2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
24 #include <linux/slab.h>
37 * Translate binary channel representation in EEPROM to frequency
39 static u16
ath5k_eeprom_bin2freq(struct ath5k_eeprom_info
*ee
, u16 bin
,
44 if (bin
== AR5K_EEPROM_CHANNEL_DIS
)
47 if (mode
== AR5K_EEPROM_MODE_11A
) {
48 if (ee
->ee_version
> AR5K_EEPROM_VERSION_3_2
)
49 val
= (5 * bin
) + 4800;
51 val
= bin
> 62 ? (10 * 62) + (5 * (bin
- 62)) + 5100 :
54 if (ee
->ee_version
> AR5K_EEPROM_VERSION_3_2
)
69 * Initialize eeprom & capabilities structs
72 ath5k_eeprom_init_header(struct ath5k_hw
*ah
)
74 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
76 u32 cksum
, offset
, eep_max
= AR5K_EEPROM_INFO_MAX
;
79 * Read values from EEPROM and store them in the capability structure
81 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC
, ee_magic
);
82 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT
, ee_protect
);
83 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN
, ee_regdomain
);
84 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION
, ee_version
);
85 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR
, ee_header
);
87 /* Return if we have an old EEPROM */
88 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_3_0
)
92 * Validate the checksum of the EEPROM date. There are some
93 * devices with invalid EEPROMs.
95 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER
, val
);
97 eep_max
= (val
& AR5K_EEPROM_SIZE_UPPER_MASK
) <<
98 AR5K_EEPROM_SIZE_ENDLOC_SHIFT
;
99 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER
, val
);
100 eep_max
= (eep_max
| val
) - AR5K_EEPROM_INFO_BASE
;
103 * Fail safe check to prevent stupid loops due
104 * to busted EEPROMs. XXX: This value is likely too
105 * big still, waiting on a better value.
107 if (eep_max
> (3 * AR5K_EEPROM_INFO_MAX
)) {
108 ATH5K_ERR(ah
->ah_sc
, "Invalid max custom EEPROM size: "
109 "%d (0x%04x) max expected: %d (0x%04x)\n",
111 3 * AR5K_EEPROM_INFO_MAX
,
112 3 * AR5K_EEPROM_INFO_MAX
);
117 for (cksum
= 0, offset
= 0; offset
< eep_max
; offset
++) {
118 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset
), val
);
121 if (cksum
!= AR5K_EEPROM_INFO_CKSUM
) {
122 ATH5K_ERR(ah
->ah_sc
, "Invalid EEPROM "
123 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
125 eep_max
== AR5K_EEPROM_INFO_MAX
?
126 "default size" : "custom size");
130 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah
->ah_ee_version
),
133 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
) {
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0
, ee_misc0
);
135 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1
, ee_misc1
);
137 /* XXX: Don't know which versions include these two */
138 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2
, ee_misc2
);
140 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_4_3
)
141 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3
, ee_misc3
);
143 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_5_0
) {
144 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4
, ee_misc4
);
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5
, ee_misc5
);
146 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6
, ee_misc6
);
150 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_3_3
) {
151 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ
, val
);
152 ee
->ee_ob
[AR5K_EEPROM_MODE_11B
][0] = val
& 0x7;
153 ee
->ee_db
[AR5K_EEPROM_MODE_11B
][0] = (val
>> 3) & 0x7;
155 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ
, val
);
156 ee
->ee_ob
[AR5K_EEPROM_MODE_11G
][0] = val
& 0x7;
157 ee
->ee_db
[AR5K_EEPROM_MODE_11G
][0] = (val
>> 3) & 0x7;
160 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63
, val
);
162 if ((ah
->ah_mac_version
== (AR5K_SREV_AR2425
>> 4)) && val
)
163 ee
->ee_is_hb63
= true;
165 ee
->ee_is_hb63
= false;
167 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL
, val
);
168 ee
->ee_rfkill_pin
= (u8
) AR5K_REG_MS(val
, AR5K_EEPROM_RFKILL_GPIO_SEL
);
169 ee
->ee_rfkill_pol
= val
& AR5K_EEPROM_RFKILL_POLARITY
? true : false;
171 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
172 * and enable serdes programming if needed.
174 * XXX: Serdes values seem to be fixed so
175 * no need to read them here, we write them
176 * during ath5k_hw_init */
177 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET
, val
);
178 ee
->ee_serdes
= (val
== AR5K_EEPROM_PCIE_SERDES_SECTION
) ?
186 * Read antenna infos from eeprom
188 static int ath5k_eeprom_read_ants(struct ath5k_hw
*ah
, u32
*offset
,
191 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
196 AR5K_EEPROM_READ(o
++, val
);
197 ee
->ee_switch_settling
[mode
] = (val
>> 8) & 0x7f;
198 ee
->ee_atn_tx_rx
[mode
] = (val
>> 2) & 0x3f;
199 ee
->ee_ant_control
[mode
][i
] = (val
<< 4) & 0x3f;
201 AR5K_EEPROM_READ(o
++, val
);
202 ee
->ee_ant_control
[mode
][i
++] |= (val
>> 12) & 0xf;
203 ee
->ee_ant_control
[mode
][i
++] = (val
>> 6) & 0x3f;
204 ee
->ee_ant_control
[mode
][i
++] = val
& 0x3f;
206 AR5K_EEPROM_READ(o
++, val
);
207 ee
->ee_ant_control
[mode
][i
++] = (val
>> 10) & 0x3f;
208 ee
->ee_ant_control
[mode
][i
++] = (val
>> 4) & 0x3f;
209 ee
->ee_ant_control
[mode
][i
] = (val
<< 2) & 0x3f;
211 AR5K_EEPROM_READ(o
++, val
);
212 ee
->ee_ant_control
[mode
][i
++] |= (val
>> 14) & 0x3;
213 ee
->ee_ant_control
[mode
][i
++] = (val
>> 8) & 0x3f;
214 ee
->ee_ant_control
[mode
][i
++] = (val
>> 2) & 0x3f;
215 ee
->ee_ant_control
[mode
][i
] = (val
<< 4) & 0x3f;
217 AR5K_EEPROM_READ(o
++, val
);
218 ee
->ee_ant_control
[mode
][i
++] |= (val
>> 12) & 0xf;
219 ee
->ee_ant_control
[mode
][i
++] = (val
>> 6) & 0x3f;
220 ee
->ee_ant_control
[mode
][i
++] = val
& 0x3f;
222 /* Get antenna switch tables */
223 ah
->ah_ant_ctl
[mode
][AR5K_ANT_CTL
] =
224 (ee
->ee_ant_control
[mode
][0] << 4);
225 ah
->ah_ant_ctl
[mode
][AR5K_ANT_SWTABLE_A
] =
226 ee
->ee_ant_control
[mode
][1] |
227 (ee
->ee_ant_control
[mode
][2] << 6) |
228 (ee
->ee_ant_control
[mode
][3] << 12) |
229 (ee
->ee_ant_control
[mode
][4] << 18) |
230 (ee
->ee_ant_control
[mode
][5] << 24);
231 ah
->ah_ant_ctl
[mode
][AR5K_ANT_SWTABLE_B
] =
232 ee
->ee_ant_control
[mode
][6] |
233 (ee
->ee_ant_control
[mode
][7] << 6) |
234 (ee
->ee_ant_control
[mode
][8] << 12) |
235 (ee
->ee_ant_control
[mode
][9] << 18) |
236 (ee
->ee_ant_control
[mode
][10] << 24);
238 /* return new offset */
245 * Read supported modes and some mode-specific calibration data
248 static int ath5k_eeprom_read_modes(struct ath5k_hw
*ah
, u32
*offset
,
251 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
255 ee
->ee_n_piers
[mode
] = 0;
256 AR5K_EEPROM_READ(o
++, val
);
257 ee
->ee_adc_desired_size
[mode
] = (s8
)((val
>> 8) & 0xff);
259 case AR5K_EEPROM_MODE_11A
:
260 ee
->ee_ob
[mode
][3] = (val
>> 5) & 0x7;
261 ee
->ee_db
[mode
][3] = (val
>> 2) & 0x7;
262 ee
->ee_ob
[mode
][2] = (val
<< 1) & 0x7;
264 AR5K_EEPROM_READ(o
++, val
);
265 ee
->ee_ob
[mode
][2] |= (val
>> 15) & 0x1;
266 ee
->ee_db
[mode
][2] = (val
>> 12) & 0x7;
267 ee
->ee_ob
[mode
][1] = (val
>> 9) & 0x7;
268 ee
->ee_db
[mode
][1] = (val
>> 6) & 0x7;
269 ee
->ee_ob
[mode
][0] = (val
>> 3) & 0x7;
270 ee
->ee_db
[mode
][0] = val
& 0x7;
272 case AR5K_EEPROM_MODE_11G
:
273 case AR5K_EEPROM_MODE_11B
:
274 ee
->ee_ob
[mode
][1] = (val
>> 4) & 0x7;
275 ee
->ee_db
[mode
][1] = val
& 0x7;
279 AR5K_EEPROM_READ(o
++, val
);
280 ee
->ee_tx_end2xlna_enable
[mode
] = (val
>> 8) & 0xff;
281 ee
->ee_thr_62
[mode
] = val
& 0xff;
283 if (ah
->ah_ee_version
<= AR5K_EEPROM_VERSION_3_2
)
284 ee
->ee_thr_62
[mode
] = mode
== AR5K_EEPROM_MODE_11A
? 15 : 28;
286 AR5K_EEPROM_READ(o
++, val
);
287 ee
->ee_tx_end2xpa_disable
[mode
] = (val
>> 8) & 0xff;
288 ee
->ee_tx_frm2xpa_enable
[mode
] = val
& 0xff;
290 AR5K_EEPROM_READ(o
++, val
);
291 ee
->ee_pga_desired_size
[mode
] = (val
>> 8) & 0xff;
293 if ((val
& 0xff) & 0x80)
294 ee
->ee_noise_floor_thr
[mode
] = -((((val
& 0xff) ^ 0xff)) + 1);
296 ee
->ee_noise_floor_thr
[mode
] = val
& 0xff;
298 if (ah
->ah_ee_version
<= AR5K_EEPROM_VERSION_3_2
)
299 ee
->ee_noise_floor_thr
[mode
] =
300 mode
== AR5K_EEPROM_MODE_11A
? -54 : -1;
302 AR5K_EEPROM_READ(o
++, val
);
303 ee
->ee_xlna_gain
[mode
] = (val
>> 5) & 0xff;
304 ee
->ee_x_gain
[mode
] = (val
>> 1) & 0xf;
305 ee
->ee_xpd
[mode
] = val
& 0x1;
307 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
&&
308 mode
!= AR5K_EEPROM_MODE_11B
)
309 ee
->ee_fixed_bias
[mode
] = (val
>> 13) & 0x1;
311 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_3_3
) {
312 AR5K_EEPROM_READ(o
++, val
);
313 ee
->ee_false_detect
[mode
] = (val
>> 6) & 0x7f;
315 if (mode
== AR5K_EEPROM_MODE_11A
)
316 ee
->ee_xr_power
[mode
] = val
& 0x3f;
318 /* b_DB_11[bg] and b_OB_11[bg] */
319 ee
->ee_ob
[mode
][0] = val
& 0x7;
320 ee
->ee_db
[mode
][0] = (val
>> 3) & 0x7;
324 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_3_4
) {
325 ee
->ee_i_gain
[mode
] = AR5K_EEPROM_I_GAIN
;
326 ee
->ee_cck_ofdm_power_delta
= AR5K_EEPROM_CCK_OFDM_DELTA
;
328 ee
->ee_i_gain
[mode
] = (val
>> 13) & 0x7;
330 AR5K_EEPROM_READ(o
++, val
);
331 ee
->ee_i_gain
[mode
] |= (val
<< 3) & 0x38;
333 if (mode
== AR5K_EEPROM_MODE_11G
) {
334 ee
->ee_cck_ofdm_power_delta
= (val
>> 3) & 0xff;
335 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_6
)
336 ee
->ee_scaled_cck_delta
= (val
>> 11) & 0x1f;
340 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
&&
341 mode
== AR5K_EEPROM_MODE_11A
) {
342 ee
->ee_i_cal
[mode
] = (val
>> 8) & 0x3f;
343 ee
->ee_q_cal
[mode
] = (val
>> 3) & 0x1f;
346 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_4_0
)
349 /* Note: >= v5 have bg freq piers on another location
350 * so these freq piers are ignored for >= v5 (should be 0xff
353 case AR5K_EEPROM_MODE_11A
:
354 if (ah
->ah_ee_version
< AR5K_EEPROM_VERSION_4_1
)
357 AR5K_EEPROM_READ(o
++, val
);
358 ee
->ee_margin_tx_rx
[mode
] = val
& 0x3f;
360 case AR5K_EEPROM_MODE_11B
:
361 AR5K_EEPROM_READ(o
++, val
);
363 ee
->ee_pwr_cal_b
[0].freq
=
364 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
365 if (ee
->ee_pwr_cal_b
[0].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
366 ee
->ee_n_piers
[mode
]++;
368 ee
->ee_pwr_cal_b
[1].freq
=
369 ath5k_eeprom_bin2freq(ee
, (val
>> 8) & 0xff, mode
);
370 if (ee
->ee_pwr_cal_b
[1].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
371 ee
->ee_n_piers
[mode
]++;
373 AR5K_EEPROM_READ(o
++, val
);
374 ee
->ee_pwr_cal_b
[2].freq
=
375 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
376 if (ee
->ee_pwr_cal_b
[2].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
377 ee
->ee_n_piers
[mode
]++;
379 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_1
)
380 ee
->ee_margin_tx_rx
[mode
] = (val
>> 8) & 0x3f;
382 case AR5K_EEPROM_MODE_11G
:
383 AR5K_EEPROM_READ(o
++, val
);
385 ee
->ee_pwr_cal_g
[0].freq
=
386 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
387 if (ee
->ee_pwr_cal_g
[0].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
388 ee
->ee_n_piers
[mode
]++;
390 ee
->ee_pwr_cal_g
[1].freq
=
391 ath5k_eeprom_bin2freq(ee
, (val
>> 8) & 0xff, mode
);
392 if (ee
->ee_pwr_cal_g
[1].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
393 ee
->ee_n_piers
[mode
]++;
395 AR5K_EEPROM_READ(o
++, val
);
396 ee
->ee_turbo_max_power
[mode
] = val
& 0x7f;
397 ee
->ee_xr_power
[mode
] = (val
>> 7) & 0x3f;
399 AR5K_EEPROM_READ(o
++, val
);
400 ee
->ee_pwr_cal_g
[2].freq
=
401 ath5k_eeprom_bin2freq(ee
, val
& 0xff, mode
);
402 if (ee
->ee_pwr_cal_g
[2].freq
!= AR5K_EEPROM_CHANNEL_DIS
)
403 ee
->ee_n_piers
[mode
]++;
405 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_1
)
406 ee
->ee_margin_tx_rx
[mode
] = (val
>> 8) & 0x3f;
408 AR5K_EEPROM_READ(o
++, val
);
409 ee
->ee_i_cal
[mode
] = (val
>> 5) & 0x3f;
410 ee
->ee_q_cal
[mode
] = val
& 0x1f;
412 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_2
) {
413 AR5K_EEPROM_READ(o
++, val
);
414 ee
->ee_cck_ofdm_gain_delta
= val
& 0xff;
420 * Read turbo mode information on newer EEPROM versions
422 if (ee
->ee_version
< AR5K_EEPROM_VERSION_5_0
)
426 case AR5K_EEPROM_MODE_11A
:
427 ee
->ee_switch_settling_turbo
[mode
] = (val
>> 6) & 0x7f;
429 ee
->ee_atn_tx_rx_turbo
[mode
] = (val
>> 13) & 0x7;
430 AR5K_EEPROM_READ(o
++, val
);
431 ee
->ee_atn_tx_rx_turbo
[mode
] |= (val
& 0x7) << 3;
432 ee
->ee_margin_tx_rx_turbo
[mode
] = (val
>> 3) & 0x3f;
434 ee
->ee_adc_desired_size_turbo
[mode
] = (val
>> 9) & 0x7f;
435 AR5K_EEPROM_READ(o
++, val
);
436 ee
->ee_adc_desired_size_turbo
[mode
] |= (val
& 0x1) << 7;
437 ee
->ee_pga_desired_size_turbo
[mode
] = (val
>> 1) & 0xff;
439 if (AR5K_EEPROM_EEMAP(ee
->ee_misc0
) >=2)
440 ee
->ee_pd_gain_overlap
= (val
>> 9) & 0xf;
442 case AR5K_EEPROM_MODE_11G
:
443 ee
->ee_switch_settling_turbo
[mode
] = (val
>> 8) & 0x7f;
445 ee
->ee_atn_tx_rx_turbo
[mode
] = (val
>> 15) & 0x7;
446 AR5K_EEPROM_READ(o
++, val
);
447 ee
->ee_atn_tx_rx_turbo
[mode
] |= (val
& 0x1f) << 1;
448 ee
->ee_margin_tx_rx_turbo
[mode
] = (val
>> 5) & 0x3f;
450 ee
->ee_adc_desired_size_turbo
[mode
] = (val
>> 11) & 0x7f;
451 AR5K_EEPROM_READ(o
++, val
);
452 ee
->ee_adc_desired_size_turbo
[mode
] |= (val
& 0x7) << 5;
453 ee
->ee_pga_desired_size_turbo
[mode
] = (val
>> 3) & 0xff;
458 /* return new offset */
464 /* Read mode-specific data (except power calibration data) */
466 ath5k_eeprom_init_modes(struct ath5k_hw
*ah
)
468 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
475 * Get values for all modes
477 mode_offset
[AR5K_EEPROM_MODE_11A
] = AR5K_EEPROM_MODES_11A(ah
->ah_ee_version
);
478 mode_offset
[AR5K_EEPROM_MODE_11B
] = AR5K_EEPROM_MODES_11B(ah
->ah_ee_version
);
479 mode_offset
[AR5K_EEPROM_MODE_11G
] = AR5K_EEPROM_MODES_11G(ah
->ah_ee_version
);
481 ee
->ee_turbo_max_power
[AR5K_EEPROM_MODE_11A
] =
482 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee
->ee_header
);
484 for (mode
= AR5K_EEPROM_MODE_11A
; mode
<= AR5K_EEPROM_MODE_11G
; mode
++) {
485 offset
= mode_offset
[mode
];
487 ret
= ath5k_eeprom_read_ants(ah
, &offset
, mode
);
491 ret
= ath5k_eeprom_read_modes(ah
, &offset
, mode
);
496 /* override for older eeprom versions for better performance */
497 if (ah
->ah_ee_version
<= AR5K_EEPROM_VERSION_3_2
) {
498 ee
->ee_thr_62
[AR5K_EEPROM_MODE_11A
] = 15;
499 ee
->ee_thr_62
[AR5K_EEPROM_MODE_11B
] = 28;
500 ee
->ee_thr_62
[AR5K_EEPROM_MODE_11G
] = 28;
506 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
509 ath5k_eeprom_read_freq_list(struct ath5k_hw
*ah
, int *offset
, int max
,
510 struct ath5k_chan_pcal_info
*pc
, unsigned int mode
)
512 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
518 ee
->ee_n_piers
[mode
] = 0;
520 AR5K_EEPROM_READ(o
++, val
);
526 pc
[i
++].freq
= ath5k_eeprom_bin2freq(ee
,
528 ee
->ee_n_piers
[mode
]++;
530 freq2
= (val
>> 8) & 0xff;
534 pc
[i
++].freq
= ath5k_eeprom_bin2freq(ee
,
536 ee
->ee_n_piers
[mode
]++;
539 /* return new offset */
545 /* Read frequency piers for 802.11a */
547 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw
*ah
, int offset
)
549 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
550 struct ath5k_chan_pcal_info
*pcal
= ee
->ee_pwr_cal_a
;
555 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_3_3
) {
556 ath5k_eeprom_read_freq_list(ah
, &offset
,
557 AR5K_EEPROM_N_5GHZ_CHAN
, pcal
,
558 AR5K_EEPROM_MODE_11A
);
560 mask
= AR5K_EEPROM_FREQ_M(ah
->ah_ee_version
);
562 AR5K_EEPROM_READ(offset
++, val
);
563 pcal
[0].freq
= (val
>> 9) & mask
;
564 pcal
[1].freq
= (val
>> 2) & mask
;
565 pcal
[2].freq
= (val
<< 5) & mask
;
567 AR5K_EEPROM_READ(offset
++, val
);
568 pcal
[2].freq
|= (val
>> 11) & 0x1f;
569 pcal
[3].freq
= (val
>> 4) & mask
;
570 pcal
[4].freq
= (val
<< 3) & mask
;
572 AR5K_EEPROM_READ(offset
++, val
);
573 pcal
[4].freq
|= (val
>> 13) & 0x7;
574 pcal
[5].freq
= (val
>> 6) & mask
;
575 pcal
[6].freq
= (val
<< 1) & mask
;
577 AR5K_EEPROM_READ(offset
++, val
);
578 pcal
[6].freq
|= (val
>> 15) & 0x1;
579 pcal
[7].freq
= (val
>> 8) & mask
;
580 pcal
[8].freq
= (val
>> 1) & mask
;
581 pcal
[9].freq
= (val
<< 6) & mask
;
583 AR5K_EEPROM_READ(offset
++, val
);
584 pcal
[9].freq
|= (val
>> 10) & 0x3f;
586 /* Fixed number of piers */
587 ee
->ee_n_piers
[AR5K_EEPROM_MODE_11A
] = 10;
589 for (i
= 0; i
< AR5K_EEPROM_N_5GHZ_CHAN
; i
++) {
590 pcal
[i
].freq
= ath5k_eeprom_bin2freq(ee
,
591 pcal
[i
].freq
, AR5K_EEPROM_MODE_11A
);
598 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
600 ath5k_eeprom_init_11bg_2413(struct ath5k_hw
*ah
, unsigned int mode
, int offset
)
602 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
603 struct ath5k_chan_pcal_info
*pcal
;
606 case AR5K_EEPROM_MODE_11B
:
607 pcal
= ee
->ee_pwr_cal_b
;
609 case AR5K_EEPROM_MODE_11G
:
610 pcal
= ee
->ee_pwr_cal_g
;
616 ath5k_eeprom_read_freq_list(ah
, &offset
,
617 AR5K_EEPROM_N_2GHZ_CHAN_2413
, pcal
,
625 * Read power calibration for RF5111 chips
627 * For RF5111 we have an XPD -eXternal Power Detector- curve
628 * for each calibrated channel. Each curve has 0,5dB Power steps
629 * on x axis and PCDAC steps (offsets) on y axis and looks like an
630 * exponential function. To recreate the curve we read 11 points
631 * here and interpolate later.
634 /* Used to match PCDAC steps with power values on RF5111 chips
635 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
636 * steps that match with the power values we read from eeprom. On
637 * older eeprom versions (< 3.2) these steps are equaly spaced at
638 * 10% of the pcdac curve -until the curve reaches its maximum-
639 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
640 * these 11 steps are spaced in a different way. This function returns
641 * the pcdac steps based on eeprom version and curve min/max so that we
642 * can have pcdac/pwr points.
645 ath5k_get_pcdac_intercepts(struct ath5k_hw
*ah
, u8 min
, u8 max
, u8
*vp
)
647 static const u16 intercepts3
[] =
648 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
649 static const u16 intercepts3_2
[] =
650 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
654 if (ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_3_2
)
659 for (i
= 0; i
< ARRAY_SIZE(intercepts3
); i
++)
660 vp
[i
] = (ip
[i
] * max
+ (100 - ip
[i
]) * min
) / 100;
663 /* Convert RF5111 specific data to generic raw data
664 * used by interpolation code */
666 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw
*ah
, int mode
,
667 struct ath5k_chan_pcal_info
*chinfo
)
669 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
670 struct ath5k_chan_pcal_info_rf5111
*pcinfo
;
671 struct ath5k_pdgain_info
*pd
;
673 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
675 /* Fill raw data for each calibration pier */
676 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
678 pcinfo
= &chinfo
[pier
].rf5111_info
;
680 /* Allocate pd_curves for this cal pier */
681 chinfo
[pier
].pd_curves
=
682 kcalloc(AR5K_EEPROM_N_PD_CURVES
,
683 sizeof(struct ath5k_pdgain_info
),
686 if (!chinfo
[pier
].pd_curves
)
689 /* Only one curve for RF5111
690 * find out which one and place
692 * Note: ee_x_gain is reversed here */
693 for (idx
= 0; idx
< AR5K_EEPROM_N_PD_CURVES
; idx
++) {
695 if (!((ee
->ee_x_gain
[mode
] >> idx
) & 0x1)) {
701 ee
->ee_pd_gains
[mode
] = 1;
703 pd
= &chinfo
[pier
].pd_curves
[idx
];
705 pd
->pd_points
= AR5K_EEPROM_N_PWR_POINTS_5111
;
707 /* Allocate pd points for this curve */
708 pd
->pd_step
= kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111
,
709 sizeof(u8
), GFP_KERNEL
);
713 pd
->pd_pwr
= kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111
,
714 sizeof(s16
), GFP_KERNEL
);
719 * (convert power to 0.25dB units
720 * for RF5112 combatibility) */
721 for (point
= 0; point
< pd
->pd_points
; point
++) {
723 /* Absolute values */
724 pd
->pd_pwr
[point
] = 2 * pcinfo
->pwr
[point
];
727 pd
->pd_step
[point
] = pcinfo
->pcdac
[point
];
730 /* Set min/max pwr */
731 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
732 chinfo
[pier
].max_pwr
= pd
->pd_pwr
[10];
739 /* Parse EEPROM data */
741 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw
*ah
, int mode
)
743 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
744 struct ath5k_chan_pcal_info
*pcal
;
749 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
751 case AR5K_EEPROM_MODE_11A
:
752 if (!AR5K_EEPROM_HDR_11A(ee
->ee_header
))
755 ret
= ath5k_eeprom_init_11a_pcal_freq(ah
,
756 offset
+ AR5K_EEPROM_GROUP1_OFFSET
);
760 offset
+= AR5K_EEPROM_GROUP2_OFFSET
;
761 pcal
= ee
->ee_pwr_cal_a
;
763 case AR5K_EEPROM_MODE_11B
:
764 if (!AR5K_EEPROM_HDR_11B(ee
->ee_header
) &&
765 !AR5K_EEPROM_HDR_11G(ee
->ee_header
))
768 pcal
= ee
->ee_pwr_cal_b
;
769 offset
+= AR5K_EEPROM_GROUP3_OFFSET
;
775 ee
->ee_n_piers
[mode
] = 3;
777 case AR5K_EEPROM_MODE_11G
:
778 if (!AR5K_EEPROM_HDR_11G(ee
->ee_header
))
781 pcal
= ee
->ee_pwr_cal_g
;
782 offset
+= AR5K_EEPROM_GROUP4_OFFSET
;
788 ee
->ee_n_piers
[mode
] = 3;
794 for (i
= 0; i
< ee
->ee_n_piers
[mode
]; i
++) {
795 struct ath5k_chan_pcal_info_rf5111
*cdata
=
796 &pcal
[i
].rf5111_info
;
798 AR5K_EEPROM_READ(offset
++, val
);
799 cdata
->pcdac_max
= ((val
>> 10) & AR5K_EEPROM_PCDAC_M
);
800 cdata
->pcdac_min
= ((val
>> 4) & AR5K_EEPROM_PCDAC_M
);
801 cdata
->pwr
[0] = ((val
<< 2) & AR5K_EEPROM_POWER_M
);
803 AR5K_EEPROM_READ(offset
++, val
);
804 cdata
->pwr
[0] |= ((val
>> 14) & 0x3);
805 cdata
->pwr
[1] = ((val
>> 8) & AR5K_EEPROM_POWER_M
);
806 cdata
->pwr
[2] = ((val
>> 2) & AR5K_EEPROM_POWER_M
);
807 cdata
->pwr
[3] = ((val
<< 4) & AR5K_EEPROM_POWER_M
);
809 AR5K_EEPROM_READ(offset
++, val
);
810 cdata
->pwr
[3] |= ((val
>> 12) & 0xf);
811 cdata
->pwr
[4] = ((val
>> 6) & AR5K_EEPROM_POWER_M
);
812 cdata
->pwr
[5] = (val
& AR5K_EEPROM_POWER_M
);
814 AR5K_EEPROM_READ(offset
++, val
);
815 cdata
->pwr
[6] = ((val
>> 10) & AR5K_EEPROM_POWER_M
);
816 cdata
->pwr
[7] = ((val
>> 4) & AR5K_EEPROM_POWER_M
);
817 cdata
->pwr
[8] = ((val
<< 2) & AR5K_EEPROM_POWER_M
);
819 AR5K_EEPROM_READ(offset
++, val
);
820 cdata
->pwr
[8] |= ((val
>> 14) & 0x3);
821 cdata
->pwr
[9] = ((val
>> 8) & AR5K_EEPROM_POWER_M
);
822 cdata
->pwr
[10] = ((val
>> 2) & AR5K_EEPROM_POWER_M
);
824 ath5k_get_pcdac_intercepts(ah
, cdata
->pcdac_min
,
825 cdata
->pcdac_max
, cdata
->pcdac
);
828 return ath5k_eeprom_convert_pcal_info_5111(ah
, mode
, pcal
);
833 * Read power calibration for RF5112 chips
835 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
836 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
837 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
838 * power steps on x axis and PCDAC steps on y axis and looks like a
839 * linear function. To recreate the curve and pass the power values
840 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
841 * and 3 points for xpd 3 (higher gain -> lower power) here and
844 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
847 /* Convert RF5112 specific data to generic raw data
848 * used by interpolation code */
850 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw
*ah
, int mode
,
851 struct ath5k_chan_pcal_info
*chinfo
)
853 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
854 struct ath5k_chan_pcal_info_rf5112
*pcinfo
;
855 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
856 unsigned int pier
, pdg
, point
;
858 /* Fill raw data for each calibration pier */
859 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
861 pcinfo
= &chinfo
[pier
].rf5112_info
;
863 /* Allocate pd_curves for this cal pier */
864 chinfo
[pier
].pd_curves
=
865 kcalloc(AR5K_EEPROM_N_PD_CURVES
,
866 sizeof(struct ath5k_pdgain_info
),
869 if (!chinfo
[pier
].pd_curves
)
873 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[mode
]; pdg
++) {
875 u8 idx
= pdgain_idx
[pdg
];
876 struct ath5k_pdgain_info
*pd
=
877 &chinfo
[pier
].pd_curves
[idx
];
879 /* Lowest gain curve (max power) */
881 /* One more point for better accuracy */
882 pd
->pd_points
= AR5K_EEPROM_N_XPD0_POINTS
;
884 /* Allocate pd points for this curve */
885 pd
->pd_step
= kcalloc(pd
->pd_points
,
886 sizeof(u8
), GFP_KERNEL
);
891 pd
->pd_pwr
= kcalloc(pd
->pd_points
,
892 sizeof(s16
), GFP_KERNEL
);
899 * (all power levels are in 0.25dB units) */
900 pd
->pd_step
[0] = pcinfo
->pcdac_x0
[0];
901 pd
->pd_pwr
[0] = pcinfo
->pwr_x0
[0];
903 for (point
= 1; point
< pd
->pd_points
;
905 /* Absolute values */
907 pcinfo
->pwr_x0
[point
];
911 pd
->pd_step
[point
- 1] +
912 pcinfo
->pcdac_x0
[point
];
915 /* Set min power for this frequency */
916 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
918 /* Highest gain curve (min power) */
919 } else if (pdg
== 1) {
921 pd
->pd_points
= AR5K_EEPROM_N_XPD3_POINTS
;
923 /* Allocate pd points for this curve */
924 pd
->pd_step
= kcalloc(pd
->pd_points
,
925 sizeof(u8
), GFP_KERNEL
);
930 pd
->pd_pwr
= kcalloc(pd
->pd_points
,
931 sizeof(s16
), GFP_KERNEL
);
937 * (all power levels are in 0.25dB units) */
938 for (point
= 0; point
< pd
->pd_points
;
940 /* Absolute values */
942 pcinfo
->pwr_x3
[point
];
946 pcinfo
->pcdac_x3
[point
];
949 /* Since we have a higher gain curve
950 * override min power */
951 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
959 /* Parse EEPROM data */
961 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw
*ah
, int mode
)
963 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
964 struct ath5k_chan_pcal_info_rf5112
*chan_pcal_info
;
965 struct ath5k_chan_pcal_info
*gen_chan_info
;
966 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
972 /* Count how many curves we have and
973 * identify them (which one of the 4
974 * available curves we have on each count).
975 * Curves are stored from lower (x0) to
976 * higher (x3) gain */
977 for (i
= 0; i
< AR5K_EEPROM_N_PD_CURVES
; i
++) {
978 /* ee_x_gain[mode] is x gain mask */
979 if ((ee
->ee_x_gain
[mode
] >> i
) & 0x1)
980 pdgain_idx
[pd_gains
++] = i
;
982 ee
->ee_pd_gains
[mode
] = pd_gains
;
984 if (pd_gains
== 0 || pd_gains
> 2)
988 case AR5K_EEPROM_MODE_11A
:
990 * Read 5GHz EEPROM channels
992 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
993 ath5k_eeprom_init_11a_pcal_freq(ah
, offset
);
995 offset
+= AR5K_EEPROM_GROUP2_OFFSET
;
996 gen_chan_info
= ee
->ee_pwr_cal_a
;
998 case AR5K_EEPROM_MODE_11B
:
999 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
1000 if (AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1001 offset
+= AR5K_EEPROM_GROUP3_OFFSET
;
1003 /* NB: frequency piers parsed during mode init */
1004 gen_chan_info
= ee
->ee_pwr_cal_b
;
1006 case AR5K_EEPROM_MODE_11G
:
1007 offset
= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
1008 if (AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1009 offset
+= AR5K_EEPROM_GROUP4_OFFSET
;
1010 else if (AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1011 offset
+= AR5K_EEPROM_GROUP2_OFFSET
;
1013 /* NB: frequency piers parsed during mode init */
1014 gen_chan_info
= ee
->ee_pwr_cal_g
;
1020 for (i
= 0; i
< ee
->ee_n_piers
[mode
]; i
++) {
1021 chan_pcal_info
= &gen_chan_info
[i
].rf5112_info
;
1023 /* Power values in quarter dB
1024 * for the lower xpd gain curve
1025 * (0 dBm -> higher output power) */
1026 for (c
= 0; c
< AR5K_EEPROM_N_XPD0_POINTS
; c
++) {
1027 AR5K_EEPROM_READ(offset
++, val
);
1028 chan_pcal_info
->pwr_x0
[c
] = (s8
) (val
& 0xff);
1029 chan_pcal_info
->pwr_x0
[++c
] = (s8
) ((val
>> 8) & 0xff);
1033 * corresponding to the above power
1035 AR5K_EEPROM_READ(offset
++, val
);
1036 chan_pcal_info
->pcdac_x0
[1] = (val
& 0x1f);
1037 chan_pcal_info
->pcdac_x0
[2] = ((val
>> 5) & 0x1f);
1038 chan_pcal_info
->pcdac_x0
[3] = ((val
>> 10) & 0x1f);
1040 /* Power values in quarter dB
1041 * for the higher xpd gain curve
1042 * (18 dBm -> lower output power) */
1043 AR5K_EEPROM_READ(offset
++, val
);
1044 chan_pcal_info
->pwr_x3
[0] = (s8
) (val
& 0xff);
1045 chan_pcal_info
->pwr_x3
[1] = (s8
) ((val
>> 8) & 0xff);
1047 AR5K_EEPROM_READ(offset
++, val
);
1048 chan_pcal_info
->pwr_x3
[2] = (val
& 0xff);
1051 * corresponding to the above power
1052 * measurements (fixed) */
1053 chan_pcal_info
->pcdac_x3
[0] = 20;
1054 chan_pcal_info
->pcdac_x3
[1] = 35;
1055 chan_pcal_info
->pcdac_x3
[2] = 63;
1057 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_4_3
) {
1058 chan_pcal_info
->pcdac_x0
[0] = ((val
>> 8) & 0x3f);
1060 /* Last xpd0 power level is also channel maximum */
1061 gen_chan_info
[i
].max_pwr
= chan_pcal_info
->pwr_x0
[3];
1063 chan_pcal_info
->pcdac_x0
[0] = 1;
1064 gen_chan_info
[i
].max_pwr
= (s8
) ((val
>> 8) & 0xff);
1069 return ath5k_eeprom_convert_pcal_info_5112(ah
, mode
, gen_chan_info
);
1074 * Read power calibration for RF2413 chips
1076 * For RF2413 we have a Power to PDDAC table (Power Detector)
1077 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1078 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1079 * axis and looks like an exponential function like the RF5111 curve.
1081 * To recreate the curves we read here the points and interpolate
1082 * later. Note that in most cases only 2 (higher and lower) curves are
1083 * used (like RF5112) but vendors have the opportunity to include all
1084 * 4 curves on eeprom. The final curve (higher power) has an extra
1085 * point for better accuracy like RF5112.
1088 /* For RF2413 power calibration data doesn't start on a fixed location and
1089 * if a mode is not supported, its section is missing -not zeroed-.
1090 * So we need to calculate the starting offset for each section by using
1091 * these two functions */
1093 /* Return the size of each section based on the mode and the number of pd
1094 * gains available (maximum 4). */
1095 static inline unsigned int
1096 ath5k_pdgains_size_2413(struct ath5k_eeprom_info
*ee
, unsigned int mode
)
1098 static const unsigned int pdgains_size
[] = { 4, 6, 9, 12 };
1101 sz
= pdgains_size
[ee
->ee_pd_gains
[mode
] - 1];
1102 sz
*= ee
->ee_n_piers
[mode
];
1107 /* Return the starting offset for a section based on the modes supported
1108 * and each section's size. */
1110 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info
*ee
, int mode
)
1112 u32 offset
= AR5K_EEPROM_CAL_DATA_START(ee
->ee_misc4
);
1115 case AR5K_EEPROM_MODE_11G
:
1116 if (AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1117 offset
+= ath5k_pdgains_size_2413(ee
,
1118 AR5K_EEPROM_MODE_11B
) +
1119 AR5K_EEPROM_N_2GHZ_CHAN_2413
/ 2;
1121 case AR5K_EEPROM_MODE_11B
:
1122 if (AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1123 offset
+= ath5k_pdgains_size_2413(ee
,
1124 AR5K_EEPROM_MODE_11A
) +
1125 AR5K_EEPROM_N_5GHZ_CHAN
/ 2;
1127 case AR5K_EEPROM_MODE_11A
:
1136 /* Convert RF2413 specific data to generic raw data
1137 * used by interpolation code */
1139 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw
*ah
, int mode
,
1140 struct ath5k_chan_pcal_info
*chinfo
)
1142 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1143 struct ath5k_chan_pcal_info_rf2413
*pcinfo
;
1144 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
1145 unsigned int pier
, pdg
, point
;
1147 /* Fill raw data for each calibration pier */
1148 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
1150 pcinfo
= &chinfo
[pier
].rf2413_info
;
1152 /* Allocate pd_curves for this cal pier */
1153 chinfo
[pier
].pd_curves
=
1154 kcalloc(AR5K_EEPROM_N_PD_CURVES
,
1155 sizeof(struct ath5k_pdgain_info
),
1158 if (!chinfo
[pier
].pd_curves
)
1161 /* Fill pd_curves */
1162 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[mode
]; pdg
++) {
1164 u8 idx
= pdgain_idx
[pdg
];
1165 struct ath5k_pdgain_info
*pd
=
1166 &chinfo
[pier
].pd_curves
[idx
];
1168 /* One more point for the highest power
1169 * curve (lowest gain) */
1170 if (pdg
== ee
->ee_pd_gains
[mode
] - 1)
1171 pd
->pd_points
= AR5K_EEPROM_N_PD_POINTS
;
1173 pd
->pd_points
= AR5K_EEPROM_N_PD_POINTS
- 1;
1175 /* Allocate pd points for this curve */
1176 pd
->pd_step
= kcalloc(pd
->pd_points
,
1177 sizeof(u8
), GFP_KERNEL
);
1182 pd
->pd_pwr
= kcalloc(pd
->pd_points
,
1183 sizeof(s16
), GFP_KERNEL
);
1189 * convert all pwr levels to
1190 * quarter dB for RF5112 combatibility */
1191 pd
->pd_step
[0] = pcinfo
->pddac_i
[pdg
];
1192 pd
->pd_pwr
[0] = 4 * pcinfo
->pwr_i
[pdg
];
1194 for (point
= 1; point
< pd
->pd_points
; point
++) {
1196 pd
->pd_pwr
[point
] = pd
->pd_pwr
[point
- 1] +
1197 2 * pcinfo
->pwr
[pdg
][point
- 1];
1199 pd
->pd_step
[point
] = pd
->pd_step
[point
- 1] +
1200 pcinfo
->pddac
[pdg
][point
- 1];
1204 /* Highest gain curve -> min power */
1206 chinfo
[pier
].min_pwr
= pd
->pd_pwr
[0];
1208 /* Lowest gain curve -> max power */
1209 if (pdg
== ee
->ee_pd_gains
[mode
] - 1)
1210 chinfo
[pier
].max_pwr
=
1211 pd
->pd_pwr
[pd
->pd_points
- 1];
1218 /* Parse EEPROM data */
1220 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw
*ah
, int mode
)
1222 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1223 struct ath5k_chan_pcal_info_rf2413
*pcinfo
;
1224 struct ath5k_chan_pcal_info
*chinfo
;
1225 u8
*pdgain_idx
= ee
->ee_pdc_to_idx
[mode
];
1231 /* Count how many curves we have and
1232 * identify them (which one of the 4
1233 * available curves we have on each count).
1234 * Curves are stored from higher to
1235 * lower gain so we go backwards */
1236 for (idx
= AR5K_EEPROM_N_PD_CURVES
- 1; idx
>= 0; idx
--) {
1237 /* ee_x_gain[mode] is x gain mask */
1238 if ((ee
->ee_x_gain
[mode
] >> idx
) & 0x1)
1239 pdgain_idx
[pd_gains
++] = idx
;
1242 ee
->ee_pd_gains
[mode
] = pd_gains
;
1247 offset
= ath5k_cal_data_offset_2413(ee
, mode
);
1249 case AR5K_EEPROM_MODE_11A
:
1250 if (!AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1253 ath5k_eeprom_init_11a_pcal_freq(ah
, offset
);
1254 offset
+= AR5K_EEPROM_N_5GHZ_CHAN
/ 2;
1255 chinfo
= ee
->ee_pwr_cal_a
;
1257 case AR5K_EEPROM_MODE_11B
:
1258 if (!AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1261 ath5k_eeprom_init_11bg_2413(ah
, mode
, offset
);
1262 offset
+= AR5K_EEPROM_N_2GHZ_CHAN_2413
/ 2;
1263 chinfo
= ee
->ee_pwr_cal_b
;
1265 case AR5K_EEPROM_MODE_11G
:
1266 if (!AR5K_EEPROM_HDR_11G(ee
->ee_header
))
1269 ath5k_eeprom_init_11bg_2413(ah
, mode
, offset
);
1270 offset
+= AR5K_EEPROM_N_2GHZ_CHAN_2413
/ 2;
1271 chinfo
= ee
->ee_pwr_cal_g
;
1277 for (i
= 0; i
< ee
->ee_n_piers
[mode
]; i
++) {
1278 pcinfo
= &chinfo
[i
].rf2413_info
;
1281 * Read pwr_i, pddac_i and the first
1282 * 2 pd points (pwr, pddac)
1284 AR5K_EEPROM_READ(offset
++, val
);
1285 pcinfo
->pwr_i
[0] = val
& 0x1f;
1286 pcinfo
->pddac_i
[0] = (val
>> 5) & 0x7f;
1287 pcinfo
->pwr
[0][0] = (val
>> 12) & 0xf;
1289 AR5K_EEPROM_READ(offset
++, val
);
1290 pcinfo
->pddac
[0][0] = val
& 0x3f;
1291 pcinfo
->pwr
[0][1] = (val
>> 6) & 0xf;
1292 pcinfo
->pddac
[0][1] = (val
>> 10) & 0x3f;
1294 AR5K_EEPROM_READ(offset
++, val
);
1295 pcinfo
->pwr
[0][2] = val
& 0xf;
1296 pcinfo
->pddac
[0][2] = (val
>> 4) & 0x3f;
1298 pcinfo
->pwr
[0][3] = 0;
1299 pcinfo
->pddac
[0][3] = 0;
1303 * Pd gain 0 is not the last pd gain
1304 * so it only has 2 pd points.
1305 * Continue with pd gain 1.
1307 pcinfo
->pwr_i
[1] = (val
>> 10) & 0x1f;
1309 pcinfo
->pddac_i
[1] = (val
>> 15) & 0x1;
1310 AR5K_EEPROM_READ(offset
++, val
);
1311 pcinfo
->pddac_i
[1] |= (val
& 0x3F) << 1;
1313 pcinfo
->pwr
[1][0] = (val
>> 6) & 0xf;
1314 pcinfo
->pddac
[1][0] = (val
>> 10) & 0x3f;
1316 AR5K_EEPROM_READ(offset
++, val
);
1317 pcinfo
->pwr
[1][1] = val
& 0xf;
1318 pcinfo
->pddac
[1][1] = (val
>> 4) & 0x3f;
1319 pcinfo
->pwr
[1][2] = (val
>> 10) & 0xf;
1321 pcinfo
->pddac
[1][2] = (val
>> 14) & 0x3;
1322 AR5K_EEPROM_READ(offset
++, val
);
1323 pcinfo
->pddac
[1][2] |= (val
& 0xF) << 2;
1325 pcinfo
->pwr
[1][3] = 0;
1326 pcinfo
->pddac
[1][3] = 0;
1327 } else if (pd_gains
== 1) {
1329 * Pd gain 0 is the last one so
1330 * read the extra point.
1332 pcinfo
->pwr
[0][3] = (val
>> 10) & 0xf;
1334 pcinfo
->pddac
[0][3] = (val
>> 14) & 0x3;
1335 AR5K_EEPROM_READ(offset
++, val
);
1336 pcinfo
->pddac
[0][3] |= (val
& 0xF) << 2;
1340 * Proceed with the other pd_gains
1344 pcinfo
->pwr_i
[2] = (val
>> 4) & 0x1f;
1345 pcinfo
->pddac_i
[2] = (val
>> 9) & 0x7f;
1347 AR5K_EEPROM_READ(offset
++, val
);
1348 pcinfo
->pwr
[2][0] = (val
>> 0) & 0xf;
1349 pcinfo
->pddac
[2][0] = (val
>> 4) & 0x3f;
1350 pcinfo
->pwr
[2][1] = (val
>> 10) & 0xf;
1352 pcinfo
->pddac
[2][1] = (val
>> 14) & 0x3;
1353 AR5K_EEPROM_READ(offset
++, val
);
1354 pcinfo
->pddac
[2][1] |= (val
& 0xF) << 2;
1356 pcinfo
->pwr
[2][2] = (val
>> 4) & 0xf;
1357 pcinfo
->pddac
[2][2] = (val
>> 8) & 0x3f;
1359 pcinfo
->pwr
[2][3] = 0;
1360 pcinfo
->pddac
[2][3] = 0;
1361 } else if (pd_gains
== 2) {
1362 pcinfo
->pwr
[1][3] = (val
>> 4) & 0xf;
1363 pcinfo
->pddac
[1][3] = (val
>> 8) & 0x3f;
1367 pcinfo
->pwr_i
[3] = (val
>> 14) & 0x3;
1368 AR5K_EEPROM_READ(offset
++, val
);
1369 pcinfo
->pwr_i
[3] |= ((val
>> 0) & 0x7) << 2;
1371 pcinfo
->pddac_i
[3] = (val
>> 3) & 0x7f;
1372 pcinfo
->pwr
[3][0] = (val
>> 10) & 0xf;
1373 pcinfo
->pddac
[3][0] = (val
>> 14) & 0x3;
1375 AR5K_EEPROM_READ(offset
++, val
);
1376 pcinfo
->pddac
[3][0] |= (val
& 0xF) << 2;
1377 pcinfo
->pwr
[3][1] = (val
>> 4) & 0xf;
1378 pcinfo
->pddac
[3][1] = (val
>> 8) & 0x3f;
1380 pcinfo
->pwr
[3][2] = (val
>> 14) & 0x3;
1381 AR5K_EEPROM_READ(offset
++, val
);
1382 pcinfo
->pwr
[3][2] |= ((val
>> 0) & 0x3) << 2;
1384 pcinfo
->pddac
[3][2] = (val
>> 2) & 0x3f;
1385 pcinfo
->pwr
[3][3] = (val
>> 8) & 0xf;
1387 pcinfo
->pddac
[3][3] = (val
>> 12) & 0xF;
1388 AR5K_EEPROM_READ(offset
++, val
);
1389 pcinfo
->pddac
[3][3] |= ((val
>> 0) & 0x3) << 4;
1390 } else if (pd_gains
== 3) {
1391 pcinfo
->pwr
[2][3] = (val
>> 14) & 0x3;
1392 AR5K_EEPROM_READ(offset
++, val
);
1393 pcinfo
->pwr
[2][3] |= ((val
>> 0) & 0x3) << 2;
1395 pcinfo
->pddac
[2][3] = (val
>> 2) & 0x3f;
1399 return ath5k_eeprom_convert_pcal_info_2413(ah
, mode
, chinfo
);
1404 * Read per rate target power (this is the maximum tx power
1405 * supported by the card). This info is used when setting
1406 * tx power, no matter the channel.
1408 * This also works for v5 EEPROMs.
1411 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw
*ah
, unsigned int mode
)
1413 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1414 struct ath5k_rate_pcal_info
*rate_pcal_info
;
1415 u8
*rate_target_pwr_num
;
1420 offset
= AR5K_EEPROM_TARGET_PWRSTART(ee
->ee_misc1
);
1421 rate_target_pwr_num
= &ee
->ee_rate_target_pwr_num
[mode
];
1423 case AR5K_EEPROM_MODE_11A
:
1424 offset
+= AR5K_EEPROM_TARGET_PWR_OFF_11A(ee
->ee_version
);
1425 rate_pcal_info
= ee
->ee_rate_tpwr_a
;
1426 ee
->ee_rate_target_pwr_num
[mode
] = AR5K_EEPROM_N_5GHZ_CHAN
;
1428 case AR5K_EEPROM_MODE_11B
:
1429 offset
+= AR5K_EEPROM_TARGET_PWR_OFF_11B(ee
->ee_version
);
1430 rate_pcal_info
= ee
->ee_rate_tpwr_b
;
1431 ee
->ee_rate_target_pwr_num
[mode
] = 2; /* 3rd is g mode's 1st */
1433 case AR5K_EEPROM_MODE_11G
:
1434 offset
+= AR5K_EEPROM_TARGET_PWR_OFF_11G(ee
->ee_version
);
1435 rate_pcal_info
= ee
->ee_rate_tpwr_g
;
1436 ee
->ee_rate_target_pwr_num
[mode
] = AR5K_EEPROM_N_2GHZ_CHAN
;
1442 /* Different freq mask for older eeproms (<= v3.2) */
1443 if (ee
->ee_version
<= AR5K_EEPROM_VERSION_3_2
) {
1444 for (i
= 0; i
< (*rate_target_pwr_num
); i
++) {
1445 AR5K_EEPROM_READ(offset
++, val
);
1446 rate_pcal_info
[i
].freq
=
1447 ath5k_eeprom_bin2freq(ee
, (val
>> 9) & 0x7f, mode
);
1449 rate_pcal_info
[i
].target_power_6to24
= ((val
>> 3) & 0x3f);
1450 rate_pcal_info
[i
].target_power_36
= (val
<< 3) & 0x3f;
1452 AR5K_EEPROM_READ(offset
++, val
);
1454 if (rate_pcal_info
[i
].freq
== AR5K_EEPROM_CHANNEL_DIS
||
1456 (*rate_target_pwr_num
) = i
;
1460 rate_pcal_info
[i
].target_power_36
|= ((val
>> 13) & 0x7);
1461 rate_pcal_info
[i
].target_power_48
= ((val
>> 7) & 0x3f);
1462 rate_pcal_info
[i
].target_power_54
= ((val
>> 1) & 0x3f);
1465 for (i
= 0; i
< (*rate_target_pwr_num
); i
++) {
1466 AR5K_EEPROM_READ(offset
++, val
);
1467 rate_pcal_info
[i
].freq
=
1468 ath5k_eeprom_bin2freq(ee
, (val
>> 8) & 0xff, mode
);
1470 rate_pcal_info
[i
].target_power_6to24
= ((val
>> 2) & 0x3f);
1471 rate_pcal_info
[i
].target_power_36
= (val
<< 4) & 0x3f;
1473 AR5K_EEPROM_READ(offset
++, val
);
1475 if (rate_pcal_info
[i
].freq
== AR5K_EEPROM_CHANNEL_DIS
||
1477 (*rate_target_pwr_num
) = i
;
1481 rate_pcal_info
[i
].target_power_36
|= (val
>> 12) & 0xf;
1482 rate_pcal_info
[i
].target_power_48
= ((val
>> 6) & 0x3f);
1483 rate_pcal_info
[i
].target_power_54
= (val
& 0x3f);
1492 * Read per channel calibration info from EEPROM
1494 * This info is used to calibrate the baseband power table. Imagine
1495 * that for each channel there is a power curve that's hw specific
1496 * (depends on amplifier etc) and we try to "correct" this curve using
1497 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1498 * it can use accurate power values when setting tx power (takes amplifier's
1499 * performance on each channel into account).
1501 * EEPROM provides us with the offsets for some pre-calibrated channels
1502 * and we have to interpolate to create the full table for these channels and
1503 * also the table for any channel.
1506 ath5k_eeprom_read_pcal_info(struct ath5k_hw
*ah
)
1508 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1509 int (*read_pcal
)(struct ath5k_hw
*hw
, int mode
);
1513 if ((ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_4_0
) &&
1514 (AR5K_EEPROM_EEMAP(ee
->ee_misc0
) == 1))
1515 read_pcal
= ath5k_eeprom_read_pcal_info_5112
;
1516 else if ((ah
->ah_ee_version
>= AR5K_EEPROM_VERSION_5_0
) &&
1517 (AR5K_EEPROM_EEMAP(ee
->ee_misc0
) == 2))
1518 read_pcal
= ath5k_eeprom_read_pcal_info_2413
;
1520 read_pcal
= ath5k_eeprom_read_pcal_info_5111
;
1523 for (mode
= AR5K_EEPROM_MODE_11A
; mode
<= AR5K_EEPROM_MODE_11G
;
1525 err
= read_pcal(ah
, mode
);
1529 err
= ath5k_eeprom_read_target_rate_pwr_info(ah
, mode
);
1538 ath5k_eeprom_free_pcal_info(struct ath5k_hw
*ah
, int mode
)
1540 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1541 struct ath5k_chan_pcal_info
*chinfo
;
1545 case AR5K_EEPROM_MODE_11A
:
1546 if (!AR5K_EEPROM_HDR_11A(ee
->ee_header
))
1548 chinfo
= ee
->ee_pwr_cal_a
;
1550 case AR5K_EEPROM_MODE_11B
:
1551 if (!AR5K_EEPROM_HDR_11B(ee
->ee_header
))
1553 chinfo
= ee
->ee_pwr_cal_b
;
1555 case AR5K_EEPROM_MODE_11G
:
1556 if (!AR5K_EEPROM_HDR_11G(ee
->ee_header
))
1558 chinfo
= ee
->ee_pwr_cal_g
;
1564 for (pier
= 0; pier
< ee
->ee_n_piers
[mode
]; pier
++) {
1565 if (!chinfo
[pier
].pd_curves
)
1568 for (pdg
= 0; pdg
< AR5K_EEPROM_N_PD_CURVES
; pdg
++) {
1569 struct ath5k_pdgain_info
*pd
=
1570 &chinfo
[pier
].pd_curves
[pdg
];
1576 kfree(chinfo
[pier
].pd_curves
);
1582 /* Read conformance test limits used for regulatory control */
1584 ath5k_eeprom_read_ctl_info(struct ath5k_hw
*ah
)
1586 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1587 struct ath5k_edge_power
*rep
;
1588 unsigned int fmask
, pmask
;
1589 unsigned int ctl_mode
;
1594 pmask
= AR5K_EEPROM_POWER_M
;
1595 fmask
= AR5K_EEPROM_FREQ_M(ee
->ee_version
);
1596 offset
= AR5K_EEPROM_CTL(ee
->ee_version
);
1597 ee
->ee_ctls
= AR5K_EEPROM_N_CTLS(ee
->ee_version
);
1598 for (i
= 0; i
< ee
->ee_ctls
; i
+= 2) {
1599 AR5K_EEPROM_READ(offset
++, val
);
1600 ee
->ee_ctl
[i
] = (val
>> 8) & 0xff;
1601 ee
->ee_ctl
[i
+ 1] = val
& 0xff;
1604 offset
= AR5K_EEPROM_GROUP8_OFFSET
;
1605 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_4_0
)
1606 offset
+= AR5K_EEPROM_TARGET_PWRSTART(ee
->ee_misc1
) -
1607 AR5K_EEPROM_GROUP5_OFFSET
;
1609 offset
+= AR5K_EEPROM_GROUPS_START(ee
->ee_version
);
1611 rep
= ee
->ee_ctl_pwr
;
1612 for(i
= 0; i
< ee
->ee_ctls
; i
++) {
1613 switch(ee
->ee_ctl
[i
] & AR5K_CTL_MODE_M
) {
1615 case AR5K_CTL_TURBO
:
1616 ctl_mode
= AR5K_EEPROM_MODE_11A
;
1619 ctl_mode
= AR5K_EEPROM_MODE_11G
;
1622 if (ee
->ee_ctl
[i
] == 0) {
1623 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_3_3
)
1627 rep
+= AR5K_EEPROM_N_EDGES
;
1630 if (ee
->ee_version
>= AR5K_EEPROM_VERSION_3_3
) {
1631 for (j
= 0; j
< AR5K_EEPROM_N_EDGES
; j
+= 2) {
1632 AR5K_EEPROM_READ(offset
++, val
);
1633 rep
[j
].freq
= (val
>> 8) & fmask
;
1634 rep
[j
+ 1].freq
= val
& fmask
;
1636 for (j
= 0; j
< AR5K_EEPROM_N_EDGES
; j
+= 2) {
1637 AR5K_EEPROM_READ(offset
++, val
);
1638 rep
[j
].edge
= (val
>> 8) & pmask
;
1639 rep
[j
].flag
= (val
>> 14) & 1;
1640 rep
[j
+ 1].edge
= val
& pmask
;
1641 rep
[j
+ 1].flag
= (val
>> 6) & 1;
1644 AR5K_EEPROM_READ(offset
++, val
);
1645 rep
[0].freq
= (val
>> 9) & fmask
;
1646 rep
[1].freq
= (val
>> 2) & fmask
;
1647 rep
[2].freq
= (val
<< 5) & fmask
;
1649 AR5K_EEPROM_READ(offset
++, val
);
1650 rep
[2].freq
|= (val
>> 11) & 0x1f;
1651 rep
[3].freq
= (val
>> 4) & fmask
;
1652 rep
[4].freq
= (val
<< 3) & fmask
;
1654 AR5K_EEPROM_READ(offset
++, val
);
1655 rep
[4].freq
|= (val
>> 13) & 0x7;
1656 rep
[5].freq
= (val
>> 6) & fmask
;
1657 rep
[6].freq
= (val
<< 1) & fmask
;
1659 AR5K_EEPROM_READ(offset
++, val
);
1660 rep
[6].freq
|= (val
>> 15) & 0x1;
1661 rep
[7].freq
= (val
>> 8) & fmask
;
1663 rep
[0].edge
= (val
>> 2) & pmask
;
1664 rep
[1].edge
= (val
<< 4) & pmask
;
1666 AR5K_EEPROM_READ(offset
++, val
);
1667 rep
[1].edge
|= (val
>> 12) & 0xf;
1668 rep
[2].edge
= (val
>> 6) & pmask
;
1669 rep
[3].edge
= val
& pmask
;
1671 AR5K_EEPROM_READ(offset
++, val
);
1672 rep
[4].edge
= (val
>> 10) & pmask
;
1673 rep
[5].edge
= (val
>> 4) & pmask
;
1674 rep
[6].edge
= (val
<< 2) & pmask
;
1676 AR5K_EEPROM_READ(offset
++, val
);
1677 rep
[6].edge
|= (val
>> 14) & 0x3;
1678 rep
[7].edge
= (val
>> 8) & pmask
;
1680 for (j
= 0; j
< AR5K_EEPROM_N_EDGES
; j
++) {
1681 rep
[j
].freq
= ath5k_eeprom_bin2freq(ee
,
1682 rep
[j
].freq
, ctl_mode
);
1684 rep
+= AR5K_EEPROM_N_EDGES
;
1691 ath5k_eeprom_read_spur_chans(struct ath5k_hw
*ah
)
1693 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1698 offset
= AR5K_EEPROM_CTL(ee
->ee_version
) +
1699 AR5K_EEPROM_N_CTLS(ee
->ee_version
);
1701 if (ee
->ee_version
< AR5K_EEPROM_VERSION_5_3
) {
1702 /* No spur info for 5GHz */
1703 ee
->ee_spur_chans
[0][0] = AR5K_EEPROM_NO_SPUR
;
1704 /* 2 channels for 2GHz (2464/2420) */
1705 ee
->ee_spur_chans
[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1
;
1706 ee
->ee_spur_chans
[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2
;
1707 ee
->ee_spur_chans
[2][1] = AR5K_EEPROM_NO_SPUR
;
1708 } else if (ee
->ee_version
>= AR5K_EEPROM_VERSION_5_3
) {
1709 for (i
= 0; i
< AR5K_EEPROM_N_SPUR_CHANS
; i
++) {
1710 AR5K_EEPROM_READ(offset
, val
);
1711 ee
->ee_spur_chans
[i
][0] = val
;
1712 AR5K_EEPROM_READ(offset
+ AR5K_EEPROM_N_SPUR_CHANS
,
1714 ee
->ee_spur_chans
[i
][1] = val
;
1723 * Read the MAC address from eeprom
1725 int ath5k_eeprom_read_mac(struct ath5k_hw
*ah
, u8
*mac
)
1727 u8 mac_d
[ETH_ALEN
] = {};
1732 AR5K_EEPROM_READ(0x20, data
);
1734 for (offset
= 0x1f, octet
= 0, total
= 0; offset
>= 0x1d; offset
--) {
1735 AR5K_EEPROM_READ(offset
, data
);
1738 mac_d
[octet
+ 1] = data
& 0xff;
1739 mac_d
[octet
] = data
>> 8;
1743 if (!total
|| total
== 3 * 0xffff)
1746 memcpy(mac
, mac_d
, ETH_ALEN
);
1752 /***********************\
1753 * Init/Detach functions *
1754 \***********************/
1757 * Initialize eeprom data structure
1760 ath5k_eeprom_init(struct ath5k_hw
*ah
)
1764 err
= ath5k_eeprom_init_header(ah
);
1768 err
= ath5k_eeprom_init_modes(ah
);
1772 err
= ath5k_eeprom_read_pcal_info(ah
);
1776 err
= ath5k_eeprom_read_ctl_info(ah
);
1780 err
= ath5k_eeprom_read_spur_chans(ah
);
1788 ath5k_eeprom_detach(struct ath5k_hw
*ah
)
1792 for (mode
= AR5K_EEPROM_MODE_11A
; mode
<= AR5K_EEPROM_MODE_11G
; mode
++)
1793 ath5k_eeprom_free_pcal_info(ah
, mode
);
1797 ath5k_eeprom_mode_from_channel(struct ieee80211_channel
*channel
)
1799 switch (channel
->hw_value
& CHANNEL_MODES
) {
1802 return AR5K_EEPROM_MODE_11A
;
1804 return AR5K_EEPROM_MODE_11G
;
1806 return AR5K_EEPROM_MODE_11B
;