ext4: use ext4_kvzalloc()/ext4_kvmalloc() for s_group_desc and s_group_info
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / et131x / et1310_tx.c
blob4241d2afecc031ddf3736d8acc7bc55bcfa19e16
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
9 *------------------------------------------------------------------------------
11 * et1310_tx.c - Routines used to perform data transmission.
13 *------------------------------------------------------------------------------
15 * SOFTWARE LICENSE
17 * This software is provided subject to the following terms and conditions,
18 * which you should read carefully before using the software. Using this
19 * software indicates your acceptance of these terms and conditions. If you do
20 * not agree with these terms and conditions, do not use the software.
22 * Copyright © 2005 Agere Systems Inc.
23 * All rights reserved.
25 * Redistribution and use in source or binary forms, with or without
26 * modifications, are permitted provided that the following conditions are met:
28 * . Redistributions of source code must retain the above copyright notice, this
29 * list of conditions and the following Disclaimer as comments in the code as
30 * well as in the documentation and/or other materials provided with the
31 * distribution.
33 * . Redistributions in binary form must reproduce the above copyright notice,
34 * this list of conditions and the following Disclaimer in the documentation
35 * and/or other materials provided with the distribution.
37 * . Neither the name of Agere Systems Inc. nor the names of the contributors
38 * may be used to endorse or promote products derived from this software
39 * without specific prior written permission.
41 * Disclaimer
43 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
44 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
45 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
46 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
47 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
48 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
49 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
50 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
51 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
52 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
54 * DAMAGE.
58 #include "et131x_version.h"
59 #include "et131x_defs.h"
61 #include <linux/pci.h>
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/types.h>
65 #include <linux/kernel.h>
67 #include <linux/sched.h>
68 #include <linux/ptrace.h>
69 #include <linux/slab.h>
70 #include <linux/ctype.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/interrupt.h>
74 #include <linux/in.h>
75 #include <linux/delay.h>
76 #include <linux/io.h>
77 #include <linux/bitops.h>
78 #include <asm/system.h>
80 #include <linux/netdevice.h>
81 #include <linux/etherdevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/if_arp.h>
84 #include <linux/ioport.h>
86 #include "et1310_phy.h"
87 #include "et131x_adapter.h"
88 #include "et1310_tx.h"
89 #include "et131x.h"
91 static inline void et131x_free_send_packet(struct et131x_adapter *etdev,
92 struct tcb *tcb);
93 static int et131x_send_packet(struct sk_buff *skb,
94 struct et131x_adapter *etdev);
95 static int nic_send_packet(struct et131x_adapter *etdev, struct tcb *tcb);
97 /**
98 * et131x_tx_dma_memory_alloc
99 * @adapter: pointer to our private adapter structure
101 * Returns 0 on success and errno on failure (as defined in errno.h).
103 * Allocates memory that will be visible both to the device and to the CPU.
104 * The OS will pass us packets, pointers to which we will insert in the Tx
105 * Descriptor queue. The device will read this queue to find the packets in
106 * memory. The device will update the "status" in memory each time it xmits a
107 * packet.
109 int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
111 int desc_size = 0;
112 struct tx_ring *tx_ring = &adapter->tx_ring;
114 /* Allocate memory for the TCB's (Transmit Control Block) */
115 adapter->tx_ring.tcb_ring =
116 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
117 if (!adapter->tx_ring.tcb_ring) {
118 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
119 return -ENOMEM;
122 /* Allocate enough memory for the Tx descriptor ring, and allocate
123 * some extra so that the ring can be aligned on a 4k boundary.
125 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
126 tx_ring->tx_desc_ring =
127 (struct tx_desc *) pci_alloc_consistent(adapter->pdev, desc_size,
128 &tx_ring->tx_desc_ring_pa);
129 if (!adapter->tx_ring.tx_desc_ring) {
130 dev_err(&adapter->pdev->dev,
131 "Cannot alloc memory for Tx Ring\n");
132 return -ENOMEM;
135 /* Save physical address
137 * NOTE: pci_alloc_consistent(), used above to alloc DMA regions,
138 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
139 * are ever returned, make sure the high part is retrieved here before
140 * storing the adjusted address.
142 /* Allocate memory for the Tx status block */
143 tx_ring->tx_status = pci_alloc_consistent(adapter->pdev,
144 sizeof(u32),
145 &tx_ring->tx_status_pa);
146 if (!adapter->tx_ring.tx_status_pa) {
147 dev_err(&adapter->pdev->dev,
148 "Cannot alloc memory for Tx status block\n");
149 return -ENOMEM;
151 return 0;
155 * et131x_tx_dma_memory_free - Free all memory allocated within this module
156 * @adapter: pointer to our private adapter structure
158 * Returns 0 on success and errno on failure (as defined in errno.h).
160 void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
162 int desc_size = 0;
164 if (adapter->tx_ring.tx_desc_ring) {
165 /* Free memory relating to Tx rings here */
166 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
167 + 4096 - 1;
168 pci_free_consistent(adapter->pdev,
169 desc_size,
170 adapter->tx_ring.tx_desc_ring,
171 adapter->tx_ring.tx_desc_ring_pa);
172 adapter->tx_ring.tx_desc_ring = NULL;
175 /* Free memory for the Tx status block */
176 if (adapter->tx_ring.tx_status) {
177 pci_free_consistent(adapter->pdev,
178 sizeof(u32),
179 adapter->tx_ring.tx_status,
180 adapter->tx_ring.tx_status_pa);
182 adapter->tx_ring.tx_status = NULL;
184 /* Free the memory for the tcb structures */
185 kfree(adapter->tx_ring.tcb_ring);
189 * ConfigTxDmaRegs - Set up the tx dma section of the JAGCore.
190 * @etdev: pointer to our private adapter structure
192 * Configure the transmit engine with the ring buffers we have created
193 * and prepare it for use.
195 void ConfigTxDmaRegs(struct et131x_adapter *etdev)
197 struct txdma_regs __iomem *txdma = &etdev->regs->txdma;
199 /* Load the hardware with the start of the transmit descriptor ring. */
200 writel((u32) ((u64)etdev->tx_ring.tx_desc_ring_pa >> 32),
201 &txdma->pr_base_hi);
202 writel((u32) etdev->tx_ring.tx_desc_ring_pa,
203 &txdma->pr_base_lo);
205 /* Initialise the transmit DMA engine */
206 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
208 /* Load the completion writeback physical address */
209 writel((u32)((u64)etdev->tx_ring.tx_status_pa >> 32),
210 &txdma->dma_wb_base_hi);
211 writel((u32)etdev->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
213 *etdev->tx_ring.tx_status = 0;
215 writel(0, &txdma->service_request);
216 etdev->tx_ring.send_idx = 0;
220 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
221 * @etdev: pointer to our adapter structure
223 void et131x_tx_dma_disable(struct et131x_adapter *etdev)
225 /* Setup the tramsmit dma configuration register */
226 writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
227 &etdev->regs->txdma.csr);
231 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
232 * @etdev: pointer to our adapter structure
234 * Mainly used after a return to the D0 (full-power) state from a lower state.
236 void et131x_tx_dma_enable(struct et131x_adapter *etdev)
238 /* Setup the transmit dma configuration register for normal
239 * operation
241 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
242 &etdev->regs->txdma.csr);
246 * et131x_init_send - Initialize send data structures
247 * @adapter: pointer to our private adapter structure
249 void et131x_init_send(struct et131x_adapter *adapter)
251 struct tcb *tcb;
252 u32 ct;
253 struct tx_ring *tx_ring;
255 /* Setup some convenience pointers */
256 tx_ring = &adapter->tx_ring;
257 tcb = adapter->tx_ring.tcb_ring;
259 tx_ring->tcb_qhead = tcb;
261 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
263 /* Go through and set up each TCB */
264 for (ct = 0; ct++ < NUM_TCB; tcb++)
265 /* Set the link pointer in HW TCB to the next TCB in the
266 * chain
268 tcb->next = tcb + 1;
270 /* Set the tail pointer */
271 tcb--;
272 tx_ring->tcb_qtail = tcb;
273 tcb->next = NULL;
274 /* Curr send queue should now be empty */
275 tx_ring->send_head = NULL;
276 tx_ring->send_tail = NULL;
280 * et131x_send_packets - This function is called by the OS to send packets
281 * @skb: the packet(s) to send
282 * @netdev:device on which to TX the above packet(s)
284 * Return 0 in almost all cases; non-zero value in extreme hard failure only
286 int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
288 int status = 0;
289 struct et131x_adapter *etdev = NULL;
291 etdev = netdev_priv(netdev);
293 /* Send these packets
295 * NOTE: The Linux Tx entry point is only given one packet at a time
296 * to Tx, so the PacketCount and it's array used makes no sense here
299 /* TCB is not available */
300 if (etdev->tx_ring.used >= NUM_TCB) {
301 /* NOTE: If there's an error on send, no need to queue the
302 * packet under Linux; if we just send an error up to the
303 * netif layer, it will resend the skb to us.
305 status = -ENOMEM;
306 } else {
307 /* We need to see if the link is up; if it's not, make the
308 * netif layer think we're good and drop the packet
310 if ((etdev->Flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
311 !netif_carrier_ok(netdev)) {
312 dev_kfree_skb_any(skb);
313 skb = NULL;
315 etdev->net_stats.tx_dropped++;
316 } else {
317 status = et131x_send_packet(skb, etdev);
318 if (status != 0 && status != -ENOMEM) {
319 /* On any other error, make netif think we're
320 * OK and drop the packet
322 dev_kfree_skb_any(skb);
323 skb = NULL;
324 etdev->net_stats.tx_dropped++;
328 return status;
332 * et131x_send_packet - Do the work to send a packet
333 * @skb: the packet(s) to send
334 * @etdev: a pointer to the device's private adapter structure
336 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
338 * Assumption: Send spinlock has been acquired
340 static int et131x_send_packet(struct sk_buff *skb,
341 struct et131x_adapter *etdev)
343 int status;
344 struct tcb *tcb = NULL;
345 u16 *shbufva;
346 unsigned long flags;
348 /* All packets must have at least a MAC address and a protocol type */
349 if (skb->len < ETH_HLEN)
350 return -EIO;
352 /* Get a TCB for this packet */
353 spin_lock_irqsave(&etdev->TCBReadyQLock, flags);
355 tcb = etdev->tx_ring.tcb_qhead;
357 if (tcb == NULL) {
358 spin_unlock_irqrestore(&etdev->TCBReadyQLock, flags);
359 return -ENOMEM;
362 etdev->tx_ring.tcb_qhead = tcb->next;
364 if (etdev->tx_ring.tcb_qhead == NULL)
365 etdev->tx_ring.tcb_qtail = NULL;
367 spin_unlock_irqrestore(&etdev->TCBReadyQLock, flags);
369 tcb->skb = skb;
371 if (skb->data != NULL && skb->len - skb->data_len >= 6) {
372 shbufva = (u16 *) skb->data;
374 if ((shbufva[0] == 0xffff) &&
375 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
376 tcb->flags |= fMP_DEST_BROAD;
377 } else if ((shbufva[0] & 0x3) == 0x0001) {
378 tcb->flags |= fMP_DEST_MULTI;
382 tcb->next = NULL;
384 /* Call the NIC specific send handler. */
385 status = nic_send_packet(etdev, tcb);
387 if (status != 0) {
388 spin_lock_irqsave(&etdev->TCBReadyQLock, flags);
390 if (etdev->tx_ring.tcb_qtail)
391 etdev->tx_ring.tcb_qtail->next = tcb;
392 else
393 /* Apparently ready Q is empty. */
394 etdev->tx_ring.tcb_qhead = tcb;
396 etdev->tx_ring.tcb_qtail = tcb;
397 spin_unlock_irqrestore(&etdev->TCBReadyQLock, flags);
398 return status;
400 WARN_ON(etdev->tx_ring.used > NUM_TCB);
401 return 0;
405 * nic_send_packet - NIC specific send handler for version B silicon.
406 * @etdev: pointer to our adapter
407 * @tcb: pointer to struct tcb
409 * Returns 0 or errno.
411 static int nic_send_packet(struct et131x_adapter *etdev, struct tcb *tcb)
413 u32 i;
414 struct tx_desc desc[24]; /* 24 x 16 byte */
415 u32 frag = 0;
416 u32 thiscopy, remainder;
417 struct sk_buff *skb = tcb->skb;
418 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
419 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
420 unsigned long flags;
422 /* Part of the optimizations of this send routine restrict us to
423 * sending 24 fragments at a pass. In practice we should never see
424 * more than 5 fragments.
426 * NOTE: The older version of this function (below) can handle any
427 * number of fragments. If needed, we can call this function,
428 * although it is less efficient.
430 if (nr_frags > 23)
431 return -EIO;
433 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
435 for (i = 0; i < nr_frags; i++) {
436 /* If there is something in this element, lets get a
437 * descriptor from the ring and get the necessary data
439 if (i == 0) {
440 /* If the fragments are smaller than a standard MTU,
441 * then map them to a single descriptor in the Tx
442 * Desc ring. However, if they're larger, as is
443 * possible with support for jumbo packets, then
444 * split them each across 2 descriptors.
446 * This will work until we determine why the hardware
447 * doesn't seem to like large fragments.
449 if ((skb->len - skb->data_len) <= 1514) {
450 desc[frag].addr_hi = 0;
451 /* Low 16bits are length, high is vlan and
452 unused currently so zero */
453 desc[frag].len_vlan =
454 skb->len - skb->data_len;
456 /* NOTE: Here, the dma_addr_t returned from
457 * pci_map_single() is implicitly cast as a
458 * u32. Although dma_addr_t can be
459 * 64-bit, the address returned by
460 * pci_map_single() is always 32-bit
461 * addressable (as defined by the pci/dma
462 * subsystem)
464 desc[frag++].addr_lo =
465 pci_map_single(etdev->pdev,
466 skb->data,
467 skb->len -
468 skb->data_len,
469 PCI_DMA_TODEVICE);
470 } else {
471 desc[frag].addr_hi = 0;
472 desc[frag].len_vlan =
473 (skb->len - skb->data_len) / 2;
475 /* NOTE: Here, the dma_addr_t returned from
476 * pci_map_single() is implicitly cast as a
477 * u32. Although dma_addr_t can be
478 * 64-bit, the address returned by
479 * pci_map_single() is always 32-bit
480 * addressable (as defined by the pci/dma
481 * subsystem)
483 desc[frag++].addr_lo =
484 pci_map_single(etdev->pdev,
485 skb->data,
486 ((skb->len -
487 skb->data_len) / 2),
488 PCI_DMA_TODEVICE);
489 desc[frag].addr_hi = 0;
491 desc[frag].len_vlan =
492 (skb->len - skb->data_len) / 2;
494 /* NOTE: Here, the dma_addr_t returned from
495 * pci_map_single() is implicitly cast as a
496 * u32. Although dma_addr_t can be
497 * 64-bit, the address returned by
498 * pci_map_single() is always 32-bit
499 * addressable (as defined by the pci/dma
500 * subsystem)
502 desc[frag++].addr_lo =
503 pci_map_single(etdev->pdev,
504 skb->data +
505 ((skb->len -
506 skb->data_len) / 2),
507 ((skb->len -
508 skb->data_len) / 2),
509 PCI_DMA_TODEVICE);
511 } else {
512 desc[frag].addr_hi = 0;
513 desc[frag].len_vlan =
514 frags[i - 1].size;
516 /* NOTE: Here, the dma_addr_t returned from
517 * pci_map_page() is implicitly cast as a u32.
518 * Although dma_addr_t can be 64-bit, the address
519 * returned by pci_map_page() is always 32-bit
520 * addressable (as defined by the pci/dma subsystem)
522 desc[frag++].addr_lo =
523 pci_map_page(etdev->pdev,
524 frags[i - 1].page,
525 frags[i - 1].page_offset,
526 frags[i - 1].size,
527 PCI_DMA_TODEVICE);
531 if (frag == 0)
532 return -EIO;
534 if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
535 if (++etdev->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
536 /* Last element & Interrupt flag */
537 desc[frag - 1].flags = 0x5;
538 etdev->tx_ring.since_irq = 0;
539 } else { /* Last element */
540 desc[frag - 1].flags = 0x1;
542 } else
543 desc[frag - 1].flags = 0x5;
545 desc[0].flags |= 2; /* First element flag */
547 tcb->index_start = etdev->tx_ring.send_idx;
548 tcb->stale = 0;
550 spin_lock_irqsave(&etdev->send_hw_lock, flags);
552 thiscopy = NUM_DESC_PER_RING_TX -
553 INDEX10(etdev->tx_ring.send_idx);
555 if (thiscopy >= frag) {
556 remainder = 0;
557 thiscopy = frag;
558 } else {
559 remainder = frag - thiscopy;
562 memcpy(etdev->tx_ring.tx_desc_ring +
563 INDEX10(etdev->tx_ring.send_idx), desc,
564 sizeof(struct tx_desc) * thiscopy);
566 add_10bit(&etdev->tx_ring.send_idx, thiscopy);
568 if (INDEX10(etdev->tx_ring.send_idx) == 0 ||
569 INDEX10(etdev->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
570 etdev->tx_ring.send_idx &= ~ET_DMA10_MASK;
571 etdev->tx_ring.send_idx ^= ET_DMA10_WRAP;
574 if (remainder) {
575 memcpy(etdev->tx_ring.tx_desc_ring,
576 desc + thiscopy,
577 sizeof(struct tx_desc) * remainder);
579 add_10bit(&etdev->tx_ring.send_idx, remainder);
582 if (INDEX10(etdev->tx_ring.send_idx) == 0) {
583 if (etdev->tx_ring.send_idx)
584 tcb->index = NUM_DESC_PER_RING_TX - 1;
585 else
586 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
587 } else
588 tcb->index = etdev->tx_ring.send_idx - 1;
590 spin_lock(&etdev->TCBSendQLock);
592 if (etdev->tx_ring.send_tail)
593 etdev->tx_ring.send_tail->next = tcb;
594 else
595 etdev->tx_ring.send_head = tcb;
597 etdev->tx_ring.send_tail = tcb;
599 WARN_ON(tcb->next != NULL);
601 etdev->tx_ring.used++;
603 spin_unlock(&etdev->TCBSendQLock);
605 /* Write the new write pointer back to the device. */
606 writel(etdev->tx_ring.send_idx,
607 &etdev->regs->txdma.service_request);
609 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
610 * timer to wake us up if this packet isn't followed by N more.
612 if (etdev->linkspeed == TRUEPHY_SPEED_1000MBPS) {
613 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
614 &etdev->regs->global.watchdog_timer);
616 spin_unlock_irqrestore(&etdev->send_hw_lock, flags);
618 return 0;
623 * et131x_free_send_packet - Recycle a struct tcb
624 * @etdev: pointer to our adapter
625 * @tcb: pointer to struct tcb
627 * Complete the packet if necessary
628 * Assumption - Send spinlock has been acquired
630 inline void et131x_free_send_packet(struct et131x_adapter *etdev,
631 struct tcb *tcb)
633 unsigned long flags;
634 struct tx_desc *desc = NULL;
635 struct net_device_stats *stats = &etdev->net_stats;
637 if (tcb->flags & fMP_DEST_BROAD)
638 atomic_inc(&etdev->Stats.brdcstxmt);
639 else if (tcb->flags & fMP_DEST_MULTI)
640 atomic_inc(&etdev->Stats.multixmt);
641 else
642 atomic_inc(&etdev->Stats.unixmt);
644 if (tcb->skb) {
645 stats->tx_bytes += tcb->skb->len;
647 /* Iterate through the TX descriptors on the ring
648 * corresponding to this packet and umap the fragments
649 * they point to
651 do {
652 desc = (struct tx_desc *)(etdev->tx_ring.tx_desc_ring +
653 INDEX10(tcb->index_start));
655 pci_unmap_single(etdev->pdev,
656 desc->addr_lo,
657 desc->len_vlan, PCI_DMA_TODEVICE);
659 add_10bit(&tcb->index_start, 1);
660 if (INDEX10(tcb->index_start) >=
661 NUM_DESC_PER_RING_TX) {
662 tcb->index_start &= ~ET_DMA10_MASK;
663 tcb->index_start ^= ET_DMA10_WRAP;
665 } while (desc != (etdev->tx_ring.tx_desc_ring +
666 INDEX10(tcb->index)));
668 dev_kfree_skb_any(tcb->skb);
671 memset(tcb, 0, sizeof(struct tcb));
673 /* Add the TCB to the Ready Q */
674 spin_lock_irqsave(&etdev->TCBReadyQLock, flags);
676 etdev->Stats.opackets++;
678 if (etdev->tx_ring.tcb_qtail)
679 etdev->tx_ring.tcb_qtail->next = tcb;
680 else
681 /* Apparently ready Q is empty. */
682 etdev->tx_ring.tcb_qhead = tcb;
684 etdev->tx_ring.tcb_qtail = tcb;
686 spin_unlock_irqrestore(&etdev->TCBReadyQLock, flags);
687 WARN_ON(etdev->tx_ring.used < 0);
691 * et131x_free_busy_send_packets - Free and complete the stopped active sends
692 * @etdev: pointer to our adapter
694 * Assumption - Send spinlock has been acquired
696 void et131x_free_busy_send_packets(struct et131x_adapter *etdev)
698 struct tcb *tcb;
699 unsigned long flags;
700 u32 freed = 0;
702 /* Any packets being sent? Check the first TCB on the send list */
703 spin_lock_irqsave(&etdev->TCBSendQLock, flags);
705 tcb = etdev->tx_ring.send_head;
707 while (tcb != NULL && freed < NUM_TCB) {
708 struct tcb *next = tcb->next;
710 etdev->tx_ring.send_head = next;
712 if (next == NULL)
713 etdev->tx_ring.send_tail = NULL;
715 etdev->tx_ring.used--;
717 spin_unlock_irqrestore(&etdev->TCBSendQLock, flags);
719 freed++;
720 et131x_free_send_packet(etdev, tcb);
722 spin_lock_irqsave(&etdev->TCBSendQLock, flags);
724 tcb = etdev->tx_ring.send_head;
727 WARN_ON(freed == NUM_TCB);
729 spin_unlock_irqrestore(&etdev->TCBSendQLock, flags);
731 etdev->tx_ring.used = 0;
735 * et131x_handle_send_interrupt - Interrupt handler for sending processing
736 * @etdev: pointer to our adapter
738 * Re-claim the send resources, complete sends and get more to send from
739 * the send wait queue.
741 * Assumption - Send spinlock has been acquired
743 void et131x_handle_send_interrupt(struct et131x_adapter *etdev)
745 unsigned long flags;
746 u32 serviced;
747 struct tcb *tcb;
748 u32 index;
750 serviced = readl(&etdev->regs->txdma.NewServiceComplete);
751 index = INDEX10(serviced);
753 /* Has the ring wrapped? Process any descriptors that do not have
754 * the same "wrap" indicator as the current completion indicator
756 spin_lock_irqsave(&etdev->TCBSendQLock, flags);
758 tcb = etdev->tx_ring.send_head;
760 while (tcb &&
761 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
762 index < INDEX10(tcb->index)) {
763 etdev->tx_ring.used--;
764 etdev->tx_ring.send_head = tcb->next;
765 if (tcb->next == NULL)
766 etdev->tx_ring.send_tail = NULL;
768 spin_unlock_irqrestore(&etdev->TCBSendQLock, flags);
769 et131x_free_send_packet(etdev, tcb);
770 spin_lock_irqsave(&etdev->TCBSendQLock, flags);
772 /* Goto the next packet */
773 tcb = etdev->tx_ring.send_head;
775 while (tcb &&
776 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
777 && index > (tcb->index & ET_DMA10_MASK)) {
778 etdev->tx_ring.used--;
779 etdev->tx_ring.send_head = tcb->next;
780 if (tcb->next == NULL)
781 etdev->tx_ring.send_tail = NULL;
783 spin_unlock_irqrestore(&etdev->TCBSendQLock, flags);
784 et131x_free_send_packet(etdev, tcb);
785 spin_lock_irqsave(&etdev->TCBSendQLock, flags);
787 /* Goto the next packet */
788 tcb = etdev->tx_ring.send_head;
791 /* Wake up the queue when we hit a low-water mark */
792 if (etdev->tx_ring.used <= NUM_TCB / 3)
793 netif_wake_queue(etdev->netdev);
795 spin_unlock_irqrestore(&etdev->TCBSendQLock, flags);