pps: events reporting fix up
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / bio.c
blob76738005c8e8af43c3b084a48d4f752e36e2186d
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <scsi/sg.h> /* for struct sg_iovec */
30 #include <trace/events/block.h>
33 * Test patch to inline a certain number of bi_io_vec's inside the bio
34 * itself, to shrink a bio data allocation from two mempool calls to one
36 #define BIO_INLINE_VECS 4
38 static mempool_t *bio_split_pool __read_mostly;
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 #undef BV
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
55 struct bio_set *fs_bio_set;
58 * Our slab pool management
60 struct bio_slab {
61 struct kmem_cache *slab;
62 unsigned int slab_ref;
63 unsigned int slab_size;
64 char name[8];
66 static DEFINE_MUTEX(bio_slab_lock);
67 static struct bio_slab *bio_slabs;
68 static unsigned int bio_slab_nr, bio_slab_max;
70 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 unsigned int sz = sizeof(struct bio) + extra_size;
73 struct kmem_cache *slab = NULL;
74 struct bio_slab *bslab;
75 unsigned int i, entry = -1;
77 mutex_lock(&bio_slab_lock);
79 i = 0;
80 while (i < bio_slab_nr) {
81 struct bio_slab *bslab = &bio_slabs[i];
83 if (!bslab->slab && entry == -1)
84 entry = i;
85 else if (bslab->slab_size == sz) {
86 slab = bslab->slab;
87 bslab->slab_ref++;
88 break;
90 i++;
93 if (slab)
94 goto out_unlock;
96 if (bio_slab_nr == bio_slab_max && entry == -1) {
97 bio_slab_max <<= 1;
98 bio_slabs = krealloc(bio_slabs,
99 bio_slab_max * sizeof(struct bio_slab),
100 GFP_KERNEL);
101 if (!bio_slabs)
102 goto out_unlock;
104 if (entry == -1)
105 entry = bio_slab_nr++;
107 bslab = &bio_slabs[entry];
109 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 if (!slab)
112 goto out_unlock;
114 printk("bio: create slab <%s> at %d\n", bslab->name, entry);
115 bslab->slab = slab;
116 bslab->slab_ref = 1;
117 bslab->slab_size = sz;
118 out_unlock:
119 mutex_unlock(&bio_slab_lock);
120 return slab;
123 static void bio_put_slab(struct bio_set *bs)
125 struct bio_slab *bslab = NULL;
126 unsigned int i;
128 mutex_lock(&bio_slab_lock);
130 for (i = 0; i < bio_slab_nr; i++) {
131 if (bs->bio_slab == bio_slabs[i].slab) {
132 bslab = &bio_slabs[i];
133 break;
137 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 goto out;
140 WARN_ON(!bslab->slab_ref);
142 if (--bslab->slab_ref)
143 goto out;
145 kmem_cache_destroy(bslab->slab);
146 bslab->slab = NULL;
148 out:
149 mutex_unlock(&bio_slab_lock);
152 unsigned int bvec_nr_vecs(unsigned short idx)
154 return bvec_slabs[idx].nr_vecs;
157 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
159 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
161 if (idx == BIOVEC_MAX_IDX)
162 mempool_free(bv, bs->bvec_pool);
163 else {
164 struct biovec_slab *bvs = bvec_slabs + idx;
166 kmem_cache_free(bvs->slab, bv);
170 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 struct bio_set *bs)
173 struct bio_vec *bvl;
176 * see comment near bvec_array define!
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
205 if (*idx == BIOVEC_MAX_IDX) {
206 fallback:
207 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
220 * Try a slab allocation. If this fails and __GFP_WAIT
221 * is set, retry with the 1-entry mempool
223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 *idx = BIOVEC_MAX_IDX;
226 goto fallback;
230 return bvl;
233 void bio_free(struct bio *bio, struct bio_set *bs)
235 void *p;
237 if (bio_has_allocated_vec(bio))
238 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
240 if (bio_integrity(bio))
241 bio_integrity_free(bio, bs);
244 * If we have front padding, adjust the bio pointer before freeing
246 p = bio;
247 if (bs->front_pad)
248 p -= bs->front_pad;
250 mempool_free(p, bs->bio_pool);
253 void bio_init(struct bio *bio)
255 memset(bio, 0, sizeof(*bio));
256 bio->bi_flags = 1 << BIO_UPTODATE;
257 bio->bi_comp_cpu = -1;
258 atomic_set(&bio->bi_cnt, 1);
262 * bio_alloc_bioset - allocate a bio for I/O
263 * @gfp_mask: the GFP_ mask given to the slab allocator
264 * @nr_iovecs: number of iovecs to pre-allocate
265 * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
267 * Description:
268 * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
269 * If %__GFP_WAIT is set then we will block on the internal pool waiting
270 * for a &struct bio to become free. If a %NULL @bs is passed in, we will
271 * fall back to just using @kmalloc to allocate the required memory.
273 * Note that the caller must set ->bi_destructor on succesful return
274 * of a bio, to do the appropriate freeing of the bio once the reference
275 * count drops to zero.
277 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
279 unsigned long idx = BIO_POOL_NONE;
280 struct bio_vec *bvl = NULL;
281 struct bio *bio;
282 void *p;
284 p = mempool_alloc(bs->bio_pool, gfp_mask);
285 if (unlikely(!p))
286 return NULL;
287 bio = p + bs->front_pad;
289 bio_init(bio);
291 if (unlikely(!nr_iovecs))
292 goto out_set;
294 if (nr_iovecs <= BIO_INLINE_VECS) {
295 bvl = bio->bi_inline_vecs;
296 nr_iovecs = BIO_INLINE_VECS;
297 } else {
298 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
299 if (unlikely(!bvl))
300 goto err_free;
302 nr_iovecs = bvec_nr_vecs(idx);
304 out_set:
305 bio->bi_flags |= idx << BIO_POOL_OFFSET;
306 bio->bi_max_vecs = nr_iovecs;
307 bio->bi_io_vec = bvl;
308 return bio;
310 err_free:
311 mempool_free(p, bs->bio_pool);
312 return NULL;
315 static void bio_fs_destructor(struct bio *bio)
317 bio_free(bio, fs_bio_set);
321 * bio_alloc - allocate a new bio, memory pool backed
322 * @gfp_mask: allocation mask to use
323 * @nr_iovecs: number of iovecs
325 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask
326 * contains __GFP_WAIT, the allocation is guaranteed to succeed.
328 * RETURNS:
329 * Pointer to new bio on success, NULL on failure.
331 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
333 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
335 if (bio)
336 bio->bi_destructor = bio_fs_destructor;
338 return bio;
341 static void bio_kmalloc_destructor(struct bio *bio)
343 if (bio_integrity(bio))
344 bio_integrity_free(bio, fs_bio_set);
345 kfree(bio);
349 * bio_alloc - allocate a bio for I/O
350 * @gfp_mask: the GFP_ mask given to the slab allocator
351 * @nr_iovecs: number of iovecs to pre-allocate
353 * Description:
354 * bio_alloc will allocate a bio and associated bio_vec array that can hold
355 * at least @nr_iovecs entries. Allocations will be done from the
356 * fs_bio_set. Also see @bio_alloc_bioset.
358 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
359 * a bio. This is due to the mempool guarantees. To make this work, callers
360 * must never allocate more than 1 bio at a time from this pool. Callers
361 * that need to allocate more than 1 bio must always submit the previously
362 * allocated bio for IO before attempting to allocate a new one. Failure to
363 * do so can cause livelocks under memory pressure.
366 struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
368 struct bio *bio;
370 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
371 gfp_mask);
372 if (unlikely(!bio))
373 return NULL;
375 bio_init(bio);
376 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
377 bio->bi_max_vecs = nr_iovecs;
378 bio->bi_io_vec = bio->bi_inline_vecs;
379 bio->bi_destructor = bio_kmalloc_destructor;
381 return bio;
384 void zero_fill_bio(struct bio *bio)
386 unsigned long flags;
387 struct bio_vec *bv;
388 int i;
390 bio_for_each_segment(bv, bio, i) {
391 char *data = bvec_kmap_irq(bv, &flags);
392 memset(data, 0, bv->bv_len);
393 flush_dcache_page(bv->bv_page);
394 bvec_kunmap_irq(data, &flags);
397 EXPORT_SYMBOL(zero_fill_bio);
400 * bio_put - release a reference to a bio
401 * @bio: bio to release reference to
403 * Description:
404 * Put a reference to a &struct bio, either one you have gotten with
405 * bio_alloc or bio_get. The last put of a bio will free it.
407 void bio_put(struct bio *bio)
409 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
412 * last put frees it
414 if (atomic_dec_and_test(&bio->bi_cnt)) {
415 bio->bi_next = NULL;
416 bio->bi_destructor(bio);
420 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
422 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
423 blk_recount_segments(q, bio);
425 return bio->bi_phys_segments;
429 * __bio_clone - clone a bio
430 * @bio: destination bio
431 * @bio_src: bio to clone
433 * Clone a &bio. Caller will own the returned bio, but not
434 * the actual data it points to. Reference count of returned
435 * bio will be one.
437 void __bio_clone(struct bio *bio, struct bio *bio_src)
439 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
440 bio_src->bi_max_vecs * sizeof(struct bio_vec));
443 * most users will be overriding ->bi_bdev with a new target,
444 * so we don't set nor calculate new physical/hw segment counts here
446 bio->bi_sector = bio_src->bi_sector;
447 bio->bi_bdev = bio_src->bi_bdev;
448 bio->bi_flags |= 1 << BIO_CLONED;
449 bio->bi_rw = bio_src->bi_rw;
450 bio->bi_vcnt = bio_src->bi_vcnt;
451 bio->bi_size = bio_src->bi_size;
452 bio->bi_idx = bio_src->bi_idx;
456 * bio_clone - clone a bio
457 * @bio: bio to clone
458 * @gfp_mask: allocation priority
460 * Like __bio_clone, only also allocates the returned bio
462 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
464 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
466 if (!b)
467 return NULL;
469 b->bi_destructor = bio_fs_destructor;
470 __bio_clone(b, bio);
472 if (bio_integrity(bio)) {
473 int ret;
475 ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
477 if (ret < 0) {
478 bio_put(b);
479 return NULL;
483 return b;
487 * bio_get_nr_vecs - return approx number of vecs
488 * @bdev: I/O target
490 * Return the approximate number of pages we can send to this target.
491 * There's no guarantee that you will be able to fit this number of pages
492 * into a bio, it does not account for dynamic restrictions that vary
493 * on offset.
495 int bio_get_nr_vecs(struct block_device *bdev)
497 struct request_queue *q = bdev_get_queue(bdev);
498 int nr_pages;
500 nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
501 if (nr_pages > queue_max_phys_segments(q))
502 nr_pages = queue_max_phys_segments(q);
503 if (nr_pages > queue_max_hw_segments(q))
504 nr_pages = queue_max_hw_segments(q);
506 return nr_pages;
509 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
510 *page, unsigned int len, unsigned int offset,
511 unsigned short max_sectors)
513 int retried_segments = 0;
514 struct bio_vec *bvec;
517 * cloned bio must not modify vec list
519 if (unlikely(bio_flagged(bio, BIO_CLONED)))
520 return 0;
522 if (((bio->bi_size + len) >> 9) > max_sectors)
523 return 0;
526 * For filesystems with a blocksize smaller than the pagesize
527 * we will often be called with the same page as last time and
528 * a consecutive offset. Optimize this special case.
530 if (bio->bi_vcnt > 0) {
531 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
533 if (page == prev->bv_page &&
534 offset == prev->bv_offset + prev->bv_len) {
535 prev->bv_len += len;
537 if (q->merge_bvec_fn) {
538 struct bvec_merge_data bvm = {
539 .bi_bdev = bio->bi_bdev,
540 .bi_sector = bio->bi_sector,
541 .bi_size = bio->bi_size,
542 .bi_rw = bio->bi_rw,
545 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
546 prev->bv_len -= len;
547 return 0;
551 goto done;
555 if (bio->bi_vcnt >= bio->bi_max_vecs)
556 return 0;
559 * we might lose a segment or two here, but rather that than
560 * make this too complex.
563 while (bio->bi_phys_segments >= queue_max_phys_segments(q)
564 || bio->bi_phys_segments >= queue_max_hw_segments(q)) {
566 if (retried_segments)
567 return 0;
569 retried_segments = 1;
570 blk_recount_segments(q, bio);
574 * setup the new entry, we might clear it again later if we
575 * cannot add the page
577 bvec = &bio->bi_io_vec[bio->bi_vcnt];
578 bvec->bv_page = page;
579 bvec->bv_len = len;
580 bvec->bv_offset = offset;
583 * if queue has other restrictions (eg varying max sector size
584 * depending on offset), it can specify a merge_bvec_fn in the
585 * queue to get further control
587 if (q->merge_bvec_fn) {
588 struct bvec_merge_data bvm = {
589 .bi_bdev = bio->bi_bdev,
590 .bi_sector = bio->bi_sector,
591 .bi_size = bio->bi_size,
592 .bi_rw = bio->bi_rw,
596 * merge_bvec_fn() returns number of bytes it can accept
597 * at this offset
599 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
600 bvec->bv_page = NULL;
601 bvec->bv_len = 0;
602 bvec->bv_offset = 0;
603 return 0;
607 /* If we may be able to merge these biovecs, force a recount */
608 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
609 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
611 bio->bi_vcnt++;
612 bio->bi_phys_segments++;
613 done:
614 bio->bi_size += len;
615 return len;
619 * bio_add_pc_page - attempt to add page to bio
620 * @q: the target queue
621 * @bio: destination bio
622 * @page: page to add
623 * @len: vec entry length
624 * @offset: vec entry offset
626 * Attempt to add a page to the bio_vec maplist. This can fail for a
627 * number of reasons, such as the bio being full or target block
628 * device limitations. The target block device must allow bio's
629 * smaller than PAGE_SIZE, so it is always possible to add a single
630 * page to an empty bio. This should only be used by REQ_PC bios.
632 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
633 unsigned int len, unsigned int offset)
635 return __bio_add_page(q, bio, page, len, offset,
636 queue_max_hw_sectors(q));
640 * bio_add_page - attempt to add page to bio
641 * @bio: destination bio
642 * @page: page to add
643 * @len: vec entry length
644 * @offset: vec entry offset
646 * Attempt to add a page to the bio_vec maplist. This can fail for a
647 * number of reasons, such as the bio being full or target block
648 * device limitations. The target block device must allow bio's
649 * smaller than PAGE_SIZE, so it is always possible to add a single
650 * page to an empty bio.
652 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
653 unsigned int offset)
655 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
656 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
659 struct bio_map_data {
660 struct bio_vec *iovecs;
661 struct sg_iovec *sgvecs;
662 int nr_sgvecs;
663 int is_our_pages;
666 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
667 struct sg_iovec *iov, int iov_count,
668 int is_our_pages)
670 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
671 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
672 bmd->nr_sgvecs = iov_count;
673 bmd->is_our_pages = is_our_pages;
674 bio->bi_private = bmd;
677 static void bio_free_map_data(struct bio_map_data *bmd)
679 kfree(bmd->iovecs);
680 kfree(bmd->sgvecs);
681 kfree(bmd);
684 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
685 gfp_t gfp_mask)
687 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
689 if (!bmd)
690 return NULL;
692 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
693 if (!bmd->iovecs) {
694 kfree(bmd);
695 return NULL;
698 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
699 if (bmd->sgvecs)
700 return bmd;
702 kfree(bmd->iovecs);
703 kfree(bmd);
704 return NULL;
707 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
708 struct sg_iovec *iov, int iov_count,
709 int to_user, int from_user, int do_free_page)
711 int ret = 0, i;
712 struct bio_vec *bvec;
713 int iov_idx = 0;
714 unsigned int iov_off = 0;
716 __bio_for_each_segment(bvec, bio, i, 0) {
717 char *bv_addr = page_address(bvec->bv_page);
718 unsigned int bv_len = iovecs[i].bv_len;
720 while (bv_len && iov_idx < iov_count) {
721 unsigned int bytes;
722 char __user *iov_addr;
724 bytes = min_t(unsigned int,
725 iov[iov_idx].iov_len - iov_off, bv_len);
726 iov_addr = iov[iov_idx].iov_base + iov_off;
728 if (!ret) {
729 if (to_user)
730 ret = copy_to_user(iov_addr, bv_addr,
731 bytes);
733 if (from_user)
734 ret = copy_from_user(bv_addr, iov_addr,
735 bytes);
737 if (ret)
738 ret = -EFAULT;
741 bv_len -= bytes;
742 bv_addr += bytes;
743 iov_addr += bytes;
744 iov_off += bytes;
746 if (iov[iov_idx].iov_len == iov_off) {
747 iov_idx++;
748 iov_off = 0;
752 if (do_free_page)
753 __free_page(bvec->bv_page);
756 return ret;
760 * bio_uncopy_user - finish previously mapped bio
761 * @bio: bio being terminated
763 * Free pages allocated from bio_copy_user() and write back data
764 * to user space in case of a read.
766 int bio_uncopy_user(struct bio *bio)
768 struct bio_map_data *bmd = bio->bi_private;
769 int ret = 0;
771 if (!bio_flagged(bio, BIO_NULL_MAPPED))
772 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
773 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
774 0, bmd->is_our_pages);
775 bio_free_map_data(bmd);
776 bio_put(bio);
777 return ret;
781 * bio_copy_user_iov - copy user data to bio
782 * @q: destination block queue
783 * @map_data: pointer to the rq_map_data holding pages (if necessary)
784 * @iov: the iovec.
785 * @iov_count: number of elements in the iovec
786 * @write_to_vm: bool indicating writing to pages or not
787 * @gfp_mask: memory allocation flags
789 * Prepares and returns a bio for indirect user io, bouncing data
790 * to/from kernel pages as necessary. Must be paired with
791 * call bio_uncopy_user() on io completion.
793 struct bio *bio_copy_user_iov(struct request_queue *q,
794 struct rq_map_data *map_data,
795 struct sg_iovec *iov, int iov_count,
796 int write_to_vm, gfp_t gfp_mask)
798 struct bio_map_data *bmd;
799 struct bio_vec *bvec;
800 struct page *page;
801 struct bio *bio;
802 int i, ret;
803 int nr_pages = 0;
804 unsigned int len = 0;
805 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
807 for (i = 0; i < iov_count; i++) {
808 unsigned long uaddr;
809 unsigned long end;
810 unsigned long start;
812 uaddr = (unsigned long)iov[i].iov_base;
813 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
814 start = uaddr >> PAGE_SHIFT;
816 nr_pages += end - start;
817 len += iov[i].iov_len;
820 if (offset)
821 nr_pages++;
823 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
824 if (!bmd)
825 return ERR_PTR(-ENOMEM);
827 ret = -ENOMEM;
828 bio = bio_kmalloc(gfp_mask, nr_pages);
829 if (!bio)
830 goto out_bmd;
832 bio->bi_rw |= (!write_to_vm << BIO_RW);
834 ret = 0;
836 if (map_data) {
837 nr_pages = 1 << map_data->page_order;
838 i = map_data->offset / PAGE_SIZE;
840 while (len) {
841 unsigned int bytes = PAGE_SIZE;
843 bytes -= offset;
845 if (bytes > len)
846 bytes = len;
848 if (map_data) {
849 if (i == map_data->nr_entries * nr_pages) {
850 ret = -ENOMEM;
851 break;
854 page = map_data->pages[i / nr_pages];
855 page += (i % nr_pages);
857 i++;
858 } else {
859 page = alloc_page(q->bounce_gfp | gfp_mask);
860 if (!page) {
861 ret = -ENOMEM;
862 break;
866 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
867 break;
869 len -= bytes;
870 offset = 0;
873 if (ret)
874 goto cleanup;
877 * success
879 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
880 (map_data && map_data->from_user)) {
881 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
882 if (ret)
883 goto cleanup;
886 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
887 return bio;
888 cleanup:
889 if (!map_data)
890 bio_for_each_segment(bvec, bio, i)
891 __free_page(bvec->bv_page);
893 bio_put(bio);
894 out_bmd:
895 bio_free_map_data(bmd);
896 return ERR_PTR(ret);
900 * bio_copy_user - copy user data to bio
901 * @q: destination block queue
902 * @map_data: pointer to the rq_map_data holding pages (if necessary)
903 * @uaddr: start of user address
904 * @len: length in bytes
905 * @write_to_vm: bool indicating writing to pages or not
906 * @gfp_mask: memory allocation flags
908 * Prepares and returns a bio for indirect user io, bouncing data
909 * to/from kernel pages as necessary. Must be paired with
910 * call bio_uncopy_user() on io completion.
912 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
913 unsigned long uaddr, unsigned int len,
914 int write_to_vm, gfp_t gfp_mask)
916 struct sg_iovec iov;
918 iov.iov_base = (void __user *)uaddr;
919 iov.iov_len = len;
921 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
924 static struct bio *__bio_map_user_iov(struct request_queue *q,
925 struct block_device *bdev,
926 struct sg_iovec *iov, int iov_count,
927 int write_to_vm, gfp_t gfp_mask)
929 int i, j;
930 int nr_pages = 0;
931 struct page **pages;
932 struct bio *bio;
933 int cur_page = 0;
934 int ret, offset;
936 for (i = 0; i < iov_count; i++) {
937 unsigned long uaddr = (unsigned long)iov[i].iov_base;
938 unsigned long len = iov[i].iov_len;
939 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
940 unsigned long start = uaddr >> PAGE_SHIFT;
942 nr_pages += end - start;
944 * buffer must be aligned to at least hardsector size for now
946 if (uaddr & queue_dma_alignment(q))
947 return ERR_PTR(-EINVAL);
950 if (!nr_pages)
951 return ERR_PTR(-EINVAL);
953 bio = bio_kmalloc(gfp_mask, nr_pages);
954 if (!bio)
955 return ERR_PTR(-ENOMEM);
957 ret = -ENOMEM;
958 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
959 if (!pages)
960 goto out;
962 for (i = 0; i < iov_count; i++) {
963 unsigned long uaddr = (unsigned long)iov[i].iov_base;
964 unsigned long len = iov[i].iov_len;
965 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
966 unsigned long start = uaddr >> PAGE_SHIFT;
967 const int local_nr_pages = end - start;
968 const int page_limit = cur_page + local_nr_pages;
970 ret = get_user_pages_fast(uaddr, local_nr_pages,
971 write_to_vm, &pages[cur_page]);
972 if (ret < local_nr_pages) {
973 ret = -EFAULT;
974 goto out_unmap;
977 offset = uaddr & ~PAGE_MASK;
978 for (j = cur_page; j < page_limit; j++) {
979 unsigned int bytes = PAGE_SIZE - offset;
981 if (len <= 0)
982 break;
984 if (bytes > len)
985 bytes = len;
988 * sorry...
990 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
991 bytes)
992 break;
994 len -= bytes;
995 offset = 0;
998 cur_page = j;
1000 * release the pages we didn't map into the bio, if any
1002 while (j < page_limit)
1003 page_cache_release(pages[j++]);
1006 kfree(pages);
1009 * set data direction, and check if mapped pages need bouncing
1011 if (!write_to_vm)
1012 bio->bi_rw |= (1 << BIO_RW);
1014 bio->bi_bdev = bdev;
1015 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1016 return bio;
1018 out_unmap:
1019 for (i = 0; i < nr_pages; i++) {
1020 if(!pages[i])
1021 break;
1022 page_cache_release(pages[i]);
1024 out:
1025 kfree(pages);
1026 bio_put(bio);
1027 return ERR_PTR(ret);
1031 * bio_map_user - map user address into bio
1032 * @q: the struct request_queue for the bio
1033 * @bdev: destination block device
1034 * @uaddr: start of user address
1035 * @len: length in bytes
1036 * @write_to_vm: bool indicating writing to pages or not
1037 * @gfp_mask: memory allocation flags
1039 * Map the user space address into a bio suitable for io to a block
1040 * device. Returns an error pointer in case of error.
1042 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1043 unsigned long uaddr, unsigned int len, int write_to_vm,
1044 gfp_t gfp_mask)
1046 struct sg_iovec iov;
1048 iov.iov_base = (void __user *)uaddr;
1049 iov.iov_len = len;
1051 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1055 * bio_map_user_iov - map user sg_iovec table into bio
1056 * @q: the struct request_queue for the bio
1057 * @bdev: destination block device
1058 * @iov: the iovec.
1059 * @iov_count: number of elements in the iovec
1060 * @write_to_vm: bool indicating writing to pages or not
1061 * @gfp_mask: memory allocation flags
1063 * Map the user space address into a bio suitable for io to a block
1064 * device. Returns an error pointer in case of error.
1066 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1067 struct sg_iovec *iov, int iov_count,
1068 int write_to_vm, gfp_t gfp_mask)
1070 struct bio *bio;
1072 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1073 gfp_mask);
1074 if (IS_ERR(bio))
1075 return bio;
1078 * subtle -- if __bio_map_user() ended up bouncing a bio,
1079 * it would normally disappear when its bi_end_io is run.
1080 * however, we need it for the unmap, so grab an extra
1081 * reference to it
1083 bio_get(bio);
1085 return bio;
1088 static void __bio_unmap_user(struct bio *bio)
1090 struct bio_vec *bvec;
1091 int i;
1094 * make sure we dirty pages we wrote to
1096 __bio_for_each_segment(bvec, bio, i, 0) {
1097 if (bio_data_dir(bio) == READ)
1098 set_page_dirty_lock(bvec->bv_page);
1100 page_cache_release(bvec->bv_page);
1103 bio_put(bio);
1107 * bio_unmap_user - unmap a bio
1108 * @bio: the bio being unmapped
1110 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1111 * a process context.
1113 * bio_unmap_user() may sleep.
1115 void bio_unmap_user(struct bio *bio)
1117 __bio_unmap_user(bio);
1118 bio_put(bio);
1121 static void bio_map_kern_endio(struct bio *bio, int err)
1123 bio_put(bio);
1127 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1128 unsigned int len, gfp_t gfp_mask)
1130 unsigned long kaddr = (unsigned long)data;
1131 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1132 unsigned long start = kaddr >> PAGE_SHIFT;
1133 const int nr_pages = end - start;
1134 int offset, i;
1135 struct bio *bio;
1137 bio = bio_kmalloc(gfp_mask, nr_pages);
1138 if (!bio)
1139 return ERR_PTR(-ENOMEM);
1141 offset = offset_in_page(kaddr);
1142 for (i = 0; i < nr_pages; i++) {
1143 unsigned int bytes = PAGE_SIZE - offset;
1145 if (len <= 0)
1146 break;
1148 if (bytes > len)
1149 bytes = len;
1151 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1152 offset) < bytes)
1153 break;
1155 data += bytes;
1156 len -= bytes;
1157 offset = 0;
1160 bio->bi_end_io = bio_map_kern_endio;
1161 return bio;
1165 * bio_map_kern - map kernel address into bio
1166 * @q: the struct request_queue for the bio
1167 * @data: pointer to buffer to map
1168 * @len: length in bytes
1169 * @gfp_mask: allocation flags for bio allocation
1171 * Map the kernel address into a bio suitable for io to a block
1172 * device. Returns an error pointer in case of error.
1174 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1175 gfp_t gfp_mask)
1177 struct bio *bio;
1179 bio = __bio_map_kern(q, data, len, gfp_mask);
1180 if (IS_ERR(bio))
1181 return bio;
1183 if (bio->bi_size == len)
1184 return bio;
1187 * Don't support partial mappings.
1189 bio_put(bio);
1190 return ERR_PTR(-EINVAL);
1193 static void bio_copy_kern_endio(struct bio *bio, int err)
1195 struct bio_vec *bvec;
1196 const int read = bio_data_dir(bio) == READ;
1197 struct bio_map_data *bmd = bio->bi_private;
1198 int i;
1199 char *p = bmd->sgvecs[0].iov_base;
1201 __bio_for_each_segment(bvec, bio, i, 0) {
1202 char *addr = page_address(bvec->bv_page);
1203 int len = bmd->iovecs[i].bv_len;
1205 if (read)
1206 memcpy(p, addr, len);
1208 __free_page(bvec->bv_page);
1209 p += len;
1212 bio_free_map_data(bmd);
1213 bio_put(bio);
1217 * bio_copy_kern - copy kernel address into bio
1218 * @q: the struct request_queue for the bio
1219 * @data: pointer to buffer to copy
1220 * @len: length in bytes
1221 * @gfp_mask: allocation flags for bio and page allocation
1222 * @reading: data direction is READ
1224 * copy the kernel address into a bio suitable for io to a block
1225 * device. Returns an error pointer in case of error.
1227 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1228 gfp_t gfp_mask, int reading)
1230 struct bio *bio;
1231 struct bio_vec *bvec;
1232 int i;
1234 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1235 if (IS_ERR(bio))
1236 return bio;
1238 if (!reading) {
1239 void *p = data;
1241 bio_for_each_segment(bvec, bio, i) {
1242 char *addr = page_address(bvec->bv_page);
1244 memcpy(addr, p, bvec->bv_len);
1245 p += bvec->bv_len;
1249 bio->bi_end_io = bio_copy_kern_endio;
1251 return bio;
1255 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1256 * for performing direct-IO in BIOs.
1258 * The problem is that we cannot run set_page_dirty() from interrupt context
1259 * because the required locks are not interrupt-safe. So what we can do is to
1260 * mark the pages dirty _before_ performing IO. And in interrupt context,
1261 * check that the pages are still dirty. If so, fine. If not, redirty them
1262 * in process context.
1264 * We special-case compound pages here: normally this means reads into hugetlb
1265 * pages. The logic in here doesn't really work right for compound pages
1266 * because the VM does not uniformly chase down the head page in all cases.
1267 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1268 * handle them at all. So we skip compound pages here at an early stage.
1270 * Note that this code is very hard to test under normal circumstances because
1271 * direct-io pins the pages with get_user_pages(). This makes
1272 * is_page_cache_freeable return false, and the VM will not clean the pages.
1273 * But other code (eg, pdflush) could clean the pages if they are mapped
1274 * pagecache.
1276 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1277 * deferred bio dirtying paths.
1281 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1283 void bio_set_pages_dirty(struct bio *bio)
1285 struct bio_vec *bvec = bio->bi_io_vec;
1286 int i;
1288 for (i = 0; i < bio->bi_vcnt; i++) {
1289 struct page *page = bvec[i].bv_page;
1291 if (page && !PageCompound(page))
1292 set_page_dirty_lock(page);
1296 static void bio_release_pages(struct bio *bio)
1298 struct bio_vec *bvec = bio->bi_io_vec;
1299 int i;
1301 for (i = 0; i < bio->bi_vcnt; i++) {
1302 struct page *page = bvec[i].bv_page;
1304 if (page)
1305 put_page(page);
1310 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1311 * If they are, then fine. If, however, some pages are clean then they must
1312 * have been written out during the direct-IO read. So we take another ref on
1313 * the BIO and the offending pages and re-dirty the pages in process context.
1315 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1316 * here on. It will run one page_cache_release() against each page and will
1317 * run one bio_put() against the BIO.
1320 static void bio_dirty_fn(struct work_struct *work);
1322 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1323 static DEFINE_SPINLOCK(bio_dirty_lock);
1324 static struct bio *bio_dirty_list;
1327 * This runs in process context
1329 static void bio_dirty_fn(struct work_struct *work)
1331 unsigned long flags;
1332 struct bio *bio;
1334 spin_lock_irqsave(&bio_dirty_lock, flags);
1335 bio = bio_dirty_list;
1336 bio_dirty_list = NULL;
1337 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1339 while (bio) {
1340 struct bio *next = bio->bi_private;
1342 bio_set_pages_dirty(bio);
1343 bio_release_pages(bio);
1344 bio_put(bio);
1345 bio = next;
1349 void bio_check_pages_dirty(struct bio *bio)
1351 struct bio_vec *bvec = bio->bi_io_vec;
1352 int nr_clean_pages = 0;
1353 int i;
1355 for (i = 0; i < bio->bi_vcnt; i++) {
1356 struct page *page = bvec[i].bv_page;
1358 if (PageDirty(page) || PageCompound(page)) {
1359 page_cache_release(page);
1360 bvec[i].bv_page = NULL;
1361 } else {
1362 nr_clean_pages++;
1366 if (nr_clean_pages) {
1367 unsigned long flags;
1369 spin_lock_irqsave(&bio_dirty_lock, flags);
1370 bio->bi_private = bio_dirty_list;
1371 bio_dirty_list = bio;
1372 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1373 schedule_work(&bio_dirty_work);
1374 } else {
1375 bio_put(bio);
1380 * bio_endio - end I/O on a bio
1381 * @bio: bio
1382 * @error: error, if any
1384 * Description:
1385 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1386 * preferred way to end I/O on a bio, it takes care of clearing
1387 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1388 * established -Exxxx (-EIO, for instance) error values in case
1389 * something went wrong. Noone should call bi_end_io() directly on a
1390 * bio unless they own it and thus know that it has an end_io
1391 * function.
1393 void bio_endio(struct bio *bio, int error)
1395 if (error)
1396 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1397 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1398 error = -EIO;
1400 if (bio->bi_end_io)
1401 bio->bi_end_io(bio, error);
1404 void bio_pair_release(struct bio_pair *bp)
1406 if (atomic_dec_and_test(&bp->cnt)) {
1407 struct bio *master = bp->bio1.bi_private;
1409 bio_endio(master, bp->error);
1410 mempool_free(bp, bp->bio2.bi_private);
1414 static void bio_pair_end_1(struct bio *bi, int err)
1416 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1418 if (err)
1419 bp->error = err;
1421 bio_pair_release(bp);
1424 static void bio_pair_end_2(struct bio *bi, int err)
1426 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1428 if (err)
1429 bp->error = err;
1431 bio_pair_release(bp);
1435 * split a bio - only worry about a bio with a single page in its iovec
1437 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1439 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1441 if (!bp)
1442 return bp;
1444 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1445 bi->bi_sector + first_sectors);
1447 BUG_ON(bi->bi_vcnt != 1);
1448 BUG_ON(bi->bi_idx != 0);
1449 atomic_set(&bp->cnt, 3);
1450 bp->error = 0;
1451 bp->bio1 = *bi;
1452 bp->bio2 = *bi;
1453 bp->bio2.bi_sector += first_sectors;
1454 bp->bio2.bi_size -= first_sectors << 9;
1455 bp->bio1.bi_size = first_sectors << 9;
1457 bp->bv1 = bi->bi_io_vec[0];
1458 bp->bv2 = bi->bi_io_vec[0];
1459 bp->bv2.bv_offset += first_sectors << 9;
1460 bp->bv2.bv_len -= first_sectors << 9;
1461 bp->bv1.bv_len = first_sectors << 9;
1463 bp->bio1.bi_io_vec = &bp->bv1;
1464 bp->bio2.bi_io_vec = &bp->bv2;
1466 bp->bio1.bi_max_vecs = 1;
1467 bp->bio2.bi_max_vecs = 1;
1469 bp->bio1.bi_end_io = bio_pair_end_1;
1470 bp->bio2.bi_end_io = bio_pair_end_2;
1472 bp->bio1.bi_private = bi;
1473 bp->bio2.bi_private = bio_split_pool;
1475 if (bio_integrity(bi))
1476 bio_integrity_split(bi, bp, first_sectors);
1478 return bp;
1482 * bio_sector_offset - Find hardware sector offset in bio
1483 * @bio: bio to inspect
1484 * @index: bio_vec index
1485 * @offset: offset in bv_page
1487 * Return the number of hardware sectors between beginning of bio
1488 * and an end point indicated by a bio_vec index and an offset
1489 * within that vector's page.
1491 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1492 unsigned int offset)
1494 unsigned int sector_sz;
1495 struct bio_vec *bv;
1496 sector_t sectors;
1497 int i;
1499 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1500 sectors = 0;
1502 if (index >= bio->bi_idx)
1503 index = bio->bi_vcnt - 1;
1505 __bio_for_each_segment(bv, bio, i, 0) {
1506 if (i == index) {
1507 if (offset > bv->bv_offset)
1508 sectors += (offset - bv->bv_offset) / sector_sz;
1509 break;
1512 sectors += bv->bv_len / sector_sz;
1515 return sectors;
1517 EXPORT_SYMBOL(bio_sector_offset);
1520 * create memory pools for biovec's in a bio_set.
1521 * use the global biovec slabs created for general use.
1523 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1525 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1527 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1528 if (!bs->bvec_pool)
1529 return -ENOMEM;
1531 return 0;
1534 static void biovec_free_pools(struct bio_set *bs)
1536 mempool_destroy(bs->bvec_pool);
1539 void bioset_free(struct bio_set *bs)
1541 if (bs->bio_pool)
1542 mempool_destroy(bs->bio_pool);
1544 bioset_integrity_free(bs);
1545 biovec_free_pools(bs);
1546 bio_put_slab(bs);
1548 kfree(bs);
1552 * bioset_create - Create a bio_set
1553 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1554 * @front_pad: Number of bytes to allocate in front of the returned bio
1556 * Description:
1557 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1558 * to ask for a number of bytes to be allocated in front of the bio.
1559 * Front pad allocation is useful for embedding the bio inside
1560 * another structure, to avoid allocating extra data to go with the bio.
1561 * Note that the bio must be embedded at the END of that structure always,
1562 * or things will break badly.
1564 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1566 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1567 struct bio_set *bs;
1569 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1570 if (!bs)
1571 return NULL;
1573 bs->front_pad = front_pad;
1575 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1576 if (!bs->bio_slab) {
1577 kfree(bs);
1578 return NULL;
1581 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1582 if (!bs->bio_pool)
1583 goto bad;
1585 if (bioset_integrity_create(bs, pool_size))
1586 goto bad;
1588 if (!biovec_create_pools(bs, pool_size))
1589 return bs;
1591 bad:
1592 bioset_free(bs);
1593 return NULL;
1596 static void __init biovec_init_slabs(void)
1598 int i;
1600 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1601 int size;
1602 struct biovec_slab *bvs = bvec_slabs + i;
1604 #ifndef CONFIG_BLK_DEV_INTEGRITY
1605 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1606 bvs->slab = NULL;
1607 continue;
1609 #endif
1611 size = bvs->nr_vecs * sizeof(struct bio_vec);
1612 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1613 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1617 static int __init init_bio(void)
1619 bio_slab_max = 2;
1620 bio_slab_nr = 0;
1621 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1622 if (!bio_slabs)
1623 panic("bio: can't allocate bios\n");
1625 bio_integrity_init();
1626 biovec_init_slabs();
1628 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1629 if (!fs_bio_set)
1630 panic("bio: can't allocate bios\n");
1632 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1633 sizeof(struct bio_pair));
1634 if (!bio_split_pool)
1635 panic("bio: can't create split pool\n");
1637 return 0;
1640 subsys_initcall(init_bio);
1642 EXPORT_SYMBOL(bio_alloc);
1643 EXPORT_SYMBOL(bio_kmalloc);
1644 EXPORT_SYMBOL(bio_put);
1645 EXPORT_SYMBOL(bio_free);
1646 EXPORT_SYMBOL(bio_endio);
1647 EXPORT_SYMBOL(bio_init);
1648 EXPORT_SYMBOL(__bio_clone);
1649 EXPORT_SYMBOL(bio_clone);
1650 EXPORT_SYMBOL(bio_phys_segments);
1651 EXPORT_SYMBOL(bio_add_page);
1652 EXPORT_SYMBOL(bio_add_pc_page);
1653 EXPORT_SYMBOL(bio_get_nr_vecs);
1654 EXPORT_SYMBOL(bio_map_user);
1655 EXPORT_SYMBOL(bio_unmap_user);
1656 EXPORT_SYMBOL(bio_map_kern);
1657 EXPORT_SYMBOL(bio_copy_kern);
1658 EXPORT_SYMBOL(bio_pair_release);
1659 EXPORT_SYMBOL(bio_split);
1660 EXPORT_SYMBOL(bio_copy_user);
1661 EXPORT_SYMBOL(bio_uncopy_user);
1662 EXPORT_SYMBOL(bioset_create);
1663 EXPORT_SYMBOL(bioset_free);
1664 EXPORT_SYMBOL(bio_alloc_bioset);