4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
23 #include <asm/local.h>
27 * The ring buffer header is special. We must manually up keep it.
29 int ring_buffer_print_entry_header(struct trace_seq
*s
)
33 ret
= trace_seq_printf(s
, "# compressed entry header\n");
34 ret
= trace_seq_printf(s
, "\ttype_len : 5 bits\n");
35 ret
= trace_seq_printf(s
, "\ttime_delta : 27 bits\n");
36 ret
= trace_seq_printf(s
, "\tarray : 32 bits\n");
37 ret
= trace_seq_printf(s
, "\n");
38 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING
);
40 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND
);
42 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
62 * Here's some silly ASCII art.
65 * |reader| RING BUFFER
67 * +------+ +---+ +---+ +---+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
94 * +------------------------------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
102 * | New +---+ +---+ +---+
105 * +------------------------------+
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
112 * We will be using cmpxchg soon to make all this lockless.
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
146 RB_BUFFERS_ON_BIT
= 0,
147 RB_BUFFERS_DISABLED_BIT
= 1,
151 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
152 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
155 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160 * tracing_on - enable all tracing buffers
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
165 void tracing_on(void)
167 set_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
169 EXPORT_SYMBOL_GPL(tracing_on
);
172 * tracing_off - turn off all tracing buffers
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
179 void tracing_off(void)
181 clear_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
183 EXPORT_SYMBOL_GPL(tracing_off
);
186 * tracing_off_permanent - permanently disable ring buffers
188 * This function, once called, will disable all ring buffers
191 void tracing_off_permanent(void)
193 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
197 * tracing_is_on - show state of ring buffers enabled
199 int tracing_is_on(void)
201 return ring_buffer_flags
== RB_BUFFERS_ON
;
203 EXPORT_SYMBOL_GPL(tracing_is_on
);
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT 4U
207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT 0
212 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
214 # define RB_FORCE_8BYTE_ALIGNMENT 1
215 # define RB_ARCH_ALIGNMENT 8U
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
222 RB_LEN_TIME_EXTEND
= 8,
223 RB_LEN_TIME_STAMP
= 16,
226 #define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
229 static inline int rb_null_event(struct ring_buffer_event
*event
)
231 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
234 static void rb_event_set_padding(struct ring_buffer_event
*event
)
236 /* padding has a NULL time_delta */
237 event
->type_len
= RINGBUF_TYPE_PADDING
;
238 event
->time_delta
= 0;
242 rb_event_data_length(struct ring_buffer_event
*event
)
247 length
= event
->type_len
* RB_ALIGNMENT
;
249 length
= event
->array
[0];
250 return length
+ RB_EVNT_HDR_SIZE
;
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
258 static inline unsigned
259 rb_event_length(struct ring_buffer_event
*event
)
261 switch (event
->type_len
) {
262 case RINGBUF_TYPE_PADDING
:
263 if (rb_null_event(event
))
266 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
268 case RINGBUF_TYPE_TIME_EXTEND
:
269 return RB_LEN_TIME_EXTEND
;
271 case RINGBUF_TYPE_TIME_STAMP
:
272 return RB_LEN_TIME_STAMP
;
274 case RINGBUF_TYPE_DATA
:
275 return rb_event_data_length(event
);
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
287 static inline unsigned
288 rb_event_ts_length(struct ring_buffer_event
*event
)
292 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
293 /* time extends include the data event after it */
294 len
= RB_LEN_TIME_EXTEND
;
295 event
= skip_time_extend(event
);
297 return len
+ rb_event_length(event
);
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
310 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
314 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
315 event
= skip_time_extend(event
);
317 length
= rb_event_length(event
);
318 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
320 length
-= RB_EVNT_HDR_SIZE
;
321 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
322 length
-= sizeof(event
->array
[0]);
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
327 /* inline for ring buffer fast paths */
329 rb_event_data(struct ring_buffer_event
*event
)
331 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
332 event
= skip_time_extend(event
);
333 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
334 /* If length is in len field, then array[0] has the data */
336 return (void *)&event
->array
[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event
->array
[1];
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
345 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
347 return rb_event_data(event
);
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
351 #define for_each_buffer_cpu(buffer, cpu) \
352 for_each_cpu(cpu, buffer->cpumask)
355 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST (~TS_MASK)
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS (1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED (1 << 30)
363 struct buffer_data_page
{
364 u64 time_stamp
; /* page time stamp */
365 local_t commit
; /* write committed index */
366 unsigned char data
[]; /* data of buffer page */
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
378 struct list_head list
; /* list of buffer pages */
379 local_t write
; /* index for next write */
380 unsigned read
; /* index for next read */
381 local_t entries
; /* entries on this page */
382 unsigned long real_end
; /* real end of data */
383 struct buffer_data_page
*page
; /* Actual data page */
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
396 * The counter is 20 bits, and the state data is 12.
398 #define RB_WRITE_MASK 0xfffff
399 #define RB_WRITE_INTCNT (1 << 20)
401 static void rb_init_page(struct buffer_data_page
*bpage
)
403 local_set(&bpage
->commit
, 0);
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
410 * Returns the amount of data on the page, including buffer page header.
412 size_t ring_buffer_page_len(void *page
)
414 return local_read(&((struct buffer_data_page
*)page
)->commit
)
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
422 static void free_buffer_page(struct buffer_page
*bpage
)
424 free_page((unsigned long)bpage
->page
);
429 * We need to fit the time_stamp delta into 27 bits.
431 static inline int test_time_stamp(u64 delta
)
433 if (delta
& TS_DELTA_TEST
)
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
443 int ring_buffer_print_page_header(struct trace_seq
*s
)
445 struct buffer_data_page field
;
448 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field
.time_stamp
),
451 (unsigned int)is_signed_type(u64
));
453 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
455 (unsigned int)offsetof(typeof(field
), commit
),
456 (unsigned int)sizeof(field
.commit
),
457 (unsigned int)is_signed_type(long));
459 ret
= trace_seq_printf(s
, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field
), commit
),
463 (unsigned int)is_signed_type(long));
465 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
467 (unsigned int)offsetof(typeof(field
), data
),
468 (unsigned int)BUF_PAGE_SIZE
,
469 (unsigned int)is_signed_type(char));
475 * head_page == tail_page && head == tail then buffer is empty.
477 struct ring_buffer_per_cpu
{
479 atomic_t record_disabled
;
480 struct ring_buffer
*buffer
;
481 spinlock_t reader_lock
; /* serialize readers */
482 arch_spinlock_t lock
;
483 struct lock_class_key lock_key
;
484 struct list_head
*pages
;
485 struct buffer_page
*head_page
; /* read from head */
486 struct buffer_page
*tail_page
; /* write to tail */
487 struct buffer_page
*commit_page
; /* committed pages */
488 struct buffer_page
*reader_page
;
489 unsigned long lost_events
;
490 unsigned long last_overrun
;
491 local_t commit_overrun
;
505 atomic_t record_disabled
;
506 cpumask_var_t cpumask
;
508 struct lock_class_key
*reader_lock_key
;
512 struct ring_buffer_per_cpu
**buffers
;
514 #ifdef CONFIG_HOTPLUG_CPU
515 struct notifier_block cpu_notify
;
520 struct ring_buffer_iter
{
521 struct ring_buffer_per_cpu
*cpu_buffer
;
523 struct buffer_page
*head_page
;
524 struct buffer_page
*cache_reader_page
;
525 unsigned long cache_read
;
529 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
530 #define RB_WARN_ON(b, cond) \
532 int _____ret = unlikely(cond); \
534 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
535 struct ring_buffer_per_cpu *__b = \
537 atomic_inc(&__b->buffer->record_disabled); \
539 atomic_inc(&b->record_disabled); \
545 /* Up this if you want to test the TIME_EXTENTS and normalization */
546 #define DEBUG_SHIFT 0
548 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
550 /* shift to debug/test normalization and TIME_EXTENTS */
551 return buffer
->clock() << DEBUG_SHIFT
;
554 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
558 preempt_disable_notrace();
559 time
= rb_time_stamp(buffer
);
560 preempt_enable_no_resched_notrace();
564 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
566 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
569 /* Just stupid testing the normalize function and deltas */
572 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
575 * Making the ring buffer lockless makes things tricky.
576 * Although writes only happen on the CPU that they are on,
577 * and they only need to worry about interrupts. Reads can
580 * The reader page is always off the ring buffer, but when the
581 * reader finishes with a page, it needs to swap its page with
582 * a new one from the buffer. The reader needs to take from
583 * the head (writes go to the tail). But if a writer is in overwrite
584 * mode and wraps, it must push the head page forward.
586 * Here lies the problem.
588 * The reader must be careful to replace only the head page, and
589 * not another one. As described at the top of the file in the
590 * ASCII art, the reader sets its old page to point to the next
591 * page after head. It then sets the page after head to point to
592 * the old reader page. But if the writer moves the head page
593 * during this operation, the reader could end up with the tail.
595 * We use cmpxchg to help prevent this race. We also do something
596 * special with the page before head. We set the LSB to 1.
598 * When the writer must push the page forward, it will clear the
599 * bit that points to the head page, move the head, and then set
600 * the bit that points to the new head page.
602 * We also don't want an interrupt coming in and moving the head
603 * page on another writer. Thus we use the second LSB to catch
606 * head->list->prev->next bit 1 bit 0
609 * Points to head page 0 1
612 * Note we can not trust the prev pointer of the head page, because:
614 * +----+ +-----+ +-----+
615 * | |------>| T |---X--->| N |
617 * +----+ +-----+ +-----+
620 * +----------| R |----------+ |
624 * Key: ---X--> HEAD flag set in pointer
629 * (see __rb_reserve_next() to see where this happens)
631 * What the above shows is that the reader just swapped out
632 * the reader page with a page in the buffer, but before it
633 * could make the new header point back to the new page added
634 * it was preempted by a writer. The writer moved forward onto
635 * the new page added by the reader and is about to move forward
638 * You can see, it is legitimate for the previous pointer of
639 * the head (or any page) not to point back to itself. But only
643 #define RB_PAGE_NORMAL 0UL
644 #define RB_PAGE_HEAD 1UL
645 #define RB_PAGE_UPDATE 2UL
648 #define RB_FLAG_MASK 3UL
650 /* PAGE_MOVED is not part of the mask */
651 #define RB_PAGE_MOVED 4UL
654 * rb_list_head - remove any bit
656 static struct list_head
*rb_list_head(struct list_head
*list
)
658 unsigned long val
= (unsigned long)list
;
660 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
664 * rb_is_head_page - test if the given page is the head page
666 * Because the reader may move the head_page pointer, we can
667 * not trust what the head page is (it may be pointing to
668 * the reader page). But if the next page is a header page,
669 * its flags will be non zero.
672 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
673 struct buffer_page
*page
, struct list_head
*list
)
677 val
= (unsigned long)list
->next
;
679 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
680 return RB_PAGE_MOVED
;
682 return val
& RB_FLAG_MASK
;
688 * The unique thing about the reader page, is that, if the
689 * writer is ever on it, the previous pointer never points
690 * back to the reader page.
692 static int rb_is_reader_page(struct buffer_page
*page
)
694 struct list_head
*list
= page
->list
.prev
;
696 return rb_list_head(list
->next
) != &page
->list
;
700 * rb_set_list_to_head - set a list_head to be pointing to head.
702 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
703 struct list_head
*list
)
707 ptr
= (unsigned long *)&list
->next
;
708 *ptr
|= RB_PAGE_HEAD
;
709 *ptr
&= ~RB_PAGE_UPDATE
;
713 * rb_head_page_activate - sets up head page
715 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
717 struct buffer_page
*head
;
719 head
= cpu_buffer
->head_page
;
724 * Set the previous list pointer to have the HEAD flag.
726 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
729 static void rb_list_head_clear(struct list_head
*list
)
731 unsigned long *ptr
= (unsigned long *)&list
->next
;
733 *ptr
&= ~RB_FLAG_MASK
;
737 * rb_head_page_dactivate - clears head page ptr (for free list)
740 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
742 struct list_head
*hd
;
744 /* Go through the whole list and clear any pointers found. */
745 rb_list_head_clear(cpu_buffer
->pages
);
747 list_for_each(hd
, cpu_buffer
->pages
)
748 rb_list_head_clear(hd
);
751 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
752 struct buffer_page
*head
,
753 struct buffer_page
*prev
,
754 int old_flag
, int new_flag
)
756 struct list_head
*list
;
757 unsigned long val
= (unsigned long)&head
->list
;
762 val
&= ~RB_FLAG_MASK
;
764 ret
= cmpxchg((unsigned long *)&list
->next
,
765 val
| old_flag
, val
| new_flag
);
767 /* check if the reader took the page */
768 if ((ret
& ~RB_FLAG_MASK
) != val
)
769 return RB_PAGE_MOVED
;
771 return ret
& RB_FLAG_MASK
;
774 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
775 struct buffer_page
*head
,
776 struct buffer_page
*prev
,
779 return rb_head_page_set(cpu_buffer
, head
, prev
,
780 old_flag
, RB_PAGE_UPDATE
);
783 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
784 struct buffer_page
*head
,
785 struct buffer_page
*prev
,
788 return rb_head_page_set(cpu_buffer
, head
, prev
,
789 old_flag
, RB_PAGE_HEAD
);
792 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
793 struct buffer_page
*head
,
794 struct buffer_page
*prev
,
797 return rb_head_page_set(cpu_buffer
, head
, prev
,
798 old_flag
, RB_PAGE_NORMAL
);
801 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
802 struct buffer_page
**bpage
)
804 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
806 *bpage
= list_entry(p
, struct buffer_page
, list
);
809 static struct buffer_page
*
810 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
812 struct buffer_page
*head
;
813 struct buffer_page
*page
;
814 struct list_head
*list
;
817 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
821 list
= cpu_buffer
->pages
;
822 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
825 page
= head
= cpu_buffer
->head_page
;
827 * It is possible that the writer moves the header behind
828 * where we started, and we miss in one loop.
829 * A second loop should grab the header, but we'll do
830 * three loops just because I'm paranoid.
832 for (i
= 0; i
< 3; i
++) {
834 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
835 cpu_buffer
->head_page
= page
;
838 rb_inc_page(cpu_buffer
, &page
);
839 } while (page
!= head
);
842 RB_WARN_ON(cpu_buffer
, 1);
847 static int rb_head_page_replace(struct buffer_page
*old
,
848 struct buffer_page
*new)
850 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
854 val
= *ptr
& ~RB_FLAG_MASK
;
857 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
863 * rb_tail_page_update - move the tail page forward
865 * Returns 1 if moved tail page, 0 if someone else did.
867 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
868 struct buffer_page
*tail_page
,
869 struct buffer_page
*next_page
)
871 struct buffer_page
*old_tail
;
872 unsigned long old_entries
;
873 unsigned long old_write
;
877 * The tail page now needs to be moved forward.
879 * We need to reset the tail page, but without messing
880 * with possible erasing of data brought in by interrupts
881 * that have moved the tail page and are currently on it.
883 * We add a counter to the write field to denote this.
885 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
886 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
889 * Just make sure we have seen our old_write and synchronize
890 * with any interrupts that come in.
895 * If the tail page is still the same as what we think
896 * it is, then it is up to us to update the tail
899 if (tail_page
== cpu_buffer
->tail_page
) {
900 /* Zero the write counter */
901 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
902 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
905 * This will only succeed if an interrupt did
906 * not come in and change it. In which case, we
907 * do not want to modify it.
909 * We add (void) to let the compiler know that we do not care
910 * about the return value of these functions. We use the
911 * cmpxchg to only update if an interrupt did not already
912 * do it for us. If the cmpxchg fails, we don't care.
914 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
915 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
918 * No need to worry about races with clearing out the commit.
919 * it only can increment when a commit takes place. But that
920 * only happens in the outer most nested commit.
922 local_set(&next_page
->page
->commit
, 0);
924 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
925 tail_page
, next_page
);
927 if (old_tail
== tail_page
)
934 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
935 struct buffer_page
*bpage
)
937 unsigned long val
= (unsigned long)bpage
;
939 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
946 * rb_check_list - make sure a pointer to a list has the last bits zero
948 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
949 struct list_head
*list
)
951 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
953 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
959 * check_pages - integrity check of buffer pages
960 * @cpu_buffer: CPU buffer with pages to test
962 * As a safety measure we check to make sure the data pages have not
965 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
967 struct list_head
*head
= cpu_buffer
->pages
;
968 struct buffer_page
*bpage
, *tmp
;
970 rb_head_page_deactivate(cpu_buffer
);
972 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
974 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
977 if (rb_check_list(cpu_buffer
, head
))
980 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
981 if (RB_WARN_ON(cpu_buffer
,
982 bpage
->list
.next
->prev
!= &bpage
->list
))
984 if (RB_WARN_ON(cpu_buffer
,
985 bpage
->list
.prev
->next
!= &bpage
->list
))
987 if (rb_check_list(cpu_buffer
, &bpage
->list
))
991 rb_head_page_activate(cpu_buffer
);
996 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
999 struct buffer_page
*bpage
, *tmp
;
1006 for (i
= 0; i
< nr_pages
; i
++) {
1007 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1008 GFP_KERNEL
, cpu_to_node(cpu_buffer
->cpu
));
1012 rb_check_bpage(cpu_buffer
, bpage
);
1014 list_add(&bpage
->list
, &pages
);
1016 addr
= __get_free_page(GFP_KERNEL
);
1019 bpage
->page
= (void *)addr
;
1020 rb_init_page(bpage
->page
);
1024 * The ring buffer page list is a circular list that does not
1025 * start and end with a list head. All page list items point to
1028 cpu_buffer
->pages
= pages
.next
;
1031 rb_check_pages(cpu_buffer
);
1036 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1037 list_del_init(&bpage
->list
);
1038 free_buffer_page(bpage
);
1043 static struct ring_buffer_per_cpu
*
1044 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int cpu
)
1046 struct ring_buffer_per_cpu
*cpu_buffer
;
1047 struct buffer_page
*bpage
;
1051 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1052 GFP_KERNEL
, cpu_to_node(cpu
));
1056 cpu_buffer
->cpu
= cpu
;
1057 cpu_buffer
->buffer
= buffer
;
1058 spin_lock_init(&cpu_buffer
->reader_lock
);
1059 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1060 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1062 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1063 GFP_KERNEL
, cpu_to_node(cpu
));
1065 goto fail_free_buffer
;
1067 rb_check_bpage(cpu_buffer
, bpage
);
1069 cpu_buffer
->reader_page
= bpage
;
1070 addr
= __get_free_page(GFP_KERNEL
);
1072 goto fail_free_reader
;
1073 bpage
->page
= (void *)addr
;
1074 rb_init_page(bpage
->page
);
1076 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1078 ret
= rb_allocate_pages(cpu_buffer
, buffer
->pages
);
1080 goto fail_free_reader
;
1082 cpu_buffer
->head_page
1083 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1084 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1086 rb_head_page_activate(cpu_buffer
);
1091 free_buffer_page(cpu_buffer
->reader_page
);
1098 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1100 struct list_head
*head
= cpu_buffer
->pages
;
1101 struct buffer_page
*bpage
, *tmp
;
1103 free_buffer_page(cpu_buffer
->reader_page
);
1105 rb_head_page_deactivate(cpu_buffer
);
1108 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1109 list_del_init(&bpage
->list
);
1110 free_buffer_page(bpage
);
1112 bpage
= list_entry(head
, struct buffer_page
, list
);
1113 free_buffer_page(bpage
);
1119 #ifdef CONFIG_HOTPLUG_CPU
1120 static int rb_cpu_notify(struct notifier_block
*self
,
1121 unsigned long action
, void *hcpu
);
1125 * ring_buffer_alloc - allocate a new ring_buffer
1126 * @size: the size in bytes per cpu that is needed.
1127 * @flags: attributes to set for the ring buffer.
1129 * Currently the only flag that is available is the RB_FL_OVERWRITE
1130 * flag. This flag means that the buffer will overwrite old data
1131 * when the buffer wraps. If this flag is not set, the buffer will
1132 * drop data when the tail hits the head.
1134 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1135 struct lock_class_key
*key
)
1137 struct ring_buffer
*buffer
;
1141 /* keep it in its own cache line */
1142 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1147 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1148 goto fail_free_buffer
;
1150 buffer
->pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1151 buffer
->flags
= flags
;
1152 buffer
->clock
= trace_clock_local
;
1153 buffer
->reader_lock_key
= key
;
1155 /* need at least two pages */
1156 if (buffer
->pages
< 2)
1160 * In case of non-hotplug cpu, if the ring-buffer is allocated
1161 * in early initcall, it will not be notified of secondary cpus.
1162 * In that off case, we need to allocate for all possible cpus.
1164 #ifdef CONFIG_HOTPLUG_CPU
1166 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1168 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1170 buffer
->cpus
= nr_cpu_ids
;
1172 bsize
= sizeof(void *) * nr_cpu_ids
;
1173 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1175 if (!buffer
->buffers
)
1176 goto fail_free_cpumask
;
1178 for_each_buffer_cpu(buffer
, cpu
) {
1179 buffer
->buffers
[cpu
] =
1180 rb_allocate_cpu_buffer(buffer
, cpu
);
1181 if (!buffer
->buffers
[cpu
])
1182 goto fail_free_buffers
;
1185 #ifdef CONFIG_HOTPLUG_CPU
1186 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1187 buffer
->cpu_notify
.priority
= 0;
1188 register_cpu_notifier(&buffer
->cpu_notify
);
1192 mutex_init(&buffer
->mutex
);
1197 for_each_buffer_cpu(buffer
, cpu
) {
1198 if (buffer
->buffers
[cpu
])
1199 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1201 kfree(buffer
->buffers
);
1204 free_cpumask_var(buffer
->cpumask
);
1211 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1214 * ring_buffer_free - free a ring buffer.
1215 * @buffer: the buffer to free.
1218 ring_buffer_free(struct ring_buffer
*buffer
)
1224 #ifdef CONFIG_HOTPLUG_CPU
1225 unregister_cpu_notifier(&buffer
->cpu_notify
);
1228 for_each_buffer_cpu(buffer
, cpu
)
1229 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1233 kfree(buffer
->buffers
);
1234 free_cpumask_var(buffer
->cpumask
);
1238 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1240 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1243 buffer
->clock
= clock
;
1246 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1249 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned nr_pages
)
1251 struct buffer_page
*bpage
;
1252 struct list_head
*p
;
1255 spin_lock_irq(&cpu_buffer
->reader_lock
);
1256 rb_head_page_deactivate(cpu_buffer
);
1258 for (i
= 0; i
< nr_pages
; i
++) {
1259 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1261 p
= cpu_buffer
->pages
->next
;
1262 bpage
= list_entry(p
, struct buffer_page
, list
);
1263 list_del_init(&bpage
->list
);
1264 free_buffer_page(bpage
);
1266 if (RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
)))
1269 rb_reset_cpu(cpu_buffer
);
1270 rb_check_pages(cpu_buffer
);
1273 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1277 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1278 struct list_head
*pages
, unsigned nr_pages
)
1280 struct buffer_page
*bpage
;
1281 struct list_head
*p
;
1284 spin_lock_irq(&cpu_buffer
->reader_lock
);
1285 rb_head_page_deactivate(cpu_buffer
);
1287 for (i
= 0; i
< nr_pages
; i
++) {
1288 if (RB_WARN_ON(cpu_buffer
, list_empty(pages
)))
1291 bpage
= list_entry(p
, struct buffer_page
, list
);
1292 list_del_init(&bpage
->list
);
1293 list_add_tail(&bpage
->list
, cpu_buffer
->pages
);
1295 rb_reset_cpu(cpu_buffer
);
1296 rb_check_pages(cpu_buffer
);
1299 spin_unlock_irq(&cpu_buffer
->reader_lock
);
1303 * ring_buffer_resize - resize the ring buffer
1304 * @buffer: the buffer to resize.
1305 * @size: the new size.
1307 * Minimum size is 2 * BUF_PAGE_SIZE.
1309 * Returns -1 on failure.
1311 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
)
1313 struct ring_buffer_per_cpu
*cpu_buffer
;
1314 unsigned nr_pages
, rm_pages
, new_pages
;
1315 struct buffer_page
*bpage
, *tmp
;
1316 unsigned long buffer_size
;
1322 * Always succeed at resizing a non-existent buffer:
1327 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1328 size
*= BUF_PAGE_SIZE
;
1329 buffer_size
= buffer
->pages
* BUF_PAGE_SIZE
;
1331 /* we need a minimum of two pages */
1332 if (size
< BUF_PAGE_SIZE
* 2)
1333 size
= BUF_PAGE_SIZE
* 2;
1335 if (size
== buffer_size
)
1338 atomic_inc(&buffer
->record_disabled
);
1340 /* Make sure all writers are done with this buffer. */
1341 synchronize_sched();
1343 mutex_lock(&buffer
->mutex
);
1346 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1348 if (size
< buffer_size
) {
1350 /* easy case, just free pages */
1351 if (RB_WARN_ON(buffer
, nr_pages
>= buffer
->pages
))
1354 rm_pages
= buffer
->pages
- nr_pages
;
1356 for_each_buffer_cpu(buffer
, cpu
) {
1357 cpu_buffer
= buffer
->buffers
[cpu
];
1358 rb_remove_pages(cpu_buffer
, rm_pages
);
1364 * This is a bit more difficult. We only want to add pages
1365 * when we can allocate enough for all CPUs. We do this
1366 * by allocating all the pages and storing them on a local
1367 * link list. If we succeed in our allocation, then we
1368 * add these pages to the cpu_buffers. Otherwise we just free
1369 * them all and return -ENOMEM;
1371 if (RB_WARN_ON(buffer
, nr_pages
<= buffer
->pages
))
1374 new_pages
= nr_pages
- buffer
->pages
;
1376 for_each_buffer_cpu(buffer
, cpu
) {
1377 for (i
= 0; i
< new_pages
; i
++) {
1378 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
),
1380 GFP_KERNEL
, cpu_to_node(cpu
));
1383 list_add(&bpage
->list
, &pages
);
1384 addr
= __get_free_page(GFP_KERNEL
);
1387 bpage
->page
= (void *)addr
;
1388 rb_init_page(bpage
->page
);
1392 for_each_buffer_cpu(buffer
, cpu
) {
1393 cpu_buffer
= buffer
->buffers
[cpu
];
1394 rb_insert_pages(cpu_buffer
, &pages
, new_pages
);
1397 if (RB_WARN_ON(buffer
, !list_empty(&pages
)))
1401 buffer
->pages
= nr_pages
;
1403 mutex_unlock(&buffer
->mutex
);
1405 atomic_dec(&buffer
->record_disabled
);
1410 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
1411 list_del_init(&bpage
->list
);
1412 free_buffer_page(bpage
);
1415 mutex_unlock(&buffer
->mutex
);
1416 atomic_dec(&buffer
->record_disabled
);
1420 * Something went totally wrong, and we are too paranoid
1421 * to even clean up the mess.
1425 mutex_unlock(&buffer
->mutex
);
1426 atomic_dec(&buffer
->record_disabled
);
1429 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1431 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1433 mutex_lock(&buffer
->mutex
);
1435 buffer
->flags
|= RB_FL_OVERWRITE
;
1437 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1438 mutex_unlock(&buffer
->mutex
);
1440 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1442 static inline void *
1443 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1445 return bpage
->data
+ index
;
1448 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1450 return bpage
->page
->data
+ index
;
1453 static inline struct ring_buffer_event
*
1454 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1456 return __rb_page_index(cpu_buffer
->reader_page
,
1457 cpu_buffer
->reader_page
->read
);
1460 static inline struct ring_buffer_event
*
1461 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1463 return __rb_page_index(iter
->head_page
, iter
->head
);
1466 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1468 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1471 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1473 return local_read(&bpage
->page
->commit
);
1476 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1478 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1481 /* Size is determined by what has been committed */
1482 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1484 return rb_page_commit(bpage
);
1487 static inline unsigned
1488 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1490 return rb_page_commit(cpu_buffer
->commit_page
);
1493 static inline unsigned
1494 rb_event_index(struct ring_buffer_event
*event
)
1496 unsigned long addr
= (unsigned long)event
;
1498 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1502 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1503 struct ring_buffer_event
*event
)
1505 unsigned long addr
= (unsigned long)event
;
1506 unsigned long index
;
1508 index
= rb_event_index(event
);
1511 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1512 rb_commit_index(cpu_buffer
) == index
;
1516 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1518 unsigned long max_count
;
1521 * We only race with interrupts and NMIs on this CPU.
1522 * If we own the commit event, then we can commit
1523 * all others that interrupted us, since the interruptions
1524 * are in stack format (they finish before they come
1525 * back to us). This allows us to do a simple loop to
1526 * assign the commit to the tail.
1529 max_count
= cpu_buffer
->buffer
->pages
* 100;
1531 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1532 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1534 if (RB_WARN_ON(cpu_buffer
,
1535 rb_is_reader_page(cpu_buffer
->tail_page
)))
1537 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1538 rb_page_write(cpu_buffer
->commit_page
));
1539 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1540 cpu_buffer
->write_stamp
=
1541 cpu_buffer
->commit_page
->page
->time_stamp
;
1542 /* add barrier to keep gcc from optimizing too much */
1545 while (rb_commit_index(cpu_buffer
) !=
1546 rb_page_write(cpu_buffer
->commit_page
)) {
1548 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1549 rb_page_write(cpu_buffer
->commit_page
));
1550 RB_WARN_ON(cpu_buffer
,
1551 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1556 /* again, keep gcc from optimizing */
1560 * If an interrupt came in just after the first while loop
1561 * and pushed the tail page forward, we will be left with
1562 * a dangling commit that will never go forward.
1564 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1568 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1570 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1571 cpu_buffer
->reader_page
->read
= 0;
1574 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1576 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1579 * The iterator could be on the reader page (it starts there).
1580 * But the head could have moved, since the reader was
1581 * found. Check for this case and assign the iterator
1582 * to the head page instead of next.
1584 if (iter
->head_page
== cpu_buffer
->reader_page
)
1585 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1587 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1589 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1593 /* Slow path, do not inline */
1594 static noinline
struct ring_buffer_event
*
1595 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
1597 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
1599 /* Not the first event on the page? */
1600 if (rb_event_index(event
)) {
1601 event
->time_delta
= delta
& TS_MASK
;
1602 event
->array
[0] = delta
>> TS_SHIFT
;
1604 /* nope, just zero it */
1605 event
->time_delta
= 0;
1606 event
->array
[0] = 0;
1609 return skip_time_extend(event
);
1613 * ring_buffer_update_event - update event type and data
1614 * @event: the even to update
1615 * @type: the type of event
1616 * @length: the size of the event field in the ring buffer
1618 * Update the type and data fields of the event. The length
1619 * is the actual size that is written to the ring buffer,
1620 * and with this, we can determine what to place into the
1624 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
1625 struct ring_buffer_event
*event
, unsigned length
,
1626 int add_timestamp
, u64 delta
)
1628 /* Only a commit updates the timestamp */
1629 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
1633 * If we need to add a timestamp, then we
1634 * add it to the start of the resevered space.
1636 if (unlikely(add_timestamp
)) {
1637 event
= rb_add_time_stamp(event
, delta
);
1638 length
-= RB_LEN_TIME_EXTEND
;
1642 event
->time_delta
= delta
;
1643 length
-= RB_EVNT_HDR_SIZE
;
1644 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
1645 event
->type_len
= 0;
1646 event
->array
[0] = length
;
1648 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
1652 * rb_handle_head_page - writer hit the head page
1654 * Returns: +1 to retry page
1659 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1660 struct buffer_page
*tail_page
,
1661 struct buffer_page
*next_page
)
1663 struct buffer_page
*new_head
;
1668 entries
= rb_page_entries(next_page
);
1671 * The hard part is here. We need to move the head
1672 * forward, and protect against both readers on
1673 * other CPUs and writers coming in via interrupts.
1675 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1679 * type can be one of four:
1680 * NORMAL - an interrupt already moved it for us
1681 * HEAD - we are the first to get here.
1682 * UPDATE - we are the interrupt interrupting
1684 * MOVED - a reader on another CPU moved the next
1685 * pointer to its reader page. Give up
1692 * We changed the head to UPDATE, thus
1693 * it is our responsibility to update
1696 local_add(entries
, &cpu_buffer
->overrun
);
1699 * The entries will be zeroed out when we move the
1703 /* still more to do */
1706 case RB_PAGE_UPDATE
:
1708 * This is an interrupt that interrupt the
1709 * previous update. Still more to do.
1712 case RB_PAGE_NORMAL
:
1714 * An interrupt came in before the update
1715 * and processed this for us.
1716 * Nothing left to do.
1721 * The reader is on another CPU and just did
1722 * a swap with our next_page.
1727 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
1732 * Now that we are here, the old head pointer is
1733 * set to UPDATE. This will keep the reader from
1734 * swapping the head page with the reader page.
1735 * The reader (on another CPU) will spin till
1738 * We just need to protect against interrupts
1739 * doing the job. We will set the next pointer
1740 * to HEAD. After that, we set the old pointer
1741 * to NORMAL, but only if it was HEAD before.
1742 * otherwise we are an interrupt, and only
1743 * want the outer most commit to reset it.
1745 new_head
= next_page
;
1746 rb_inc_page(cpu_buffer
, &new_head
);
1748 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
1752 * Valid returns are:
1753 * HEAD - an interrupt came in and already set it.
1754 * NORMAL - One of two things:
1755 * 1) We really set it.
1756 * 2) A bunch of interrupts came in and moved
1757 * the page forward again.
1761 case RB_PAGE_NORMAL
:
1765 RB_WARN_ON(cpu_buffer
, 1);
1770 * It is possible that an interrupt came in,
1771 * set the head up, then more interrupts came in
1772 * and moved it again. When we get back here,
1773 * the page would have been set to NORMAL but we
1774 * just set it back to HEAD.
1776 * How do you detect this? Well, if that happened
1777 * the tail page would have moved.
1779 if (ret
== RB_PAGE_NORMAL
) {
1781 * If the tail had moved passed next, then we need
1782 * to reset the pointer.
1784 if (cpu_buffer
->tail_page
!= tail_page
&&
1785 cpu_buffer
->tail_page
!= next_page
)
1786 rb_head_page_set_normal(cpu_buffer
, new_head
,
1792 * If this was the outer most commit (the one that
1793 * changed the original pointer from HEAD to UPDATE),
1794 * then it is up to us to reset it to NORMAL.
1796 if (type
== RB_PAGE_HEAD
) {
1797 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
1800 if (RB_WARN_ON(cpu_buffer
,
1801 ret
!= RB_PAGE_UPDATE
))
1808 static unsigned rb_calculate_event_length(unsigned length
)
1810 struct ring_buffer_event event
; /* Used only for sizeof array */
1812 /* zero length can cause confusions */
1816 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
1817 length
+= sizeof(event
.array
[0]);
1819 length
+= RB_EVNT_HDR_SIZE
;
1820 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
1826 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1827 struct buffer_page
*tail_page
,
1828 unsigned long tail
, unsigned long length
)
1830 struct ring_buffer_event
*event
;
1833 * Only the event that crossed the page boundary
1834 * must fill the old tail_page with padding.
1836 if (tail
>= BUF_PAGE_SIZE
) {
1838 * If the page was filled, then we still need
1839 * to update the real_end. Reset it to zero
1840 * and the reader will ignore it.
1842 if (tail
== BUF_PAGE_SIZE
)
1843 tail_page
->real_end
= 0;
1845 local_sub(length
, &tail_page
->write
);
1849 event
= __rb_page_index(tail_page
, tail
);
1850 kmemcheck_annotate_bitfield(event
, bitfield
);
1853 * Save the original length to the meta data.
1854 * This will be used by the reader to add lost event
1857 tail_page
->real_end
= tail
;
1860 * If this event is bigger than the minimum size, then
1861 * we need to be careful that we don't subtract the
1862 * write counter enough to allow another writer to slip
1864 * We put in a discarded commit instead, to make sure
1865 * that this space is not used again.
1867 * If we are less than the minimum size, we don't need to
1870 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
1871 /* No room for any events */
1873 /* Mark the rest of the page with padding */
1874 rb_event_set_padding(event
);
1876 /* Set the write back to the previous setting */
1877 local_sub(length
, &tail_page
->write
);
1881 /* Put in a discarded event */
1882 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
1883 event
->type_len
= RINGBUF_TYPE_PADDING
;
1884 /* time delta must be non zero */
1885 event
->time_delta
= 1;
1887 /* Set write to end of buffer */
1888 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
1889 local_sub(length
, &tail_page
->write
);
1893 * This is the slow path, force gcc not to inline it.
1895 static noinline
struct ring_buffer_event
*
1896 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1897 unsigned long length
, unsigned long tail
,
1898 struct buffer_page
*tail_page
, u64 ts
)
1900 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
1901 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
1902 struct buffer_page
*next_page
;
1905 next_page
= tail_page
;
1907 rb_inc_page(cpu_buffer
, &next_page
);
1910 * If for some reason, we had an interrupt storm that made
1911 * it all the way around the buffer, bail, and warn
1914 if (unlikely(next_page
== commit_page
)) {
1915 local_inc(&cpu_buffer
->commit_overrun
);
1920 * This is where the fun begins!
1922 * We are fighting against races between a reader that
1923 * could be on another CPU trying to swap its reader
1924 * page with the buffer head.
1926 * We are also fighting against interrupts coming in and
1927 * moving the head or tail on us as well.
1929 * If the next page is the head page then we have filled
1930 * the buffer, unless the commit page is still on the
1933 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
1936 * If the commit is not on the reader page, then
1937 * move the header page.
1939 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
1941 * If we are not in overwrite mode,
1942 * this is easy, just stop here.
1944 if (!(buffer
->flags
& RB_FL_OVERWRITE
))
1947 ret
= rb_handle_head_page(cpu_buffer
,
1956 * We need to be careful here too. The
1957 * commit page could still be on the reader
1958 * page. We could have a small buffer, and
1959 * have filled up the buffer with events
1960 * from interrupts and such, and wrapped.
1962 * Note, if the tail page is also the on the
1963 * reader_page, we let it move out.
1965 if (unlikely((cpu_buffer
->commit_page
!=
1966 cpu_buffer
->tail_page
) &&
1967 (cpu_buffer
->commit_page
==
1968 cpu_buffer
->reader_page
))) {
1969 local_inc(&cpu_buffer
->commit_overrun
);
1975 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
1978 * Nested commits always have zero deltas, so
1979 * just reread the time stamp
1981 ts
= rb_time_stamp(buffer
);
1982 next_page
->page
->time_stamp
= ts
;
1987 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1989 /* fail and let the caller try again */
1990 return ERR_PTR(-EAGAIN
);
1994 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1999 static struct ring_buffer_event
*
2000 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2001 unsigned long length
, u64 ts
,
2002 u64 delta
, int add_timestamp
)
2004 struct buffer_page
*tail_page
;
2005 struct ring_buffer_event
*event
;
2006 unsigned long tail
, write
;
2009 * If the time delta since the last event is too big to
2010 * hold in the time field of the event, then we append a
2011 * TIME EXTEND event ahead of the data event.
2013 if (unlikely(add_timestamp
))
2014 length
+= RB_LEN_TIME_EXTEND
;
2016 tail_page
= cpu_buffer
->tail_page
;
2017 write
= local_add_return(length
, &tail_page
->write
);
2019 /* set write to only the index of the write */
2020 write
&= RB_WRITE_MASK
;
2021 tail
= write
- length
;
2023 /* See if we shot pass the end of this buffer page */
2024 if (unlikely(write
> BUF_PAGE_SIZE
))
2025 return rb_move_tail(cpu_buffer
, length
, tail
,
2028 /* We reserved something on the buffer */
2030 event
= __rb_page_index(tail_page
, tail
);
2031 kmemcheck_annotate_bitfield(event
, bitfield
);
2032 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2034 local_inc(&tail_page
->entries
);
2037 * If this is the first commit on the page, then update
2041 tail_page
->page
->time_stamp
= ts
;
2047 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2048 struct ring_buffer_event
*event
)
2050 unsigned long new_index
, old_index
;
2051 struct buffer_page
*bpage
;
2052 unsigned long index
;
2055 new_index
= rb_event_index(event
);
2056 old_index
= new_index
+ rb_event_ts_length(event
);
2057 addr
= (unsigned long)event
;
2060 bpage
= cpu_buffer
->tail_page
;
2062 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2063 unsigned long write_mask
=
2064 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2066 * This is on the tail page. It is possible that
2067 * a write could come in and move the tail page
2068 * and write to the next page. That is fine
2069 * because we just shorten what is on this page.
2071 old_index
+= write_mask
;
2072 new_index
+= write_mask
;
2073 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2074 if (index
== old_index
)
2078 /* could not discard */
2082 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2084 local_inc(&cpu_buffer
->committing
);
2085 local_inc(&cpu_buffer
->commits
);
2088 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2090 unsigned long commits
;
2092 if (RB_WARN_ON(cpu_buffer
,
2093 !local_read(&cpu_buffer
->committing
)))
2097 commits
= local_read(&cpu_buffer
->commits
);
2098 /* synchronize with interrupts */
2100 if (local_read(&cpu_buffer
->committing
) == 1)
2101 rb_set_commit_to_write(cpu_buffer
);
2103 local_dec(&cpu_buffer
->committing
);
2105 /* synchronize with interrupts */
2109 * Need to account for interrupts coming in between the
2110 * updating of the commit page and the clearing of the
2111 * committing counter.
2113 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2114 !local_read(&cpu_buffer
->committing
)) {
2115 local_inc(&cpu_buffer
->committing
);
2120 static struct ring_buffer_event
*
2121 rb_reserve_next_event(struct ring_buffer
*buffer
,
2122 struct ring_buffer_per_cpu
*cpu_buffer
,
2123 unsigned long length
)
2125 struct ring_buffer_event
*event
;
2131 rb_start_commit(cpu_buffer
);
2133 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2135 * Due to the ability to swap a cpu buffer from a buffer
2136 * it is possible it was swapped before we committed.
2137 * (committing stops a swap). We check for it here and
2138 * if it happened, we have to fail the write.
2141 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2142 local_dec(&cpu_buffer
->committing
);
2143 local_dec(&cpu_buffer
->commits
);
2148 length
= rb_calculate_event_length(length
);
2154 * We allow for interrupts to reenter here and do a trace.
2155 * If one does, it will cause this original code to loop
2156 * back here. Even with heavy interrupts happening, this
2157 * should only happen a few times in a row. If this happens
2158 * 1000 times in a row, there must be either an interrupt
2159 * storm or we have something buggy.
2162 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2165 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2166 diff
= ts
- cpu_buffer
->write_stamp
;
2168 /* make sure this diff is calculated here */
2171 /* Did the write stamp get updated already? */
2172 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2174 if (unlikely(test_time_stamp(delta
))) {
2175 int local_clock_stable
= 1;
2176 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2177 local_clock_stable
= sched_clock_stable
;
2179 WARN_ONCE(delta
> (1ULL << 59),
2180 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2181 (unsigned long long)delta
,
2182 (unsigned long long)ts
,
2183 (unsigned long long)cpu_buffer
->write_stamp
,
2184 local_clock_stable
? "" :
2185 "If you just came from a suspend/resume,\n"
2186 "please switch to the trace global clock:\n"
2187 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2192 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2193 delta
, add_timestamp
);
2194 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2203 rb_end_commit(cpu_buffer
);
2207 #ifdef CONFIG_TRACING
2209 #define TRACE_RECURSIVE_DEPTH 16
2211 /* Keep this code out of the fast path cache */
2212 static noinline
void trace_recursive_fail(void)
2214 /* Disable all tracing before we do anything else */
2215 tracing_off_permanent();
2217 printk_once(KERN_WARNING
"Tracing recursion: depth[%ld]:"
2218 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2219 trace_recursion_buffer(),
2220 hardirq_count() >> HARDIRQ_SHIFT
,
2221 softirq_count() >> SOFTIRQ_SHIFT
,
2227 static inline int trace_recursive_lock(void)
2229 trace_recursion_inc();
2231 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH
))
2234 trace_recursive_fail();
2239 static inline void trace_recursive_unlock(void)
2241 WARN_ON_ONCE(!trace_recursion_buffer());
2243 trace_recursion_dec();
2248 #define trace_recursive_lock() (0)
2249 #define trace_recursive_unlock() do { } while (0)
2254 * ring_buffer_lock_reserve - reserve a part of the buffer
2255 * @buffer: the ring buffer to reserve from
2256 * @length: the length of the data to reserve (excluding event header)
2258 * Returns a reseverd event on the ring buffer to copy directly to.
2259 * The user of this interface will need to get the body to write into
2260 * and can use the ring_buffer_event_data() interface.
2262 * The length is the length of the data needed, not the event length
2263 * which also includes the event header.
2265 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2266 * If NULL is returned, then nothing has been allocated or locked.
2268 struct ring_buffer_event
*
2269 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2271 struct ring_buffer_per_cpu
*cpu_buffer
;
2272 struct ring_buffer_event
*event
;
2275 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2278 /* If we are tracing schedule, we don't want to recurse */
2279 preempt_disable_notrace();
2281 if (atomic_read(&buffer
->record_disabled
))
2284 if (trace_recursive_lock())
2287 cpu
= raw_smp_processor_id();
2289 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2292 cpu_buffer
= buffer
->buffers
[cpu
];
2294 if (atomic_read(&cpu_buffer
->record_disabled
))
2297 if (length
> BUF_MAX_DATA_SIZE
)
2300 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2307 trace_recursive_unlock();
2310 preempt_enable_notrace();
2313 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2316 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2317 struct ring_buffer_event
*event
)
2322 * The event first in the commit queue updates the
2325 if (rb_event_is_commit(cpu_buffer
, event
)) {
2327 * A commit event that is first on a page
2328 * updates the write timestamp with the page stamp
2330 if (!rb_event_index(event
))
2331 cpu_buffer
->write_stamp
=
2332 cpu_buffer
->commit_page
->page
->time_stamp
;
2333 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2334 delta
= event
->array
[0];
2336 delta
+= event
->time_delta
;
2337 cpu_buffer
->write_stamp
+= delta
;
2339 cpu_buffer
->write_stamp
+= event
->time_delta
;
2343 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2344 struct ring_buffer_event
*event
)
2346 local_inc(&cpu_buffer
->entries
);
2347 rb_update_write_stamp(cpu_buffer
, event
);
2348 rb_end_commit(cpu_buffer
);
2352 * ring_buffer_unlock_commit - commit a reserved
2353 * @buffer: The buffer to commit to
2354 * @event: The event pointer to commit.
2356 * This commits the data to the ring buffer, and releases any locks held.
2358 * Must be paired with ring_buffer_lock_reserve.
2360 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2361 struct ring_buffer_event
*event
)
2363 struct ring_buffer_per_cpu
*cpu_buffer
;
2364 int cpu
= raw_smp_processor_id();
2366 cpu_buffer
= buffer
->buffers
[cpu
];
2368 rb_commit(cpu_buffer
, event
);
2370 trace_recursive_unlock();
2372 preempt_enable_notrace();
2376 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2378 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2380 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2381 event
= skip_time_extend(event
);
2383 /* array[0] holds the actual length for the discarded event */
2384 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2385 event
->type_len
= RINGBUF_TYPE_PADDING
;
2386 /* time delta must be non zero */
2387 if (!event
->time_delta
)
2388 event
->time_delta
= 1;
2392 * Decrement the entries to the page that an event is on.
2393 * The event does not even need to exist, only the pointer
2394 * to the page it is on. This may only be called before the commit
2398 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2399 struct ring_buffer_event
*event
)
2401 unsigned long addr
= (unsigned long)event
;
2402 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2403 struct buffer_page
*start
;
2407 /* Do the likely case first */
2408 if (likely(bpage
->page
== (void *)addr
)) {
2409 local_dec(&bpage
->entries
);
2414 * Because the commit page may be on the reader page we
2415 * start with the next page and check the end loop there.
2417 rb_inc_page(cpu_buffer
, &bpage
);
2420 if (bpage
->page
== (void *)addr
) {
2421 local_dec(&bpage
->entries
);
2424 rb_inc_page(cpu_buffer
, &bpage
);
2425 } while (bpage
!= start
);
2427 /* commit not part of this buffer?? */
2428 RB_WARN_ON(cpu_buffer
, 1);
2432 * ring_buffer_commit_discard - discard an event that has not been committed
2433 * @buffer: the ring buffer
2434 * @event: non committed event to discard
2436 * Sometimes an event that is in the ring buffer needs to be ignored.
2437 * This function lets the user discard an event in the ring buffer
2438 * and then that event will not be read later.
2440 * This function only works if it is called before the the item has been
2441 * committed. It will try to free the event from the ring buffer
2442 * if another event has not been added behind it.
2444 * If another event has been added behind it, it will set the event
2445 * up as discarded, and perform the commit.
2447 * If this function is called, do not call ring_buffer_unlock_commit on
2450 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2451 struct ring_buffer_event
*event
)
2453 struct ring_buffer_per_cpu
*cpu_buffer
;
2456 /* The event is discarded regardless */
2457 rb_event_discard(event
);
2459 cpu
= smp_processor_id();
2460 cpu_buffer
= buffer
->buffers
[cpu
];
2463 * This must only be called if the event has not been
2464 * committed yet. Thus we can assume that preemption
2465 * is still disabled.
2467 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2469 rb_decrement_entry(cpu_buffer
, event
);
2470 if (rb_try_to_discard(cpu_buffer
, event
))
2474 * The commit is still visible by the reader, so we
2475 * must still update the timestamp.
2477 rb_update_write_stamp(cpu_buffer
, event
);
2479 rb_end_commit(cpu_buffer
);
2481 trace_recursive_unlock();
2483 preempt_enable_notrace();
2486 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2489 * ring_buffer_write - write data to the buffer without reserving
2490 * @buffer: The ring buffer to write to.
2491 * @length: The length of the data being written (excluding the event header)
2492 * @data: The data to write to the buffer.
2494 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2495 * one function. If you already have the data to write to the buffer, it
2496 * may be easier to simply call this function.
2498 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2499 * and not the length of the event which would hold the header.
2501 int ring_buffer_write(struct ring_buffer
*buffer
,
2502 unsigned long length
,
2505 struct ring_buffer_per_cpu
*cpu_buffer
;
2506 struct ring_buffer_event
*event
;
2511 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2514 preempt_disable_notrace();
2516 if (atomic_read(&buffer
->record_disabled
))
2519 cpu
= raw_smp_processor_id();
2521 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2524 cpu_buffer
= buffer
->buffers
[cpu
];
2526 if (atomic_read(&cpu_buffer
->record_disabled
))
2529 if (length
> BUF_MAX_DATA_SIZE
)
2532 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2536 body
= rb_event_data(event
);
2538 memcpy(body
, data
, length
);
2540 rb_commit(cpu_buffer
, event
);
2544 preempt_enable_notrace();
2548 EXPORT_SYMBOL_GPL(ring_buffer_write
);
2550 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
2552 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
2553 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
2554 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
2556 /* In case of error, head will be NULL */
2557 if (unlikely(!head
))
2560 return reader
->read
== rb_page_commit(reader
) &&
2561 (commit
== reader
||
2563 head
->read
== rb_page_commit(commit
)));
2567 * ring_buffer_record_disable - stop all writes into the buffer
2568 * @buffer: The ring buffer to stop writes to.
2570 * This prevents all writes to the buffer. Any attempt to write
2571 * to the buffer after this will fail and return NULL.
2573 * The caller should call synchronize_sched() after this.
2575 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
2577 atomic_inc(&buffer
->record_disabled
);
2579 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
2582 * ring_buffer_record_enable - enable writes to the buffer
2583 * @buffer: The ring buffer to enable writes
2585 * Note, multiple disables will need the same number of enables
2586 * to truly enable the writing (much like preempt_disable).
2588 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
2590 atomic_dec(&buffer
->record_disabled
);
2592 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
2595 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2596 * @buffer: The ring buffer to stop writes to.
2597 * @cpu: The CPU buffer to stop
2599 * This prevents all writes to the buffer. Any attempt to write
2600 * to the buffer after this will fail and return NULL.
2602 * The caller should call synchronize_sched() after this.
2604 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
2606 struct ring_buffer_per_cpu
*cpu_buffer
;
2608 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2611 cpu_buffer
= buffer
->buffers
[cpu
];
2612 atomic_inc(&cpu_buffer
->record_disabled
);
2614 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
2617 * ring_buffer_record_enable_cpu - enable writes to the buffer
2618 * @buffer: The ring buffer to enable writes
2619 * @cpu: The CPU to enable.
2621 * Note, multiple disables will need the same number of enables
2622 * to truly enable the writing (much like preempt_disable).
2624 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
2626 struct ring_buffer_per_cpu
*cpu_buffer
;
2628 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2631 cpu_buffer
= buffer
->buffers
[cpu
];
2632 atomic_dec(&cpu_buffer
->record_disabled
);
2634 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
2637 * The total entries in the ring buffer is the running counter
2638 * of entries entered into the ring buffer, minus the sum of
2639 * the entries read from the ring buffer and the number of
2640 * entries that were overwritten.
2642 static inline unsigned long
2643 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
2645 return local_read(&cpu_buffer
->entries
) -
2646 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
2650 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2651 * @buffer: The ring buffer
2652 * @cpu: The per CPU buffer to get the entries from.
2654 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
2656 struct ring_buffer_per_cpu
*cpu_buffer
;
2658 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2661 cpu_buffer
= buffer
->buffers
[cpu
];
2663 return rb_num_of_entries(cpu_buffer
);
2665 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
2668 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2669 * @buffer: The ring buffer
2670 * @cpu: The per CPU buffer to get the number of overruns from
2672 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2674 struct ring_buffer_per_cpu
*cpu_buffer
;
2677 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2680 cpu_buffer
= buffer
->buffers
[cpu
];
2681 ret
= local_read(&cpu_buffer
->overrun
);
2685 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
2688 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2689 * @buffer: The ring buffer
2690 * @cpu: The per CPU buffer to get the number of overruns from
2693 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2695 struct ring_buffer_per_cpu
*cpu_buffer
;
2698 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2701 cpu_buffer
= buffer
->buffers
[cpu
];
2702 ret
= local_read(&cpu_buffer
->commit_overrun
);
2706 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
2709 * ring_buffer_entries - get the number of entries in a buffer
2710 * @buffer: The ring buffer
2712 * Returns the total number of entries in the ring buffer
2715 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
2717 struct ring_buffer_per_cpu
*cpu_buffer
;
2718 unsigned long entries
= 0;
2721 /* if you care about this being correct, lock the buffer */
2722 for_each_buffer_cpu(buffer
, cpu
) {
2723 cpu_buffer
= buffer
->buffers
[cpu
];
2724 entries
+= rb_num_of_entries(cpu_buffer
);
2729 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
2732 * ring_buffer_overruns - get the number of overruns in buffer
2733 * @buffer: The ring buffer
2735 * Returns the total number of overruns in the ring buffer
2738 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
2740 struct ring_buffer_per_cpu
*cpu_buffer
;
2741 unsigned long overruns
= 0;
2744 /* if you care about this being correct, lock the buffer */
2745 for_each_buffer_cpu(buffer
, cpu
) {
2746 cpu_buffer
= buffer
->buffers
[cpu
];
2747 overruns
+= local_read(&cpu_buffer
->overrun
);
2752 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
2754 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
2756 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2758 /* Iterator usage is expected to have record disabled */
2759 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
2760 iter
->head_page
= rb_set_head_page(cpu_buffer
);
2761 if (unlikely(!iter
->head_page
))
2763 iter
->head
= iter
->head_page
->read
;
2765 iter
->head_page
= cpu_buffer
->reader_page
;
2766 iter
->head
= cpu_buffer
->reader_page
->read
;
2769 iter
->read_stamp
= cpu_buffer
->read_stamp
;
2771 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
2772 iter
->cache_reader_page
= cpu_buffer
->reader_page
;
2773 iter
->cache_read
= cpu_buffer
->read
;
2777 * ring_buffer_iter_reset - reset an iterator
2778 * @iter: The iterator to reset
2780 * Resets the iterator, so that it will start from the beginning
2783 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
2785 struct ring_buffer_per_cpu
*cpu_buffer
;
2786 unsigned long flags
;
2791 cpu_buffer
= iter
->cpu_buffer
;
2793 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2794 rb_iter_reset(iter
);
2795 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2797 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
2800 * ring_buffer_iter_empty - check if an iterator has no more to read
2801 * @iter: The iterator to check
2803 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
2805 struct ring_buffer_per_cpu
*cpu_buffer
;
2807 cpu_buffer
= iter
->cpu_buffer
;
2809 return iter
->head_page
== cpu_buffer
->commit_page
&&
2810 iter
->head
== rb_commit_index(cpu_buffer
);
2812 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
2815 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2816 struct ring_buffer_event
*event
)
2820 switch (event
->type_len
) {
2821 case RINGBUF_TYPE_PADDING
:
2824 case RINGBUF_TYPE_TIME_EXTEND
:
2825 delta
= event
->array
[0];
2827 delta
+= event
->time_delta
;
2828 cpu_buffer
->read_stamp
+= delta
;
2831 case RINGBUF_TYPE_TIME_STAMP
:
2832 /* FIXME: not implemented */
2835 case RINGBUF_TYPE_DATA
:
2836 cpu_buffer
->read_stamp
+= event
->time_delta
;
2846 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
2847 struct ring_buffer_event
*event
)
2851 switch (event
->type_len
) {
2852 case RINGBUF_TYPE_PADDING
:
2855 case RINGBUF_TYPE_TIME_EXTEND
:
2856 delta
= event
->array
[0];
2858 delta
+= event
->time_delta
;
2859 iter
->read_stamp
+= delta
;
2862 case RINGBUF_TYPE_TIME_STAMP
:
2863 /* FIXME: not implemented */
2866 case RINGBUF_TYPE_DATA
:
2867 iter
->read_stamp
+= event
->time_delta
;
2876 static struct buffer_page
*
2877 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
2879 struct buffer_page
*reader
= NULL
;
2880 unsigned long overwrite
;
2881 unsigned long flags
;
2885 local_irq_save(flags
);
2886 arch_spin_lock(&cpu_buffer
->lock
);
2890 * This should normally only loop twice. But because the
2891 * start of the reader inserts an empty page, it causes
2892 * a case where we will loop three times. There should be no
2893 * reason to loop four times (that I know of).
2895 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
2900 reader
= cpu_buffer
->reader_page
;
2902 /* If there's more to read, return this page */
2903 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
2906 /* Never should we have an index greater than the size */
2907 if (RB_WARN_ON(cpu_buffer
,
2908 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
2911 /* check if we caught up to the tail */
2913 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
2917 * Reset the reader page to size zero.
2919 local_set(&cpu_buffer
->reader_page
->write
, 0);
2920 local_set(&cpu_buffer
->reader_page
->entries
, 0);
2921 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
2922 cpu_buffer
->reader_page
->real_end
= 0;
2926 * Splice the empty reader page into the list around the head.
2928 reader
= rb_set_head_page(cpu_buffer
);
2929 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
2930 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
2933 * cpu_buffer->pages just needs to point to the buffer, it
2934 * has no specific buffer page to point to. Lets move it out
2935 * of our way so we don't accidentally swap it.
2937 cpu_buffer
->pages
= reader
->list
.prev
;
2939 /* The reader page will be pointing to the new head */
2940 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
2943 * We want to make sure we read the overruns after we set up our
2944 * pointers to the next object. The writer side does a
2945 * cmpxchg to cross pages which acts as the mb on the writer
2946 * side. Note, the reader will constantly fail the swap
2947 * while the writer is updating the pointers, so this
2948 * guarantees that the overwrite recorded here is the one we
2949 * want to compare with the last_overrun.
2952 overwrite
= local_read(&(cpu_buffer
->overrun
));
2955 * Here's the tricky part.
2957 * We need to move the pointer past the header page.
2958 * But we can only do that if a writer is not currently
2959 * moving it. The page before the header page has the
2960 * flag bit '1' set if it is pointing to the page we want.
2961 * but if the writer is in the process of moving it
2962 * than it will be '2' or already moved '0'.
2965 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
2968 * If we did not convert it, then we must try again.
2974 * Yeah! We succeeded in replacing the page.
2976 * Now make the new head point back to the reader page.
2978 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
2979 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
2981 /* Finally update the reader page to the new head */
2982 cpu_buffer
->reader_page
= reader
;
2983 rb_reset_reader_page(cpu_buffer
);
2985 if (overwrite
!= cpu_buffer
->last_overrun
) {
2986 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
2987 cpu_buffer
->last_overrun
= overwrite
;
2993 arch_spin_unlock(&cpu_buffer
->lock
);
2994 local_irq_restore(flags
);
2999 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3001 struct ring_buffer_event
*event
;
3002 struct buffer_page
*reader
;
3005 reader
= rb_get_reader_page(cpu_buffer
);
3007 /* This function should not be called when buffer is empty */
3008 if (RB_WARN_ON(cpu_buffer
, !reader
))
3011 event
= rb_reader_event(cpu_buffer
);
3013 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3016 rb_update_read_stamp(cpu_buffer
, event
);
3018 length
= rb_event_length(event
);
3019 cpu_buffer
->reader_page
->read
+= length
;
3022 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3024 struct ring_buffer_per_cpu
*cpu_buffer
;
3025 struct ring_buffer_event
*event
;
3028 cpu_buffer
= iter
->cpu_buffer
;
3031 * Check if we are at the end of the buffer.
3033 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3034 /* discarded commits can make the page empty */
3035 if (iter
->head_page
== cpu_buffer
->commit_page
)
3041 event
= rb_iter_head_event(iter
);
3043 length
= rb_event_length(event
);
3046 * This should not be called to advance the header if we are
3047 * at the tail of the buffer.
3049 if (RB_WARN_ON(cpu_buffer
,
3050 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3051 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3054 rb_update_iter_read_stamp(iter
, event
);
3056 iter
->head
+= length
;
3058 /* check for end of page padding */
3059 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3060 (iter
->head_page
!= cpu_buffer
->commit_page
))
3061 rb_advance_iter(iter
);
3064 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3066 return cpu_buffer
->lost_events
;
3069 static struct ring_buffer_event
*
3070 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3071 unsigned long *lost_events
)
3073 struct ring_buffer_event
*event
;
3074 struct buffer_page
*reader
;
3079 * We repeat when a time extend is encountered.
3080 * Since the time extend is always attached to a data event,
3081 * we should never loop more than once.
3082 * (We never hit the following condition more than twice).
3084 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3087 reader
= rb_get_reader_page(cpu_buffer
);
3091 event
= rb_reader_event(cpu_buffer
);
3093 switch (event
->type_len
) {
3094 case RINGBUF_TYPE_PADDING
:
3095 if (rb_null_event(event
))
3096 RB_WARN_ON(cpu_buffer
, 1);
3098 * Because the writer could be discarding every
3099 * event it creates (which would probably be bad)
3100 * if we were to go back to "again" then we may never
3101 * catch up, and will trigger the warn on, or lock
3102 * the box. Return the padding, and we will release
3103 * the current locks, and try again.
3107 case RINGBUF_TYPE_TIME_EXTEND
:
3108 /* Internal data, OK to advance */
3109 rb_advance_reader(cpu_buffer
);
3112 case RINGBUF_TYPE_TIME_STAMP
:
3113 /* FIXME: not implemented */
3114 rb_advance_reader(cpu_buffer
);
3117 case RINGBUF_TYPE_DATA
:
3119 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3120 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3121 cpu_buffer
->cpu
, ts
);
3124 *lost_events
= rb_lost_events(cpu_buffer
);
3133 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3135 static struct ring_buffer_event
*
3136 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3138 struct ring_buffer
*buffer
;
3139 struct ring_buffer_per_cpu
*cpu_buffer
;
3140 struct ring_buffer_event
*event
;
3143 cpu_buffer
= iter
->cpu_buffer
;
3144 buffer
= cpu_buffer
->buffer
;
3147 * Check if someone performed a consuming read to
3148 * the buffer. A consuming read invalidates the iterator
3149 * and we need to reset the iterator in this case.
3151 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3152 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3153 rb_iter_reset(iter
);
3156 if (ring_buffer_iter_empty(iter
))
3160 * We repeat when a time extend is encountered.
3161 * Since the time extend is always attached to a data event,
3162 * we should never loop more than once.
3163 * (We never hit the following condition more than twice).
3165 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3168 if (rb_per_cpu_empty(cpu_buffer
))
3171 if (iter
->head
>= local_read(&iter
->head_page
->page
->commit
)) {
3176 event
= rb_iter_head_event(iter
);
3178 switch (event
->type_len
) {
3179 case RINGBUF_TYPE_PADDING
:
3180 if (rb_null_event(event
)) {
3184 rb_advance_iter(iter
);
3187 case RINGBUF_TYPE_TIME_EXTEND
:
3188 /* Internal data, OK to advance */
3189 rb_advance_iter(iter
);
3192 case RINGBUF_TYPE_TIME_STAMP
:
3193 /* FIXME: not implemented */
3194 rb_advance_iter(iter
);
3197 case RINGBUF_TYPE_DATA
:
3199 *ts
= iter
->read_stamp
+ event
->time_delta
;
3200 ring_buffer_normalize_time_stamp(buffer
,
3201 cpu_buffer
->cpu
, ts
);
3211 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3213 static inline int rb_ok_to_lock(void)
3216 * If an NMI die dumps out the content of the ring buffer
3217 * do not grab locks. We also permanently disable the ring
3218 * buffer too. A one time deal is all you get from reading
3219 * the ring buffer from an NMI.
3221 if (likely(!in_nmi()))
3224 tracing_off_permanent();
3229 * ring_buffer_peek - peek at the next event to be read
3230 * @buffer: The ring buffer to read
3231 * @cpu: The cpu to peak at
3232 * @ts: The timestamp counter of this event.
3233 * @lost_events: a variable to store if events were lost (may be NULL)
3235 * This will return the event that will be read next, but does
3236 * not consume the data.
3238 struct ring_buffer_event
*
3239 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3240 unsigned long *lost_events
)
3242 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3243 struct ring_buffer_event
*event
;
3244 unsigned long flags
;
3247 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3250 dolock
= rb_ok_to_lock();
3252 local_irq_save(flags
);
3254 spin_lock(&cpu_buffer
->reader_lock
);
3255 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3256 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3257 rb_advance_reader(cpu_buffer
);
3259 spin_unlock(&cpu_buffer
->reader_lock
);
3260 local_irq_restore(flags
);
3262 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3269 * ring_buffer_iter_peek - peek at the next event to be read
3270 * @iter: The ring buffer iterator
3271 * @ts: The timestamp counter of this event.
3273 * This will return the event that will be read next, but does
3274 * not increment the iterator.
3276 struct ring_buffer_event
*
3277 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3279 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3280 struct ring_buffer_event
*event
;
3281 unsigned long flags
;
3284 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3285 event
= rb_iter_peek(iter
, ts
);
3286 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3288 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3295 * ring_buffer_consume - return an event and consume it
3296 * @buffer: The ring buffer to get the next event from
3297 * @cpu: the cpu to read the buffer from
3298 * @ts: a variable to store the timestamp (may be NULL)
3299 * @lost_events: a variable to store if events were lost (may be NULL)
3301 * Returns the next event in the ring buffer, and that event is consumed.
3302 * Meaning, that sequential reads will keep returning a different event,
3303 * and eventually empty the ring buffer if the producer is slower.
3305 struct ring_buffer_event
*
3306 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3307 unsigned long *lost_events
)
3309 struct ring_buffer_per_cpu
*cpu_buffer
;
3310 struct ring_buffer_event
*event
= NULL
;
3311 unsigned long flags
;
3314 dolock
= rb_ok_to_lock();
3317 /* might be called in atomic */
3320 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3323 cpu_buffer
= buffer
->buffers
[cpu
];
3324 local_irq_save(flags
);
3326 spin_lock(&cpu_buffer
->reader_lock
);
3328 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3330 cpu_buffer
->lost_events
= 0;
3331 rb_advance_reader(cpu_buffer
);
3335 spin_unlock(&cpu_buffer
->reader_lock
);
3336 local_irq_restore(flags
);
3341 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3346 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3349 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3350 * @buffer: The ring buffer to read from
3351 * @cpu: The cpu buffer to iterate over
3353 * This performs the initial preparations necessary to iterate
3354 * through the buffer. Memory is allocated, buffer recording
3355 * is disabled, and the iterator pointer is returned to the caller.
3357 * Disabling buffer recordng prevents the reading from being
3358 * corrupted. This is not a consuming read, so a producer is not
3361 * After a sequence of ring_buffer_read_prepare calls, the user is
3362 * expected to make at least one call to ring_buffer_prepare_sync.
3363 * Afterwards, ring_buffer_read_start is invoked to get things going
3366 * This overall must be paired with ring_buffer_finish.
3368 struct ring_buffer_iter
*
3369 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3371 struct ring_buffer_per_cpu
*cpu_buffer
;
3372 struct ring_buffer_iter
*iter
;
3374 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3377 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3381 cpu_buffer
= buffer
->buffers
[cpu
];
3383 iter
->cpu_buffer
= cpu_buffer
;
3385 atomic_inc(&cpu_buffer
->record_disabled
);
3389 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
3392 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3394 * All previously invoked ring_buffer_read_prepare calls to prepare
3395 * iterators will be synchronized. Afterwards, read_buffer_read_start
3396 * calls on those iterators are allowed.
3399 ring_buffer_read_prepare_sync(void)
3401 synchronize_sched();
3403 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
3406 * ring_buffer_read_start - start a non consuming read of the buffer
3407 * @iter: The iterator returned by ring_buffer_read_prepare
3409 * This finalizes the startup of an iteration through the buffer.
3410 * The iterator comes from a call to ring_buffer_read_prepare and
3411 * an intervening ring_buffer_read_prepare_sync must have been
3414 * Must be paired with ring_buffer_finish.
3417 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
3419 struct ring_buffer_per_cpu
*cpu_buffer
;
3420 unsigned long flags
;
3425 cpu_buffer
= iter
->cpu_buffer
;
3427 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3428 arch_spin_lock(&cpu_buffer
->lock
);
3429 rb_iter_reset(iter
);
3430 arch_spin_unlock(&cpu_buffer
->lock
);
3431 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3433 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
3436 * ring_buffer_finish - finish reading the iterator of the buffer
3437 * @iter: The iterator retrieved by ring_buffer_start
3439 * This re-enables the recording to the buffer, and frees the
3443 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
3445 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3447 atomic_dec(&cpu_buffer
->record_disabled
);
3450 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
3453 * ring_buffer_read - read the next item in the ring buffer by the iterator
3454 * @iter: The ring buffer iterator
3455 * @ts: The time stamp of the event read.
3457 * This reads the next event in the ring buffer and increments the iterator.
3459 struct ring_buffer_event
*
3460 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
3462 struct ring_buffer_event
*event
;
3463 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3464 unsigned long flags
;
3466 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3468 event
= rb_iter_peek(iter
, ts
);
3472 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
3475 rb_advance_iter(iter
);
3477 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3481 EXPORT_SYMBOL_GPL(ring_buffer_read
);
3484 * ring_buffer_size - return the size of the ring buffer (in bytes)
3485 * @buffer: The ring buffer.
3487 unsigned long ring_buffer_size(struct ring_buffer
*buffer
)
3489 return BUF_PAGE_SIZE
* buffer
->pages
;
3491 EXPORT_SYMBOL_GPL(ring_buffer_size
);
3494 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
3496 rb_head_page_deactivate(cpu_buffer
);
3498 cpu_buffer
->head_page
3499 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
3500 local_set(&cpu_buffer
->head_page
->write
, 0);
3501 local_set(&cpu_buffer
->head_page
->entries
, 0);
3502 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
3504 cpu_buffer
->head_page
->read
= 0;
3506 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
3507 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
3509 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
3510 local_set(&cpu_buffer
->reader_page
->write
, 0);
3511 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3512 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3513 cpu_buffer
->reader_page
->read
= 0;
3515 local_set(&cpu_buffer
->commit_overrun
, 0);
3516 local_set(&cpu_buffer
->overrun
, 0);
3517 local_set(&cpu_buffer
->entries
, 0);
3518 local_set(&cpu_buffer
->committing
, 0);
3519 local_set(&cpu_buffer
->commits
, 0);
3520 cpu_buffer
->read
= 0;
3522 cpu_buffer
->write_stamp
= 0;
3523 cpu_buffer
->read_stamp
= 0;
3525 cpu_buffer
->lost_events
= 0;
3526 cpu_buffer
->last_overrun
= 0;
3528 rb_head_page_activate(cpu_buffer
);
3532 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3533 * @buffer: The ring buffer to reset a per cpu buffer of
3534 * @cpu: The CPU buffer to be reset
3536 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
3538 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3539 unsigned long flags
;
3541 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3544 atomic_inc(&cpu_buffer
->record_disabled
);
3546 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3548 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
3551 arch_spin_lock(&cpu_buffer
->lock
);
3553 rb_reset_cpu(cpu_buffer
);
3555 arch_spin_unlock(&cpu_buffer
->lock
);
3558 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3560 atomic_dec(&cpu_buffer
->record_disabled
);
3562 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
3565 * ring_buffer_reset - reset a ring buffer
3566 * @buffer: The ring buffer to reset all cpu buffers
3568 void ring_buffer_reset(struct ring_buffer
*buffer
)
3572 for_each_buffer_cpu(buffer
, cpu
)
3573 ring_buffer_reset_cpu(buffer
, cpu
);
3575 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
3578 * rind_buffer_empty - is the ring buffer empty?
3579 * @buffer: The ring buffer to test
3581 int ring_buffer_empty(struct ring_buffer
*buffer
)
3583 struct ring_buffer_per_cpu
*cpu_buffer
;
3584 unsigned long flags
;
3589 dolock
= rb_ok_to_lock();
3591 /* yes this is racy, but if you don't like the race, lock the buffer */
3592 for_each_buffer_cpu(buffer
, cpu
) {
3593 cpu_buffer
= buffer
->buffers
[cpu
];
3594 local_irq_save(flags
);
3596 spin_lock(&cpu_buffer
->reader_lock
);
3597 ret
= rb_per_cpu_empty(cpu_buffer
);
3599 spin_unlock(&cpu_buffer
->reader_lock
);
3600 local_irq_restore(flags
);
3608 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
3611 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3612 * @buffer: The ring buffer
3613 * @cpu: The CPU buffer to test
3615 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
3617 struct ring_buffer_per_cpu
*cpu_buffer
;
3618 unsigned long flags
;
3622 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3625 dolock
= rb_ok_to_lock();
3627 cpu_buffer
= buffer
->buffers
[cpu
];
3628 local_irq_save(flags
);
3630 spin_lock(&cpu_buffer
->reader_lock
);
3631 ret
= rb_per_cpu_empty(cpu_buffer
);
3633 spin_unlock(&cpu_buffer
->reader_lock
);
3634 local_irq_restore(flags
);
3638 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
3640 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3642 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3643 * @buffer_a: One buffer to swap with
3644 * @buffer_b: The other buffer to swap with
3646 * This function is useful for tracers that want to take a "snapshot"
3647 * of a CPU buffer and has another back up buffer lying around.
3648 * it is expected that the tracer handles the cpu buffer not being
3649 * used at the moment.
3651 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
3652 struct ring_buffer
*buffer_b
, int cpu
)
3654 struct ring_buffer_per_cpu
*cpu_buffer_a
;
3655 struct ring_buffer_per_cpu
*cpu_buffer_b
;
3658 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
3659 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
3662 /* At least make sure the two buffers are somewhat the same */
3663 if (buffer_a
->pages
!= buffer_b
->pages
)
3668 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
3671 if (atomic_read(&buffer_a
->record_disabled
))
3674 if (atomic_read(&buffer_b
->record_disabled
))
3677 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
3678 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
3680 if (atomic_read(&cpu_buffer_a
->record_disabled
))
3683 if (atomic_read(&cpu_buffer_b
->record_disabled
))
3687 * We can't do a synchronize_sched here because this
3688 * function can be called in atomic context.
3689 * Normally this will be called from the same CPU as cpu.
3690 * If not it's up to the caller to protect this.
3692 atomic_inc(&cpu_buffer_a
->record_disabled
);
3693 atomic_inc(&cpu_buffer_b
->record_disabled
);
3696 if (local_read(&cpu_buffer_a
->committing
))
3698 if (local_read(&cpu_buffer_b
->committing
))
3701 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
3702 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
3704 cpu_buffer_b
->buffer
= buffer_a
;
3705 cpu_buffer_a
->buffer
= buffer_b
;
3710 atomic_dec(&cpu_buffer_a
->record_disabled
);
3711 atomic_dec(&cpu_buffer_b
->record_disabled
);
3715 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
3716 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3719 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3720 * @buffer: the buffer to allocate for.
3722 * This function is used in conjunction with ring_buffer_read_page.
3723 * When reading a full page from the ring buffer, these functions
3724 * can be used to speed up the process. The calling function should
3725 * allocate a few pages first with this function. Then when it
3726 * needs to get pages from the ring buffer, it passes the result
3727 * of this function into ring_buffer_read_page, which will swap
3728 * the page that was allocated, with the read page of the buffer.
3731 * The page allocated, or NULL on error.
3733 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
)
3735 struct buffer_data_page
*bpage
;
3738 addr
= __get_free_page(GFP_KERNEL
);
3742 bpage
= (void *)addr
;
3744 rb_init_page(bpage
);
3748 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
3751 * ring_buffer_free_read_page - free an allocated read page
3752 * @buffer: the buffer the page was allocate for
3753 * @data: the page to free
3755 * Free a page allocated from ring_buffer_alloc_read_page.
3757 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
3759 free_page((unsigned long)data
);
3761 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
3764 * ring_buffer_read_page - extract a page from the ring buffer
3765 * @buffer: buffer to extract from
3766 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3767 * @len: amount to extract
3768 * @cpu: the cpu of the buffer to extract
3769 * @full: should the extraction only happen when the page is full.
3771 * This function will pull out a page from the ring buffer and consume it.
3772 * @data_page must be the address of the variable that was returned
3773 * from ring_buffer_alloc_read_page. This is because the page might be used
3774 * to swap with a page in the ring buffer.
3777 * rpage = ring_buffer_alloc_read_page(buffer);
3780 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3782 * process_page(rpage, ret);
3784 * When @full is set, the function will not return true unless
3785 * the writer is off the reader page.
3787 * Note: it is up to the calling functions to handle sleeps and wakeups.
3788 * The ring buffer can be used anywhere in the kernel and can not
3789 * blindly call wake_up. The layer that uses the ring buffer must be
3790 * responsible for that.
3793 * >=0 if data has been transferred, returns the offset of consumed data.
3794 * <0 if no data has been transferred.
3796 int ring_buffer_read_page(struct ring_buffer
*buffer
,
3797 void **data_page
, size_t len
, int cpu
, int full
)
3799 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3800 struct ring_buffer_event
*event
;
3801 struct buffer_data_page
*bpage
;
3802 struct buffer_page
*reader
;
3803 unsigned long missed_events
;
3804 unsigned long flags
;
3805 unsigned int commit
;
3810 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3814 * If len is not big enough to hold the page header, then
3815 * we can not copy anything.
3817 if (len
<= BUF_PAGE_HDR_SIZE
)
3820 len
-= BUF_PAGE_HDR_SIZE
;
3829 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3831 reader
= rb_get_reader_page(cpu_buffer
);
3835 event
= rb_reader_event(cpu_buffer
);
3837 read
= reader
->read
;
3838 commit
= rb_page_commit(reader
);
3840 /* Check if any events were dropped */
3841 missed_events
= cpu_buffer
->lost_events
;
3844 * If this page has been partially read or
3845 * if len is not big enough to read the rest of the page or
3846 * a writer is still on the page, then
3847 * we must copy the data from the page to the buffer.
3848 * Otherwise, we can simply swap the page with the one passed in.
3850 if (read
|| (len
< (commit
- read
)) ||
3851 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
3852 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
3853 unsigned int rpos
= read
;
3854 unsigned int pos
= 0;
3860 if (len
> (commit
- read
))
3861 len
= (commit
- read
);
3863 /* Always keep the time extend and data together */
3864 size
= rb_event_ts_length(event
);
3869 /* save the current timestamp, since the user will need it */
3870 save_timestamp
= cpu_buffer
->read_stamp
;
3872 /* Need to copy one event at a time */
3874 /* We need the size of one event, because
3875 * rb_advance_reader only advances by one event,
3876 * whereas rb_event_ts_length may include the size of
3877 * one or two events.
3878 * We have already ensured there's enough space if this
3879 * is a time extend. */
3880 size
= rb_event_length(event
);
3881 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
3885 rb_advance_reader(cpu_buffer
);
3886 rpos
= reader
->read
;
3892 event
= rb_reader_event(cpu_buffer
);
3893 /* Always keep the time extend and data together */
3894 size
= rb_event_ts_length(event
);
3895 } while (len
>= size
);
3898 local_set(&bpage
->commit
, pos
);
3899 bpage
->time_stamp
= save_timestamp
;
3901 /* we copied everything to the beginning */
3904 /* update the entry counter */
3905 cpu_buffer
->read
+= rb_page_entries(reader
);
3907 /* swap the pages */
3908 rb_init_page(bpage
);
3909 bpage
= reader
->page
;
3910 reader
->page
= *data_page
;
3911 local_set(&reader
->write
, 0);
3912 local_set(&reader
->entries
, 0);
3917 * Use the real_end for the data size,
3918 * This gives us a chance to store the lost events
3921 if (reader
->real_end
)
3922 local_set(&bpage
->commit
, reader
->real_end
);
3926 cpu_buffer
->lost_events
= 0;
3928 commit
= local_read(&bpage
->commit
);
3930 * Set a flag in the commit field if we lost events
3932 if (missed_events
) {
3933 /* If there is room at the end of the page to save the
3934 * missed events, then record it there.
3936 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
3937 memcpy(&bpage
->data
[commit
], &missed_events
,
3938 sizeof(missed_events
));
3939 local_add(RB_MISSED_STORED
, &bpage
->commit
);
3940 commit
+= sizeof(missed_events
);
3942 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
3946 * This page may be off to user land. Zero it out here.
3948 if (commit
< BUF_PAGE_SIZE
)
3949 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
3952 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3957 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
3959 #ifdef CONFIG_TRACING
3961 rb_simple_read(struct file
*filp
, char __user
*ubuf
,
3962 size_t cnt
, loff_t
*ppos
)
3964 unsigned long *p
= filp
->private_data
;
3968 if (test_bit(RB_BUFFERS_DISABLED_BIT
, p
))
3969 r
= sprintf(buf
, "permanently disabled\n");
3971 r
= sprintf(buf
, "%d\n", test_bit(RB_BUFFERS_ON_BIT
, p
));
3973 return simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
3977 rb_simple_write(struct file
*filp
, const char __user
*ubuf
,
3978 size_t cnt
, loff_t
*ppos
)
3980 unsigned long *p
= filp
->private_data
;
3985 if (cnt
>= sizeof(buf
))
3988 if (copy_from_user(&buf
, ubuf
, cnt
))
3993 ret
= strict_strtoul(buf
, 10, &val
);
3998 set_bit(RB_BUFFERS_ON_BIT
, p
);
4000 clear_bit(RB_BUFFERS_ON_BIT
, p
);
4007 static const struct file_operations rb_simple_fops
= {
4008 .open
= tracing_open_generic
,
4009 .read
= rb_simple_read
,
4010 .write
= rb_simple_write
,
4011 .llseek
= default_llseek
,
4015 static __init
int rb_init_debugfs(void)
4017 struct dentry
*d_tracer
;
4019 d_tracer
= tracing_init_dentry();
4021 trace_create_file("tracing_on", 0644, d_tracer
,
4022 &ring_buffer_flags
, &rb_simple_fops
);
4027 fs_initcall(rb_init_debugfs
);
4030 #ifdef CONFIG_HOTPLUG_CPU
4031 static int rb_cpu_notify(struct notifier_block
*self
,
4032 unsigned long action
, void *hcpu
)
4034 struct ring_buffer
*buffer
=
4035 container_of(self
, struct ring_buffer
, cpu_notify
);
4036 long cpu
= (long)hcpu
;
4039 case CPU_UP_PREPARE
:
4040 case CPU_UP_PREPARE_FROZEN
:
4041 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4044 buffer
->buffers
[cpu
] =
4045 rb_allocate_cpu_buffer(buffer
, cpu
);
4046 if (!buffer
->buffers
[cpu
]) {
4047 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4052 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4054 case CPU_DOWN_PREPARE
:
4055 case CPU_DOWN_PREPARE_FROZEN
:
4058 * If we were to free the buffer, then the user would
4059 * lose any trace that was in the buffer.