3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <trace/kmemtrace.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
117 #include <asm/cacheflush.h>
118 #include <asm/tlbflush.h>
119 #include <asm/page.h>
122 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
123 * 0 for faster, smaller code (especially in the critical paths).
125 * STATS - 1 to collect stats for /proc/slabinfo.
126 * 0 for faster, smaller code (especially in the critical paths).
128 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 #ifdef CONFIG_DEBUG_SLAB
134 #define FORCED_DEBUG 1
138 #define FORCED_DEBUG 0
141 /* Shouldn't this be in a header file somewhere? */
142 #define BYTES_PER_WORD sizeof(void *)
143 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
145 #ifndef ARCH_KMALLOC_MINALIGN
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
155 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
158 #ifndef ARCH_SLAB_MINALIGN
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
166 #define ARCH_SLAB_MINALIGN 0
169 #ifndef ARCH_KMALLOC_FLAGS
170 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173 /* Legal flag mask for kmem_cache_create(). */
175 # define CREATE_MASK (SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
183 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
193 * Bufctl's are used for linking objs within a slab
196 * This implementation relies on "struct page" for locating the cache &
197 * slab an object belongs to.
198 * This allows the bufctl structure to be small (one int), but limits
199 * the number of objects a slab (not a cache) can contain when off-slab
200 * bufctls are used. The limit is the size of the largest general cache
201 * that does not use off-slab slabs.
202 * For 32bit archs with 4 kB pages, is this 56.
203 * This is not serious, as it is only for large objects, when it is unwise
204 * to have too many per slab.
205 * Note: This limit can be raised by introducing a general cache whose size
206 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
209 typedef unsigned int kmem_bufctl_t
;
210 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
211 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
212 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
213 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 struct list_head list
;
224 unsigned long colouroff
;
225 void *s_mem
; /* including colour offset */
226 unsigned int inuse
; /* num of objs active in slab */
228 unsigned short nodeid
;
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
245 * We assume struct slab_rcu can overlay struct slab when destroying.
248 struct rcu_head head
;
249 struct kmem_cache
*cachep
;
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
261 * The limit is stored in the per-cpu structure to reduce the data cache
268 unsigned int batchcount
;
269 unsigned int touched
;
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
282 #define BOOT_CPUCACHE_ENTRIES 1
283 struct arraycache_init
{
284 struct array_cache cache
;
285 void *entries
[BOOT_CPUCACHE_ENTRIES
];
289 * The slab lists for all objects.
292 struct list_head slabs_partial
; /* partial list first, better asm code */
293 struct list_head slabs_full
;
294 struct list_head slabs_free
;
295 unsigned long free_objects
;
296 unsigned int free_limit
;
297 unsigned int colour_next
; /* Per-node cache coloring */
298 spinlock_t list_lock
;
299 struct array_cache
*shared
; /* shared per node */
300 struct array_cache
**alien
; /* on other nodes */
301 unsigned long next_reap
; /* updated without locking */
302 int free_touched
; /* updated without locking */
306 * Need this for bootstrapping a per node allocator.
308 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
310 #define CACHE_CACHE 0
311 #define SIZE_AC MAX_NUMNODES
312 #define SIZE_L3 (2 * MAX_NUMNODES)
314 static int drain_freelist(struct kmem_cache
*cache
,
315 struct kmem_list3
*l3
, int tofree
);
316 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
318 static int enable_cpucache(struct kmem_cache
*cachep
);
319 static void cache_reap(struct work_struct
*unused
);
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
325 static __always_inline
int index_of(const size_t size
)
327 extern void __bad_size(void);
329 if (__builtin_constant_p(size
)) {
337 #include <linux/kmalloc_sizes.h>
345 static int slab_early_init
= 1;
347 #define INDEX_AC index_of(sizeof(struct arraycache_init))
348 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
350 static void kmem_list3_init(struct kmem_list3
*parent
)
352 INIT_LIST_HEAD(&parent
->slabs_full
);
353 INIT_LIST_HEAD(&parent
->slabs_partial
);
354 INIT_LIST_HEAD(&parent
->slabs_free
);
355 parent
->shared
= NULL
;
356 parent
->alien
= NULL
;
357 parent
->colour_next
= 0;
358 spin_lock_init(&parent
->list_lock
);
359 parent
->free_objects
= 0;
360 parent
->free_touched
= 0;
363 #define MAKE_LIST(cachep, listp, slab, nodeid) \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
369 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
383 /* 1) per-cpu data, touched during every alloc/free */
384 struct array_cache
*array
[NR_CPUS
];
385 /* 2) Cache tunables. Protected by cache_chain_mutex */
386 unsigned int batchcount
;
390 unsigned int buffer_size
;
391 u32 reciprocal_buffer_size
;
392 /* 3) touched by every alloc & free from the backend */
394 unsigned int flags
; /* constant flags */
395 unsigned int num
; /* # of objs per slab */
397 /* 4) cache_grow/shrink */
398 /* order of pgs per slab (2^n) */
399 unsigned int gfporder
;
401 /* force GFP flags, e.g. GFP_DMA */
404 size_t colour
; /* cache colouring range */
405 unsigned int colour_off
; /* colour offset */
406 struct kmem_cache
*slabp_cache
;
407 unsigned int slab_size
;
408 unsigned int dflags
; /* dynamic flags */
410 /* constructor func */
411 void (*ctor
)(void *obj
);
413 /* 5) cache creation/removal */
415 struct list_head next
;
419 unsigned long num_active
;
420 unsigned long num_allocations
;
421 unsigned long high_mark
;
423 unsigned long reaped
;
424 unsigned long errors
;
425 unsigned long max_freeable
;
426 unsigned long node_allocs
;
427 unsigned long node_frees
;
428 unsigned long node_overflow
;
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
445 * We put nodelists[] at the end of kmem_cache, because we want to size
446 * this array to nr_node_ids slots instead of MAX_NUMNODES
447 * (see kmem_cache_init())
448 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449 * is statically defined, so we reserve the max number of nodes.
451 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
453 * Do not add fields after nodelists[]
457 #define CFLGS_OFF_SLAB (0x80000000UL)
458 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
460 #define BATCHREFILL_LIMIT 16
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
465 * OTOH the cpuarrays can contain lots of objects,
466 * which could lock up otherwise freeable slabs.
468 #define REAPTIMEOUT_CPUC (2*HZ)
469 #define REAPTIMEOUT_LIST3 (4*HZ)
472 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
473 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
474 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
475 #define STATS_INC_GROWN(x) ((x)->grown++)
476 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
477 #define STATS_SET_HIGH(x) \
479 if ((x)->num_active > (x)->high_mark) \
480 (x)->high_mark = (x)->num_active; \
482 #define STATS_INC_ERR(x) ((x)->errors++)
483 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
484 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
485 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
486 #define STATS_SET_FREEABLE(x, i) \
488 if ((x)->max_freeable < i) \
489 (x)->max_freeable = i; \
491 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
492 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
493 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
494 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
496 #define STATS_INC_ACTIVE(x) do { } while (0)
497 #define STATS_DEC_ACTIVE(x) do { } while (0)
498 #define STATS_INC_ALLOCED(x) do { } while (0)
499 #define STATS_INC_GROWN(x) do { } while (0)
500 #define STATS_ADD_REAPED(x,y) do { } while (0)
501 #define STATS_SET_HIGH(x) do { } while (0)
502 #define STATS_INC_ERR(x) do { } while (0)
503 #define STATS_INC_NODEALLOCS(x) do { } while (0)
504 #define STATS_INC_NODEFREES(x) do { } while (0)
505 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
506 #define STATS_SET_FREEABLE(x, i) do { } while (0)
507 #define STATS_INC_ALLOCHIT(x) do { } while (0)
508 #define STATS_INC_ALLOCMISS(x) do { } while (0)
509 #define STATS_INC_FREEHIT(x) do { } while (0)
510 #define STATS_INC_FREEMISS(x) do { } while (0)
516 * memory layout of objects:
518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
519 * the end of an object is aligned with the end of the real
520 * allocation. Catches writes behind the end of the allocation.
521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 * [BYTES_PER_WORD long]
528 static int obj_offset(struct kmem_cache
*cachep
)
530 return cachep
->obj_offset
;
533 static int obj_size(struct kmem_cache
*cachep
)
535 return cachep
->obj_size
;
538 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
540 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
541 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
542 sizeof(unsigned long long));
545 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
547 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
548 if (cachep
->flags
& SLAB_STORE_USER
)
549 return (unsigned long long *)(objp
+ cachep
->buffer_size
-
550 sizeof(unsigned long long) -
552 return (unsigned long long *) (objp
+ cachep
->buffer_size
-
553 sizeof(unsigned long long));
556 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
558 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
559 return (void **)(objp
+ cachep
->buffer_size
- BYTES_PER_WORD
);
564 #define obj_offset(x) 0
565 #define obj_size(cachep) (cachep->buffer_size)
566 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
568 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
572 #ifdef CONFIG_KMEMTRACE
573 size_t slab_buffer_size(struct kmem_cache
*cachep
)
575 return cachep
->buffer_size
;
577 EXPORT_SYMBOL(slab_buffer_size
);
581 * Do not go above this order unless 0 objects fit into the slab.
583 #define BREAK_GFP_ORDER_HI 1
584 #define BREAK_GFP_ORDER_LO 0
585 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
588 * Functions for storing/retrieving the cachep and or slab from the page
589 * allocator. These are used to find the slab an obj belongs to. With kfree(),
590 * these are used to find the cache which an obj belongs to.
592 static inline void page_set_cache(struct page
*page
, struct kmem_cache
*cache
)
594 page
->lru
.next
= (struct list_head
*)cache
;
597 static inline struct kmem_cache
*page_get_cache(struct page
*page
)
599 page
= compound_head(page
);
600 BUG_ON(!PageSlab(page
));
601 return (struct kmem_cache
*)page
->lru
.next
;
604 static inline void page_set_slab(struct page
*page
, struct slab
*slab
)
606 page
->lru
.prev
= (struct list_head
*)slab
;
609 static inline struct slab
*page_get_slab(struct page
*page
)
611 BUG_ON(!PageSlab(page
));
612 return (struct slab
*)page
->lru
.prev
;
615 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
617 struct page
*page
= virt_to_head_page(obj
);
618 return page_get_cache(page
);
621 static inline struct slab
*virt_to_slab(const void *obj
)
623 struct page
*page
= virt_to_head_page(obj
);
624 return page_get_slab(page
);
627 static inline void *index_to_obj(struct kmem_cache
*cache
, struct slab
*slab
,
630 return slab
->s_mem
+ cache
->buffer_size
* idx
;
634 * We want to avoid an expensive divide : (offset / cache->buffer_size)
635 * Using the fact that buffer_size is a constant for a particular cache,
636 * we can replace (offset / cache->buffer_size) by
637 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
639 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
640 const struct slab
*slab
, void *obj
)
642 u32 offset
= (obj
- slab
->s_mem
);
643 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
647 * These are the default caches for kmalloc. Custom caches can have other sizes.
649 struct cache_sizes malloc_sizes
[] = {
650 #define CACHE(x) { .cs_size = (x) },
651 #include <linux/kmalloc_sizes.h>
655 EXPORT_SYMBOL(malloc_sizes
);
657 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
663 static struct cache_names __initdata cache_names
[] = {
664 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
665 #include <linux/kmalloc_sizes.h>
670 static struct arraycache_init initarray_cache __initdata
=
671 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
672 static struct arraycache_init initarray_generic
=
673 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
675 /* internal cache of cache description objs */
676 static struct kmem_cache cache_cache
= {
678 .limit
= BOOT_CPUCACHE_ENTRIES
,
680 .buffer_size
= sizeof(struct kmem_cache
),
681 .name
= "kmem_cache",
684 #define BAD_ALIEN_MAGIC 0x01020304ul
686 #ifdef CONFIG_LOCKDEP
689 * Slab sometimes uses the kmalloc slabs to store the slab headers
690 * for other slabs "off slab".
691 * The locking for this is tricky in that it nests within the locks
692 * of all other slabs in a few places; to deal with this special
693 * locking we put on-slab caches into a separate lock-class.
695 * We set lock class for alien array caches which are up during init.
696 * The lock annotation will be lost if all cpus of a node goes down and
697 * then comes back up during hotplug
699 static struct lock_class_key on_slab_l3_key
;
700 static struct lock_class_key on_slab_alc_key
;
702 static inline void init_lock_keys(void)
706 struct cache_sizes
*s
= malloc_sizes
;
708 while (s
->cs_size
!= ULONG_MAX
) {
710 struct array_cache
**alc
;
712 struct kmem_list3
*l3
= s
->cs_cachep
->nodelists
[q
];
713 if (!l3
|| OFF_SLAB(s
->cs_cachep
))
715 lockdep_set_class(&l3
->list_lock
, &on_slab_l3_key
);
718 * FIXME: This check for BAD_ALIEN_MAGIC
719 * should go away when common slab code is taught to
720 * work even without alien caches.
721 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
722 * for alloc_alien_cache,
724 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
728 lockdep_set_class(&alc
[r
]->lock
,
736 static inline void init_lock_keys(void)
742 * Guard access to the cache-chain.
744 static DEFINE_MUTEX(cache_chain_mutex
);
745 static struct list_head cache_chain
;
748 * chicken and egg problem: delay the per-cpu array allocation
749 * until the general caches are up.
759 * used by boot code to determine if it can use slab based allocator
761 int slab_is_available(void)
763 return g_cpucache_up
== FULL
;
766 static DEFINE_PER_CPU(struct delayed_work
, reap_work
);
768 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
770 return cachep
->array
[smp_processor_id()];
773 static inline struct kmem_cache
*__find_general_cachep(size_t size
,
776 struct cache_sizes
*csizep
= malloc_sizes
;
779 /* This happens if someone tries to call
780 * kmem_cache_create(), or __kmalloc(), before
781 * the generic caches are initialized.
783 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
786 return ZERO_SIZE_PTR
;
788 while (size
> csizep
->cs_size
)
792 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
793 * has cs_{dma,}cachep==NULL. Thus no special case
794 * for large kmalloc calls required.
796 #ifdef CONFIG_ZONE_DMA
797 if (unlikely(gfpflags
& GFP_DMA
))
798 return csizep
->cs_dmacachep
;
800 return csizep
->cs_cachep
;
803 static struct kmem_cache
*kmem_find_general_cachep(size_t size
, gfp_t gfpflags
)
805 return __find_general_cachep(size
, gfpflags
);
808 static size_t slab_mgmt_size(size_t nr_objs
, size_t align
)
810 return ALIGN(sizeof(struct slab
)+nr_objs
*sizeof(kmem_bufctl_t
), align
);
814 * Calculate the number of objects and left-over bytes for a given buffer size.
816 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
817 size_t align
, int flags
, size_t *left_over
,
822 size_t slab_size
= PAGE_SIZE
<< gfporder
;
825 * The slab management structure can be either off the slab or
826 * on it. For the latter case, the memory allocated for a
830 * - One kmem_bufctl_t for each object
831 * - Padding to respect alignment of @align
832 * - @buffer_size bytes for each object
834 * If the slab management structure is off the slab, then the
835 * alignment will already be calculated into the size. Because
836 * the slabs are all pages aligned, the objects will be at the
837 * correct alignment when allocated.
839 if (flags
& CFLGS_OFF_SLAB
) {
841 nr_objs
= slab_size
/ buffer_size
;
843 if (nr_objs
> SLAB_LIMIT
)
844 nr_objs
= SLAB_LIMIT
;
847 * Ignore padding for the initial guess. The padding
848 * is at most @align-1 bytes, and @buffer_size is at
849 * least @align. In the worst case, this result will
850 * be one greater than the number of objects that fit
851 * into the memory allocation when taking the padding
854 nr_objs
= (slab_size
- sizeof(struct slab
)) /
855 (buffer_size
+ sizeof(kmem_bufctl_t
));
858 * This calculated number will be either the right
859 * amount, or one greater than what we want.
861 if (slab_mgmt_size(nr_objs
, align
) + nr_objs
*buffer_size
865 if (nr_objs
> SLAB_LIMIT
)
866 nr_objs
= SLAB_LIMIT
;
868 mgmt_size
= slab_mgmt_size(nr_objs
, align
);
871 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
874 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
876 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
879 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
880 function
, cachep
->name
, msg
);
885 * By default on NUMA we use alien caches to stage the freeing of
886 * objects allocated from other nodes. This causes massive memory
887 * inefficiencies when using fake NUMA setup to split memory into a
888 * large number of small nodes, so it can be disabled on the command
892 static int use_alien_caches __read_mostly
= 1;
893 static int numa_platform __read_mostly
= 1;
894 static int __init
noaliencache_setup(char *s
)
896 use_alien_caches
= 0;
899 __setup("noaliencache", noaliencache_setup
);
903 * Special reaping functions for NUMA systems called from cache_reap().
904 * These take care of doing round robin flushing of alien caches (containing
905 * objects freed on different nodes from which they were allocated) and the
906 * flushing of remote pcps by calling drain_node_pages.
908 static DEFINE_PER_CPU(unsigned long, reap_node
);
910 static void init_reap_node(int cpu
)
914 node
= next_node(cpu_to_node(cpu
), node_online_map
);
915 if (node
== MAX_NUMNODES
)
916 node
= first_node(node_online_map
);
918 per_cpu(reap_node
, cpu
) = node
;
921 static void next_reap_node(void)
923 int node
= __get_cpu_var(reap_node
);
925 node
= next_node(node
, node_online_map
);
926 if (unlikely(node
>= MAX_NUMNODES
))
927 node
= first_node(node_online_map
);
928 __get_cpu_var(reap_node
) = node
;
932 #define init_reap_node(cpu) do { } while (0)
933 #define next_reap_node(void) do { } while (0)
937 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
938 * via the workqueue/eventd.
939 * Add the CPU number into the expiration time to minimize the possibility of
940 * the CPUs getting into lockstep and contending for the global cache chain
943 static void __cpuinit
start_cpu_timer(int cpu
)
945 struct delayed_work
*reap_work
= &per_cpu(reap_work
, cpu
);
948 * When this gets called from do_initcalls via cpucache_init(),
949 * init_workqueues() has already run, so keventd will be setup
952 if (keventd_up() && reap_work
->work
.func
== NULL
) {
954 INIT_DELAYED_WORK(reap_work
, cache_reap
);
955 schedule_delayed_work_on(cpu
, reap_work
,
956 __round_jiffies_relative(HZ
, cpu
));
960 static struct array_cache
*alloc_arraycache(int node
, int entries
,
963 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
964 struct array_cache
*nc
= NULL
;
966 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
970 nc
->batchcount
= batchcount
;
972 spin_lock_init(&nc
->lock
);
978 * Transfer objects in one arraycache to another.
979 * Locking must be handled by the caller.
981 * Return the number of entries transferred.
983 static int transfer_objects(struct array_cache
*to
,
984 struct array_cache
*from
, unsigned int max
)
986 /* Figure out how many entries to transfer */
987 int nr
= min(min(from
->avail
, max
), to
->limit
- to
->avail
);
992 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
1003 #define drain_alien_cache(cachep, alien) do { } while (0)
1004 #define reap_alien(cachep, l3) do { } while (0)
1006 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
1008 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
1011 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
1015 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1020 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
1026 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
1027 gfp_t flags
, int nodeid
)
1032 #else /* CONFIG_NUMA */
1034 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
1035 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
1037 static struct array_cache
**alloc_alien_cache(int node
, int limit
)
1039 struct array_cache
**ac_ptr
;
1040 int memsize
= sizeof(void *) * nr_node_ids
;
1045 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1048 if (i
== node
|| !node_online(i
)) {
1052 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
1054 for (i
--; i
>= 0; i
--)
1064 static void free_alien_cache(struct array_cache
**ac_ptr
)
1075 static void __drain_alien_cache(struct kmem_cache
*cachep
,
1076 struct array_cache
*ac
, int node
)
1078 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
1081 spin_lock(&rl3
->list_lock
);
1083 * Stuff objects into the remote nodes shared array first.
1084 * That way we could avoid the overhead of putting the objects
1085 * into the free lists and getting them back later.
1088 transfer_objects(rl3
->shared
, ac
, ac
->limit
);
1090 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
1092 spin_unlock(&rl3
->list_lock
);
1097 * Called from cache_reap() to regularly drain alien caches round robin.
1099 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_list3
*l3
)
1101 int node
= __get_cpu_var(reap_node
);
1104 struct array_cache
*ac
= l3
->alien
[node
];
1106 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1107 __drain_alien_cache(cachep
, ac
, node
);
1108 spin_unlock_irq(&ac
->lock
);
1113 static void drain_alien_cache(struct kmem_cache
*cachep
,
1114 struct array_cache
**alien
)
1117 struct array_cache
*ac
;
1118 unsigned long flags
;
1120 for_each_online_node(i
) {
1123 spin_lock_irqsave(&ac
->lock
, flags
);
1124 __drain_alien_cache(cachep
, ac
, i
);
1125 spin_unlock_irqrestore(&ac
->lock
, flags
);
1130 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1132 struct slab
*slabp
= virt_to_slab(objp
);
1133 int nodeid
= slabp
->nodeid
;
1134 struct kmem_list3
*l3
;
1135 struct array_cache
*alien
= NULL
;
1138 node
= numa_node_id();
1141 * Make sure we are not freeing a object from another node to the array
1142 * cache on this cpu.
1144 if (likely(slabp
->nodeid
== node
))
1147 l3
= cachep
->nodelists
[node
];
1148 STATS_INC_NODEFREES(cachep
);
1149 if (l3
->alien
&& l3
->alien
[nodeid
]) {
1150 alien
= l3
->alien
[nodeid
];
1151 spin_lock(&alien
->lock
);
1152 if (unlikely(alien
->avail
== alien
->limit
)) {
1153 STATS_INC_ACOVERFLOW(cachep
);
1154 __drain_alien_cache(cachep
, alien
, nodeid
);
1156 alien
->entry
[alien
->avail
++] = objp
;
1157 spin_unlock(&alien
->lock
);
1159 spin_lock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1160 free_block(cachep
, &objp
, 1, nodeid
);
1161 spin_unlock(&(cachep
->nodelists
[nodeid
])->list_lock
);
1167 static void __cpuinit
cpuup_canceled(long cpu
)
1169 struct kmem_cache
*cachep
;
1170 struct kmem_list3
*l3
= NULL
;
1171 int node
= cpu_to_node(cpu
);
1172 const struct cpumask
*mask
= cpumask_of_node(node
);
1174 list_for_each_entry(cachep
, &cache_chain
, next
) {
1175 struct array_cache
*nc
;
1176 struct array_cache
*shared
;
1177 struct array_cache
**alien
;
1179 /* cpu is dead; no one can alloc from it. */
1180 nc
= cachep
->array
[cpu
];
1181 cachep
->array
[cpu
] = NULL
;
1182 l3
= cachep
->nodelists
[node
];
1185 goto free_array_cache
;
1187 spin_lock_irq(&l3
->list_lock
);
1189 /* Free limit for this kmem_list3 */
1190 l3
->free_limit
-= cachep
->batchcount
;
1192 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1194 if (!cpus_empty(*mask
)) {
1195 spin_unlock_irq(&l3
->list_lock
);
1196 goto free_array_cache
;
1199 shared
= l3
->shared
;
1201 free_block(cachep
, shared
->entry
,
1202 shared
->avail
, node
);
1209 spin_unlock_irq(&l3
->list_lock
);
1213 drain_alien_cache(cachep
, alien
);
1214 free_alien_cache(alien
);
1220 * In the previous loop, all the objects were freed to
1221 * the respective cache's slabs, now we can go ahead and
1222 * shrink each nodelist to its limit.
1224 list_for_each_entry(cachep
, &cache_chain
, next
) {
1225 l3
= cachep
->nodelists
[node
];
1228 drain_freelist(cachep
, l3
, l3
->free_objects
);
1232 static int __cpuinit
cpuup_prepare(long cpu
)
1234 struct kmem_cache
*cachep
;
1235 struct kmem_list3
*l3
= NULL
;
1236 int node
= cpu_to_node(cpu
);
1237 const int memsize
= sizeof(struct kmem_list3
);
1240 * We need to do this right in the beginning since
1241 * alloc_arraycache's are going to use this list.
1242 * kmalloc_node allows us to add the slab to the right
1243 * kmem_list3 and not this cpu's kmem_list3
1246 list_for_each_entry(cachep
, &cache_chain
, next
) {
1248 * Set up the size64 kmemlist for cpu before we can
1249 * begin anything. Make sure some other cpu on this
1250 * node has not already allocated this
1252 if (!cachep
->nodelists
[node
]) {
1253 l3
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1256 kmem_list3_init(l3
);
1257 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
1258 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1261 * The l3s don't come and go as CPUs come and
1262 * go. cache_chain_mutex is sufficient
1265 cachep
->nodelists
[node
] = l3
;
1268 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
1269 cachep
->nodelists
[node
]->free_limit
=
1270 (1 + nr_cpus_node(node
)) *
1271 cachep
->batchcount
+ cachep
->num
;
1272 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
1276 * Now we can go ahead with allocating the shared arrays and
1279 list_for_each_entry(cachep
, &cache_chain
, next
) {
1280 struct array_cache
*nc
;
1281 struct array_cache
*shared
= NULL
;
1282 struct array_cache
**alien
= NULL
;
1284 nc
= alloc_arraycache(node
, cachep
->limit
,
1285 cachep
->batchcount
);
1288 if (cachep
->shared
) {
1289 shared
= alloc_arraycache(node
,
1290 cachep
->shared
* cachep
->batchcount
,
1297 if (use_alien_caches
) {
1298 alien
= alloc_alien_cache(node
, cachep
->limit
);
1305 cachep
->array
[cpu
] = nc
;
1306 l3
= cachep
->nodelists
[node
];
1309 spin_lock_irq(&l3
->list_lock
);
1312 * We are serialised from CPU_DEAD or
1313 * CPU_UP_CANCELLED by the cpucontrol lock
1315 l3
->shared
= shared
;
1324 spin_unlock_irq(&l3
->list_lock
);
1326 free_alien_cache(alien
);
1330 cpuup_canceled(cpu
);
1334 static int __cpuinit
cpuup_callback(struct notifier_block
*nfb
,
1335 unsigned long action
, void *hcpu
)
1337 long cpu
= (long)hcpu
;
1341 case CPU_UP_PREPARE
:
1342 case CPU_UP_PREPARE_FROZEN
:
1343 mutex_lock(&cache_chain_mutex
);
1344 err
= cpuup_prepare(cpu
);
1345 mutex_unlock(&cache_chain_mutex
);
1348 case CPU_ONLINE_FROZEN
:
1349 start_cpu_timer(cpu
);
1351 #ifdef CONFIG_HOTPLUG_CPU
1352 case CPU_DOWN_PREPARE
:
1353 case CPU_DOWN_PREPARE_FROZEN
:
1355 * Shutdown cache reaper. Note that the cache_chain_mutex is
1356 * held so that if cache_reap() is invoked it cannot do
1357 * anything expensive but will only modify reap_work
1358 * and reschedule the timer.
1360 cancel_rearming_delayed_work(&per_cpu(reap_work
, cpu
));
1361 /* Now the cache_reaper is guaranteed to be not running. */
1362 per_cpu(reap_work
, cpu
).work
.func
= NULL
;
1364 case CPU_DOWN_FAILED
:
1365 case CPU_DOWN_FAILED_FROZEN
:
1366 start_cpu_timer(cpu
);
1369 case CPU_DEAD_FROZEN
:
1371 * Even if all the cpus of a node are down, we don't free the
1372 * kmem_list3 of any cache. This to avoid a race between
1373 * cpu_down, and a kmalloc allocation from another cpu for
1374 * memory from the node of the cpu going down. The list3
1375 * structure is usually allocated from kmem_cache_create() and
1376 * gets destroyed at kmem_cache_destroy().
1380 case CPU_UP_CANCELED
:
1381 case CPU_UP_CANCELED_FROZEN
:
1382 mutex_lock(&cache_chain_mutex
);
1383 cpuup_canceled(cpu
);
1384 mutex_unlock(&cache_chain_mutex
);
1387 return err
? NOTIFY_BAD
: NOTIFY_OK
;
1390 static struct notifier_block __cpuinitdata cpucache_notifier
= {
1391 &cpuup_callback
, NULL
, 0
1395 * swap the static kmem_list3 with kmalloced memory
1397 static void init_list(struct kmem_cache
*cachep
, struct kmem_list3
*list
,
1400 struct kmem_list3
*ptr
;
1402 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
1405 local_irq_disable();
1406 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
1408 * Do not assume that spinlocks can be initialized via memcpy:
1410 spin_lock_init(&ptr
->list_lock
);
1412 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1413 cachep
->nodelists
[nodeid
] = ptr
;
1418 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1419 * size of kmem_list3.
1421 static void __init
set_up_list3s(struct kmem_cache
*cachep
, int index
)
1425 for_each_online_node(node
) {
1426 cachep
->nodelists
[node
] = &initkmem_list3
[index
+ node
];
1427 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1429 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
1434 * Initialisation. Called after the page allocator have been initialised and
1435 * before smp_init().
1437 void __init
kmem_cache_init(void)
1440 struct cache_sizes
*sizes
;
1441 struct cache_names
*names
;
1446 if (num_possible_nodes() == 1) {
1447 use_alien_caches
= 0;
1451 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1452 kmem_list3_init(&initkmem_list3
[i
]);
1453 if (i
< MAX_NUMNODES
)
1454 cache_cache
.nodelists
[i
] = NULL
;
1456 set_up_list3s(&cache_cache
, CACHE_CACHE
);
1459 * Fragmentation resistance on low memory - only use bigger
1460 * page orders on machines with more than 32MB of memory.
1462 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1463 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1465 /* Bootstrap is tricky, because several objects are allocated
1466 * from caches that do not exist yet:
1467 * 1) initialize the cache_cache cache: it contains the struct
1468 * kmem_cache structures of all caches, except cache_cache itself:
1469 * cache_cache is statically allocated.
1470 * Initially an __init data area is used for the head array and the
1471 * kmem_list3 structures, it's replaced with a kmalloc allocated
1472 * array at the end of the bootstrap.
1473 * 2) Create the first kmalloc cache.
1474 * The struct kmem_cache for the new cache is allocated normally.
1475 * An __init data area is used for the head array.
1476 * 3) Create the remaining kmalloc caches, with minimally sized
1478 * 4) Replace the __init data head arrays for cache_cache and the first
1479 * kmalloc cache with kmalloc allocated arrays.
1480 * 5) Replace the __init data for kmem_list3 for cache_cache and
1481 * the other cache's with kmalloc allocated memory.
1482 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1485 node
= numa_node_id();
1487 /* 1) create the cache_cache */
1488 INIT_LIST_HEAD(&cache_chain
);
1489 list_add(&cache_cache
.next
, &cache_chain
);
1490 cache_cache
.colour_off
= cache_line_size();
1491 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1492 cache_cache
.nodelists
[node
] = &initkmem_list3
[CACHE_CACHE
+ node
];
1495 * struct kmem_cache size depends on nr_node_ids, which
1496 * can be less than MAX_NUMNODES.
1498 cache_cache
.buffer_size
= offsetof(struct kmem_cache
, nodelists
) +
1499 nr_node_ids
* sizeof(struct kmem_list3
*);
1501 cache_cache
.obj_size
= cache_cache
.buffer_size
;
1503 cache_cache
.buffer_size
= ALIGN(cache_cache
.buffer_size
,
1505 cache_cache
.reciprocal_buffer_size
=
1506 reciprocal_value(cache_cache
.buffer_size
);
1508 for (order
= 0; order
< MAX_ORDER
; order
++) {
1509 cache_estimate(order
, cache_cache
.buffer_size
,
1510 cache_line_size(), 0, &left_over
, &cache_cache
.num
);
1511 if (cache_cache
.num
)
1514 BUG_ON(!cache_cache
.num
);
1515 cache_cache
.gfporder
= order
;
1516 cache_cache
.colour
= left_over
/ cache_cache
.colour_off
;
1517 cache_cache
.slab_size
= ALIGN(cache_cache
.num
* sizeof(kmem_bufctl_t
) +
1518 sizeof(struct slab
), cache_line_size());
1520 /* 2+3) create the kmalloc caches */
1521 sizes
= malloc_sizes
;
1522 names
= cache_names
;
1525 * Initialize the caches that provide memory for the array cache and the
1526 * kmem_list3 structures first. Without this, further allocations will
1530 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1531 sizes
[INDEX_AC
].cs_size
,
1532 ARCH_KMALLOC_MINALIGN
,
1533 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1536 if (INDEX_AC
!= INDEX_L3
) {
1537 sizes
[INDEX_L3
].cs_cachep
=
1538 kmem_cache_create(names
[INDEX_L3
].name
,
1539 sizes
[INDEX_L3
].cs_size
,
1540 ARCH_KMALLOC_MINALIGN
,
1541 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1545 slab_early_init
= 0;
1547 while (sizes
->cs_size
!= ULONG_MAX
) {
1549 * For performance, all the general caches are L1 aligned.
1550 * This should be particularly beneficial on SMP boxes, as it
1551 * eliminates "false sharing".
1552 * Note for systems short on memory removing the alignment will
1553 * allow tighter packing of the smaller caches.
1555 if (!sizes
->cs_cachep
) {
1556 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1558 ARCH_KMALLOC_MINALIGN
,
1559 ARCH_KMALLOC_FLAGS
|SLAB_PANIC
,
1562 #ifdef CONFIG_ZONE_DMA
1563 sizes
->cs_dmacachep
= kmem_cache_create(
1566 ARCH_KMALLOC_MINALIGN
,
1567 ARCH_KMALLOC_FLAGS
|SLAB_CACHE_DMA
|
1574 /* 4) Replace the bootstrap head arrays */
1576 struct array_cache
*ptr
;
1578 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1580 local_irq_disable();
1581 BUG_ON(cpu_cache_get(&cache_cache
) != &initarray_cache
.cache
);
1582 memcpy(ptr
, cpu_cache_get(&cache_cache
),
1583 sizeof(struct arraycache_init
));
1585 * Do not assume that spinlocks can be initialized via memcpy:
1587 spin_lock_init(&ptr
->lock
);
1589 cache_cache
.array
[smp_processor_id()] = ptr
;
1592 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1594 local_irq_disable();
1595 BUG_ON(cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
)
1596 != &initarray_generic
.cache
);
1597 memcpy(ptr
, cpu_cache_get(malloc_sizes
[INDEX_AC
].cs_cachep
),
1598 sizeof(struct arraycache_init
));
1600 * Do not assume that spinlocks can be initialized via memcpy:
1602 spin_lock_init(&ptr
->lock
);
1604 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1608 /* 5) Replace the bootstrap kmem_list3's */
1612 for_each_online_node(nid
) {
1613 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
+ nid
], nid
);
1615 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1616 &initkmem_list3
[SIZE_AC
+ nid
], nid
);
1618 if (INDEX_AC
!= INDEX_L3
) {
1619 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1620 &initkmem_list3
[SIZE_L3
+ nid
], nid
);
1625 /* 6) resize the head arrays to their final sizes */
1627 struct kmem_cache
*cachep
;
1628 mutex_lock(&cache_chain_mutex
);
1629 list_for_each_entry(cachep
, &cache_chain
, next
)
1630 if (enable_cpucache(cachep
))
1632 mutex_unlock(&cache_chain_mutex
);
1635 /* Annotate slab for lockdep -- annotate the malloc caches */
1640 g_cpucache_up
= FULL
;
1643 * Register a cpu startup notifier callback that initializes
1644 * cpu_cache_get for all new cpus
1646 register_cpu_notifier(&cpucache_notifier
);
1649 * The reap timers are started later, with a module init call: That part
1650 * of the kernel is not yet operational.
1654 static int __init
cpucache_init(void)
1659 * Register the timers that return unneeded pages to the page allocator
1661 for_each_online_cpu(cpu
)
1662 start_cpu_timer(cpu
);
1665 __initcall(cpucache_init
);
1668 * Interface to system's page allocator. No need to hold the cache-lock.
1670 * If we requested dmaable memory, we will get it. Even if we
1671 * did not request dmaable memory, we might get it, but that
1672 * would be relatively rare and ignorable.
1674 static void *kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
1682 * Nommu uses slab's for process anonymous memory allocations, and thus
1683 * requires __GFP_COMP to properly refcount higher order allocations
1685 flags
|= __GFP_COMP
;
1688 flags
|= cachep
->gfpflags
;
1689 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1690 flags
|= __GFP_RECLAIMABLE
;
1692 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1696 nr_pages
= (1 << cachep
->gfporder
);
1697 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1698 add_zone_page_state(page_zone(page
),
1699 NR_SLAB_RECLAIMABLE
, nr_pages
);
1701 add_zone_page_state(page_zone(page
),
1702 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1703 for (i
= 0; i
< nr_pages
; i
++)
1704 __SetPageSlab(page
+ i
);
1705 return page_address(page
);
1709 * Interface to system's page release.
1711 static void kmem_freepages(struct kmem_cache
*cachep
, void *addr
)
1713 unsigned long i
= (1 << cachep
->gfporder
);
1714 struct page
*page
= virt_to_page(addr
);
1715 const unsigned long nr_freed
= i
;
1717 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1718 sub_zone_page_state(page_zone(page
),
1719 NR_SLAB_RECLAIMABLE
, nr_freed
);
1721 sub_zone_page_state(page_zone(page
),
1722 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1724 BUG_ON(!PageSlab(page
));
1725 __ClearPageSlab(page
);
1728 if (current
->reclaim_state
)
1729 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1730 free_pages((unsigned long)addr
, cachep
->gfporder
);
1733 static void kmem_rcu_free(struct rcu_head
*head
)
1735 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*)head
;
1736 struct kmem_cache
*cachep
= slab_rcu
->cachep
;
1738 kmem_freepages(cachep
, slab_rcu
->addr
);
1739 if (OFF_SLAB(cachep
))
1740 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1745 #ifdef CONFIG_DEBUG_PAGEALLOC
1746 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1747 unsigned long caller
)
1749 int size
= obj_size(cachep
);
1751 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1753 if (size
< 5 * sizeof(unsigned long))
1756 *addr
++ = 0x12345678;
1758 *addr
++ = smp_processor_id();
1759 size
-= 3 * sizeof(unsigned long);
1761 unsigned long *sptr
= &caller
;
1762 unsigned long svalue
;
1764 while (!kstack_end(sptr
)) {
1766 if (kernel_text_address(svalue
)) {
1768 size
-= sizeof(unsigned long);
1769 if (size
<= sizeof(unsigned long))
1775 *addr
++ = 0x87654321;
1779 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1781 int size
= obj_size(cachep
);
1782 addr
= &((char *)addr
)[obj_offset(cachep
)];
1784 memset(addr
, val
, size
);
1785 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1788 static void dump_line(char *data
, int offset
, int limit
)
1791 unsigned char error
= 0;
1794 printk(KERN_ERR
"%03x:", offset
);
1795 for (i
= 0; i
< limit
; i
++) {
1796 if (data
[offset
+ i
] != POISON_FREE
) {
1797 error
= data
[offset
+ i
];
1800 printk(" %02x", (unsigned char)data
[offset
+ i
]);
1804 if (bad_count
== 1) {
1805 error
^= POISON_FREE
;
1806 if (!(error
& (error
- 1))) {
1807 printk(KERN_ERR
"Single bit error detected. Probably "
1810 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1813 printk(KERN_ERR
"Run a memory test tool.\n");
1822 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1827 if (cachep
->flags
& SLAB_RED_ZONE
) {
1828 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1829 *dbg_redzone1(cachep
, objp
),
1830 *dbg_redzone2(cachep
, objp
));
1833 if (cachep
->flags
& SLAB_STORE_USER
) {
1834 printk(KERN_ERR
"Last user: [<%p>]",
1835 *dbg_userword(cachep
, objp
));
1836 print_symbol("(%s)",
1837 (unsigned long)*dbg_userword(cachep
, objp
));
1840 realobj
= (char *)objp
+ obj_offset(cachep
);
1841 size
= obj_size(cachep
);
1842 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1845 if (i
+ limit
> size
)
1847 dump_line(realobj
, i
, limit
);
1851 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1857 realobj
= (char *)objp
+ obj_offset(cachep
);
1858 size
= obj_size(cachep
);
1860 for (i
= 0; i
< size
; i
++) {
1861 char exp
= POISON_FREE
;
1864 if (realobj
[i
] != exp
) {
1870 "Slab corruption: %s start=%p, len=%d\n",
1871 cachep
->name
, realobj
, size
);
1872 print_objinfo(cachep
, objp
, 0);
1874 /* Hexdump the affected line */
1877 if (i
+ limit
> size
)
1879 dump_line(realobj
, i
, limit
);
1882 /* Limit to 5 lines */
1888 /* Print some data about the neighboring objects, if they
1891 struct slab
*slabp
= virt_to_slab(objp
);
1894 objnr
= obj_to_index(cachep
, slabp
, objp
);
1896 objp
= index_to_obj(cachep
, slabp
, objnr
- 1);
1897 realobj
= (char *)objp
+ obj_offset(cachep
);
1898 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1900 print_objinfo(cachep
, objp
, 2);
1902 if (objnr
+ 1 < cachep
->num
) {
1903 objp
= index_to_obj(cachep
, slabp
, objnr
+ 1);
1904 realobj
= (char *)objp
+ obj_offset(cachep
);
1905 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1907 print_objinfo(cachep
, objp
, 2);
1914 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1917 for (i
= 0; i
< cachep
->num
; i
++) {
1918 void *objp
= index_to_obj(cachep
, slabp
, i
);
1920 if (cachep
->flags
& SLAB_POISON
) {
1921 #ifdef CONFIG_DEBUG_PAGEALLOC
1922 if (cachep
->buffer_size
% PAGE_SIZE
== 0 &&
1924 kernel_map_pages(virt_to_page(objp
),
1925 cachep
->buffer_size
/ PAGE_SIZE
, 1);
1927 check_poison_obj(cachep
, objp
);
1929 check_poison_obj(cachep
, objp
);
1932 if (cachep
->flags
& SLAB_RED_ZONE
) {
1933 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1934 slab_error(cachep
, "start of a freed object "
1936 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1937 slab_error(cachep
, "end of a freed object "
1943 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
, struct slab
*slabp
)
1949 * slab_destroy - destroy and release all objects in a slab
1950 * @cachep: cache pointer being destroyed
1951 * @slabp: slab pointer being destroyed
1953 * Destroy all the objs in a slab, and release the mem back to the system.
1954 * Before calling the slab must have been unlinked from the cache. The
1955 * cache-lock is not held/needed.
1957 static void slab_destroy(struct kmem_cache
*cachep
, struct slab
*slabp
)
1959 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1961 slab_destroy_debugcheck(cachep
, slabp
);
1962 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1963 struct slab_rcu
*slab_rcu
;
1965 slab_rcu
= (struct slab_rcu
*)slabp
;
1966 slab_rcu
->cachep
= cachep
;
1967 slab_rcu
->addr
= addr
;
1968 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1970 kmem_freepages(cachep
, addr
);
1971 if (OFF_SLAB(cachep
))
1972 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1976 static void __kmem_cache_destroy(struct kmem_cache
*cachep
)
1979 struct kmem_list3
*l3
;
1981 for_each_online_cpu(i
)
1982 kfree(cachep
->array
[i
]);
1984 /* NUMA: free the list3 structures */
1985 for_each_online_node(i
) {
1986 l3
= cachep
->nodelists
[i
];
1989 free_alien_cache(l3
->alien
);
1993 kmem_cache_free(&cache_cache
, cachep
);
1998 * calculate_slab_order - calculate size (page order) of slabs
1999 * @cachep: pointer to the cache that is being created
2000 * @size: size of objects to be created in this cache.
2001 * @align: required alignment for the objects.
2002 * @flags: slab allocation flags
2004 * Also calculates the number of objects per slab.
2006 * This could be made much more intelligent. For now, try to avoid using
2007 * high order pages for slabs. When the gfp() functions are more friendly
2008 * towards high-order requests, this should be changed.
2010 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2011 size_t size
, size_t align
, unsigned long flags
)
2013 unsigned long offslab_limit
;
2014 size_t left_over
= 0;
2017 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2021 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2025 if (flags
& CFLGS_OFF_SLAB
) {
2027 * Max number of objs-per-slab for caches which
2028 * use off-slab slabs. Needed to avoid a possible
2029 * looping condition in cache_grow().
2031 offslab_limit
= size
- sizeof(struct slab
);
2032 offslab_limit
/= sizeof(kmem_bufctl_t
);
2034 if (num
> offslab_limit
)
2038 /* Found something acceptable - save it away */
2040 cachep
->gfporder
= gfporder
;
2041 left_over
= remainder
;
2044 * A VFS-reclaimable slab tends to have most allocations
2045 * as GFP_NOFS and we really don't want to have to be allocating
2046 * higher-order pages when we are unable to shrink dcache.
2048 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2052 * Large number of objects is good, but very large slabs are
2053 * currently bad for the gfp()s.
2055 if (gfporder
>= slab_break_gfp_order
)
2059 * Acceptable internal fragmentation?
2061 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2067 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
)
2069 if (g_cpucache_up
== FULL
)
2070 return enable_cpucache(cachep
);
2072 if (g_cpucache_up
== NONE
) {
2074 * Note: the first kmem_cache_create must create the cache
2075 * that's used by kmalloc(24), otherwise the creation of
2076 * further caches will BUG().
2078 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2081 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2082 * the first cache, then we need to set up all its list3s,
2083 * otherwise the creation of further caches will BUG().
2085 set_up_list3s(cachep
, SIZE_AC
);
2086 if (INDEX_AC
== INDEX_L3
)
2087 g_cpucache_up
= PARTIAL_L3
;
2089 g_cpucache_up
= PARTIAL_AC
;
2091 cachep
->array
[smp_processor_id()] =
2092 kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
2094 if (g_cpucache_up
== PARTIAL_AC
) {
2095 set_up_list3s(cachep
, SIZE_L3
);
2096 g_cpucache_up
= PARTIAL_L3
;
2099 for_each_online_node(node
) {
2100 cachep
->nodelists
[node
] =
2101 kmalloc_node(sizeof(struct kmem_list3
),
2103 BUG_ON(!cachep
->nodelists
[node
]);
2104 kmem_list3_init(cachep
->nodelists
[node
]);
2108 cachep
->nodelists
[numa_node_id()]->next_reap
=
2109 jiffies
+ REAPTIMEOUT_LIST3
+
2110 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
2112 cpu_cache_get(cachep
)->avail
= 0;
2113 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2114 cpu_cache_get(cachep
)->batchcount
= 1;
2115 cpu_cache_get(cachep
)->touched
= 0;
2116 cachep
->batchcount
= 1;
2117 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2122 * kmem_cache_create - Create a cache.
2123 * @name: A string which is used in /proc/slabinfo to identify this cache.
2124 * @size: The size of objects to be created in this cache.
2125 * @align: The required alignment for the objects.
2126 * @flags: SLAB flags
2127 * @ctor: A constructor for the objects.
2129 * Returns a ptr to the cache on success, NULL on failure.
2130 * Cannot be called within a int, but can be interrupted.
2131 * The @ctor is run when new pages are allocated by the cache.
2133 * @name must be valid until the cache is destroyed. This implies that
2134 * the module calling this has to destroy the cache before getting unloaded.
2135 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2136 * therefore applications must manage it themselves.
2140 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2141 * to catch references to uninitialised memory.
2143 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2144 * for buffer overruns.
2146 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2147 * cacheline. This can be beneficial if you're counting cycles as closely
2151 kmem_cache_create (const char *name
, size_t size
, size_t align
,
2152 unsigned long flags
, void (*ctor
)(void *))
2154 size_t left_over
, slab_size
, ralign
;
2155 struct kmem_cache
*cachep
= NULL
, *pc
;
2158 * Sanity checks... these are all serious usage bugs.
2160 if (!name
|| in_interrupt() || (size
< BYTES_PER_WORD
) ||
2161 size
> KMALLOC_MAX_SIZE
) {
2162 printk(KERN_ERR
"%s: Early error in slab %s\n", __func__
,
2168 * We use cache_chain_mutex to ensure a consistent view of
2169 * cpu_online_mask as well. Please see cpuup_callback
2172 mutex_lock(&cache_chain_mutex
);
2174 list_for_each_entry(pc
, &cache_chain
, next
) {
2179 * This happens when the module gets unloaded and doesn't
2180 * destroy its slab cache and no-one else reuses the vmalloc
2181 * area of the module. Print a warning.
2183 res
= probe_kernel_address(pc
->name
, tmp
);
2186 "SLAB: cache with size %d has lost its name\n",
2191 if (!strcmp(pc
->name
, name
)) {
2193 "kmem_cache_create: duplicate cache %s\n", name
);
2200 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
2203 * Enable redzoning and last user accounting, except for caches with
2204 * large objects, if the increased size would increase the object size
2205 * above the next power of two: caches with object sizes just above a
2206 * power of two have a significant amount of internal fragmentation.
2208 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2209 2 * sizeof(unsigned long long)))
2210 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2211 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2212 flags
|= SLAB_POISON
;
2214 if (flags
& SLAB_DESTROY_BY_RCU
)
2215 BUG_ON(flags
& SLAB_POISON
);
2218 * Always checks flags, a caller might be expecting debug support which
2221 BUG_ON(flags
& ~CREATE_MASK
);
2224 * Check that size is in terms of words. This is needed to avoid
2225 * unaligned accesses for some archs when redzoning is used, and makes
2226 * sure any on-slab bufctl's are also correctly aligned.
2228 if (size
& (BYTES_PER_WORD
- 1)) {
2229 size
+= (BYTES_PER_WORD
- 1);
2230 size
&= ~(BYTES_PER_WORD
- 1);
2233 /* calculate the final buffer alignment: */
2235 /* 1) arch recommendation: can be overridden for debug */
2236 if (flags
& SLAB_HWCACHE_ALIGN
) {
2238 * Default alignment: as specified by the arch code. Except if
2239 * an object is really small, then squeeze multiple objects into
2242 ralign
= cache_line_size();
2243 while (size
<= ralign
/ 2)
2246 ralign
= BYTES_PER_WORD
;
2250 * Redzoning and user store require word alignment or possibly larger.
2251 * Note this will be overridden by architecture or caller mandated
2252 * alignment if either is greater than BYTES_PER_WORD.
2254 if (flags
& SLAB_STORE_USER
)
2255 ralign
= BYTES_PER_WORD
;
2257 if (flags
& SLAB_RED_ZONE
) {
2258 ralign
= REDZONE_ALIGN
;
2259 /* If redzoning, ensure that the second redzone is suitably
2260 * aligned, by adjusting the object size accordingly. */
2261 size
+= REDZONE_ALIGN
- 1;
2262 size
&= ~(REDZONE_ALIGN
- 1);
2265 /* 2) arch mandated alignment */
2266 if (ralign
< ARCH_SLAB_MINALIGN
) {
2267 ralign
= ARCH_SLAB_MINALIGN
;
2269 /* 3) caller mandated alignment */
2270 if (ralign
< align
) {
2273 /* disable debug if necessary */
2274 if (ralign
> __alignof__(unsigned long long))
2275 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2281 /* Get cache's description obj. */
2282 cachep
= kmem_cache_zalloc(&cache_cache
, GFP_KERNEL
);
2287 cachep
->obj_size
= size
;
2290 * Both debugging options require word-alignment which is calculated
2293 if (flags
& SLAB_RED_ZONE
) {
2294 /* add space for red zone words */
2295 cachep
->obj_offset
+= sizeof(unsigned long long);
2296 size
+= 2 * sizeof(unsigned long long);
2298 if (flags
& SLAB_STORE_USER
) {
2299 /* user store requires one word storage behind the end of
2300 * the real object. But if the second red zone needs to be
2301 * aligned to 64 bits, we must allow that much space.
2303 if (flags
& SLAB_RED_ZONE
)
2304 size
+= REDZONE_ALIGN
;
2306 size
+= BYTES_PER_WORD
;
2308 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2309 if (size
>= malloc_sizes
[INDEX_L3
+ 1].cs_size
2310 && cachep
->obj_size
> cache_line_size() && size
< PAGE_SIZE
) {
2311 cachep
->obj_offset
+= PAGE_SIZE
- size
;
2318 * Determine if the slab management is 'on' or 'off' slab.
2319 * (bootstrapping cannot cope with offslab caches so don't do
2322 if ((size
>= (PAGE_SIZE
>> 3)) && !slab_early_init
)
2324 * Size is large, assume best to place the slab management obj
2325 * off-slab (should allow better packing of objs).
2327 flags
|= CFLGS_OFF_SLAB
;
2329 size
= ALIGN(size
, align
);
2331 left_over
= calculate_slab_order(cachep
, size
, align
, flags
);
2335 "kmem_cache_create: couldn't create cache %s.\n", name
);
2336 kmem_cache_free(&cache_cache
, cachep
);
2340 slab_size
= ALIGN(cachep
->num
* sizeof(kmem_bufctl_t
)
2341 + sizeof(struct slab
), align
);
2344 * If the slab has been placed off-slab, and we have enough space then
2345 * move it on-slab. This is at the expense of any extra colouring.
2347 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
2348 flags
&= ~CFLGS_OFF_SLAB
;
2349 left_over
-= slab_size
;
2352 if (flags
& CFLGS_OFF_SLAB
) {
2353 /* really off slab. No need for manual alignment */
2355 cachep
->num
* sizeof(kmem_bufctl_t
) + sizeof(struct slab
);
2358 cachep
->colour_off
= cache_line_size();
2359 /* Offset must be a multiple of the alignment. */
2360 if (cachep
->colour_off
< align
)
2361 cachep
->colour_off
= align
;
2362 cachep
->colour
= left_over
/ cachep
->colour_off
;
2363 cachep
->slab_size
= slab_size
;
2364 cachep
->flags
= flags
;
2365 cachep
->gfpflags
= 0;
2366 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2367 cachep
->gfpflags
|= GFP_DMA
;
2368 cachep
->buffer_size
= size
;
2369 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2371 if (flags
& CFLGS_OFF_SLAB
) {
2372 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
2374 * This is a possibility for one of the malloc_sizes caches.
2375 * But since we go off slab only for object size greater than
2376 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2377 * this should not happen at all.
2378 * But leave a BUG_ON for some lucky dude.
2380 BUG_ON(ZERO_OR_NULL_PTR(cachep
->slabp_cache
));
2382 cachep
->ctor
= ctor
;
2383 cachep
->name
= name
;
2385 if (setup_cpu_cache(cachep
)) {
2386 __kmem_cache_destroy(cachep
);
2391 /* cache setup completed, link it into the list */
2392 list_add(&cachep
->next
, &cache_chain
);
2394 if (!cachep
&& (flags
& SLAB_PANIC
))
2395 panic("kmem_cache_create(): failed to create slab `%s'\n",
2397 mutex_unlock(&cache_chain_mutex
);
2401 EXPORT_SYMBOL(kmem_cache_create
);
2404 static void check_irq_off(void)
2406 BUG_ON(!irqs_disabled());
2409 static void check_irq_on(void)
2411 BUG_ON(irqs_disabled());
2414 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2418 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
2422 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2426 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
2431 #define check_irq_off() do { } while(0)
2432 #define check_irq_on() do { } while(0)
2433 #define check_spinlock_acquired(x) do { } while(0)
2434 #define check_spinlock_acquired_node(x, y) do { } while(0)
2437 static void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
2438 struct array_cache
*ac
,
2439 int force
, int node
);
2441 static void do_drain(void *arg
)
2443 struct kmem_cache
*cachep
= arg
;
2444 struct array_cache
*ac
;
2445 int node
= numa_node_id();
2448 ac
= cpu_cache_get(cachep
);
2449 spin_lock(&cachep
->nodelists
[node
]->list_lock
);
2450 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2451 spin_unlock(&cachep
->nodelists
[node
]->list_lock
);
2455 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2457 struct kmem_list3
*l3
;
2460 on_each_cpu(do_drain
, cachep
, 1);
2462 for_each_online_node(node
) {
2463 l3
= cachep
->nodelists
[node
];
2464 if (l3
&& l3
->alien
)
2465 drain_alien_cache(cachep
, l3
->alien
);
2468 for_each_online_node(node
) {
2469 l3
= cachep
->nodelists
[node
];
2471 drain_array(cachep
, l3
, l3
->shared
, 1, node
);
2476 * Remove slabs from the list of free slabs.
2477 * Specify the number of slabs to drain in tofree.
2479 * Returns the actual number of slabs released.
2481 static int drain_freelist(struct kmem_cache
*cache
,
2482 struct kmem_list3
*l3
, int tofree
)
2484 struct list_head
*p
;
2489 while (nr_freed
< tofree
&& !list_empty(&l3
->slabs_free
)) {
2491 spin_lock_irq(&l3
->list_lock
);
2492 p
= l3
->slabs_free
.prev
;
2493 if (p
== &l3
->slabs_free
) {
2494 spin_unlock_irq(&l3
->list_lock
);
2498 slabp
= list_entry(p
, struct slab
, list
);
2500 BUG_ON(slabp
->inuse
);
2502 list_del(&slabp
->list
);
2504 * Safe to drop the lock. The slab is no longer linked
2507 l3
->free_objects
-= cache
->num
;
2508 spin_unlock_irq(&l3
->list_lock
);
2509 slab_destroy(cache
, slabp
);
2516 /* Called with cache_chain_mutex held to protect against cpu hotplug */
2517 static int __cache_shrink(struct kmem_cache
*cachep
)
2520 struct kmem_list3
*l3
;
2522 drain_cpu_caches(cachep
);
2525 for_each_online_node(i
) {
2526 l3
= cachep
->nodelists
[i
];
2530 drain_freelist(cachep
, l3
, l3
->free_objects
);
2532 ret
+= !list_empty(&l3
->slabs_full
) ||
2533 !list_empty(&l3
->slabs_partial
);
2535 return (ret
? 1 : 0);
2539 * kmem_cache_shrink - Shrink a cache.
2540 * @cachep: The cache to shrink.
2542 * Releases as many slabs as possible for a cache.
2543 * To help debugging, a zero exit status indicates all slabs were released.
2545 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2548 BUG_ON(!cachep
|| in_interrupt());
2551 mutex_lock(&cache_chain_mutex
);
2552 ret
= __cache_shrink(cachep
);
2553 mutex_unlock(&cache_chain_mutex
);
2557 EXPORT_SYMBOL(kmem_cache_shrink
);
2560 * kmem_cache_destroy - delete a cache
2561 * @cachep: the cache to destroy
2563 * Remove a &struct kmem_cache object from the slab cache.
2565 * It is expected this function will be called by a module when it is
2566 * unloaded. This will remove the cache completely, and avoid a duplicate
2567 * cache being allocated each time a module is loaded and unloaded, if the
2568 * module doesn't have persistent in-kernel storage across loads and unloads.
2570 * The cache must be empty before calling this function.
2572 * The caller must guarantee that noone will allocate memory from the cache
2573 * during the kmem_cache_destroy().
2575 void kmem_cache_destroy(struct kmem_cache
*cachep
)
2577 BUG_ON(!cachep
|| in_interrupt());
2579 /* Find the cache in the chain of caches. */
2581 mutex_lock(&cache_chain_mutex
);
2583 * the chain is never empty, cache_cache is never destroyed
2585 list_del(&cachep
->next
);
2586 if (__cache_shrink(cachep
)) {
2587 slab_error(cachep
, "Can't free all objects");
2588 list_add(&cachep
->next
, &cache_chain
);
2589 mutex_unlock(&cache_chain_mutex
);
2594 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2597 __kmem_cache_destroy(cachep
);
2598 mutex_unlock(&cache_chain_mutex
);
2601 EXPORT_SYMBOL(kmem_cache_destroy
);
2604 * Get the memory for a slab management obj.
2605 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2606 * always come from malloc_sizes caches. The slab descriptor cannot
2607 * come from the same cache which is getting created because,
2608 * when we are searching for an appropriate cache for these
2609 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2610 * If we are creating a malloc_sizes cache here it would not be visible to
2611 * kmem_find_general_cachep till the initialization is complete.
2612 * Hence we cannot have slabp_cache same as the original cache.
2614 static struct slab
*alloc_slabmgmt(struct kmem_cache
*cachep
, void *objp
,
2615 int colour_off
, gfp_t local_flags
,
2620 if (OFF_SLAB(cachep
)) {
2621 /* Slab management obj is off-slab. */
2622 slabp
= kmem_cache_alloc_node(cachep
->slabp_cache
,
2623 local_flags
, nodeid
);
2627 slabp
= objp
+ colour_off
;
2628 colour_off
+= cachep
->slab_size
;
2631 slabp
->colouroff
= colour_off
;
2632 slabp
->s_mem
= objp
+ colour_off
;
2633 slabp
->nodeid
= nodeid
;
2638 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2640 return (kmem_bufctl_t
*) (slabp
+ 1);
2643 static void cache_init_objs(struct kmem_cache
*cachep
,
2648 for (i
= 0; i
< cachep
->num
; i
++) {
2649 void *objp
= index_to_obj(cachep
, slabp
, i
);
2651 /* need to poison the objs? */
2652 if (cachep
->flags
& SLAB_POISON
)
2653 poison_obj(cachep
, objp
, POISON_FREE
);
2654 if (cachep
->flags
& SLAB_STORE_USER
)
2655 *dbg_userword(cachep
, objp
) = NULL
;
2657 if (cachep
->flags
& SLAB_RED_ZONE
) {
2658 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2659 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2662 * Constructors are not allowed to allocate memory from the same
2663 * cache which they are a constructor for. Otherwise, deadlock.
2664 * They must also be threaded.
2666 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2667 cachep
->ctor(objp
+ obj_offset(cachep
));
2669 if (cachep
->flags
& SLAB_RED_ZONE
) {
2670 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2671 slab_error(cachep
, "constructor overwrote the"
2672 " end of an object");
2673 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2674 slab_error(cachep
, "constructor overwrote the"
2675 " start of an object");
2677 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 &&
2678 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2679 kernel_map_pages(virt_to_page(objp
),
2680 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2685 slab_bufctl(slabp
)[i
] = i
+ 1;
2687 slab_bufctl(slabp
)[i
- 1] = BUFCTL_END
;
2690 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2692 if (CONFIG_ZONE_DMA_FLAG
) {
2693 if (flags
& GFP_DMA
)
2694 BUG_ON(!(cachep
->gfpflags
& GFP_DMA
));
2696 BUG_ON(cachep
->gfpflags
& GFP_DMA
);
2700 static void *slab_get_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2703 void *objp
= index_to_obj(cachep
, slabp
, slabp
->free
);
2707 next
= slab_bufctl(slabp
)[slabp
->free
];
2709 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2710 WARN_ON(slabp
->nodeid
!= nodeid
);
2717 static void slab_put_obj(struct kmem_cache
*cachep
, struct slab
*slabp
,
2718 void *objp
, int nodeid
)
2720 unsigned int objnr
= obj_to_index(cachep
, slabp
, objp
);
2723 /* Verify that the slab belongs to the intended node */
2724 WARN_ON(slabp
->nodeid
!= nodeid
);
2726 if (slab_bufctl(slabp
)[objnr
] + 1 <= SLAB_LIMIT
+ 1) {
2727 printk(KERN_ERR
"slab: double free detected in cache "
2728 "'%s', objp %p\n", cachep
->name
, objp
);
2732 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2733 slabp
->free
= objnr
;
2738 * Map pages beginning at addr to the given cache and slab. This is required
2739 * for the slab allocator to be able to lookup the cache and slab of a
2740 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2742 static void slab_map_pages(struct kmem_cache
*cache
, struct slab
*slab
,
2748 page
= virt_to_page(addr
);
2751 if (likely(!PageCompound(page
)))
2752 nr_pages
<<= cache
->gfporder
;
2755 page_set_cache(page
, cache
);
2756 page_set_slab(page
, slab
);
2758 } while (--nr_pages
);
2762 * Grow (by 1) the number of slabs within a cache. This is called by
2763 * kmem_cache_alloc() when there are no active objs left in a cache.
2765 static int cache_grow(struct kmem_cache
*cachep
,
2766 gfp_t flags
, int nodeid
, void *objp
)
2771 struct kmem_list3
*l3
;
2774 * Be lazy and only check for valid flags here, keeping it out of the
2775 * critical path in kmem_cache_alloc().
2777 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2778 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2780 /* Take the l3 list lock to change the colour_next on this node */
2782 l3
= cachep
->nodelists
[nodeid
];
2783 spin_lock(&l3
->list_lock
);
2785 /* Get colour for the slab, and cal the next value. */
2786 offset
= l3
->colour_next
;
2788 if (l3
->colour_next
>= cachep
->colour
)
2789 l3
->colour_next
= 0;
2790 spin_unlock(&l3
->list_lock
);
2792 offset
*= cachep
->colour_off
;
2794 if (local_flags
& __GFP_WAIT
)
2798 * The test for missing atomic flag is performed here, rather than
2799 * the more obvious place, simply to reduce the critical path length
2800 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2801 * will eventually be caught here (where it matters).
2803 kmem_flagcheck(cachep
, flags
);
2806 * Get mem for the objs. Attempt to allocate a physical page from
2810 objp
= kmem_getpages(cachep
, local_flags
, nodeid
);
2814 /* Get slab management. */
2815 slabp
= alloc_slabmgmt(cachep
, objp
, offset
,
2816 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2820 slab_map_pages(cachep
, slabp
, objp
);
2822 cache_init_objs(cachep
, slabp
);
2824 if (local_flags
& __GFP_WAIT
)
2825 local_irq_disable();
2827 spin_lock(&l3
->list_lock
);
2829 /* Make slab active. */
2830 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2831 STATS_INC_GROWN(cachep
);
2832 l3
->free_objects
+= cachep
->num
;
2833 spin_unlock(&l3
->list_lock
);
2836 kmem_freepages(cachep
, objp
);
2838 if (local_flags
& __GFP_WAIT
)
2839 local_irq_disable();
2846 * Perform extra freeing checks:
2847 * - detect bad pointers.
2848 * - POISON/RED_ZONE checking
2850 static void kfree_debugcheck(const void *objp
)
2852 if (!virt_addr_valid(objp
)) {
2853 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2854 (unsigned long)objp
);
2859 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2861 unsigned long long redzone1
, redzone2
;
2863 redzone1
= *dbg_redzone1(cache
, obj
);
2864 redzone2
= *dbg_redzone2(cache
, obj
);
2869 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2872 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2873 slab_error(cache
, "double free detected");
2875 slab_error(cache
, "memory outside object was overwritten");
2877 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2878 obj
, redzone1
, redzone2
);
2881 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2888 BUG_ON(virt_to_cache(objp
) != cachep
);
2890 objp
-= obj_offset(cachep
);
2891 kfree_debugcheck(objp
);
2892 page
= virt_to_head_page(objp
);
2894 slabp
= page_get_slab(page
);
2896 if (cachep
->flags
& SLAB_RED_ZONE
) {
2897 verify_redzone_free(cachep
, objp
);
2898 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2899 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2901 if (cachep
->flags
& SLAB_STORE_USER
)
2902 *dbg_userword(cachep
, objp
) = caller
;
2904 objnr
= obj_to_index(cachep
, slabp
, objp
);
2906 BUG_ON(objnr
>= cachep
->num
);
2907 BUG_ON(objp
!= index_to_obj(cachep
, slabp
, objnr
));
2909 #ifdef CONFIG_DEBUG_SLAB_LEAK
2910 slab_bufctl(slabp
)[objnr
] = BUFCTL_FREE
;
2912 if (cachep
->flags
& SLAB_POISON
) {
2913 #ifdef CONFIG_DEBUG_PAGEALLOC
2914 if ((cachep
->buffer_size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2915 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2916 kernel_map_pages(virt_to_page(objp
),
2917 cachep
->buffer_size
/ PAGE_SIZE
, 0);
2919 poison_obj(cachep
, objp
, POISON_FREE
);
2922 poison_obj(cachep
, objp
, POISON_FREE
);
2928 static void check_slabp(struct kmem_cache
*cachep
, struct slab
*slabp
)
2933 /* Check slab's freelist to see if this obj is there. */
2934 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2936 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2939 if (entries
!= cachep
->num
- slabp
->inuse
) {
2941 printk(KERN_ERR
"slab: Internal list corruption detected in "
2942 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2943 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2945 i
< sizeof(*slabp
) + cachep
->num
* sizeof(kmem_bufctl_t
);
2948 printk("\n%03x:", i
);
2949 printk(" %02x", ((unsigned char *)slabp
)[i
]);
2956 #define kfree_debugcheck(x) do { } while(0)
2957 #define cache_free_debugcheck(x,objp,z) (objp)
2958 #define check_slabp(x,y) do { } while(0)
2961 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
2964 struct kmem_list3
*l3
;
2965 struct array_cache
*ac
;
2970 node
= numa_node_id();
2971 ac
= cpu_cache_get(cachep
);
2972 batchcount
= ac
->batchcount
;
2973 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2975 * If there was little recent activity on this cache, then
2976 * perform only a partial refill. Otherwise we could generate
2979 batchcount
= BATCHREFILL_LIMIT
;
2981 l3
= cachep
->nodelists
[node
];
2983 BUG_ON(ac
->avail
> 0 || !l3
);
2984 spin_lock(&l3
->list_lock
);
2986 /* See if we can refill from the shared array */
2987 if (l3
->shared
&& transfer_objects(ac
, l3
->shared
, batchcount
))
2990 while (batchcount
> 0) {
2991 struct list_head
*entry
;
2993 /* Get slab alloc is to come from. */
2994 entry
= l3
->slabs_partial
.next
;
2995 if (entry
== &l3
->slabs_partial
) {
2996 l3
->free_touched
= 1;
2997 entry
= l3
->slabs_free
.next
;
2998 if (entry
== &l3
->slabs_free
)
3002 slabp
= list_entry(entry
, struct slab
, list
);
3003 check_slabp(cachep
, slabp
);
3004 check_spinlock_acquired(cachep
);
3007 * The slab was either on partial or free list so
3008 * there must be at least one object available for
3011 BUG_ON(slabp
->inuse
>= cachep
->num
);
3013 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
3014 STATS_INC_ALLOCED(cachep
);
3015 STATS_INC_ACTIVE(cachep
);
3016 STATS_SET_HIGH(cachep
);
3018 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, slabp
,
3021 check_slabp(cachep
, slabp
);
3023 /* move slabp to correct slabp list: */
3024 list_del(&slabp
->list
);
3025 if (slabp
->free
== BUFCTL_END
)
3026 list_add(&slabp
->list
, &l3
->slabs_full
);
3028 list_add(&slabp
->list
, &l3
->slabs_partial
);
3032 l3
->free_objects
-= ac
->avail
;
3034 spin_unlock(&l3
->list_lock
);
3036 if (unlikely(!ac
->avail
)) {
3038 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
3040 /* cache_grow can reenable interrupts, then ac could change. */
3041 ac
= cpu_cache_get(cachep
);
3042 if (!x
&& ac
->avail
== 0) /* no objects in sight? abort */
3045 if (!ac
->avail
) /* objects refilled by interrupt? */
3049 return ac
->entry
[--ac
->avail
];
3052 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3055 might_sleep_if(flags
& __GFP_WAIT
);
3057 kmem_flagcheck(cachep
, flags
);
3062 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3063 gfp_t flags
, void *objp
, void *caller
)
3067 if (cachep
->flags
& SLAB_POISON
) {
3068 #ifdef CONFIG_DEBUG_PAGEALLOC
3069 if ((cachep
->buffer_size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
3070 kernel_map_pages(virt_to_page(objp
),
3071 cachep
->buffer_size
/ PAGE_SIZE
, 1);
3073 check_poison_obj(cachep
, objp
);
3075 check_poison_obj(cachep
, objp
);
3077 poison_obj(cachep
, objp
, POISON_INUSE
);
3079 if (cachep
->flags
& SLAB_STORE_USER
)
3080 *dbg_userword(cachep
, objp
) = caller
;
3082 if (cachep
->flags
& SLAB_RED_ZONE
) {
3083 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3084 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3085 slab_error(cachep
, "double free, or memory outside"
3086 " object was overwritten");
3088 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3089 objp
, *dbg_redzone1(cachep
, objp
),
3090 *dbg_redzone2(cachep
, objp
));
3092 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3093 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3095 #ifdef CONFIG_DEBUG_SLAB_LEAK
3100 slabp
= page_get_slab(virt_to_head_page(objp
));
3101 objnr
= (unsigned)(objp
- slabp
->s_mem
) / cachep
->buffer_size
;
3102 slab_bufctl(slabp
)[objnr
] = BUFCTL_ACTIVE
;
3105 objp
+= obj_offset(cachep
);
3106 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3108 #if ARCH_SLAB_MINALIGN
3109 if ((u32
)objp
& (ARCH_SLAB_MINALIGN
-1)) {
3110 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3111 objp
, ARCH_SLAB_MINALIGN
);
3117 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3120 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3122 if (cachep
== &cache_cache
)
3125 return should_failslab(obj_size(cachep
), flags
);
3128 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3131 struct array_cache
*ac
;
3135 ac
= cpu_cache_get(cachep
);
3136 if (likely(ac
->avail
)) {
3137 STATS_INC_ALLOCHIT(cachep
);
3139 objp
= ac
->entry
[--ac
->avail
];
3141 STATS_INC_ALLOCMISS(cachep
);
3142 objp
= cache_alloc_refill(cachep
, flags
);
3149 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3151 * If we are in_interrupt, then process context, including cpusets and
3152 * mempolicy, may not apply and should not be used for allocation policy.
3154 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3156 int nid_alloc
, nid_here
;
3158 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3160 nid_alloc
= nid_here
= numa_node_id();
3161 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3162 nid_alloc
= cpuset_mem_spread_node();
3163 else if (current
->mempolicy
)
3164 nid_alloc
= slab_node(current
->mempolicy
);
3165 if (nid_alloc
!= nid_here
)
3166 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3171 * Fallback function if there was no memory available and no objects on a
3172 * certain node and fall back is permitted. First we scan all the
3173 * available nodelists for available objects. If that fails then we
3174 * perform an allocation without specifying a node. This allows the page
3175 * allocator to do its reclaim / fallback magic. We then insert the
3176 * slab into the proper nodelist and then allocate from it.
3178 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3180 struct zonelist
*zonelist
;
3184 enum zone_type high_zoneidx
= gfp_zone(flags
);
3188 if (flags
& __GFP_THISNODE
)
3191 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
3192 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3196 * Look through allowed nodes for objects available
3197 * from existing per node queues.
3199 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3200 nid
= zone_to_nid(zone
);
3202 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3203 cache
->nodelists
[nid
] &&
3204 cache
->nodelists
[nid
]->free_objects
) {
3205 obj
= ____cache_alloc_node(cache
,
3206 flags
| GFP_THISNODE
, nid
);
3214 * This allocation will be performed within the constraints
3215 * of the current cpuset / memory policy requirements.
3216 * We may trigger various forms of reclaim on the allowed
3217 * set and go into memory reserves if necessary.
3219 if (local_flags
& __GFP_WAIT
)
3221 kmem_flagcheck(cache
, flags
);
3222 obj
= kmem_getpages(cache
, local_flags
, -1);
3223 if (local_flags
& __GFP_WAIT
)
3224 local_irq_disable();
3227 * Insert into the appropriate per node queues
3229 nid
= page_to_nid(virt_to_page(obj
));
3230 if (cache_grow(cache
, flags
, nid
, obj
)) {
3231 obj
= ____cache_alloc_node(cache
,
3232 flags
| GFP_THISNODE
, nid
);
3235 * Another processor may allocate the
3236 * objects in the slab since we are
3237 * not holding any locks.
3241 /* cache_grow already freed obj */
3250 * A interface to enable slab creation on nodeid
3252 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3255 struct list_head
*entry
;
3257 struct kmem_list3
*l3
;
3261 l3
= cachep
->nodelists
[nodeid
];
3266 spin_lock(&l3
->list_lock
);
3267 entry
= l3
->slabs_partial
.next
;
3268 if (entry
== &l3
->slabs_partial
) {
3269 l3
->free_touched
= 1;
3270 entry
= l3
->slabs_free
.next
;
3271 if (entry
== &l3
->slabs_free
)
3275 slabp
= list_entry(entry
, struct slab
, list
);
3276 check_spinlock_acquired_node(cachep
, nodeid
);
3277 check_slabp(cachep
, slabp
);
3279 STATS_INC_NODEALLOCS(cachep
);
3280 STATS_INC_ACTIVE(cachep
);
3281 STATS_SET_HIGH(cachep
);
3283 BUG_ON(slabp
->inuse
== cachep
->num
);
3285 obj
= slab_get_obj(cachep
, slabp
, nodeid
);
3286 check_slabp(cachep
, slabp
);
3288 /* move slabp to correct slabp list: */
3289 list_del(&slabp
->list
);
3291 if (slabp
->free
== BUFCTL_END
)
3292 list_add(&slabp
->list
, &l3
->slabs_full
);
3294 list_add(&slabp
->list
, &l3
->slabs_partial
);
3296 spin_unlock(&l3
->list_lock
);
3300 spin_unlock(&l3
->list_lock
);
3301 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3305 return fallback_alloc(cachep
, flags
);
3312 * kmem_cache_alloc_node - Allocate an object on the specified node
3313 * @cachep: The cache to allocate from.
3314 * @flags: See kmalloc().
3315 * @nodeid: node number of the target node.
3316 * @caller: return address of caller, used for debug information
3318 * Identical to kmem_cache_alloc but it will allocate memory on the given
3319 * node, which can improve the performance for cpu bound structures.
3321 * Fallback to other node is possible if __GFP_THISNODE is not set.
3323 static __always_inline
void *
3324 __cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3327 unsigned long save_flags
;
3330 lockdep_trace_alloc(flags
);
3332 if (slab_should_failslab(cachep
, flags
))
3335 cache_alloc_debugcheck_before(cachep
, flags
);
3336 local_irq_save(save_flags
);
3338 if (unlikely(nodeid
== -1))
3339 nodeid
= numa_node_id();
3341 if (unlikely(!cachep
->nodelists
[nodeid
])) {
3342 /* Node not bootstrapped yet */
3343 ptr
= fallback_alloc(cachep
, flags
);
3347 if (nodeid
== numa_node_id()) {
3349 * Use the locally cached objects if possible.
3350 * However ____cache_alloc does not allow fallback
3351 * to other nodes. It may fail while we still have
3352 * objects on other nodes available.
3354 ptr
= ____cache_alloc(cachep
, flags
);
3358 /* ___cache_alloc_node can fall back to other nodes */
3359 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3361 local_irq_restore(save_flags
);
3362 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3364 if (unlikely((flags
& __GFP_ZERO
) && ptr
))
3365 memset(ptr
, 0, obj_size(cachep
));
3370 static __always_inline
void *
3371 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3375 if (unlikely(current
->flags
& (PF_SPREAD_SLAB
| PF_MEMPOLICY
))) {
3376 objp
= alternate_node_alloc(cache
, flags
);
3380 objp
= ____cache_alloc(cache
, flags
);
3383 * We may just have run out of memory on the local node.
3384 * ____cache_alloc_node() knows how to locate memory on other nodes
3387 objp
= ____cache_alloc_node(cache
, flags
, numa_node_id());
3394 static __always_inline
void *
3395 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3397 return ____cache_alloc(cachep
, flags
);
3400 #endif /* CONFIG_NUMA */
3402 static __always_inline
void *
3403 __cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
, void *caller
)
3405 unsigned long save_flags
;
3408 lockdep_trace_alloc(flags
);
3410 if (slab_should_failslab(cachep
, flags
))
3413 cache_alloc_debugcheck_before(cachep
, flags
);
3414 local_irq_save(save_flags
);
3415 objp
= __do_cache_alloc(cachep
, flags
);
3416 local_irq_restore(save_flags
);
3417 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3420 if (unlikely((flags
& __GFP_ZERO
) && objp
))
3421 memset(objp
, 0, obj_size(cachep
));
3427 * Caller needs to acquire correct kmem_list's list_lock
3429 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3433 struct kmem_list3
*l3
;
3435 for (i
= 0; i
< nr_objects
; i
++) {
3436 void *objp
= objpp
[i
];
3439 slabp
= virt_to_slab(objp
);
3440 l3
= cachep
->nodelists
[node
];
3441 list_del(&slabp
->list
);
3442 check_spinlock_acquired_node(cachep
, node
);
3443 check_slabp(cachep
, slabp
);
3444 slab_put_obj(cachep
, slabp
, objp
, node
);
3445 STATS_DEC_ACTIVE(cachep
);
3447 check_slabp(cachep
, slabp
);
3449 /* fixup slab chains */
3450 if (slabp
->inuse
== 0) {
3451 if (l3
->free_objects
> l3
->free_limit
) {
3452 l3
->free_objects
-= cachep
->num
;
3453 /* No need to drop any previously held
3454 * lock here, even if we have a off-slab slab
3455 * descriptor it is guaranteed to come from
3456 * a different cache, refer to comments before
3459 slab_destroy(cachep
, slabp
);
3461 list_add(&slabp
->list
, &l3
->slabs_free
);
3464 /* Unconditionally move a slab to the end of the
3465 * partial list on free - maximum time for the
3466 * other objects to be freed, too.
3468 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
3473 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3476 struct kmem_list3
*l3
;
3477 int node
= numa_node_id();
3479 batchcount
= ac
->batchcount
;
3481 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3484 l3
= cachep
->nodelists
[node
];
3485 spin_lock(&l3
->list_lock
);
3487 struct array_cache
*shared_array
= l3
->shared
;
3488 int max
= shared_array
->limit
- shared_array
->avail
;
3490 if (batchcount
> max
)
3492 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3493 ac
->entry
, sizeof(void *) * batchcount
);
3494 shared_array
->avail
+= batchcount
;
3499 free_block(cachep
, ac
->entry
, batchcount
, node
);
3504 struct list_head
*p
;
3506 p
= l3
->slabs_free
.next
;
3507 while (p
!= &(l3
->slabs_free
)) {
3510 slabp
= list_entry(p
, struct slab
, list
);
3511 BUG_ON(slabp
->inuse
);
3516 STATS_SET_FREEABLE(cachep
, i
);
3519 spin_unlock(&l3
->list_lock
);
3520 ac
->avail
-= batchcount
;
3521 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3525 * Release an obj back to its cache. If the obj has a constructed state, it must
3526 * be in this state _before_ it is released. Called with disabled ints.
3528 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
)
3530 struct array_cache
*ac
= cpu_cache_get(cachep
);
3533 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
3536 * Skip calling cache_free_alien() when the platform is not numa.
3537 * This will avoid cache misses that happen while accessing slabp (which
3538 * is per page memory reference) to get nodeid. Instead use a global
3539 * variable to skip the call, which is mostly likely to be present in
3542 if (numa_platform
&& cache_free_alien(cachep
, objp
))
3545 if (likely(ac
->avail
< ac
->limit
)) {
3546 STATS_INC_FREEHIT(cachep
);
3547 ac
->entry
[ac
->avail
++] = objp
;
3550 STATS_INC_FREEMISS(cachep
);
3551 cache_flusharray(cachep
, ac
);
3552 ac
->entry
[ac
->avail
++] = objp
;
3557 * kmem_cache_alloc - Allocate an object
3558 * @cachep: The cache to allocate from.
3559 * @flags: See kmalloc().
3561 * Allocate an object from this cache. The flags are only relevant
3562 * if the cache has no available objects.
3564 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3566 void *ret
= __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3568 kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE
, _RET_IP_
, ret
,
3569 obj_size(cachep
), cachep
->buffer_size
, flags
);
3573 EXPORT_SYMBOL(kmem_cache_alloc
);
3575 #ifdef CONFIG_KMEMTRACE
3576 void *kmem_cache_alloc_notrace(struct kmem_cache
*cachep
, gfp_t flags
)
3578 return __cache_alloc(cachep
, flags
, __builtin_return_address(0));
3580 EXPORT_SYMBOL(kmem_cache_alloc_notrace
);
3584 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
3585 * @cachep: the cache we're checking against
3586 * @ptr: pointer to validate
3588 * This verifies that the untrusted pointer looks sane;
3589 * it is _not_ a guarantee that the pointer is actually
3590 * part of the slab cache in question, but it at least
3591 * validates that the pointer can be dereferenced and
3592 * looks half-way sane.
3594 * Currently only used for dentry validation.
3596 int kmem_ptr_validate(struct kmem_cache
*cachep
, const void *ptr
)
3598 unsigned long addr
= (unsigned long)ptr
;
3599 unsigned long min_addr
= PAGE_OFFSET
;
3600 unsigned long align_mask
= BYTES_PER_WORD
- 1;
3601 unsigned long size
= cachep
->buffer_size
;
3604 if (unlikely(addr
< min_addr
))
3606 if (unlikely(addr
> (unsigned long)high_memory
- size
))
3608 if (unlikely(addr
& align_mask
))
3610 if (unlikely(!kern_addr_valid(addr
)))
3612 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
3614 page
= virt_to_page(ptr
);
3615 if (unlikely(!PageSlab(page
)))
3617 if (unlikely(page_get_cache(page
) != cachep
))
3625 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3627 void *ret
= __cache_alloc_node(cachep
, flags
, nodeid
,
3628 __builtin_return_address(0));
3630 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE
, _RET_IP_
, ret
,
3631 obj_size(cachep
), cachep
->buffer_size
,
3636 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3638 #ifdef CONFIG_KMEMTRACE
3639 void *kmem_cache_alloc_node_notrace(struct kmem_cache
*cachep
,
3643 return __cache_alloc_node(cachep
, flags
, nodeid
,
3644 __builtin_return_address(0));
3646 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace
);
3649 static __always_inline
void *
3650 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, void *caller
)
3652 struct kmem_cache
*cachep
;
3655 cachep
= kmem_find_general_cachep(size
, flags
);
3656 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3658 ret
= kmem_cache_alloc_node_notrace(cachep
, flags
, node
);
3660 kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC
,
3661 (unsigned long) caller
, ret
,
3662 size
, cachep
->buffer_size
, flags
, node
);
3667 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3668 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3670 return __do_kmalloc_node(size
, flags
, node
,
3671 __builtin_return_address(0));
3673 EXPORT_SYMBOL(__kmalloc_node
);
3675 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3676 int node
, unsigned long caller
)
3678 return __do_kmalloc_node(size
, flags
, node
, (void *)caller
);
3680 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3682 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3684 return __do_kmalloc_node(size
, flags
, node
, NULL
);
3686 EXPORT_SYMBOL(__kmalloc_node
);
3687 #endif /* CONFIG_DEBUG_SLAB */
3688 #endif /* CONFIG_NUMA */
3691 * __do_kmalloc - allocate memory
3692 * @size: how many bytes of memory are required.
3693 * @flags: the type of memory to allocate (see kmalloc).
3694 * @caller: function caller for debug tracking of the caller
3696 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3699 struct kmem_cache
*cachep
;
3702 /* If you want to save a few bytes .text space: replace
3704 * Then kmalloc uses the uninlined functions instead of the inline
3707 cachep
= __find_general_cachep(size
, flags
);
3708 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3710 ret
= __cache_alloc(cachep
, flags
, caller
);
3712 kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC
,
3713 (unsigned long) caller
, ret
,
3714 size
, cachep
->buffer_size
, flags
);
3720 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3721 void *__kmalloc(size_t size
, gfp_t flags
)
3723 return __do_kmalloc(size
, flags
, __builtin_return_address(0));
3725 EXPORT_SYMBOL(__kmalloc
);
3727 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3729 return __do_kmalloc(size
, flags
, (void *)caller
);
3731 EXPORT_SYMBOL(__kmalloc_track_caller
);
3734 void *__kmalloc(size_t size
, gfp_t flags
)
3736 return __do_kmalloc(size
, flags
, NULL
);
3738 EXPORT_SYMBOL(__kmalloc
);
3742 * kmem_cache_free - Deallocate an object
3743 * @cachep: The cache the allocation was from.
3744 * @objp: The previously allocated object.
3746 * Free an object which was previously allocated from this
3749 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3751 unsigned long flags
;
3753 local_irq_save(flags
);
3754 debug_check_no_locks_freed(objp
, obj_size(cachep
));
3755 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3756 debug_check_no_obj_freed(objp
, obj_size(cachep
));
3757 __cache_free(cachep
, objp
);
3758 local_irq_restore(flags
);
3760 kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE
, _RET_IP_
, objp
);
3762 EXPORT_SYMBOL(kmem_cache_free
);
3765 * kfree - free previously allocated memory
3766 * @objp: pointer returned by kmalloc.
3768 * If @objp is NULL, no operation is performed.
3770 * Don't free memory not originally allocated by kmalloc()
3771 * or you will run into trouble.
3773 void kfree(const void *objp
)
3775 struct kmem_cache
*c
;
3776 unsigned long flags
;
3778 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3780 local_irq_save(flags
);
3781 kfree_debugcheck(objp
);
3782 c
= virt_to_cache(objp
);
3783 debug_check_no_locks_freed(objp
, obj_size(c
));
3784 debug_check_no_obj_freed(objp
, obj_size(c
));
3785 __cache_free(c
, (void *)objp
);
3786 local_irq_restore(flags
);
3788 kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC
, _RET_IP_
, objp
);
3790 EXPORT_SYMBOL(kfree
);
3792 unsigned int kmem_cache_size(struct kmem_cache
*cachep
)
3794 return obj_size(cachep
);
3796 EXPORT_SYMBOL(kmem_cache_size
);
3798 const char *kmem_cache_name(struct kmem_cache
*cachep
)
3800 return cachep
->name
;
3802 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3805 * This initializes kmem_list3 or resizes various caches for all nodes.
3807 static int alloc_kmemlist(struct kmem_cache
*cachep
)
3810 struct kmem_list3
*l3
;
3811 struct array_cache
*new_shared
;
3812 struct array_cache
**new_alien
= NULL
;
3814 for_each_online_node(node
) {
3816 if (use_alien_caches
) {
3817 new_alien
= alloc_alien_cache(node
, cachep
->limit
);
3823 if (cachep
->shared
) {
3824 new_shared
= alloc_arraycache(node
,
3825 cachep
->shared
*cachep
->batchcount
,
3828 free_alien_cache(new_alien
);
3833 l3
= cachep
->nodelists
[node
];
3835 struct array_cache
*shared
= l3
->shared
;
3837 spin_lock_irq(&l3
->list_lock
);
3840 free_block(cachep
, shared
->entry
,
3841 shared
->avail
, node
);
3843 l3
->shared
= new_shared
;
3845 l3
->alien
= new_alien
;
3848 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3849 cachep
->batchcount
+ cachep
->num
;
3850 spin_unlock_irq(&l3
->list_lock
);
3852 free_alien_cache(new_alien
);
3855 l3
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, node
);
3857 free_alien_cache(new_alien
);
3862 kmem_list3_init(l3
);
3863 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3864 ((unsigned long)cachep
) % REAPTIMEOUT_LIST3
;
3865 l3
->shared
= new_shared
;
3866 l3
->alien
= new_alien
;
3867 l3
->free_limit
= (1 + nr_cpus_node(node
)) *
3868 cachep
->batchcount
+ cachep
->num
;
3869 cachep
->nodelists
[node
] = l3
;
3874 if (!cachep
->next
.next
) {
3875 /* Cache is not active yet. Roll back what we did */
3878 if (cachep
->nodelists
[node
]) {
3879 l3
= cachep
->nodelists
[node
];
3882 free_alien_cache(l3
->alien
);
3884 cachep
->nodelists
[node
] = NULL
;
3892 struct ccupdate_struct
{
3893 struct kmem_cache
*cachep
;
3894 struct array_cache
*new[NR_CPUS
];
3897 static void do_ccupdate_local(void *info
)
3899 struct ccupdate_struct
*new = info
;
3900 struct array_cache
*old
;
3903 old
= cpu_cache_get(new->cachep
);
3905 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3906 new->new[smp_processor_id()] = old
;
3909 /* Always called with the cache_chain_mutex held */
3910 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3911 int batchcount
, int shared
)
3913 struct ccupdate_struct
*new;
3916 new = kzalloc(sizeof(*new), GFP_KERNEL
);
3920 for_each_online_cpu(i
) {
3921 new->new[i
] = alloc_arraycache(cpu_to_node(i
), limit
,
3924 for (i
--; i
>= 0; i
--)
3930 new->cachep
= cachep
;
3932 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3935 cachep
->batchcount
= batchcount
;
3936 cachep
->limit
= limit
;
3937 cachep
->shared
= shared
;
3939 for_each_online_cpu(i
) {
3940 struct array_cache
*ccold
= new->new[i
];
3943 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3944 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_node(i
));
3945 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3949 return alloc_kmemlist(cachep
);
3952 /* Called with cache_chain_mutex held always */
3953 static int enable_cpucache(struct kmem_cache
*cachep
)
3959 * The head array serves three purposes:
3960 * - create a LIFO ordering, i.e. return objects that are cache-warm
3961 * - reduce the number of spinlock operations.
3962 * - reduce the number of linked list operations on the slab and
3963 * bufctl chains: array operations are cheaper.
3964 * The numbers are guessed, we should auto-tune as described by
3967 if (cachep
->buffer_size
> 131072)
3969 else if (cachep
->buffer_size
> PAGE_SIZE
)
3971 else if (cachep
->buffer_size
> 1024)
3973 else if (cachep
->buffer_size
> 256)
3979 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3980 * allocation behaviour: Most allocs on one cpu, most free operations
3981 * on another cpu. For these cases, an efficient object passing between
3982 * cpus is necessary. This is provided by a shared array. The array
3983 * replaces Bonwick's magazine layer.
3984 * On uniprocessor, it's functionally equivalent (but less efficient)
3985 * to a larger limit. Thus disabled by default.
3988 if (cachep
->buffer_size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3993 * With debugging enabled, large batchcount lead to excessively long
3994 * periods with disabled local interrupts. Limit the batchcount
3999 err
= do_tune_cpucache(cachep
, limit
, (limit
+ 1) / 2, shared
);
4001 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
4002 cachep
->name
, -err
);
4007 * Drain an array if it contains any elements taking the l3 lock only if
4008 * necessary. Note that the l3 listlock also protects the array_cache
4009 * if drain_array() is used on the shared array.
4011 void drain_array(struct kmem_cache
*cachep
, struct kmem_list3
*l3
,
4012 struct array_cache
*ac
, int force
, int node
)
4016 if (!ac
|| !ac
->avail
)
4018 if (ac
->touched
&& !force
) {
4021 spin_lock_irq(&l3
->list_lock
);
4023 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
4024 if (tofree
> ac
->avail
)
4025 tofree
= (ac
->avail
+ 1) / 2;
4026 free_block(cachep
, ac
->entry
, tofree
, node
);
4027 ac
->avail
-= tofree
;
4028 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
4029 sizeof(void *) * ac
->avail
);
4031 spin_unlock_irq(&l3
->list_lock
);
4036 * cache_reap - Reclaim memory from caches.
4037 * @w: work descriptor
4039 * Called from workqueue/eventd every few seconds.
4041 * - clear the per-cpu caches for this CPU.
4042 * - return freeable pages to the main free memory pool.
4044 * If we cannot acquire the cache chain mutex then just give up - we'll try
4045 * again on the next iteration.
4047 static void cache_reap(struct work_struct
*w
)
4049 struct kmem_cache
*searchp
;
4050 struct kmem_list3
*l3
;
4051 int node
= numa_node_id();
4052 struct delayed_work
*work
= to_delayed_work(w
);
4054 if (!mutex_trylock(&cache_chain_mutex
))
4055 /* Give up. Setup the next iteration. */
4058 list_for_each_entry(searchp
, &cache_chain
, next
) {
4062 * We only take the l3 lock if absolutely necessary and we
4063 * have established with reasonable certainty that
4064 * we can do some work if the lock was obtained.
4066 l3
= searchp
->nodelists
[node
];
4068 reap_alien(searchp
, l3
);
4070 drain_array(searchp
, l3
, cpu_cache_get(searchp
), 0, node
);
4073 * These are racy checks but it does not matter
4074 * if we skip one check or scan twice.
4076 if (time_after(l3
->next_reap
, jiffies
))
4079 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
4081 drain_array(searchp
, l3
, l3
->shared
, 0, node
);
4083 if (l3
->free_touched
)
4084 l3
->free_touched
= 0;
4088 freed
= drain_freelist(searchp
, l3
, (l3
->free_limit
+
4089 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4090 STATS_ADD_REAPED(searchp
, freed
);
4096 mutex_unlock(&cache_chain_mutex
);
4099 /* Set up the next iteration */
4100 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_CPUC
));
4103 #ifdef CONFIG_SLABINFO
4105 static void print_slabinfo_header(struct seq_file
*m
)
4108 * Output format version, so at least we can change it
4109 * without _too_ many complaints.
4112 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
4114 seq_puts(m
, "slabinfo - version: 2.1\n");
4116 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4117 "<objperslab> <pagesperslab>");
4118 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4119 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4121 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4122 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4123 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4128 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4132 mutex_lock(&cache_chain_mutex
);
4134 print_slabinfo_header(m
);
4136 return seq_list_start(&cache_chain
, *pos
);
4139 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4141 return seq_list_next(p
, &cache_chain
, pos
);
4144 static void s_stop(struct seq_file
*m
, void *p
)
4146 mutex_unlock(&cache_chain_mutex
);
4149 static int s_show(struct seq_file
*m
, void *p
)
4151 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4153 unsigned long active_objs
;
4154 unsigned long num_objs
;
4155 unsigned long active_slabs
= 0;
4156 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4160 struct kmem_list3
*l3
;
4164 for_each_online_node(node
) {
4165 l3
= cachep
->nodelists
[node
];
4170 spin_lock_irq(&l3
->list_lock
);
4172 list_for_each_entry(slabp
, &l3
->slabs_full
, list
) {
4173 if (slabp
->inuse
!= cachep
->num
&& !error
)
4174 error
= "slabs_full accounting error";
4175 active_objs
+= cachep
->num
;
4178 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
) {
4179 if (slabp
->inuse
== cachep
->num
&& !error
)
4180 error
= "slabs_partial inuse accounting error";
4181 if (!slabp
->inuse
&& !error
)
4182 error
= "slabs_partial/inuse accounting error";
4183 active_objs
+= slabp
->inuse
;
4186 list_for_each_entry(slabp
, &l3
->slabs_free
, list
) {
4187 if (slabp
->inuse
&& !error
)
4188 error
= "slabs_free/inuse accounting error";
4191 free_objects
+= l3
->free_objects
;
4193 shared_avail
+= l3
->shared
->avail
;
4195 spin_unlock_irq(&l3
->list_lock
);
4197 num_slabs
+= active_slabs
;
4198 num_objs
= num_slabs
* cachep
->num
;
4199 if (num_objs
- active_objs
!= free_objects
&& !error
)
4200 error
= "free_objects accounting error";
4202 name
= cachep
->name
;
4204 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4206 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
4207 name
, active_objs
, num_objs
, cachep
->buffer_size
,
4208 cachep
->num
, (1 << cachep
->gfporder
));
4209 seq_printf(m
, " : tunables %4u %4u %4u",
4210 cachep
->limit
, cachep
->batchcount
, cachep
->shared
);
4211 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
4212 active_slabs
, num_slabs
, shared_avail
);
4215 unsigned long high
= cachep
->high_mark
;
4216 unsigned long allocs
= cachep
->num_allocations
;
4217 unsigned long grown
= cachep
->grown
;
4218 unsigned long reaped
= cachep
->reaped
;
4219 unsigned long errors
= cachep
->errors
;
4220 unsigned long max_freeable
= cachep
->max_freeable
;
4221 unsigned long node_allocs
= cachep
->node_allocs
;
4222 unsigned long node_frees
= cachep
->node_frees
;
4223 unsigned long overflows
= cachep
->node_overflow
;
4225 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
4226 %4lu %4lu %4lu %4lu %4lu", allocs
, high
, grown
,
4227 reaped
, errors
, max_freeable
, node_allocs
,
4228 node_frees
, overflows
);
4232 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4233 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4234 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4235 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4237 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4238 allochit
, allocmiss
, freehit
, freemiss
);
4246 * slabinfo_op - iterator that generates /proc/slabinfo
4255 * num-pages-per-slab
4256 * + further values on SMP and with statistics enabled
4259 static const struct seq_operations slabinfo_op
= {
4266 #define MAX_SLABINFO_WRITE 128
4268 * slabinfo_write - Tuning for the slab allocator
4270 * @buffer: user buffer
4271 * @count: data length
4274 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4275 size_t count
, loff_t
*ppos
)
4277 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4278 int limit
, batchcount
, shared
, res
;
4279 struct kmem_cache
*cachep
;
4281 if (count
> MAX_SLABINFO_WRITE
)
4283 if (copy_from_user(&kbuf
, buffer
, count
))
4285 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4287 tmp
= strchr(kbuf
, ' ');
4292 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4295 /* Find the cache in the chain of caches. */
4296 mutex_lock(&cache_chain_mutex
);
4298 list_for_each_entry(cachep
, &cache_chain
, next
) {
4299 if (!strcmp(cachep
->name
, kbuf
)) {
4300 if (limit
< 1 || batchcount
< 1 ||
4301 batchcount
> limit
|| shared
< 0) {
4304 res
= do_tune_cpucache(cachep
, limit
,
4305 batchcount
, shared
);
4310 mutex_unlock(&cache_chain_mutex
);
4316 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
4318 return seq_open(file
, &slabinfo_op
);
4321 static const struct file_operations proc_slabinfo_operations
= {
4322 .open
= slabinfo_open
,
4324 .write
= slabinfo_write
,
4325 .llseek
= seq_lseek
,
4326 .release
= seq_release
,
4329 #ifdef CONFIG_DEBUG_SLAB_LEAK
4331 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4333 mutex_lock(&cache_chain_mutex
);
4334 return seq_list_start(&cache_chain
, *pos
);
4337 static inline int add_caller(unsigned long *n
, unsigned long v
)
4347 unsigned long *q
= p
+ 2 * i
;
4361 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4367 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
, struct slab
*s
)
4373 for (i
= 0, p
= s
->s_mem
; i
< c
->num
; i
++, p
+= c
->buffer_size
) {
4374 if (slab_bufctl(s
)[i
] != BUFCTL_ACTIVE
)
4376 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4381 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4383 #ifdef CONFIG_KALLSYMS
4384 unsigned long offset
, size
;
4385 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4387 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4388 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4390 seq_printf(m
, " [%s]", modname
);
4394 seq_printf(m
, "%p", (void *)address
);
4397 static int leaks_show(struct seq_file
*m
, void *p
)
4399 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, next
);
4401 struct kmem_list3
*l3
;
4403 unsigned long *n
= m
->private;
4407 if (!(cachep
->flags
& SLAB_STORE_USER
))
4409 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4412 /* OK, we can do it */
4416 for_each_online_node(node
) {
4417 l3
= cachep
->nodelists
[node
];
4422 spin_lock_irq(&l3
->list_lock
);
4424 list_for_each_entry(slabp
, &l3
->slabs_full
, list
)
4425 handle_slab(n
, cachep
, slabp
);
4426 list_for_each_entry(slabp
, &l3
->slabs_partial
, list
)
4427 handle_slab(n
, cachep
, slabp
);
4428 spin_unlock_irq(&l3
->list_lock
);
4430 name
= cachep
->name
;
4432 /* Increase the buffer size */
4433 mutex_unlock(&cache_chain_mutex
);
4434 m
->private = kzalloc(n
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4436 /* Too bad, we are really out */
4438 mutex_lock(&cache_chain_mutex
);
4441 *(unsigned long *)m
->private = n
[0] * 2;
4443 mutex_lock(&cache_chain_mutex
);
4444 /* Now make sure this entry will be retried */
4448 for (i
= 0; i
< n
[1]; i
++) {
4449 seq_printf(m
, "%s: %lu ", name
, n
[2*i
+3]);
4450 show_symbol(m
, n
[2*i
+2]);
4457 static const struct seq_operations slabstats_op
= {
4458 .start
= leaks_start
,
4464 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4466 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4469 ret
= seq_open(file
, &slabstats_op
);
4471 struct seq_file
*m
= file
->private_data
;
4472 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4481 static const struct file_operations proc_slabstats_operations
= {
4482 .open
= slabstats_open
,
4484 .llseek
= seq_lseek
,
4485 .release
= seq_release_private
,
4489 static int __init
slab_proc_init(void)
4491 proc_create("slabinfo",S_IWUSR
|S_IRUGO
,NULL
,&proc_slabinfo_operations
);
4492 #ifdef CONFIG_DEBUG_SLAB_LEAK
4493 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4497 module_init(slab_proc_init
);
4501 * ksize - get the actual amount of memory allocated for a given object
4502 * @objp: Pointer to the object
4504 * kmalloc may internally round up allocations and return more memory
4505 * than requested. ksize() can be used to determine the actual amount of
4506 * memory allocated. The caller may use this additional memory, even though
4507 * a smaller amount of memory was initially specified with the kmalloc call.
4508 * The caller must guarantee that objp points to a valid object previously
4509 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4510 * must not be freed during the duration of the call.
4512 size_t ksize(const void *objp
)
4515 if (unlikely(objp
== ZERO_SIZE_PTR
))
4518 return obj_size(virt_to_cache(objp
));
4520 EXPORT_SYMBOL(ksize
);