP_HOLE
;
4574 em
->orig_start
= EXTENT_MAP_HOLE
;
4576 em
->block_len
= (u64
)-1;
4579 path
= btrfs_alloc_path();
4583 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
4584 objectid
, start
, trans
!= NULL
);
4591 if (path
->slots
[0] == 0)
4596 leaf
= path
->nodes
[0];
4597 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4598 struct btrfs_file_extent_item
);
4599 /* are we inside the extent that was found? */
4600 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4601 found_type
= btrfs_key_type(&found_key
);
4602 if (found_key
.objectid
!= objectid
||
4603 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4607 found_type
= btrfs_file_extent_type(leaf
, item
);
4608 extent_start
= found_key
.offset
;
4609 compressed
= btrfs_file_extent_compression(leaf
, item
);
4610 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4611 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4612 extent_end
= extent_start
+
4613 btrfs_file_extent_num_bytes(leaf
, item
);
4614 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4616 size
= btrfs_file_extent_inline_len(leaf
, item
);
4617 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
4618 ~((u64
)root
->sectorsize
- 1);
4621 if (start
>= extent_end
) {
4623 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
4624 ret
= btrfs_next_leaf(root
, path
);
4631 leaf
= path
->nodes
[0];
4633 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4634 if (found_key
.objectid
!= objectid
||
4635 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4637 if (start
+ len
<= found_key
.offset
)
4640 em
->len
= found_key
.offset
- start
;
4644 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4645 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4646 em
->start
= extent_start
;
4647 em
->len
= extent_end
- extent_start
;
4648 em
->orig_start
= extent_start
-
4649 btrfs_file_extent_offset(leaf
, item
);
4650 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
4652 em
->block_start
= EXTENT_MAP_HOLE
;
4656 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4657 em
->block_start
= bytenr
;
4658 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
4661 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
4662 em
->block_start
= bytenr
;
4663 em
->block_len
= em
->len
;
4664 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
4665 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
4668 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4672 size_t extent_offset
;
4675 em
->block_start
= EXTENT_MAP_INLINE
;
4676 if (!page
|| create
) {
4677 em
->start
= extent_start
;
4678 em
->len
= extent_end
- extent_start
;
4682 size
= btrfs_file_extent_inline_len(leaf
, item
);
4683 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
4684 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
4685 size
- extent_offset
);
4686 em
->start
= extent_start
+ extent_offset
;
4687 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
4688 ~((u64
)root
->sectorsize
- 1);
4689 em
->orig_start
= EXTENT_MAP_INLINE
;
4691 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4692 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
4693 if (create
== 0 && !PageUptodate(page
)) {
4694 if (btrfs_file_extent_compression(leaf
, item
) ==
4695 BTRFS_COMPRESS_ZLIB
) {
4696 ret
= uncompress_inline(path
, inode
, page
,
4698 extent_offset
, item
);
4702 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4704 if (pg_offset
+ copy_size
< PAGE_CACHE_SIZE
) {
4705 memset(map
+ pg_offset
+ copy_size
, 0,
4706 PAGE_CACHE_SIZE
- pg_offset
-
4711 flush_dcache_page(page
);
4712 } else if (create
&& PageUptodate(page
)) {
4715 free_extent_map(em
);
4717 btrfs_release_path(root
, path
);
4718 trans
= btrfs_join_transaction(root
, 1);
4722 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4725 btrfs_mark_buffer_dirty(leaf
);
4727 set_extent_uptodate(io_tree
, em
->start
,
4728 extent_map_end(em
) - 1, GFP_NOFS
);
4731 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
4738 em
->block_start
= EXTENT_MAP_HOLE
;
4739 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
4741 btrfs_release_path(root
, path
);
4742 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
4743 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
4744 "[%llu %llu]\n", (unsigned long long)em
->start
,
4745 (unsigned long long)em
->len
,
4746 (unsigned long long)start
,
4747 (unsigned long long)len
);
4753 write_lock(&em_tree
->lock
);
4754 ret
= add_extent_mapping(em_tree
, em
);
4755 /* it is possible that someone inserted the extent into the tree
4756 * while we had the lock dropped. It is also possible that
4757 * an overlapping map exists in the tree
4759 if (ret
== -EEXIST
) {
4760 struct extent_map
*existing
;
4764 existing
= lookup_extent_mapping(em_tree
, start
, len
);
4765 if (existing
&& (existing
->start
> start
||
4766 existing
->start
+ existing
->len
<= start
)) {
4767 free_extent_map(existing
);
4771 existing
= lookup_extent_mapping(em_tree
, em
->start
,
4774 err
= merge_extent_mapping(em_tree
, existing
,
4777 free_extent_map(existing
);
4779 free_extent_map(em
);
4784 free_extent_map(em
);
4788 free_extent_map(em
);
4793 write_unlock(&em_tree
->lock
);
4796 btrfs_free_path(path
);
4798 ret
= btrfs_end_transaction(trans
, root
);
4803 free_extent_map(em
);
4804 return ERR_PTR(err
);
4809 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
4810 const struct iovec
*iov
, loff_t offset
,
4811 unsigned long nr_segs
)
4816 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4817 __u64 start
, __u64 len
)
4819 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
4822 int btrfs_readpage(struct file
*file
, struct page
*page
)
4824 struct extent_io_tree
*tree
;
4825 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4826 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
4829 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
4831 struct extent_io_tree
*tree
;
4834 if (current
->flags
& PF_MEMALLOC
) {
4835 redirty_page_for_writepage(wbc
, page
);
4839 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4840 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
4843 int btrfs_writepages(struct address_space
*mapping
,
4844 struct writeback_control
*wbc
)
4846 struct extent_io_tree
*tree
;
4848 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4849 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
4853 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
4854 struct list_head
*pages
, unsigned nr_pages
)
4856 struct extent_io_tree
*tree
;
4857 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4858 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
4861 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4863 struct extent_io_tree
*tree
;
4864 struct extent_map_tree
*map
;
4867 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4868 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
4869 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
4871 ClearPagePrivate(page
);
4872 set_page_private(page
, 0);
4873 page_cache_release(page
);
4878 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4880 if (PageWriteback(page
) || PageDirty(page
))
4882 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
4885 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
4887 struct extent_io_tree
*tree
;
4888 struct btrfs_ordered_extent
*ordered
;
4889 u64 page_start
= page_offset(page
);
4890 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4894 * we have the page locked, so new writeback can't start,
4895 * and the dirty bit won't be cleared while we are here.
4897 * Wait for IO on this page so that we can safely clear
4898 * the PagePrivate2 bit and do ordered accounting
4900 wait_on_page_writeback(page
);
4902 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4904 btrfs_releasepage(page
, GFP_NOFS
);
4907 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4908 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
4912 * IO on this page will never be started, so we need
4913 * to account for any ordered extents now
4915 clear_extent_bit(tree
, page_start
, page_end
,
4916 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4917 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
, 1, 0,
4920 * whoever cleared the private bit is responsible
4921 * for the finish_ordered_io
4923 if (TestClearPagePrivate2(page
)) {
4924 btrfs_finish_ordered_io(page
->mapping
->host
,
4925 page_start
, page_end
);
4927 btrfs_put_ordered_extent(ordered
);
4928 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4930 clear_extent_bit(tree
, page_start
, page_end
,
4931 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4932 EXTENT_DO_ACCOUNTING
, 1, 1, NULL
, GFP_NOFS
);
4933 __btrfs_releasepage(page
, GFP_NOFS
);
4935 ClearPageChecked(page
);
4936 if (PagePrivate(page
)) {
4937 ClearPagePrivate(page
);
4938 set_page_private(page
, 0);
4939 page_cache_release(page
);
4944 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4945 * called from a page fault handler when a page is first dirtied. Hence we must
4946 * be careful to check for EOF conditions here. We set the page up correctly
4947 * for a written page which means we get ENOSPC checking when writing into
4948 * holes and correct delalloc and unwritten extent mapping on filesystems that
4949 * support these features.
4951 * We are not allowed to take the i_mutex here so we have to play games to
4952 * protect against truncate races as the page could now be beyond EOF. Because
4953 * vmtruncate() writes the inode size before removing pages, once we have the
4954 * page lock we can determine safely if the page is beyond EOF. If it is not
4955 * beyond EOF, then the page is guaranteed safe against truncation until we
4958 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4960 struct page
*page
= vmf
->page
;
4961 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
4962 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4963 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4964 struct btrfs_ordered_extent
*ordered
;
4966 unsigned long zero_start
;
4972 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
4976 else /* -ENOSPC, -EIO, etc */
4977 ret
= VM_FAULT_SIGBUS
;
4981 ret
= btrfs_reserve_metadata_for_delalloc(root
, inode
, 1);
4983 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
4984 ret
= VM_FAULT_SIGBUS
;
4988 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
4991 size
= i_size_read(inode
);
4992 page_start
= page_offset(page
);
4993 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4995 if ((page
->mapping
!= inode
->i_mapping
) ||
4996 (page_start
>= size
)) {
4997 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
4998 /* page got truncated out from underneath us */
5001 wait_on_page_writeback(page
);
5003 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5004 set_page_extent_mapped(page
);
5007 * we can't set the delalloc bits if there are pending ordered
5008 * extents. Drop our locks and wait for them to finish
5010 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
5012 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5014 btrfs_start_ordered_extent(inode
, ordered
, 1);
5015 btrfs_put_ordered_extent(ordered
);
5020 * XXX - page_mkwrite gets called every time the page is dirtied, even
5021 * if it was already dirty, so for space accounting reasons we need to
5022 * clear any delalloc bits for the range we are fixing to save. There
5023 * is probably a better way to do this, but for now keep consistent with
5024 * prepare_pages in the normal write path.
5026 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
5027 EXTENT_DIRTY
| EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
,
5030 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
5032 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5033 ret
= VM_FAULT_SIGBUS
;
5034 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
5039 /* page is wholly or partially inside EOF */
5040 if (page_start
+ PAGE_CACHE_SIZE
> size
)
5041 zero_start
= size
& ~PAGE_CACHE_MASK
;
5043 zero_start
= PAGE_CACHE_SIZE
;
5045 if (zero_start
!= PAGE_CACHE_SIZE
) {
5047 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
5048 flush_dcache_page(page
);
5051 ClearPageChecked(page
);
5052 set_page_dirty(page
);
5053 SetPageUptodate(page
);
5055 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
;
5056 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
5058 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
5061 btrfs_unreserve_metadata_for_delalloc(root
, inode
, 1);
5063 return VM_FAULT_LOCKED
;
5069 static void btrfs_truncate(struct inode
*inode
)
5071 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5073 struct btrfs_trans_handle
*trans
;
5075 u64 mask
= root
->sectorsize
- 1;
5077 if (!S_ISREG(inode
->i_mode
))
5079 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
5082 ret
= btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
5085 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
5087 trans
= btrfs_start_transaction(root
, 1);
5090 * setattr is responsible for setting the ordered_data_close flag,
5091 * but that is only tested during the last file release. That
5092 * could happen well after the next commit, leaving a great big
5093 * window where new writes may get lost if someone chooses to write
5094 * to this file after truncating to zero
5096 * The inode doesn't have any dirty data here, and so if we commit
5097 * this is a noop. If someone immediately starts writing to the inode
5098 * it is very likely we'll catch some of their writes in this
5099 * transaction, and the commit will find this file on the ordered
5100 * data list with good things to send down.
5102 * This is a best effort solution, there is still a window where
5103 * using truncate to replace the contents of the file will
5104 * end up with a zero length file after a crash.
5106 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
5107 btrfs_add_ordered_operation(trans
, root
, inode
);
5109 btrfs_set_trans_block_group(trans
, inode
);
5110 btrfs_i_size_write(inode
, inode
->i_size
);
5112 ret
= btrfs_orphan_add(trans
, inode
);
5115 /* FIXME, add redo link to tree so we don't leak on crash */
5116 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
,
5117 BTRFS_EXTENT_DATA_KEY
);
5118 btrfs_update_inode(trans
, root
, inode
);
5120 ret
= btrfs_orphan_del(trans
, inode
);
5124 nr
= trans
->blocks_used
;
5125 ret
= btrfs_end_transaction_throttle(trans
, root
);
5127 btrfs_btree_balance_dirty(root
, nr
);
5131 * create a new subvolume directory/inode (helper for the ioctl).
5133 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
5134 struct btrfs_root
*new_root
,
5135 u64 new_dirid
, u64 alloc_hint
)
5137 struct inode
*inode
;
5141 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
5142 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
5144 return PTR_ERR(inode
);
5145 inode
->i_op
= &btrfs_dir_inode_operations
;
5146 inode
->i_fop
= &btrfs_dir_file_operations
;
5149 btrfs_i_size_write(inode
, 0);
5151 err
= btrfs_update_inode(trans
, new_root
, inode
);
5158 /* helper function for file defrag and space balancing. This
5159 * forces readahead on a given range of bytes in an inode
5161 unsigned long btrfs_force_ra(struct address_space
*mapping
,
5162 struct file_ra_state
*ra
, struct file
*file
,
5163 pgoff_t offset
, pgoff_t last_index
)
5165 pgoff_t req_size
= last_index
- offset
+ 1;
5167 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
5168 return offset
+ req_size
;
5171 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
5173 struct btrfs_inode
*ei
;
5175 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
5179 ei
->last_sub_trans
= 0;
5180 ei
->logged_trans
= 0;
5181 ei
->outstanding_extents
= 0;
5182 ei
->reserved_extents
= 0;
5184 spin_lock_init(&ei
->accounting_lock
);
5185 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
5186 INIT_LIST_HEAD(&ei
->i_orphan
);
5187 INIT_LIST_HEAD(&ei
->ordered_operations
);
5188 return &ei
->vfs_inode
;
5191 void btrfs_destroy_inode(struct inode
*inode
)
5193 struct btrfs_ordered_extent
*ordered
;
5194 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5196 WARN_ON(!list_empty(&inode
->i_dentry
));
5197 WARN_ON(inode
->i_data
.nrpages
);
5200 * This can happen where we create an inode, but somebody else also
5201 * created the same inode and we need to destroy the one we already
5208 * Make sure we're properly removed from the ordered operation
5212 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
5213 spin_lock(&root
->fs_info
->ordered_extent_lock
);
5214 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
5215 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
5218 spin_lock(&root
->list_lock
);
5219 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
5220 printk(KERN_ERR
"BTRFS: inode %lu: inode still on the orphan"
5221 " list\n", inode
->i_ino
);
5224 spin_unlock(&root
->list_lock
);
5227 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
5231 printk(KERN_ERR
"btrfs found ordered "
5232 "extent %llu %llu on inode cleanup\n",
5233 (unsigned long long)ordered
->file_offset
,
5234 (unsigned long long)ordered
->len
);
5235 btrfs_remove_ordered_extent(inode
, ordered
);
5236 btrfs_put_ordered_extent(ordered
);
5237 btrfs_put_ordered_extent(ordered
);
5240 inode_tree_del(inode
);
5241 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
5243 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
5246 void btrfs_drop_inode(struct inode
*inode
)
5248 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5250 if (inode
->i_nlink
> 0 && btrfs_root_refs(&root
->root_item
) == 0)
5251 generic_delete_inode(inode
);
5253 generic_drop_inode(inode
);
5256 static void init_once(void *foo
)
5258 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
5260 inode_init_once(&ei
->vfs_inode
);
5263 void btrfs_destroy_cachep(void)
5265 if (btrfs_inode_cachep
)
5266 kmem_cache_destroy(btrfs_inode_cachep
);
5267 if (btrfs_trans_handle_cachep
)
5268 kmem_cache_destroy(btrfs_trans_handle_cachep
);
5269 if (btrfs_transaction_cachep
)
5270 kmem_cache_destroy(btrfs_transaction_cachep
);
5271 if (btrfs_path_cachep
)
5272 kmem_cache_destroy(btrfs_path_cachep
);
5275 int btrfs_init_cachep(void)
5277 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
5278 sizeof(struct btrfs_inode
), 0,
5279 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
5280 if (!btrfs_inode_cachep
)
5283 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
5284 sizeof(struct btrfs_trans_handle
), 0,
5285 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
5286 if (!btrfs_trans_handle_cachep
)
5289 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
5290 sizeof(struct btrfs_transaction
), 0,
5291 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
5292 if (!btrfs_transaction_cachep
)
5295 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
5296 sizeof(struct btrfs_path
), 0,
5297 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
5298 if (!btrfs_path_cachep
)
5303 btrfs_destroy_cachep();
5307 static int btrfs_getattr(struct vfsmount
*mnt
,
5308 struct dentry
*dentry
, struct kstat
*stat
)
5310 struct inode
*inode
= dentry
->d_inode
;
5311 generic_fillattr(inode
, stat
);
5312 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
5313 stat
->blksize
= PAGE_CACHE_SIZE
;
5314 stat
->blocks
= (inode_get_bytes(inode
) +
5315 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
5319 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
5320 struct inode
*new_dir
, struct dentry
*new_dentry
)
5322 struct btrfs_trans_handle
*trans
;
5323 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
5324 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
5325 struct inode
*new_inode
= new_dentry
->d_inode
;
5326 struct inode
*old_inode
= old_dentry
->d_inode
;
5327 struct timespec ctime
= CURRENT_TIME
;
5332 if (new_dir
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5335 /* we only allow rename subvolume link between subvolumes */
5336 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
5339 if (old_inode
->i_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
5340 (new_inode
&& new_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
))
5343 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
5344 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
5348 * We want to reserve the absolute worst case amount of items. So if
5349 * both inodes are subvols and we need to unlink them then that would
5350 * require 4 item modifications, but if they are both normal inodes it
5351 * would require 5 item modifications, so we'll assume their normal
5352 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5353 * should cover the worst case number of items we'll modify.
5355 ret
= btrfs_reserve_metadata_space(root
, 11);
5360 * we're using rename to replace one file with another.
5361 * and the replacement file is large. Start IO on it now so
5362 * we don't add too much work to the end of the transaction
5364 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
5365 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
5366 filemap_flush(old_inode
->i_mapping
);
5368 /* close the racy window with snapshot create/destroy ioctl */
5369 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
5370 down_read(&root
->fs_info
->subvol_sem
);
5372 trans
= btrfs_start_transaction(root
, 1);
5373 btrfs_set_trans_block_group(trans
, new_dir
);
5376 btrfs_record_root_in_trans(trans
, dest
);
5378 ret
= btrfs_set_inode_index(new_dir
, &index
);
5382 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5383 /* force full log commit if subvolume involved. */
5384 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
5386 ret
= btrfs_insert_inode_ref(trans
, dest
,
5387 new_dentry
->d_name
.name
,
5388 new_dentry
->d_name
.len
,
5390 new_dir
->i_ino
, index
);
5394 * this is an ugly little race, but the rename is required
5395 * to make sure that if we crash, the inode is either at the
5396 * old name or the new one. pinning the log transaction lets
5397 * us make sure we don't allow a log commit to come in after
5398 * we unlink the name but before we add the new name back in.
5400 btrfs_pin_log_trans(root
);
5403 * make sure the inode gets flushed if it is replacing
5406 if (new_inode
&& new_inode
->i_size
&&
5407 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
5408 btrfs_add_ordered_operation(trans
, root
, old_inode
);
5411 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
5412 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
5413 old_inode
->i_ctime
= ctime
;
5415 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
5416 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
5418 if (unlikely(old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
5419 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
5420 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
5421 old_dentry
->d_name
.name
,
5422 old_dentry
->d_name
.len
);
5424 btrfs_inc_nlink(old_dentry
->d_inode
);
5425 ret
= btrfs_unlink_inode(trans
, root
, old_dir
,
5426 old_dentry
->d_inode
,
5427 old_dentry
->d_name
.name
,
5428 old_dentry
->d_name
.len
);
5433 new_inode
->i_ctime
= CURRENT_TIME
;
5434 if (unlikely(new_inode
->i_ino
==
5435 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
5436 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
5437 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
5439 new_dentry
->d_name
.name
,
5440 new_dentry
->d_name
.len
);
5441 BUG_ON(new_inode
->i_nlink
== 0);
5443 ret
= btrfs_unlink_inode(trans
, dest
, new_dir
,
5444 new_dentry
->d_inode
,
5445 new_dentry
->d_name
.name
,
5446 new_dentry
->d_name
.len
);
5449 if (new_inode
->i_nlink
== 0) {
5450 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
5455 ret
= btrfs_add_link(trans
, new_dir
, old_inode
,
5456 new_dentry
->d_name
.name
,
5457 new_dentry
->d_name
.len
, 0, index
);
5460 if (old_inode
->i_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
5461 btrfs_log_new_name(trans
, old_inode
, old_dir
,
5462 new_dentry
->d_parent
);
5463 btrfs_end_log_trans(root
);
5466 btrfs_end_transaction_throttle(trans
, root
);
5468 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
5469 up_read(&root
->fs_info
->subvol_sem
);
5471 btrfs_unreserve_metadata_space(root
, 11);
5476 * some fairly slow code that needs optimization. This walks the list
5477 * of all the inodes with pending delalloc and forces them to disk.
5479 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
5481 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
5482 struct btrfs_inode
*binode
;
5483 struct inode
*inode
;
5485 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
5488 spin_lock(&root
->fs_info
->delalloc_lock
);
5489 while (!list_empty(head
)) {
5490 binode
= list_entry(head
->next
, struct btrfs_inode
,
5492 inode
= igrab(&binode
->vfs_inode
);
5494 list_del_init(&binode
->delalloc_inodes
);
5495 spin_unlock(&root
->fs_info
->delalloc_lock
);
5497 filemap_flush(inode
->i_mapping
);
5501 spin_lock(&root
->fs_info
->delalloc_lock
);
5503 spin_unlock(&root
->fs_info
->delalloc_lock
);
5505 /* the filemap_flush will queue IO into the worker threads, but
5506 * we have to make sure the IO is actually started and that
5507 * ordered extents get created before we return
5509 atomic_inc(&root
->fs_info
->async_submit_draining
);
5510 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
5511 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
5512 wait_event(root
->fs_info
->async_submit_wait
,
5513 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
5514 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
5516 atomic_dec(&root
->fs_info
->async_submit_draining
);
5520 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
5521 const char *symname
)
5523 struct btrfs_trans_handle
*trans
;
5524 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5525 struct btrfs_path
*path
;
5526 struct btrfs_key key
;
5527 struct inode
*inode
= NULL
;
5535 struct btrfs_file_extent_item
*ei
;
5536 struct extent_buffer
*leaf
;
5537 unsigned long nr
= 0;
5539 name_len
= strlen(symname
) + 1;
5540 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
5541 return -ENAMETOOLONG
;
5544 * 2 items for inode item and ref
5545 * 2 items for dir items
5546 * 1 item for xattr if selinux is on
5548 err
= btrfs_reserve_metadata_space(root
, 5);
5552 trans
= btrfs_start_transaction(root
, 1);
5555 btrfs_set_trans_block_group(trans
, dir
);
5557 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
5563 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
5565 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
5566 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
5568 err
= PTR_ERR(inode
);
5572 err
= btrfs_init_inode_security(inode
, dir
);
5578 btrfs_set_trans_block_group(trans
, inode
);
5579 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
5583 inode
->i_mapping
->a_ops
= &btrfs_aops
;
5584 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5585 inode
->i_fop
= &btrfs_file_operations
;
5586 inode
->i_op
= &btrfs_file_inode_operations
;
5587 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
5589 btrfs_update_inode_block_group(trans
, inode
);
5590 btrfs_update_inode_block_group(trans
, dir
);
5594 path
= btrfs_alloc_path();
5596 key
.objectid
= inode
->i_ino
;
5598 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
5599 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
5600 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
5606 leaf
= path
->nodes
[0];
5607 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
5608 struct btrfs_file_extent_item
);
5609 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
5610 btrfs_set_file_extent_type(leaf
, ei
,
5611 BTRFS_FILE_EXTENT_INLINE
);
5612 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
5613 btrfs_set_file_extent_compression(leaf
, ei
, 0);
5614 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
5615 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
5617 ptr
= btrfs_file_extent_inline_start(ei
);
5618 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
5619 btrfs_mark_buffer_dirty(leaf
);
5620 btrfs_free_path(path
);
5622 inode
->i_op
= &btrfs_symlink_inode_operations
;
5623 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
5624 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5625 inode_set_bytes(inode
, name_len
);
5626 btrfs_i_size_write(inode
, name_len
- 1);
5627 err
= btrfs_update_inode(trans
, root
, inode
);
5632 nr
= trans
->blocks_used
;
5633 btrfs_end_transaction_throttle(trans
, root
);
5635 btrfs_unreserve_metadata_space(root
, 5);
5637 inode_dec_link_count(inode
);
5640 btrfs_btree_balance_dirty(root
, nr
);
5644 static int prealloc_file_range(struct btrfs_trans_handle
*trans
,
5645 struct inode
*inode
, u64 start
, u64 end
,
5646 u64 locked_end
, u64 alloc_hint
, int mode
)
5648 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5649 struct btrfs_key ins
;
5651 u64 cur_offset
= start
;
5652 u64 num_bytes
= end
- start
;
5655 while (num_bytes
> 0) {
5656 alloc_size
= min(num_bytes
, root
->fs_info
->max_extent
);
5658 ret
= btrfs_reserve_metadata_space(root
, 1);
5662 ret
= btrfs_reserve_extent(trans
, root
, alloc_size
,
5663 root
->sectorsize
, 0, alloc_hint
,
5669 ret
= insert_reserved_file_extent(trans
, inode
,
5670 cur_offset
, ins
.objectid
,
5671 ins
.offset
, ins
.offset
,
5672 ins
.offset
, locked_end
,
5674 BTRFS_FILE_EXTENT_PREALLOC
);
5676 btrfs_drop_extent_cache(inode
, cur_offset
,
5677 cur_offset
+ ins
.offset
-1, 0);
5678 num_bytes
-= ins
.offset
;
5679 cur_offset
+= ins
.offset
;
5680 alloc_hint
= ins
.objectid
+ ins
.offset
;
5681 btrfs_unreserve_metadata_space(root
, 1);
5684 if (cur_offset
> start
) {
5685 inode
->i_ctime
= CURRENT_TIME
;
5686 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
5687 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
5688 cur_offset
> i_size_read(inode
))
5689 btrfs_i_size_write(inode
, cur_offset
);
5690 ret
= btrfs_update_inode(trans
, root
, inode
);
5697 static long btrfs_fallocate(struct inode
*inode
, int mode
,
5698 loff_t offset
, loff_t len
)
5706 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
5707 struct extent_map
*em
;
5708 struct btrfs_trans_handle
*trans
;
5709 struct btrfs_root
*root
;
5712 alloc_start
= offset
& ~mask
;
5713 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
5716 * wait for ordered IO before we have any locks. We'll loop again
5717 * below with the locks held.
5719 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
5721 mutex_lock(&inode
->i_mutex
);
5722 if (alloc_start
> inode
->i_size
) {
5723 ret
= btrfs_cont_expand(inode
, alloc_start
);
5728 root
= BTRFS_I(inode
)->root
;
5730 ret
= btrfs_check_data_free_space(root
, inode
,
5731 alloc_end
- alloc_start
);
5735 locked_end
= alloc_end
- 1;
5737 struct btrfs_ordered_extent
*ordered
;
5739 trans
= btrfs_start_transaction(BTRFS_I(inode
)->root
, 1);
5745 /* the extent lock is ordered inside the running
5748 lock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5750 ordered
= btrfs_lookup_first_ordered_extent(inode
,
5753 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
5754 ordered
->file_offset
< alloc_end
) {
5755 btrfs_put_ordered_extent(ordered
);
5756 unlock_extent(&BTRFS_I(inode
)->io_tree
,
5757 alloc_start
, locked_end
, GFP_NOFS
);
5758 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5761 * we can't wait on the range with the transaction
5762 * running or with the extent lock held
5764 btrfs_wait_ordered_range(inode
, alloc_start
,
5765 alloc_end
- alloc_start
);
5768 btrfs_put_ordered_extent(ordered
);
5773 cur_offset
= alloc_start
;
5775 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
5776 alloc_end
- cur_offset
, 0);
5777 BUG_ON(IS_ERR(em
) || !em
);
5778 last_byte
= min(extent_map_end(em
), alloc_end
);
5779 last_byte
= (last_byte
+ mask
) & ~mask
;
5780 if (em
->block_start
== EXTENT_MAP_HOLE
) {
5781 ret
= prealloc_file_range(trans
, inode
, cur_offset
,
5782 last_byte
, locked_end
+ 1,
5785 free_extent_map(em
);
5789 if (em
->block_start
<= EXTENT_MAP_LAST_BYTE
)
5790 alloc_hint
= em
->block_start
;
5791 free_extent_map(em
);
5793 cur_offset
= last_byte
;
5794 if (cur_offset
>= alloc_end
) {
5799 unlock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5802 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5804 btrfs_free_reserved_data_space(root
, inode
, alloc_end
- alloc_start
);
5806 mutex_unlock(&inode
->i_mutex
);
5810 static int btrfs_set_page_dirty(struct page
*page
)
5812 return __set_page_dirty_nobuffers(page
);
5815 static int btrfs_permission(struct inode
*inode
, int mask
)
5817 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
5819 return generic_permission(inode
, mask
, btrfs_check_acl
);
5822 static const struct inode_operations btrfs_dir_inode_operations
= {
5823 .getattr
= btrfs_getattr
,
5824 .lookup
= btrfs_lookup
,
5825 .create
= btrfs_create
,
5826 .unlink
= btrfs_unlink
,
5828 .mkdir
= btrfs_mkdir
,
5829 .rmdir
= btrfs_rmdir
,
5830 .rename
= btrfs_rename
,
5831 .symlink
= btrfs_symlink
,
5832 .setattr
= btrfs_setattr
,
5833 .mknod
= btrfs_mknod
,
5834 .setxattr
= btrfs_setxattr
,
5835 .getxattr
= btrfs_getxattr
,
5836 .listxattr
= btrfs_listxattr
,
5837 .removexattr
= btrfs_removexattr
,
5838 .permission
= btrfs_permission
,
5840 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
5841 .lookup
= btrfs_lookup
,
5842 .permission
= btrfs_permission
,
5845 static const struct file_operations btrfs_dir_file_operations
= {
5846 .llseek
= generic_file_llseek
,
5847 .read
= generic_read_dir
,
5848 .readdir
= btrfs_real_readdir
,
5849 .unlocked_ioctl
= btrfs_ioctl
,
5850 #ifdef CONFIG_COMPAT
5851 .compat_ioctl
= btrfs_ioctl
,
5853 .release
= btrfs_release_file
,
5854 .fsync
= btrfs_sync_file
,
5857 static struct extent_io_ops btrfs_extent_io_ops
= {
5858 .fill_delalloc
= run_delalloc_range
,
5859 .submit_bio_hook
= btrfs_submit_bio_hook
,
5860 .merge_bio_hook
= btrfs_merge_bio_hook
,
5861 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
5862 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
5863 .writepage_start_hook
= btrfs_writepage_start_hook
,
5864 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
5865 .set_bit_hook
= btrfs_set_bit_hook
,
5866 .clear_bit_hook
= btrfs_clear_bit_hook
,
5867 .merge_extent_hook
= btrfs_merge_extent_hook
,
5868 .split_extent_hook
= btrfs_split_extent_hook
,
5872 * btrfs doesn't support the bmap operation because swapfiles
5873 * use bmap to make a mapping of extents in the file. They assume
5874 * these extents won't change over the life of the file and they
5875 * use the bmap result to do IO directly to the drive.
5877 * the btrfs bmap call would return logical addresses that aren't
5878 * suitable for IO and they also will change frequently as COW
5879 * operations happen. So, swapfile + btrfs == corruption.
5881 * For now we're avoiding this by dropping bmap.
5883 static const struct address_space_operations btrfs_aops
= {
5884 .readpage
= btrfs_readpage
,
5885 .writepage
= btrfs_writepage
,
5886 .writepages
= btrfs_writepages
,
5887 .readpages
= btrfs_readpages
,
5888 .sync_page
= block_sync_page
,
5889 .direct_IO
= btrfs_direct_IO
,
5890 .invalidatepage
= btrfs_invalidatepage
,
5891 .releasepage
= btrfs_releasepage
,
5892 .set_page_dirty
= btrfs_set_page_dirty
,
5893 .error_remove_page
= generic_error_remove_page
,
5896 static const struct address_space_operations btrfs_symlink_aops
= {
5897 .readpage
= btrfs_readpage
,
5898 .writepage
= btrfs_writepage
,
5899 .invalidatepage
= btrfs_invalidatepage
,
5900 .releasepage
= btrfs_releasepage
,
5903 static const struct inode_operations btrfs_file_inode_operations
= {
5904 .truncate
= btrfs_truncate
,
5905 .getattr
= btrfs_getattr
,
5906 .setattr
= btrfs_setattr
,
5907 .setxattr
= btrfs_setxattr
,
5908 .getxattr
= btrfs_getxattr
,
5909 .listxattr
= btrfs_listxattr
,
5910 .removexattr
= btrfs_removexattr
,
5911 .permission
= btrfs_permission
,
5912 .fallocate
= btrfs_fallocate
,
5913 .fiemap
= btrfs_fiemap
,
5915 static const struct inode_operations btrfs_special_inode_operations
= {
5916 .getattr
= btrfs_getattr
,
5917 .setattr
= btrfs_setattr
,
5918 .permission
= btrfs_permission
,
5919 .setxattr
= btrfs_setxattr
,
5920 .getxattr
= btrfs_getxattr
,
5921 .listxattr
= btrfs_listxattr
,
5922 .removexattr
= btrfs_removexattr
,
5924 static const struct inode_operations btrfs_symlink_inode_operations
= {
5925 .readlink
= generic_readlink
,
5926 .follow_link
= page_follow_link_light
,
5927 .put_link
= page_put_link
,
5928 .permission
= btrfs_permission
,
5929 .setxattr
= btrfs_setxattr
,
5930 .getxattr
= btrfs_getxattr
,
5931 .listxattr
= btrfs_listxattr
,
5932 .removexattr
= btrfs_removexattr
,
5935 const struct dentry_operations btrfs_dentry_operations
= {
5936 .d_delete
= btrfs_dentry_delete
,