V4L/DVB (11440): PWC: fix build error when CONFIG_INPUT=m
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / mmap.c
blob4a3841186c11100f05e01f498c13794621b1edff
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
37 #include "internal.h"
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags) (0)
41 #endif
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len) (addr)
45 #endif
47 static void unmap_region(struct mm_struct *mm,
48 struct vm_area_struct *vma, struct vm_area_struct *prev,
49 unsigned long start, unsigned long end);
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
55 #undef DEBUG_MM_RB
57 /* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware. The expected
59 * behavior is in parens:
61 * map_type prot
62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
64 * w: (no) no w: (no) no w: (yes) yes w: (no) no
65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
68 * w: (no) no w: (no) no w: (copy) copy w: (no) no
69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 pgprot_t protection_map[16] = {
73 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
79 return __pgprot(pgprot_val(protection_map[vm_flags &
80 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81 pgprot_val(arch_vm_get_page_prot(vm_flags)));
83 EXPORT_SYMBOL(vm_get_page_prot);
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50; /* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 atomic_long_t vm_committed_space = ATOMIC_LONG_INIT(0);
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 unsigned long free, allowed;
110 vm_acct_memory(pages);
113 * Sometimes we want to use more memory than we have
115 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116 return 0;
118 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119 unsigned long n;
121 free = global_page_state(NR_FILE_PAGES);
122 free += nr_swap_pages;
125 * Any slabs which are created with the
126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 * which are reclaimable, under pressure. The dentry
128 * cache and most inode caches should fall into this
130 free += global_page_state(NR_SLAB_RECLAIMABLE);
133 * Leave the last 3% for root
135 if (!cap_sys_admin)
136 free -= free / 32;
138 if (free > pages)
139 return 0;
142 * nr_free_pages() is very expensive on large systems,
143 * only call if we're about to fail.
145 n = nr_free_pages();
148 * Leave reserved pages. The pages are not for anonymous pages.
150 if (n <= totalreserve_pages)
151 goto error;
152 else
153 n -= totalreserve_pages;
156 * Leave the last 3% for root
158 if (!cap_sys_admin)
159 n -= n / 32;
160 free += n;
162 if (free > pages)
163 return 0;
165 goto error;
168 allowed = (totalram_pages - hugetlb_total_pages())
169 * sysctl_overcommit_ratio / 100;
171 * Leave the last 3% for root
173 if (!cap_sys_admin)
174 allowed -= allowed / 32;
175 allowed += total_swap_pages;
177 /* Don't let a single process grow too big:
178 leave 3% of the size of this process for other processes */
179 if (mm)
180 allowed -= mm->total_vm / 32;
183 * cast `allowed' as a signed long because vm_committed_space
184 * sometimes has a negative value
186 if (atomic_long_read(&vm_committed_space) < (long)allowed)
187 return 0;
188 error:
189 vm_unacct_memory(pages);
191 return -ENOMEM;
195 * Requires inode->i_mapping->i_mmap_lock
197 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
198 struct file *file, struct address_space *mapping)
200 if (vma->vm_flags & VM_DENYWRITE)
201 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
202 if (vma->vm_flags & VM_SHARED)
203 mapping->i_mmap_writable--;
205 flush_dcache_mmap_lock(mapping);
206 if (unlikely(vma->vm_flags & VM_NONLINEAR))
207 list_del_init(&vma->shared.vm_set.list);
208 else
209 vma_prio_tree_remove(vma, &mapping->i_mmap);
210 flush_dcache_mmap_unlock(mapping);
214 * Unlink a file-based vm structure from its prio_tree, to hide
215 * vma from rmap and vmtruncate before freeing its page tables.
217 void unlink_file_vma(struct vm_area_struct *vma)
219 struct file *file = vma->vm_file;
221 if (file) {
222 struct address_space *mapping = file->f_mapping;
223 spin_lock(&mapping->i_mmap_lock);
224 __remove_shared_vm_struct(vma, file, mapping);
225 spin_unlock(&mapping->i_mmap_lock);
230 * Close a vm structure and free it, returning the next.
232 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
234 struct vm_area_struct *next = vma->vm_next;
236 might_sleep();
237 if (vma->vm_ops && vma->vm_ops->close)
238 vma->vm_ops->close(vma);
239 if (vma->vm_file) {
240 fput(vma->vm_file);
241 if (vma->vm_flags & VM_EXECUTABLE)
242 removed_exe_file_vma(vma->vm_mm);
244 mpol_put(vma_policy(vma));
245 kmem_cache_free(vm_area_cachep, vma);
246 return next;
249 SYSCALL_DEFINE1(brk, unsigned long, brk)
251 unsigned long rlim, retval;
252 unsigned long newbrk, oldbrk;
253 struct mm_struct *mm = current->mm;
254 unsigned long min_brk;
256 down_write(&mm->mmap_sem);
258 #ifdef CONFIG_COMPAT_BRK
259 min_brk = mm->end_code;
260 #else
261 min_brk = mm->start_brk;
262 #endif
263 if (brk < min_brk)
264 goto out;
267 * Check against rlimit here. If this check is done later after the test
268 * of oldbrk with newbrk then it can escape the test and let the data
269 * segment grow beyond its set limit the in case where the limit is
270 * not page aligned -Ram Gupta
272 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
273 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
274 (mm->end_data - mm->start_data) > rlim)
275 goto out;
277 newbrk = PAGE_ALIGN(brk);
278 oldbrk = PAGE_ALIGN(mm->brk);
279 if (oldbrk == newbrk)
280 goto set_brk;
282 /* Always allow shrinking brk. */
283 if (brk <= mm->brk) {
284 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
285 goto set_brk;
286 goto out;
289 /* Check against existing mmap mappings. */
290 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
291 goto out;
293 /* Ok, looks good - let it rip. */
294 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
295 goto out;
296 set_brk:
297 mm->brk = brk;
298 out:
299 retval = mm->brk;
300 up_write(&mm->mmap_sem);
301 return retval;
304 #ifdef DEBUG_MM_RB
305 static int browse_rb(struct rb_root *root)
307 int i = 0, j;
308 struct rb_node *nd, *pn = NULL;
309 unsigned long prev = 0, pend = 0;
311 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
312 struct vm_area_struct *vma;
313 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
314 if (vma->vm_start < prev)
315 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
316 if (vma->vm_start < pend)
317 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
318 if (vma->vm_start > vma->vm_end)
319 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
320 i++;
321 pn = nd;
322 prev = vma->vm_start;
323 pend = vma->vm_end;
325 j = 0;
326 for (nd = pn; nd; nd = rb_prev(nd)) {
327 j++;
329 if (i != j)
330 printk("backwards %d, forwards %d\n", j, i), i = 0;
331 return i;
334 void validate_mm(struct mm_struct *mm)
336 int bug = 0;
337 int i = 0;
338 struct vm_area_struct *tmp = mm->mmap;
339 while (tmp) {
340 tmp = tmp->vm_next;
341 i++;
343 if (i != mm->map_count)
344 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
345 i = browse_rb(&mm->mm_rb);
346 if (i != mm->map_count)
347 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
348 BUG_ON(bug);
350 #else
351 #define validate_mm(mm) do { } while (0)
352 #endif
354 static struct vm_area_struct *
355 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
356 struct vm_area_struct **pprev, struct rb_node ***rb_link,
357 struct rb_node ** rb_parent)
359 struct vm_area_struct * vma;
360 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
362 __rb_link = &mm->mm_rb.rb_node;
363 rb_prev = __rb_parent = NULL;
364 vma = NULL;
366 while (*__rb_link) {
367 struct vm_area_struct *vma_tmp;
369 __rb_parent = *__rb_link;
370 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
372 if (vma_tmp->vm_end > addr) {
373 vma = vma_tmp;
374 if (vma_tmp->vm_start <= addr)
375 break;
376 __rb_link = &__rb_parent->rb_left;
377 } else {
378 rb_prev = __rb_parent;
379 __rb_link = &__rb_parent->rb_right;
383 *pprev = NULL;
384 if (rb_prev)
385 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
386 *rb_link = __rb_link;
387 *rb_parent = __rb_parent;
388 return vma;
391 static inline void
392 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
393 struct vm_area_struct *prev, struct rb_node *rb_parent)
395 if (prev) {
396 vma->vm_next = prev->vm_next;
397 prev->vm_next = vma;
398 } else {
399 mm->mmap = vma;
400 if (rb_parent)
401 vma->vm_next = rb_entry(rb_parent,
402 struct vm_area_struct, vm_rb);
403 else
404 vma->vm_next = NULL;
408 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
409 struct rb_node **rb_link, struct rb_node *rb_parent)
411 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
412 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
415 static void __vma_link_file(struct vm_area_struct *vma)
417 struct file *file;
419 file = vma->vm_file;
420 if (file) {
421 struct address_space *mapping = file->f_mapping;
423 if (vma->vm_flags & VM_DENYWRITE)
424 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
425 if (vma->vm_flags & VM_SHARED)
426 mapping->i_mmap_writable++;
428 flush_dcache_mmap_lock(mapping);
429 if (unlikely(vma->vm_flags & VM_NONLINEAR))
430 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
431 else
432 vma_prio_tree_insert(vma, &mapping->i_mmap);
433 flush_dcache_mmap_unlock(mapping);
437 static void
438 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
439 struct vm_area_struct *prev, struct rb_node **rb_link,
440 struct rb_node *rb_parent)
442 __vma_link_list(mm, vma, prev, rb_parent);
443 __vma_link_rb(mm, vma, rb_link, rb_parent);
444 __anon_vma_link(vma);
447 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
448 struct vm_area_struct *prev, struct rb_node **rb_link,
449 struct rb_node *rb_parent)
451 struct address_space *mapping = NULL;
453 if (vma->vm_file)
454 mapping = vma->vm_file->f_mapping;
456 if (mapping) {
457 spin_lock(&mapping->i_mmap_lock);
458 vma->vm_truncate_count = mapping->truncate_count;
460 anon_vma_lock(vma);
462 __vma_link(mm, vma, prev, rb_link, rb_parent);
463 __vma_link_file(vma);
465 anon_vma_unlock(vma);
466 if (mapping)
467 spin_unlock(&mapping->i_mmap_lock);
469 mm->map_count++;
470 validate_mm(mm);
474 * Helper for vma_adjust in the split_vma insert case:
475 * insert vm structure into list and rbtree and anon_vma,
476 * but it has already been inserted into prio_tree earlier.
478 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
480 struct vm_area_struct *__vma, *prev;
481 struct rb_node **rb_link, *rb_parent;
483 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
484 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
485 __vma_link(mm, vma, prev, rb_link, rb_parent);
486 mm->map_count++;
489 static inline void
490 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
491 struct vm_area_struct *prev)
493 prev->vm_next = vma->vm_next;
494 rb_erase(&vma->vm_rb, &mm->mm_rb);
495 if (mm->mmap_cache == vma)
496 mm->mmap_cache = prev;
500 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
501 * is already present in an i_mmap tree without adjusting the tree.
502 * The following helper function should be used when such adjustments
503 * are necessary. The "insert" vma (if any) is to be inserted
504 * before we drop the necessary locks.
506 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
507 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
509 struct mm_struct *mm = vma->vm_mm;
510 struct vm_area_struct *next = vma->vm_next;
511 struct vm_area_struct *importer = NULL;
512 struct address_space *mapping = NULL;
513 struct prio_tree_root *root = NULL;
514 struct file *file = vma->vm_file;
515 struct anon_vma *anon_vma = NULL;
516 long adjust_next = 0;
517 int remove_next = 0;
519 if (next && !insert) {
520 if (end >= next->vm_end) {
522 * vma expands, overlapping all the next, and
523 * perhaps the one after too (mprotect case 6).
525 again: remove_next = 1 + (end > next->vm_end);
526 end = next->vm_end;
527 anon_vma = next->anon_vma;
528 importer = vma;
529 } else if (end > next->vm_start) {
531 * vma expands, overlapping part of the next:
532 * mprotect case 5 shifting the boundary up.
534 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
535 anon_vma = next->anon_vma;
536 importer = vma;
537 } else if (end < vma->vm_end) {
539 * vma shrinks, and !insert tells it's not
540 * split_vma inserting another: so it must be
541 * mprotect case 4 shifting the boundary down.
543 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
544 anon_vma = next->anon_vma;
545 importer = next;
549 if (file) {
550 mapping = file->f_mapping;
551 if (!(vma->vm_flags & VM_NONLINEAR))
552 root = &mapping->i_mmap;
553 spin_lock(&mapping->i_mmap_lock);
554 if (importer &&
555 vma->vm_truncate_count != next->vm_truncate_count) {
557 * unmap_mapping_range might be in progress:
558 * ensure that the expanding vma is rescanned.
560 importer->vm_truncate_count = 0;
562 if (insert) {
563 insert->vm_truncate_count = vma->vm_truncate_count;
565 * Put into prio_tree now, so instantiated pages
566 * are visible to arm/parisc __flush_dcache_page
567 * throughout; but we cannot insert into address
568 * space until vma start or end is updated.
570 __vma_link_file(insert);
575 * When changing only vma->vm_end, we don't really need
576 * anon_vma lock: but is that case worth optimizing out?
578 if (vma->anon_vma)
579 anon_vma = vma->anon_vma;
580 if (anon_vma) {
581 spin_lock(&anon_vma->lock);
583 * Easily overlooked: when mprotect shifts the boundary,
584 * make sure the expanding vma has anon_vma set if the
585 * shrinking vma had, to cover any anon pages imported.
587 if (importer && !importer->anon_vma) {
588 importer->anon_vma = anon_vma;
589 __anon_vma_link(importer);
593 if (root) {
594 flush_dcache_mmap_lock(mapping);
595 vma_prio_tree_remove(vma, root);
596 if (adjust_next)
597 vma_prio_tree_remove(next, root);
600 vma->vm_start = start;
601 vma->vm_end = end;
602 vma->vm_pgoff = pgoff;
603 if (adjust_next) {
604 next->vm_start += adjust_next << PAGE_SHIFT;
605 next->vm_pgoff += adjust_next;
608 if (root) {
609 if (adjust_next)
610 vma_prio_tree_insert(next, root);
611 vma_prio_tree_insert(vma, root);
612 flush_dcache_mmap_unlock(mapping);
615 if (remove_next) {
617 * vma_merge has merged next into vma, and needs
618 * us to remove next before dropping the locks.
620 __vma_unlink(mm, next, vma);
621 if (file)
622 __remove_shared_vm_struct(next, file, mapping);
623 if (next->anon_vma)
624 __anon_vma_merge(vma, next);
625 } else if (insert) {
627 * split_vma has split insert from vma, and needs
628 * us to insert it before dropping the locks
629 * (it may either follow vma or precede it).
631 __insert_vm_struct(mm, insert);
634 if (anon_vma)
635 spin_unlock(&anon_vma->lock);
636 if (mapping)
637 spin_unlock(&mapping->i_mmap_lock);
639 if (remove_next) {
640 if (file) {
641 fput(file);
642 if (next->vm_flags & VM_EXECUTABLE)
643 removed_exe_file_vma(mm);
645 mm->map_count--;
646 mpol_put(vma_policy(next));
647 kmem_cache_free(vm_area_cachep, next);
649 * In mprotect's case 6 (see comments on vma_merge),
650 * we must remove another next too. It would clutter
651 * up the code too much to do both in one go.
653 if (remove_next == 2) {
654 next = vma->vm_next;
655 goto again;
659 validate_mm(mm);
662 /* Flags that can be inherited from an existing mapping when merging */
663 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
666 * If the vma has a ->close operation then the driver probably needs to release
667 * per-vma resources, so we don't attempt to merge those.
669 static inline int is_mergeable_vma(struct vm_area_struct *vma,
670 struct file *file, unsigned long vm_flags)
672 if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
673 return 0;
674 if (vma->vm_file != file)
675 return 0;
676 if (vma->vm_ops && vma->vm_ops->close)
677 return 0;
678 return 1;
681 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
682 struct anon_vma *anon_vma2)
684 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
688 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
689 * in front of (at a lower virtual address and file offset than) the vma.
691 * We cannot merge two vmas if they have differently assigned (non-NULL)
692 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
694 * We don't check here for the merged mmap wrapping around the end of pagecache
695 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
696 * wrap, nor mmaps which cover the final page at index -1UL.
698 static int
699 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
700 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
702 if (is_mergeable_vma(vma, file, vm_flags) &&
703 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
704 if (vma->vm_pgoff == vm_pgoff)
705 return 1;
707 return 0;
711 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
712 * beyond (at a higher virtual address and file offset than) the vma.
714 * We cannot merge two vmas if they have differently assigned (non-NULL)
715 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
717 static int
718 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
719 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
721 if (is_mergeable_vma(vma, file, vm_flags) &&
722 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
723 pgoff_t vm_pglen;
724 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
725 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
726 return 1;
728 return 0;
732 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
733 * whether that can be merged with its predecessor or its successor.
734 * Or both (it neatly fills a hole).
736 * In most cases - when called for mmap, brk or mremap - [addr,end) is
737 * certain not to be mapped by the time vma_merge is called; but when
738 * called for mprotect, it is certain to be already mapped (either at
739 * an offset within prev, or at the start of next), and the flags of
740 * this area are about to be changed to vm_flags - and the no-change
741 * case has already been eliminated.
743 * The following mprotect cases have to be considered, where AAAA is
744 * the area passed down from mprotect_fixup, never extending beyond one
745 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
747 * AAAA AAAA AAAA AAAA
748 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
749 * cannot merge might become might become might become
750 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
751 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
752 * mremap move: PPPPNNNNNNNN 8
753 * AAAA
754 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
755 * might become case 1 below case 2 below case 3 below
757 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
758 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
760 struct vm_area_struct *vma_merge(struct mm_struct *mm,
761 struct vm_area_struct *prev, unsigned long addr,
762 unsigned long end, unsigned long vm_flags,
763 struct anon_vma *anon_vma, struct file *file,
764 pgoff_t pgoff, struct mempolicy *policy)
766 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
767 struct vm_area_struct *area, *next;
770 * We later require that vma->vm_flags == vm_flags,
771 * so this tests vma->vm_flags & VM_SPECIAL, too.
773 if (vm_flags & VM_SPECIAL)
774 return NULL;
776 if (prev)
777 next = prev->vm_next;
778 else
779 next = mm->mmap;
780 area = next;
781 if (next && next->vm_end == end) /* cases 6, 7, 8 */
782 next = next->vm_next;
785 * Can it merge with the predecessor?
787 if (prev && prev->vm_end == addr &&
788 mpol_equal(vma_policy(prev), policy) &&
789 can_vma_merge_after(prev, vm_flags,
790 anon_vma, file, pgoff)) {
792 * OK, it can. Can we now merge in the successor as well?
794 if (next && end == next->vm_start &&
795 mpol_equal(policy, vma_policy(next)) &&
796 can_vma_merge_before(next, vm_flags,
797 anon_vma, file, pgoff+pglen) &&
798 is_mergeable_anon_vma(prev->anon_vma,
799 next->anon_vma)) {
800 /* cases 1, 6 */
801 vma_adjust(prev, prev->vm_start,
802 next->vm_end, prev->vm_pgoff, NULL);
803 } else /* cases 2, 5, 7 */
804 vma_adjust(prev, prev->vm_start,
805 end, prev->vm_pgoff, NULL);
806 return prev;
810 * Can this new request be merged in front of next?
812 if (next && end == next->vm_start &&
813 mpol_equal(policy, vma_policy(next)) &&
814 can_vma_merge_before(next, vm_flags,
815 anon_vma, file, pgoff+pglen)) {
816 if (prev && addr < prev->vm_end) /* case 4 */
817 vma_adjust(prev, prev->vm_start,
818 addr, prev->vm_pgoff, NULL);
819 else /* cases 3, 8 */
820 vma_adjust(area, addr, next->vm_end,
821 next->vm_pgoff - pglen, NULL);
822 return area;
825 return NULL;
829 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
830 * neighbouring vmas for a suitable anon_vma, before it goes off
831 * to allocate a new anon_vma. It checks because a repetitive
832 * sequence of mprotects and faults may otherwise lead to distinct
833 * anon_vmas being allocated, preventing vma merge in subsequent
834 * mprotect.
836 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
838 struct vm_area_struct *near;
839 unsigned long vm_flags;
841 near = vma->vm_next;
842 if (!near)
843 goto try_prev;
846 * Since only mprotect tries to remerge vmas, match flags
847 * which might be mprotected into each other later on.
848 * Neither mlock nor madvise tries to remerge at present,
849 * so leave their flags as obstructing a merge.
851 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
852 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
854 if (near->anon_vma && vma->vm_end == near->vm_start &&
855 mpol_equal(vma_policy(vma), vma_policy(near)) &&
856 can_vma_merge_before(near, vm_flags,
857 NULL, vma->vm_file, vma->vm_pgoff +
858 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
859 return near->anon_vma;
860 try_prev:
862 * It is potentially slow to have to call find_vma_prev here.
863 * But it's only on the first write fault on the vma, not
864 * every time, and we could devise a way to avoid it later
865 * (e.g. stash info in next's anon_vma_node when assigning
866 * an anon_vma, or when trying vma_merge). Another time.
868 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
869 if (!near)
870 goto none;
872 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
873 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
875 if (near->anon_vma && near->vm_end == vma->vm_start &&
876 mpol_equal(vma_policy(near), vma_policy(vma)) &&
877 can_vma_merge_after(near, vm_flags,
878 NULL, vma->vm_file, vma->vm_pgoff))
879 return near->anon_vma;
880 none:
882 * There's no absolute need to look only at touching neighbours:
883 * we could search further afield for "compatible" anon_vmas.
884 * But it would probably just be a waste of time searching,
885 * or lead to too many vmas hanging off the same anon_vma.
886 * We're trying to allow mprotect remerging later on,
887 * not trying to minimize memory used for anon_vmas.
889 return NULL;
892 #ifdef CONFIG_PROC_FS
893 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
894 struct file *file, long pages)
896 const unsigned long stack_flags
897 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
899 if (file) {
900 mm->shared_vm += pages;
901 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
902 mm->exec_vm += pages;
903 } else if (flags & stack_flags)
904 mm->stack_vm += pages;
905 if (flags & (VM_RESERVED|VM_IO))
906 mm->reserved_vm += pages;
908 #endif /* CONFIG_PROC_FS */
911 * The caller must hold down_write(current->mm->mmap_sem).
914 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
915 unsigned long len, unsigned long prot,
916 unsigned long flags, unsigned long pgoff)
918 struct mm_struct * mm = current->mm;
919 struct inode *inode;
920 unsigned int vm_flags;
921 int error;
922 unsigned long reqprot = prot;
925 * Does the application expect PROT_READ to imply PROT_EXEC?
927 * (the exception is when the underlying filesystem is noexec
928 * mounted, in which case we dont add PROT_EXEC.)
930 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
931 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
932 prot |= PROT_EXEC;
934 if (!len)
935 return -EINVAL;
937 if (!(flags & MAP_FIXED))
938 addr = round_hint_to_min(addr);
940 error = arch_mmap_check(addr, len, flags);
941 if (error)
942 return error;
944 /* Careful about overflows.. */
945 len = PAGE_ALIGN(len);
946 if (!len || len > TASK_SIZE)
947 return -ENOMEM;
949 /* offset overflow? */
950 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
951 return -EOVERFLOW;
953 /* Too many mappings? */
954 if (mm->map_count > sysctl_max_map_count)
955 return -ENOMEM;
957 /* Obtain the address to map to. we verify (or select) it and ensure
958 * that it represents a valid section of the address space.
960 addr = get_unmapped_area(file, addr, len, pgoff, flags);
961 if (addr & ~PAGE_MASK)
962 return addr;
964 /* Do simple checking here so the lower-level routines won't have
965 * to. we assume access permissions have been handled by the open
966 * of the memory object, so we don't do any here.
968 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
969 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
971 if (flags & MAP_LOCKED) {
972 if (!can_do_mlock())
973 return -EPERM;
974 vm_flags |= VM_LOCKED;
977 /* mlock MCL_FUTURE? */
978 if (vm_flags & VM_LOCKED) {
979 unsigned long locked, lock_limit;
980 locked = len >> PAGE_SHIFT;
981 locked += mm->locked_vm;
982 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
983 lock_limit >>= PAGE_SHIFT;
984 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
985 return -EAGAIN;
988 inode = file ? file->f_path.dentry->d_inode : NULL;
990 if (file) {
991 switch (flags & MAP_TYPE) {
992 case MAP_SHARED:
993 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
994 return -EACCES;
997 * Make sure we don't allow writing to an append-only
998 * file..
1000 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1001 return -EACCES;
1004 * Make sure there are no mandatory locks on the file.
1006 if (locks_verify_locked(inode))
1007 return -EAGAIN;
1009 vm_flags |= VM_SHARED | VM_MAYSHARE;
1010 if (!(file->f_mode & FMODE_WRITE))
1011 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1013 /* fall through */
1014 case MAP_PRIVATE:
1015 if (!(file->f_mode & FMODE_READ))
1016 return -EACCES;
1017 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1018 if (vm_flags & VM_EXEC)
1019 return -EPERM;
1020 vm_flags &= ~VM_MAYEXEC;
1023 if (!file->f_op || !file->f_op->mmap)
1024 return -ENODEV;
1025 break;
1027 default:
1028 return -EINVAL;
1030 } else {
1031 switch (flags & MAP_TYPE) {
1032 case MAP_SHARED:
1034 * Ignore pgoff.
1036 pgoff = 0;
1037 vm_flags |= VM_SHARED | VM_MAYSHARE;
1038 break;
1039 case MAP_PRIVATE:
1041 * Set pgoff according to addr for anon_vma.
1043 pgoff = addr >> PAGE_SHIFT;
1044 break;
1045 default:
1046 return -EINVAL;
1050 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1051 if (error)
1052 return error;
1053 error = ima_file_mmap(file, prot);
1054 if (error)
1055 return error;
1057 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1059 EXPORT_SYMBOL(do_mmap_pgoff);
1062 * Some shared mappigns will want the pages marked read-only
1063 * to track write events. If so, we'll downgrade vm_page_prot
1064 * to the private version (using protection_map[] without the
1065 * VM_SHARED bit).
1067 int vma_wants_writenotify(struct vm_area_struct *vma)
1069 unsigned int vm_flags = vma->vm_flags;
1071 /* If it was private or non-writable, the write bit is already clear */
1072 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1073 return 0;
1075 /* The backer wishes to know when pages are first written to? */
1076 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1077 return 1;
1079 /* The open routine did something to the protections already? */
1080 if (pgprot_val(vma->vm_page_prot) !=
1081 pgprot_val(vm_get_page_prot(vm_flags)))
1082 return 0;
1084 /* Specialty mapping? */
1085 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1086 return 0;
1088 /* Can the mapping track the dirty pages? */
1089 return vma->vm_file && vma->vm_file->f_mapping &&
1090 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1094 * We account for memory if it's a private writeable mapping,
1095 * not hugepages and VM_NORESERVE wasn't set.
1097 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1100 * hugetlb has its own accounting separate from the core VM
1101 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1103 if (file && is_file_hugepages(file))
1104 return 0;
1106 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1109 unsigned long mmap_region(struct file *file, unsigned long addr,
1110 unsigned long len, unsigned long flags,
1111 unsigned int vm_flags, unsigned long pgoff)
1113 struct mm_struct *mm = current->mm;
1114 struct vm_area_struct *vma, *prev;
1115 int correct_wcount = 0;
1116 int error;
1117 struct rb_node **rb_link, *rb_parent;
1118 unsigned long charged = 0;
1119 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1121 /* Clear old maps */
1122 error = -ENOMEM;
1123 munmap_back:
1124 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1125 if (vma && vma->vm_start < addr + len) {
1126 if (do_munmap(mm, addr, len))
1127 return -ENOMEM;
1128 goto munmap_back;
1131 /* Check against address space limit. */
1132 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1133 return -ENOMEM;
1136 * Set 'VM_NORESERVE' if we should not account for the
1137 * memory use of this mapping.
1139 if ((flags & MAP_NORESERVE)) {
1140 /* We honor MAP_NORESERVE if allowed to overcommit */
1141 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1142 vm_flags |= VM_NORESERVE;
1144 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1145 if (file && is_file_hugepages(file))
1146 vm_flags |= VM_NORESERVE;
1150 * Private writable mapping: check memory availability
1152 if (accountable_mapping(file, vm_flags)) {
1153 charged = len >> PAGE_SHIFT;
1154 if (security_vm_enough_memory(charged))
1155 return -ENOMEM;
1156 vm_flags |= VM_ACCOUNT;
1160 * Can we just expand an old mapping?
1162 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1163 if (vma)
1164 goto out;
1167 * Determine the object being mapped and call the appropriate
1168 * specific mapper. the address has already been validated, but
1169 * not unmapped, but the maps are removed from the list.
1171 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1172 if (!vma) {
1173 error = -ENOMEM;
1174 goto unacct_error;
1177 vma->vm_mm = mm;
1178 vma->vm_start = addr;
1179 vma->vm_end = addr + len;
1180 vma->vm_flags = vm_flags;
1181 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1182 vma->vm_pgoff = pgoff;
1184 if (file) {
1185 error = -EINVAL;
1186 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1187 goto free_vma;
1188 if (vm_flags & VM_DENYWRITE) {
1189 error = deny_write_access(file);
1190 if (error)
1191 goto free_vma;
1192 correct_wcount = 1;
1194 vma->vm_file = file;
1195 get_file(file);
1196 error = file->f_op->mmap(file, vma);
1197 if (error)
1198 goto unmap_and_free_vma;
1199 if (vm_flags & VM_EXECUTABLE)
1200 added_exe_file_vma(mm);
1201 } else if (vm_flags & VM_SHARED) {
1202 error = shmem_zero_setup(vma);
1203 if (error)
1204 goto free_vma;
1207 /* Can addr have changed??
1209 * Answer: Yes, several device drivers can do it in their
1210 * f_op->mmap method. -DaveM
1212 addr = vma->vm_start;
1213 pgoff = vma->vm_pgoff;
1214 vm_flags = vma->vm_flags;
1216 if (vma_wants_writenotify(vma))
1217 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1219 vma_link(mm, vma, prev, rb_link, rb_parent);
1220 file = vma->vm_file;
1222 /* Once vma denies write, undo our temporary denial count */
1223 if (correct_wcount)
1224 atomic_inc(&inode->i_writecount);
1225 out:
1226 mm->total_vm += len >> PAGE_SHIFT;
1227 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1228 if (vm_flags & VM_LOCKED) {
1230 * makes pages present; downgrades, drops, reacquires mmap_sem
1232 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1233 if (nr_pages < 0)
1234 return nr_pages; /* vma gone! */
1235 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1236 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1237 make_pages_present(addr, addr + len);
1238 return addr;
1240 unmap_and_free_vma:
1241 if (correct_wcount)
1242 atomic_inc(&inode->i_writecount);
1243 vma->vm_file = NULL;
1244 fput(file);
1246 /* Undo any partial mapping done by a device driver. */
1247 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1248 charged = 0;
1249 free_vma:
1250 kmem_cache_free(vm_area_cachep, vma);
1251 unacct_error:
1252 if (charged)
1253 vm_unacct_memory(charged);
1254 return error;
1257 /* Get an address range which is currently unmapped.
1258 * For shmat() with addr=0.
1260 * Ugly calling convention alert:
1261 * Return value with the low bits set means error value,
1262 * ie
1263 * if (ret & ~PAGE_MASK)
1264 * error = ret;
1266 * This function "knows" that -ENOMEM has the bits set.
1268 #ifndef HAVE_ARCH_UNMAPPED_AREA
1269 unsigned long
1270 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1271 unsigned long len, unsigned long pgoff, unsigned long flags)
1273 struct mm_struct *mm = current->mm;
1274 struct vm_area_struct *vma;
1275 unsigned long start_addr;
1277 if (len > TASK_SIZE)
1278 return -ENOMEM;
1280 if (flags & MAP_FIXED)
1281 return addr;
1283 if (addr) {
1284 addr = PAGE_ALIGN(addr);
1285 vma = find_vma(mm, addr);
1286 if (TASK_SIZE - len >= addr &&
1287 (!vma || addr + len <= vma->vm_start))
1288 return addr;
1290 if (len > mm->cached_hole_size) {
1291 start_addr = addr = mm->free_area_cache;
1292 } else {
1293 start_addr = addr = TASK_UNMAPPED_BASE;
1294 mm->cached_hole_size = 0;
1297 full_search:
1298 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1299 /* At this point: (!vma || addr < vma->vm_end). */
1300 if (TASK_SIZE - len < addr) {
1302 * Start a new search - just in case we missed
1303 * some holes.
1305 if (start_addr != TASK_UNMAPPED_BASE) {
1306 addr = TASK_UNMAPPED_BASE;
1307 start_addr = addr;
1308 mm->cached_hole_size = 0;
1309 goto full_search;
1311 return -ENOMEM;
1313 if (!vma || addr + len <= vma->vm_start) {
1315 * Remember the place where we stopped the search:
1317 mm->free_area_cache = addr + len;
1318 return addr;
1320 if (addr + mm->cached_hole_size < vma->vm_start)
1321 mm->cached_hole_size = vma->vm_start - addr;
1322 addr = vma->vm_end;
1325 #endif
1327 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1330 * Is this a new hole at the lowest possible address?
1332 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1333 mm->free_area_cache = addr;
1334 mm->cached_hole_size = ~0UL;
1339 * This mmap-allocator allocates new areas top-down from below the
1340 * stack's low limit (the base):
1342 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1343 unsigned long
1344 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1345 const unsigned long len, const unsigned long pgoff,
1346 const unsigned long flags)
1348 struct vm_area_struct *vma;
1349 struct mm_struct *mm = current->mm;
1350 unsigned long addr = addr0;
1352 /* requested length too big for entire address space */
1353 if (len > TASK_SIZE)
1354 return -ENOMEM;
1356 if (flags & MAP_FIXED)
1357 return addr;
1359 /* requesting a specific address */
1360 if (addr) {
1361 addr = PAGE_ALIGN(addr);
1362 vma = find_vma(mm, addr);
1363 if (TASK_SIZE - len >= addr &&
1364 (!vma || addr + len <= vma->vm_start))
1365 return addr;
1368 /* check if free_area_cache is useful for us */
1369 if (len <= mm->cached_hole_size) {
1370 mm->cached_hole_size = 0;
1371 mm->free_area_cache = mm->mmap_base;
1374 /* either no address requested or can't fit in requested address hole */
1375 addr = mm->free_area_cache;
1377 /* make sure it can fit in the remaining address space */
1378 if (addr > len) {
1379 vma = find_vma(mm, addr-len);
1380 if (!vma || addr <= vma->vm_start)
1381 /* remember the address as a hint for next time */
1382 return (mm->free_area_cache = addr-len);
1385 if (mm->mmap_base < len)
1386 goto bottomup;
1388 addr = mm->mmap_base-len;
1390 do {
1392 * Lookup failure means no vma is above this address,
1393 * else if new region fits below vma->vm_start,
1394 * return with success:
1396 vma = find_vma(mm, addr);
1397 if (!vma || addr+len <= vma->vm_start)
1398 /* remember the address as a hint for next time */
1399 return (mm->free_area_cache = addr);
1401 /* remember the largest hole we saw so far */
1402 if (addr + mm->cached_hole_size < vma->vm_start)
1403 mm->cached_hole_size = vma->vm_start - addr;
1405 /* try just below the current vma->vm_start */
1406 addr = vma->vm_start-len;
1407 } while (len < vma->vm_start);
1409 bottomup:
1411 * A failed mmap() very likely causes application failure,
1412 * so fall back to the bottom-up function here. This scenario
1413 * can happen with large stack limits and large mmap()
1414 * allocations.
1416 mm->cached_hole_size = ~0UL;
1417 mm->free_area_cache = TASK_UNMAPPED_BASE;
1418 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1420 * Restore the topdown base:
1422 mm->free_area_cache = mm->mmap_base;
1423 mm->cached_hole_size = ~0UL;
1425 return addr;
1427 #endif
1429 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1432 * Is this a new hole at the highest possible address?
1434 if (addr > mm->free_area_cache)
1435 mm->free_area_cache = addr;
1437 /* dont allow allocations above current base */
1438 if (mm->free_area_cache > mm->mmap_base)
1439 mm->free_area_cache = mm->mmap_base;
1442 unsigned long
1443 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1444 unsigned long pgoff, unsigned long flags)
1446 unsigned long (*get_area)(struct file *, unsigned long,
1447 unsigned long, unsigned long, unsigned long);
1449 get_area = current->mm->get_unmapped_area;
1450 if (file && file->f_op && file->f_op->get_unmapped_area)
1451 get_area = file->f_op->get_unmapped_area;
1452 addr = get_area(file, addr, len, pgoff, flags);
1453 if (IS_ERR_VALUE(addr))
1454 return addr;
1456 if (addr > TASK_SIZE - len)
1457 return -ENOMEM;
1458 if (addr & ~PAGE_MASK)
1459 return -EINVAL;
1461 return arch_rebalance_pgtables(addr, len);
1464 EXPORT_SYMBOL(get_unmapped_area);
1466 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1467 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1469 struct vm_area_struct *vma = NULL;
1471 if (mm) {
1472 /* Check the cache first. */
1473 /* (Cache hit rate is typically around 35%.) */
1474 vma = mm->mmap_cache;
1475 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1476 struct rb_node * rb_node;
1478 rb_node = mm->mm_rb.rb_node;
1479 vma = NULL;
1481 while (rb_node) {
1482 struct vm_area_struct * vma_tmp;
1484 vma_tmp = rb_entry(rb_node,
1485 struct vm_area_struct, vm_rb);
1487 if (vma_tmp->vm_end > addr) {
1488 vma = vma_tmp;
1489 if (vma_tmp->vm_start <= addr)
1490 break;
1491 rb_node = rb_node->rb_left;
1492 } else
1493 rb_node = rb_node->rb_right;
1495 if (vma)
1496 mm->mmap_cache = vma;
1499 return vma;
1502 EXPORT_SYMBOL(find_vma);
1504 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1505 struct vm_area_struct *
1506 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1507 struct vm_area_struct **pprev)
1509 struct vm_area_struct *vma = NULL, *prev = NULL;
1510 struct rb_node *rb_node;
1511 if (!mm)
1512 goto out;
1514 /* Guard against addr being lower than the first VMA */
1515 vma = mm->mmap;
1517 /* Go through the RB tree quickly. */
1518 rb_node = mm->mm_rb.rb_node;
1520 while (rb_node) {
1521 struct vm_area_struct *vma_tmp;
1522 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1524 if (addr < vma_tmp->vm_end) {
1525 rb_node = rb_node->rb_left;
1526 } else {
1527 prev = vma_tmp;
1528 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1529 break;
1530 rb_node = rb_node->rb_right;
1534 out:
1535 *pprev = prev;
1536 return prev ? prev->vm_next : vma;
1540 * Verify that the stack growth is acceptable and
1541 * update accounting. This is shared with both the
1542 * grow-up and grow-down cases.
1544 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1546 struct mm_struct *mm = vma->vm_mm;
1547 struct rlimit *rlim = current->signal->rlim;
1548 unsigned long new_start;
1550 /* address space limit tests */
1551 if (!may_expand_vm(mm, grow))
1552 return -ENOMEM;
1554 /* Stack limit test */
1555 if (size > rlim[RLIMIT_STACK].rlim_cur)
1556 return -ENOMEM;
1558 /* mlock limit tests */
1559 if (vma->vm_flags & VM_LOCKED) {
1560 unsigned long locked;
1561 unsigned long limit;
1562 locked = mm->locked_vm + grow;
1563 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1564 if (locked > limit && !capable(CAP_IPC_LOCK))
1565 return -ENOMEM;
1568 /* Check to ensure the stack will not grow into a hugetlb-only region */
1569 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1570 vma->vm_end - size;
1571 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1572 return -EFAULT;
1575 * Overcommit.. This must be the final test, as it will
1576 * update security statistics.
1578 if (security_vm_enough_memory(grow))
1579 return -ENOMEM;
1581 /* Ok, everything looks good - let it rip */
1582 mm->total_vm += grow;
1583 if (vma->vm_flags & VM_LOCKED)
1584 mm->locked_vm += grow;
1585 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1586 return 0;
1589 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1591 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1592 * vma is the last one with address > vma->vm_end. Have to extend vma.
1594 #ifndef CONFIG_IA64
1595 static
1596 #endif
1597 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1599 int error;
1601 if (!(vma->vm_flags & VM_GROWSUP))
1602 return -EFAULT;
1605 * We must make sure the anon_vma is allocated
1606 * so that the anon_vma locking is not a noop.
1608 if (unlikely(anon_vma_prepare(vma)))
1609 return -ENOMEM;
1610 anon_vma_lock(vma);
1613 * vma->vm_start/vm_end cannot change under us because the caller
1614 * is required to hold the mmap_sem in read mode. We need the
1615 * anon_vma lock to serialize against concurrent expand_stacks.
1616 * Also guard against wrapping around to address 0.
1618 if (address < PAGE_ALIGN(address+4))
1619 address = PAGE_ALIGN(address+4);
1620 else {
1621 anon_vma_unlock(vma);
1622 return -ENOMEM;
1624 error = 0;
1626 /* Somebody else might have raced and expanded it already */
1627 if (address > vma->vm_end) {
1628 unsigned long size, grow;
1630 size = address - vma->vm_start;
1631 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1633 error = acct_stack_growth(vma, size, grow);
1634 if (!error)
1635 vma->vm_end = address;
1637 anon_vma_unlock(vma);
1638 return error;
1640 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1643 * vma is the first one with address < vma->vm_start. Have to extend vma.
1645 static int expand_downwards(struct vm_area_struct *vma,
1646 unsigned long address)
1648 int error;
1651 * We must make sure the anon_vma is allocated
1652 * so that the anon_vma locking is not a noop.
1654 if (unlikely(anon_vma_prepare(vma)))
1655 return -ENOMEM;
1657 address &= PAGE_MASK;
1658 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1659 if (error)
1660 return error;
1662 anon_vma_lock(vma);
1665 * vma->vm_start/vm_end cannot change under us because the caller
1666 * is required to hold the mmap_sem in read mode. We need the
1667 * anon_vma lock to serialize against concurrent expand_stacks.
1670 /* Somebody else might have raced and expanded it already */
1671 if (address < vma->vm_start) {
1672 unsigned long size, grow;
1674 size = vma->vm_end - address;
1675 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1677 error = acct_stack_growth(vma, size, grow);
1678 if (!error) {
1679 vma->vm_start = address;
1680 vma->vm_pgoff -= grow;
1683 anon_vma_unlock(vma);
1684 return error;
1687 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1689 return expand_downwards(vma, address);
1692 #ifdef CONFIG_STACK_GROWSUP
1693 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1695 return expand_upwards(vma, address);
1698 struct vm_area_struct *
1699 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1701 struct vm_area_struct *vma, *prev;
1703 addr &= PAGE_MASK;
1704 vma = find_vma_prev(mm, addr, &prev);
1705 if (vma && (vma->vm_start <= addr))
1706 return vma;
1707 if (!prev || expand_stack(prev, addr))
1708 return NULL;
1709 if (prev->vm_flags & VM_LOCKED) {
1710 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1711 return NULL; /* vma gone! */
1713 return prev;
1715 #else
1716 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1718 return expand_downwards(vma, address);
1721 struct vm_area_struct *
1722 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1724 struct vm_area_struct * vma;
1725 unsigned long start;
1727 addr &= PAGE_MASK;
1728 vma = find_vma(mm,addr);
1729 if (!vma)
1730 return NULL;
1731 if (vma->vm_start <= addr)
1732 return vma;
1733 if (!(vma->vm_flags & VM_GROWSDOWN))
1734 return NULL;
1735 start = vma->vm_start;
1736 if (expand_stack(vma, addr))
1737 return NULL;
1738 if (vma->vm_flags & VM_LOCKED) {
1739 if (mlock_vma_pages_range(vma, addr, start) < 0)
1740 return NULL; /* vma gone! */
1742 return vma;
1744 #endif
1747 * Ok - we have the memory areas we should free on the vma list,
1748 * so release them, and do the vma updates.
1750 * Called with the mm semaphore held.
1752 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1754 /* Update high watermark before we lower total_vm */
1755 update_hiwater_vm(mm);
1756 do {
1757 long nrpages = vma_pages(vma);
1759 mm->total_vm -= nrpages;
1760 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1761 vma = remove_vma(vma);
1762 } while (vma);
1763 validate_mm(mm);
1767 * Get rid of page table information in the indicated region.
1769 * Called with the mm semaphore held.
1771 static void unmap_region(struct mm_struct *mm,
1772 struct vm_area_struct *vma, struct vm_area_struct *prev,
1773 unsigned long start, unsigned long end)
1775 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1776 struct mmu_gather *tlb;
1777 unsigned long nr_accounted = 0;
1779 lru_add_drain();
1780 tlb = tlb_gather_mmu(mm, 0);
1781 update_hiwater_rss(mm);
1782 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1783 vm_unacct_memory(nr_accounted);
1784 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1785 next? next->vm_start: 0);
1786 tlb_finish_mmu(tlb, start, end);
1790 * Create a list of vma's touched by the unmap, removing them from the mm's
1791 * vma list as we go..
1793 static void
1794 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1795 struct vm_area_struct *prev, unsigned long end)
1797 struct vm_area_struct **insertion_point;
1798 struct vm_area_struct *tail_vma = NULL;
1799 unsigned long addr;
1801 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1802 do {
1803 rb_erase(&vma->vm_rb, &mm->mm_rb);
1804 mm->map_count--;
1805 tail_vma = vma;
1806 vma = vma->vm_next;
1807 } while (vma && vma->vm_start < end);
1808 *insertion_point = vma;
1809 tail_vma->vm_next = NULL;
1810 if (mm->unmap_area == arch_unmap_area)
1811 addr = prev ? prev->vm_end : mm->mmap_base;
1812 else
1813 addr = vma ? vma->vm_start : mm->mmap_base;
1814 mm->unmap_area(mm, addr);
1815 mm->mmap_cache = NULL; /* Kill the cache. */
1819 * Split a vma into two pieces at address 'addr', a new vma is allocated
1820 * either for the first part or the tail.
1822 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1823 unsigned long addr, int new_below)
1825 struct mempolicy *pol;
1826 struct vm_area_struct *new;
1828 if (is_vm_hugetlb_page(vma) && (addr &
1829 ~(huge_page_mask(hstate_vma(vma)))))
1830 return -EINVAL;
1832 if (mm->map_count >= sysctl_max_map_count)
1833 return -ENOMEM;
1835 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1836 if (!new)
1837 return -ENOMEM;
1839 /* most fields are the same, copy all, and then fixup */
1840 *new = *vma;
1842 if (new_below)
1843 new->vm_end = addr;
1844 else {
1845 new->vm_start = addr;
1846 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1849 pol = mpol_dup(vma_policy(vma));
1850 if (IS_ERR(pol)) {
1851 kmem_cache_free(vm_area_cachep, new);
1852 return PTR_ERR(pol);
1854 vma_set_policy(new, pol);
1856 if (new->vm_file) {
1857 get_file(new->vm_file);
1858 if (vma->vm_flags & VM_EXECUTABLE)
1859 added_exe_file_vma(mm);
1862 if (new->vm_ops && new->vm_ops->open)
1863 new->vm_ops->open(new);
1865 if (new_below)
1866 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1867 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1868 else
1869 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1871 return 0;
1874 /* Munmap is split into 2 main parts -- this part which finds
1875 * what needs doing, and the areas themselves, which do the
1876 * work. This now handles partial unmappings.
1877 * Jeremy Fitzhardinge <jeremy@goop.org>
1879 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1881 unsigned long end;
1882 struct vm_area_struct *vma, *prev, *last;
1884 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1885 return -EINVAL;
1887 if ((len = PAGE_ALIGN(len)) == 0)
1888 return -EINVAL;
1890 /* Find the first overlapping VMA */
1891 vma = find_vma_prev(mm, start, &prev);
1892 if (!vma)
1893 return 0;
1894 /* we have start < vma->vm_end */
1896 /* if it doesn't overlap, we have nothing.. */
1897 end = start + len;
1898 if (vma->vm_start >= end)
1899 return 0;
1902 * If we need to split any vma, do it now to save pain later.
1904 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1905 * unmapped vm_area_struct will remain in use: so lower split_vma
1906 * places tmp vma above, and higher split_vma places tmp vma below.
1908 if (start > vma->vm_start) {
1909 int error = split_vma(mm, vma, start, 0);
1910 if (error)
1911 return error;
1912 prev = vma;
1915 /* Does it split the last one? */
1916 last = find_vma(mm, end);
1917 if (last && end > last->vm_start) {
1918 int error = split_vma(mm, last, end, 1);
1919 if (error)
1920 return error;
1922 vma = prev? prev->vm_next: mm->mmap;
1925 * unlock any mlock()ed ranges before detaching vmas
1927 if (mm->locked_vm) {
1928 struct vm_area_struct *tmp = vma;
1929 while (tmp && tmp->vm_start < end) {
1930 if (tmp->vm_flags & VM_LOCKED) {
1931 mm->locked_vm -= vma_pages(tmp);
1932 munlock_vma_pages_all(tmp);
1934 tmp = tmp->vm_next;
1939 * Remove the vma's, and unmap the actual pages
1941 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1942 unmap_region(mm, vma, prev, start, end);
1944 /* Fix up all other VM information */
1945 remove_vma_list(mm, vma);
1947 return 0;
1950 EXPORT_SYMBOL(do_munmap);
1952 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1954 int ret;
1955 struct mm_struct *mm = current->mm;
1957 profile_munmap(addr);
1959 down_write(&mm->mmap_sem);
1960 ret = do_munmap(mm, addr, len);
1961 up_write(&mm->mmap_sem);
1962 return ret;
1965 static inline void verify_mm_writelocked(struct mm_struct *mm)
1967 #ifdef CONFIG_DEBUG_VM
1968 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1969 WARN_ON(1);
1970 up_read(&mm->mmap_sem);
1972 #endif
1976 * this is really a simplified "do_mmap". it only handles
1977 * anonymous maps. eventually we may be able to do some
1978 * brk-specific accounting here.
1980 unsigned long do_brk(unsigned long addr, unsigned long len)
1982 struct mm_struct * mm = current->mm;
1983 struct vm_area_struct * vma, * prev;
1984 unsigned long flags;
1985 struct rb_node ** rb_link, * rb_parent;
1986 pgoff_t pgoff = addr >> PAGE_SHIFT;
1987 int error;
1989 len = PAGE_ALIGN(len);
1990 if (!len)
1991 return addr;
1993 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1994 return -EINVAL;
1996 if (is_hugepage_only_range(mm, addr, len))
1997 return -EINVAL;
1999 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2000 if (error)
2001 return error;
2003 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2005 error = arch_mmap_check(addr, len, flags);
2006 if (error)
2007 return error;
2010 * mlock MCL_FUTURE?
2012 if (mm->def_flags & VM_LOCKED) {
2013 unsigned long locked, lock_limit;
2014 locked = len >> PAGE_SHIFT;
2015 locked += mm->locked_vm;
2016 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2017 lock_limit >>= PAGE_SHIFT;
2018 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2019 return -EAGAIN;
2023 * mm->mmap_sem is required to protect against another thread
2024 * changing the mappings in case we sleep.
2026 verify_mm_writelocked(mm);
2029 * Clear old maps. this also does some error checking for us
2031 munmap_back:
2032 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2033 if (vma && vma->vm_start < addr + len) {
2034 if (do_munmap(mm, addr, len))
2035 return -ENOMEM;
2036 goto munmap_back;
2039 /* Check against address space limits *after* clearing old maps... */
2040 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2041 return -ENOMEM;
2043 if (mm->map_count > sysctl_max_map_count)
2044 return -ENOMEM;
2046 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2047 return -ENOMEM;
2049 /* Can we just expand an old private anonymous mapping? */
2050 vma = vma_merge(mm, prev, addr, addr + len, flags,
2051 NULL, NULL, pgoff, NULL);
2052 if (vma)
2053 goto out;
2056 * create a vma struct for an anonymous mapping
2058 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2059 if (!vma) {
2060 vm_unacct_memory(len >> PAGE_SHIFT);
2061 return -ENOMEM;
2064 vma->vm_mm = mm;
2065 vma->vm_start = addr;
2066 vma->vm_end = addr + len;
2067 vma->vm_pgoff = pgoff;
2068 vma->vm_flags = flags;
2069 vma->vm_page_prot = vm_get_page_prot(flags);
2070 vma_link(mm, vma, prev, rb_link, rb_parent);
2071 out:
2072 mm->total_vm += len >> PAGE_SHIFT;
2073 if (flags & VM_LOCKED) {
2074 if (!mlock_vma_pages_range(vma, addr, addr + len))
2075 mm->locked_vm += (len >> PAGE_SHIFT);
2077 return addr;
2080 EXPORT_SYMBOL(do_brk);
2082 /* Release all mmaps. */
2083 void exit_mmap(struct mm_struct *mm)
2085 struct mmu_gather *tlb;
2086 struct vm_area_struct *vma;
2087 unsigned long nr_accounted = 0;
2088 unsigned long end;
2090 /* mm's last user has gone, and its about to be pulled down */
2091 mmu_notifier_release(mm);
2093 if (mm->locked_vm) {
2094 vma = mm->mmap;
2095 while (vma) {
2096 if (vma->vm_flags & VM_LOCKED)
2097 munlock_vma_pages_all(vma);
2098 vma = vma->vm_next;
2102 arch_exit_mmap(mm);
2104 vma = mm->mmap;
2105 if (!vma) /* Can happen if dup_mmap() received an OOM */
2106 return;
2108 lru_add_drain();
2109 flush_cache_mm(mm);
2110 tlb = tlb_gather_mmu(mm, 1);
2111 /* update_hiwater_rss(mm) here? but nobody should be looking */
2112 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2113 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2114 vm_unacct_memory(nr_accounted);
2115 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2116 tlb_finish_mmu(tlb, 0, end);
2119 * Walk the list again, actually closing and freeing it,
2120 * with preemption enabled, without holding any MM locks.
2122 while (vma)
2123 vma = remove_vma(vma);
2125 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2128 /* Insert vm structure into process list sorted by address
2129 * and into the inode's i_mmap tree. If vm_file is non-NULL
2130 * then i_mmap_lock is taken here.
2132 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2134 struct vm_area_struct * __vma, * prev;
2135 struct rb_node ** rb_link, * rb_parent;
2138 * The vm_pgoff of a purely anonymous vma should be irrelevant
2139 * until its first write fault, when page's anon_vma and index
2140 * are set. But now set the vm_pgoff it will almost certainly
2141 * end up with (unless mremap moves it elsewhere before that
2142 * first wfault), so /proc/pid/maps tells a consistent story.
2144 * By setting it to reflect the virtual start address of the
2145 * vma, merges and splits can happen in a seamless way, just
2146 * using the existing file pgoff checks and manipulations.
2147 * Similarly in do_mmap_pgoff and in do_brk.
2149 if (!vma->vm_file) {
2150 BUG_ON(vma->anon_vma);
2151 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2153 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2154 if (__vma && __vma->vm_start < vma->vm_end)
2155 return -ENOMEM;
2156 if ((vma->vm_flags & VM_ACCOUNT) &&
2157 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2158 return -ENOMEM;
2159 vma_link(mm, vma, prev, rb_link, rb_parent);
2160 return 0;
2164 * Copy the vma structure to a new location in the same mm,
2165 * prior to moving page table entries, to effect an mremap move.
2167 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2168 unsigned long addr, unsigned long len, pgoff_t pgoff)
2170 struct vm_area_struct *vma = *vmap;
2171 unsigned long vma_start = vma->vm_start;
2172 struct mm_struct *mm = vma->vm_mm;
2173 struct vm_area_struct *new_vma, *prev;
2174 struct rb_node **rb_link, *rb_parent;
2175 struct mempolicy *pol;
2178 * If anonymous vma has not yet been faulted, update new pgoff
2179 * to match new location, to increase its chance of merging.
2181 if (!vma->vm_file && !vma->anon_vma)
2182 pgoff = addr >> PAGE_SHIFT;
2184 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2185 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2186 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2187 if (new_vma) {
2189 * Source vma may have been merged into new_vma
2191 if (vma_start >= new_vma->vm_start &&
2192 vma_start < new_vma->vm_end)
2193 *vmap = new_vma;
2194 } else {
2195 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2196 if (new_vma) {
2197 *new_vma = *vma;
2198 pol = mpol_dup(vma_policy(vma));
2199 if (IS_ERR(pol)) {
2200 kmem_cache_free(vm_area_cachep, new_vma);
2201 return NULL;
2203 vma_set_policy(new_vma, pol);
2204 new_vma->vm_start = addr;
2205 new_vma->vm_end = addr + len;
2206 new_vma->vm_pgoff = pgoff;
2207 if (new_vma->vm_file) {
2208 get_file(new_vma->vm_file);
2209 if (vma->vm_flags & VM_EXECUTABLE)
2210 added_exe_file_vma(mm);
2212 if (new_vma->vm_ops && new_vma->vm_ops->open)
2213 new_vma->vm_ops->open(new_vma);
2214 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2217 return new_vma;
2221 * Return true if the calling process may expand its vm space by the passed
2222 * number of pages
2224 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2226 unsigned long cur = mm->total_vm; /* pages */
2227 unsigned long lim;
2229 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2231 if (cur + npages > lim)
2232 return 0;
2233 return 1;
2237 static int special_mapping_fault(struct vm_area_struct *vma,
2238 struct vm_fault *vmf)
2240 pgoff_t pgoff;
2241 struct page **pages;
2244 * special mappings have no vm_file, and in that case, the mm
2245 * uses vm_pgoff internally. So we have to subtract it from here.
2246 * We are allowed to do this because we are the mm; do not copy
2247 * this code into drivers!
2249 pgoff = vmf->pgoff - vma->vm_pgoff;
2251 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2252 pgoff--;
2254 if (*pages) {
2255 struct page *page = *pages;
2256 get_page(page);
2257 vmf->page = page;
2258 return 0;
2261 return VM_FAULT_SIGBUS;
2265 * Having a close hook prevents vma merging regardless of flags.
2267 static void special_mapping_close(struct vm_area_struct *vma)
2271 static struct vm_operations_struct special_mapping_vmops = {
2272 .close = special_mapping_close,
2273 .fault = special_mapping_fault,
2277 * Called with mm->mmap_sem held for writing.
2278 * Insert a new vma covering the given region, with the given flags.
2279 * Its pages are supplied by the given array of struct page *.
2280 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2281 * The region past the last page supplied will always produce SIGBUS.
2282 * The array pointer and the pages it points to are assumed to stay alive
2283 * for as long as this mapping might exist.
2285 int install_special_mapping(struct mm_struct *mm,
2286 unsigned long addr, unsigned long len,
2287 unsigned long vm_flags, struct page **pages)
2289 struct vm_area_struct *vma;
2291 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2292 if (unlikely(vma == NULL))
2293 return -ENOMEM;
2295 vma->vm_mm = mm;
2296 vma->vm_start = addr;
2297 vma->vm_end = addr + len;
2299 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2300 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2302 vma->vm_ops = &special_mapping_vmops;
2303 vma->vm_private_data = pages;
2305 if (unlikely(insert_vm_struct(mm, vma))) {
2306 kmem_cache_free(vm_area_cachep, vma);
2307 return -ENOMEM;
2310 mm->total_vm += len >> PAGE_SHIFT;
2312 return 0;
2315 static DEFINE_MUTEX(mm_all_locks_mutex);
2317 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2319 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2321 * The LSB of head.next can't change from under us
2322 * because we hold the mm_all_locks_mutex.
2324 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2326 * We can safely modify head.next after taking the
2327 * anon_vma->lock. If some other vma in this mm shares
2328 * the same anon_vma we won't take it again.
2330 * No need of atomic instructions here, head.next
2331 * can't change from under us thanks to the
2332 * anon_vma->lock.
2334 if (__test_and_set_bit(0, (unsigned long *)
2335 &anon_vma->head.next))
2336 BUG();
2340 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2342 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2344 * AS_MM_ALL_LOCKS can't change from under us because
2345 * we hold the mm_all_locks_mutex.
2347 * Operations on ->flags have to be atomic because
2348 * even if AS_MM_ALL_LOCKS is stable thanks to the
2349 * mm_all_locks_mutex, there may be other cpus
2350 * changing other bitflags in parallel to us.
2352 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2353 BUG();
2354 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2359 * This operation locks against the VM for all pte/vma/mm related
2360 * operations that could ever happen on a certain mm. This includes
2361 * vmtruncate, try_to_unmap, and all page faults.
2363 * The caller must take the mmap_sem in write mode before calling
2364 * mm_take_all_locks(). The caller isn't allowed to release the
2365 * mmap_sem until mm_drop_all_locks() returns.
2367 * mmap_sem in write mode is required in order to block all operations
2368 * that could modify pagetables and free pages without need of
2369 * altering the vma layout (for example populate_range() with
2370 * nonlinear vmas). It's also needed in write mode to avoid new
2371 * anon_vmas to be associated with existing vmas.
2373 * A single task can't take more than one mm_take_all_locks() in a row
2374 * or it would deadlock.
2376 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2377 * mapping->flags avoid to take the same lock twice, if more than one
2378 * vma in this mm is backed by the same anon_vma or address_space.
2380 * We can take all the locks in random order because the VM code
2381 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2382 * takes more than one of them in a row. Secondly we're protected
2383 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2385 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2386 * that may have to take thousand of locks.
2388 * mm_take_all_locks() can fail if it's interrupted by signals.
2390 int mm_take_all_locks(struct mm_struct *mm)
2392 struct vm_area_struct *vma;
2393 int ret = -EINTR;
2395 BUG_ON(down_read_trylock(&mm->mmap_sem));
2397 mutex_lock(&mm_all_locks_mutex);
2399 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2400 if (signal_pending(current))
2401 goto out_unlock;
2402 if (vma->vm_file && vma->vm_file->f_mapping)
2403 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2406 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2407 if (signal_pending(current))
2408 goto out_unlock;
2409 if (vma->anon_vma)
2410 vm_lock_anon_vma(mm, vma->anon_vma);
2413 ret = 0;
2415 out_unlock:
2416 if (ret)
2417 mm_drop_all_locks(mm);
2419 return ret;
2422 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2424 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2426 * The LSB of head.next can't change to 0 from under
2427 * us because we hold the mm_all_locks_mutex.
2429 * We must however clear the bitflag before unlocking
2430 * the vma so the users using the anon_vma->head will
2431 * never see our bitflag.
2433 * No need of atomic instructions here, head.next
2434 * can't change from under us until we release the
2435 * anon_vma->lock.
2437 if (!__test_and_clear_bit(0, (unsigned long *)
2438 &anon_vma->head.next))
2439 BUG();
2440 spin_unlock(&anon_vma->lock);
2444 static void vm_unlock_mapping(struct address_space *mapping)
2446 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2448 * AS_MM_ALL_LOCKS can't change to 0 from under us
2449 * because we hold the mm_all_locks_mutex.
2451 spin_unlock(&mapping->i_mmap_lock);
2452 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2453 &mapping->flags))
2454 BUG();
2459 * The mmap_sem cannot be released by the caller until
2460 * mm_drop_all_locks() returns.
2462 void mm_drop_all_locks(struct mm_struct *mm)
2464 struct vm_area_struct *vma;
2466 BUG_ON(down_read_trylock(&mm->mmap_sem));
2467 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2469 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2470 if (vma->anon_vma)
2471 vm_unlock_anon_vma(vma->anon_vma);
2472 if (vma->vm_file && vma->vm_file->f_mapping)
2473 vm_unlock_mapping(vma->vm_file->f_mapping);
2476 mutex_unlock(&mm_all_locks_mutex);
2480 * initialise the VMA slab
2482 void __init mmap_init(void)