[ARM] pxa: add clock definition for graphics controller
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nilfs2 / segment.c
blob51ff3d0a4ee256445f8ddbe9e85d7ff2ae2a7798
1 /*
2 * segment.c - NILFS segment constructor.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bio.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/freezer.h>
32 #include <linux/kthread.h>
33 #include <linux/crc32.h>
34 #include <linux/pagevec.h>
35 #include "nilfs.h"
36 #include "btnode.h"
37 #include "page.h"
38 #include "segment.h"
39 #include "sufile.h"
40 #include "cpfile.h"
41 #include "ifile.h"
42 #include "segbuf.h"
46 * Segment constructor
48 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
50 #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
51 appended in collection retry loop */
53 /* Construction mode */
54 enum {
55 SC_LSEG_SR = 1, /* Make a logical segment having a super root */
56 SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
57 a logical segment without a super root */
58 SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
59 creating a checkpoint */
60 SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
61 a checkpoint */
64 /* Stage numbers of dirty block collection */
65 enum {
66 NILFS_ST_INIT = 0,
67 NILFS_ST_GC, /* Collecting dirty blocks for GC */
68 NILFS_ST_FILE,
69 NILFS_ST_IFILE,
70 NILFS_ST_CPFILE,
71 NILFS_ST_SUFILE,
72 NILFS_ST_DAT,
73 NILFS_ST_SR, /* Super root */
74 NILFS_ST_DSYNC, /* Data sync blocks */
75 NILFS_ST_DONE,
78 /* State flags of collection */
79 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
80 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
81 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
82 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
84 /* Operations depending on the construction mode and file type */
85 struct nilfs_sc_operations {
86 int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
87 struct inode *);
88 int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
89 struct inode *);
90 int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
91 struct inode *);
92 void (*write_data_binfo)(struct nilfs_sc_info *,
93 struct nilfs_segsum_pointer *,
94 union nilfs_binfo *);
95 void (*write_node_binfo)(struct nilfs_sc_info *,
96 struct nilfs_segsum_pointer *,
97 union nilfs_binfo *);
101 * Other definitions
103 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
104 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
105 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
106 static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
107 int);
109 #define nilfs_cnt32_gt(a, b) \
110 (typecheck(__u32, a) && typecheck(__u32, b) && \
111 ((__s32)(b) - (__s32)(a) < 0))
112 #define nilfs_cnt32_ge(a, b) \
113 (typecheck(__u32, a) && typecheck(__u32, b) && \
114 ((__s32)(a) - (__s32)(b) >= 0))
115 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
116 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
119 * Transaction
121 static struct kmem_cache *nilfs_transaction_cachep;
124 * nilfs_init_transaction_cache - create a cache for nilfs_transaction_info
126 * nilfs_init_transaction_cache() creates a slab cache for the struct
127 * nilfs_transaction_info.
129 * Return Value: On success, it returns 0. On error, one of the following
130 * negative error code is returned.
132 * %-ENOMEM - Insufficient memory available.
134 int nilfs_init_transaction_cache(void)
136 nilfs_transaction_cachep =
137 kmem_cache_create("nilfs2_transaction_cache",
138 sizeof(struct nilfs_transaction_info),
139 0, SLAB_RECLAIM_ACCOUNT, NULL);
140 return (nilfs_transaction_cachep == NULL) ? -ENOMEM : 0;
144 * nilfs_detroy_transaction_cache - destroy the cache for transaction info
146 * nilfs_destroy_transaction_cache() frees the slab cache for the struct
147 * nilfs_transaction_info.
149 void nilfs_destroy_transaction_cache(void)
151 kmem_cache_destroy(nilfs_transaction_cachep);
154 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
156 struct nilfs_transaction_info *cur_ti = current->journal_info;
157 void *save = NULL;
159 if (cur_ti) {
160 if (cur_ti->ti_magic == NILFS_TI_MAGIC)
161 return ++cur_ti->ti_count;
162 else {
164 * If journal_info field is occupied by other FS,
165 * it is saved and will be restored on
166 * nilfs_transaction_commit().
168 printk(KERN_WARNING
169 "NILFS warning: journal info from a different "
170 "FS\n");
171 save = current->journal_info;
174 if (!ti) {
175 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
176 if (!ti)
177 return -ENOMEM;
178 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
179 } else {
180 ti->ti_flags = 0;
182 ti->ti_count = 0;
183 ti->ti_save = save;
184 ti->ti_magic = NILFS_TI_MAGIC;
185 current->journal_info = ti;
186 return 0;
190 * nilfs_transaction_begin - start indivisible file operations.
191 * @sb: super block
192 * @ti: nilfs_transaction_info
193 * @vacancy_check: flags for vacancy rate checks
195 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
196 * the segment semaphore, to make a segment construction and write tasks
197 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
198 * The region enclosed by these two functions can be nested. To avoid a
199 * deadlock, the semaphore is only acquired or released in the outermost call.
201 * This function allocates a nilfs_transaction_info struct to keep context
202 * information on it. It is initialized and hooked onto the current task in
203 * the outermost call. If a pre-allocated struct is given to @ti, it is used
204 * instead; othewise a new struct is assigned from a slab.
206 * When @vacancy_check flag is set, this function will check the amount of
207 * free space, and will wait for the GC to reclaim disk space if low capacity.
209 * Return Value: On success, 0 is returned. On error, one of the following
210 * negative error code is returned.
212 * %-ENOMEM - Insufficient memory available.
214 * %-ENOSPC - No space left on device
216 int nilfs_transaction_begin(struct super_block *sb,
217 struct nilfs_transaction_info *ti,
218 int vacancy_check)
220 struct nilfs_sb_info *sbi;
221 struct the_nilfs *nilfs;
222 int ret = nilfs_prepare_segment_lock(ti);
224 if (unlikely(ret < 0))
225 return ret;
226 if (ret > 0)
227 return 0;
229 sbi = NILFS_SB(sb);
230 nilfs = sbi->s_nilfs;
231 down_read(&nilfs->ns_segctor_sem);
232 if (vacancy_check && nilfs_near_disk_full(nilfs)) {
233 up_read(&nilfs->ns_segctor_sem);
234 ret = -ENOSPC;
235 goto failed;
237 return 0;
239 failed:
240 ti = current->journal_info;
241 current->journal_info = ti->ti_save;
242 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
243 kmem_cache_free(nilfs_transaction_cachep, ti);
244 return ret;
248 * nilfs_transaction_commit - commit indivisible file operations.
249 * @sb: super block
251 * nilfs_transaction_commit() releases the read semaphore which is
252 * acquired by nilfs_transaction_begin(). This is only performed
253 * in outermost call of this function. If a commit flag is set,
254 * nilfs_transaction_commit() sets a timer to start the segment
255 * constructor. If a sync flag is set, it starts construction
256 * directly.
258 int nilfs_transaction_commit(struct super_block *sb)
260 struct nilfs_transaction_info *ti = current->journal_info;
261 struct nilfs_sb_info *sbi;
262 struct nilfs_sc_info *sci;
263 int err = 0;
265 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
266 ti->ti_flags |= NILFS_TI_COMMIT;
267 if (ti->ti_count > 0) {
268 ti->ti_count--;
269 return 0;
271 sbi = NILFS_SB(sb);
272 sci = NILFS_SC(sbi);
273 if (sci != NULL) {
274 if (ti->ti_flags & NILFS_TI_COMMIT)
275 nilfs_segctor_start_timer(sci);
276 if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
277 sci->sc_watermark)
278 nilfs_segctor_do_flush(sci, 0);
280 up_read(&sbi->s_nilfs->ns_segctor_sem);
281 current->journal_info = ti->ti_save;
283 if (ti->ti_flags & NILFS_TI_SYNC)
284 err = nilfs_construct_segment(sb);
285 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
286 kmem_cache_free(nilfs_transaction_cachep, ti);
287 return err;
290 void nilfs_transaction_abort(struct super_block *sb)
292 struct nilfs_transaction_info *ti = current->journal_info;
294 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
295 if (ti->ti_count > 0) {
296 ti->ti_count--;
297 return;
299 up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
301 current->journal_info = ti->ti_save;
302 if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
303 kmem_cache_free(nilfs_transaction_cachep, ti);
306 void nilfs_relax_pressure_in_lock(struct super_block *sb)
308 struct nilfs_sb_info *sbi = NILFS_SB(sb);
309 struct nilfs_sc_info *sci = NILFS_SC(sbi);
310 struct the_nilfs *nilfs = sbi->s_nilfs;
312 if (!sci || !sci->sc_flush_request)
313 return;
315 set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
316 up_read(&nilfs->ns_segctor_sem);
318 down_write(&nilfs->ns_segctor_sem);
319 if (sci->sc_flush_request &&
320 test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
321 struct nilfs_transaction_info *ti = current->journal_info;
323 ti->ti_flags |= NILFS_TI_WRITER;
324 nilfs_segctor_do_immediate_flush(sci);
325 ti->ti_flags &= ~NILFS_TI_WRITER;
327 downgrade_write(&nilfs->ns_segctor_sem);
330 static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
331 struct nilfs_transaction_info *ti,
332 int gcflag)
334 struct nilfs_transaction_info *cur_ti = current->journal_info;
336 WARN_ON(cur_ti);
337 ti->ti_flags = NILFS_TI_WRITER;
338 ti->ti_count = 0;
339 ti->ti_save = cur_ti;
340 ti->ti_magic = NILFS_TI_MAGIC;
341 INIT_LIST_HEAD(&ti->ti_garbage);
342 current->journal_info = ti;
344 for (;;) {
345 down_write(&sbi->s_nilfs->ns_segctor_sem);
346 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
347 break;
349 nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
351 up_write(&sbi->s_nilfs->ns_segctor_sem);
352 yield();
354 if (gcflag)
355 ti->ti_flags |= NILFS_TI_GC;
358 static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
360 struct nilfs_transaction_info *ti = current->journal_info;
362 BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
363 BUG_ON(ti->ti_count > 0);
365 up_write(&sbi->s_nilfs->ns_segctor_sem);
366 current->journal_info = ti->ti_save;
367 if (!list_empty(&ti->ti_garbage))
368 nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
371 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
372 struct nilfs_segsum_pointer *ssp,
373 unsigned bytes)
375 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
376 unsigned blocksize = sci->sc_super->s_blocksize;
377 void *p;
379 if (unlikely(ssp->offset + bytes > blocksize)) {
380 ssp->offset = 0;
381 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
382 &segbuf->sb_segsum_buffers));
383 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
385 p = ssp->bh->b_data + ssp->offset;
386 ssp->offset += bytes;
387 return p;
391 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
392 * @sci: nilfs_sc_info
394 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
396 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
397 struct buffer_head *sumbh;
398 unsigned sumbytes;
399 unsigned flags = 0;
400 int err;
402 if (nilfs_doing_gc())
403 flags = NILFS_SS_GC;
404 err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime);
405 if (unlikely(err))
406 return err;
408 sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
409 sumbytes = segbuf->sb_sum.sumbytes;
410 sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
411 sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
412 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
413 return 0;
416 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
418 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
419 if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
420 return -E2BIG; /* The current segment is filled up
421 (internal code) */
422 sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
423 return nilfs_segctor_reset_segment_buffer(sci);
426 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
428 struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
429 int err;
431 if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
432 err = nilfs_segctor_feed_segment(sci);
433 if (err)
434 return err;
435 segbuf = sci->sc_curseg;
437 err = nilfs_segbuf_extend_payload(segbuf, &sci->sc_super_root);
438 if (likely(!err))
439 segbuf->sb_sum.flags |= NILFS_SS_SR;
440 return err;
444 * Functions for making segment summary and payloads
446 static int nilfs_segctor_segsum_block_required(
447 struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
448 unsigned binfo_size)
450 unsigned blocksize = sci->sc_super->s_blocksize;
451 /* Size of finfo and binfo is enough small against blocksize */
453 return ssp->offset + binfo_size +
454 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
455 blocksize;
458 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
459 struct inode *inode)
461 sci->sc_curseg->sb_sum.nfinfo++;
462 sci->sc_binfo_ptr = sci->sc_finfo_ptr;
463 nilfs_segctor_map_segsum_entry(
464 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
466 if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
467 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
468 /* skip finfo */
471 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
472 struct inode *inode)
474 struct nilfs_finfo *finfo;
475 struct nilfs_inode_info *ii;
476 struct nilfs_segment_buffer *segbuf;
478 if (sci->sc_blk_cnt == 0)
479 return;
481 ii = NILFS_I(inode);
482 finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
483 sizeof(*finfo));
484 finfo->fi_ino = cpu_to_le64(inode->i_ino);
485 finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
486 finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
487 finfo->fi_cno = cpu_to_le64(ii->i_cno);
489 segbuf = sci->sc_curseg;
490 segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
491 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
492 sci->sc_finfo_ptr = sci->sc_binfo_ptr;
493 sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
496 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
497 struct buffer_head *bh,
498 struct inode *inode,
499 unsigned binfo_size)
501 struct nilfs_segment_buffer *segbuf;
502 int required, err = 0;
504 retry:
505 segbuf = sci->sc_curseg;
506 required = nilfs_segctor_segsum_block_required(
507 sci, &sci->sc_binfo_ptr, binfo_size);
508 if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
509 nilfs_segctor_end_finfo(sci, inode);
510 err = nilfs_segctor_feed_segment(sci);
511 if (err)
512 return err;
513 goto retry;
515 if (unlikely(required)) {
516 err = nilfs_segbuf_extend_segsum(segbuf);
517 if (unlikely(err))
518 goto failed;
520 if (sci->sc_blk_cnt == 0)
521 nilfs_segctor_begin_finfo(sci, inode);
523 nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
524 /* Substitution to vblocknr is delayed until update_blocknr() */
525 nilfs_segbuf_add_file_buffer(segbuf, bh);
526 sci->sc_blk_cnt++;
527 failed:
528 return err;
531 static int nilfs_handle_bmap_error(int err, const char *fname,
532 struct inode *inode, struct super_block *sb)
534 if (err == -EINVAL) {
535 nilfs_error(sb, fname, "broken bmap (inode=%lu)\n",
536 inode->i_ino);
537 err = -EIO;
539 return err;
543 * Callback functions that enumerate, mark, and collect dirty blocks
545 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
546 struct buffer_head *bh, struct inode *inode)
548 int err;
550 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
551 if (unlikely(err < 0))
552 return nilfs_handle_bmap_error(err, __func__, inode,
553 sci->sc_super);
555 err = nilfs_segctor_add_file_block(sci, bh, inode,
556 sizeof(struct nilfs_binfo_v));
557 if (!err)
558 sci->sc_datablk_cnt++;
559 return err;
562 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
563 struct buffer_head *bh,
564 struct inode *inode)
566 int err;
568 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
569 if (unlikely(err < 0))
570 return nilfs_handle_bmap_error(err, __func__, inode,
571 sci->sc_super);
572 return 0;
575 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
576 struct buffer_head *bh,
577 struct inode *inode)
579 WARN_ON(!buffer_dirty(bh));
580 return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
583 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
584 struct nilfs_segsum_pointer *ssp,
585 union nilfs_binfo *binfo)
587 struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
588 sci, ssp, sizeof(*binfo_v));
589 *binfo_v = binfo->bi_v;
592 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
593 struct nilfs_segsum_pointer *ssp,
594 union nilfs_binfo *binfo)
596 __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
597 sci, ssp, sizeof(*vblocknr));
598 *vblocknr = binfo->bi_v.bi_vblocknr;
601 struct nilfs_sc_operations nilfs_sc_file_ops = {
602 .collect_data = nilfs_collect_file_data,
603 .collect_node = nilfs_collect_file_node,
604 .collect_bmap = nilfs_collect_file_bmap,
605 .write_data_binfo = nilfs_write_file_data_binfo,
606 .write_node_binfo = nilfs_write_file_node_binfo,
609 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
610 struct buffer_head *bh, struct inode *inode)
612 int err;
614 err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
615 if (unlikely(err < 0))
616 return nilfs_handle_bmap_error(err, __func__, inode,
617 sci->sc_super);
619 err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
620 if (!err)
621 sci->sc_datablk_cnt++;
622 return err;
625 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
626 struct buffer_head *bh, struct inode *inode)
628 WARN_ON(!buffer_dirty(bh));
629 return nilfs_segctor_add_file_block(sci, bh, inode,
630 sizeof(struct nilfs_binfo_dat));
633 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
634 struct nilfs_segsum_pointer *ssp,
635 union nilfs_binfo *binfo)
637 __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
638 sizeof(*blkoff));
639 *blkoff = binfo->bi_dat.bi_blkoff;
642 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
643 struct nilfs_segsum_pointer *ssp,
644 union nilfs_binfo *binfo)
646 struct nilfs_binfo_dat *binfo_dat =
647 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
648 *binfo_dat = binfo->bi_dat;
651 struct nilfs_sc_operations nilfs_sc_dat_ops = {
652 .collect_data = nilfs_collect_dat_data,
653 .collect_node = nilfs_collect_file_node,
654 .collect_bmap = nilfs_collect_dat_bmap,
655 .write_data_binfo = nilfs_write_dat_data_binfo,
656 .write_node_binfo = nilfs_write_dat_node_binfo,
659 struct nilfs_sc_operations nilfs_sc_dsync_ops = {
660 .collect_data = nilfs_collect_file_data,
661 .collect_node = NULL,
662 .collect_bmap = NULL,
663 .write_data_binfo = nilfs_write_file_data_binfo,
664 .write_node_binfo = NULL,
667 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
668 struct list_head *listp,
669 size_t nlimit,
670 loff_t start, loff_t end)
672 struct address_space *mapping = inode->i_mapping;
673 struct pagevec pvec;
674 pgoff_t index = 0, last = ULONG_MAX;
675 size_t ndirties = 0;
676 int i;
678 if (unlikely(start != 0 || end != LLONG_MAX)) {
680 * A valid range is given for sync-ing data pages. The
681 * range is rounded to per-page; extra dirty buffers
682 * may be included if blocksize < pagesize.
684 index = start >> PAGE_SHIFT;
685 last = end >> PAGE_SHIFT;
687 pagevec_init(&pvec, 0);
688 repeat:
689 if (unlikely(index > last) ||
690 !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
691 min_t(pgoff_t, last - index,
692 PAGEVEC_SIZE - 1) + 1))
693 return ndirties;
695 for (i = 0; i < pagevec_count(&pvec); i++) {
696 struct buffer_head *bh, *head;
697 struct page *page = pvec.pages[i];
699 if (unlikely(page->index > last))
700 break;
702 if (mapping->host) {
703 lock_page(page);
704 if (!page_has_buffers(page))
705 create_empty_buffers(page,
706 1 << inode->i_blkbits, 0);
707 unlock_page(page);
710 bh = head = page_buffers(page);
711 do {
712 if (!buffer_dirty(bh))
713 continue;
714 get_bh(bh);
715 list_add_tail(&bh->b_assoc_buffers, listp);
716 ndirties++;
717 if (unlikely(ndirties >= nlimit)) {
718 pagevec_release(&pvec);
719 cond_resched();
720 return ndirties;
722 } while (bh = bh->b_this_page, bh != head);
724 pagevec_release(&pvec);
725 cond_resched();
726 goto repeat;
729 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
730 struct list_head *listp)
732 struct nilfs_inode_info *ii = NILFS_I(inode);
733 struct address_space *mapping = &ii->i_btnode_cache;
734 struct pagevec pvec;
735 struct buffer_head *bh, *head;
736 unsigned int i;
737 pgoff_t index = 0;
739 pagevec_init(&pvec, 0);
741 while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
742 PAGEVEC_SIZE)) {
743 for (i = 0; i < pagevec_count(&pvec); i++) {
744 bh = head = page_buffers(pvec.pages[i]);
745 do {
746 if (buffer_dirty(bh)) {
747 get_bh(bh);
748 list_add_tail(&bh->b_assoc_buffers,
749 listp);
751 bh = bh->b_this_page;
752 } while (bh != head);
754 pagevec_release(&pvec);
755 cond_resched();
759 static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
760 struct list_head *head, int force)
762 struct nilfs_inode_info *ii, *n;
763 struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
764 unsigned nv = 0;
766 while (!list_empty(head)) {
767 spin_lock(&sbi->s_inode_lock);
768 list_for_each_entry_safe(ii, n, head, i_dirty) {
769 list_del_init(&ii->i_dirty);
770 if (force) {
771 if (unlikely(ii->i_bh)) {
772 brelse(ii->i_bh);
773 ii->i_bh = NULL;
775 } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
776 set_bit(NILFS_I_QUEUED, &ii->i_state);
777 list_add_tail(&ii->i_dirty,
778 &sbi->s_dirty_files);
779 continue;
781 ivec[nv++] = ii;
782 if (nv == SC_N_INODEVEC)
783 break;
785 spin_unlock(&sbi->s_inode_lock);
787 for (pii = ivec; nv > 0; pii++, nv--)
788 iput(&(*pii)->vfs_inode);
792 static int nilfs_test_metadata_dirty(struct nilfs_sb_info *sbi)
794 struct the_nilfs *nilfs = sbi->s_nilfs;
795 int ret = 0;
797 if (nilfs_mdt_fetch_dirty(sbi->s_ifile))
798 ret++;
799 if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
800 ret++;
801 if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
802 ret++;
803 if (ret || nilfs_doing_gc())
804 if (nilfs_mdt_fetch_dirty(nilfs_dat_inode(nilfs)))
805 ret++;
806 return ret;
809 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
811 return list_empty(&sci->sc_dirty_files) &&
812 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
813 sci->sc_nfreesegs == 0 &&
814 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
817 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
819 struct nilfs_sb_info *sbi = sci->sc_sbi;
820 int ret = 0;
822 if (nilfs_test_metadata_dirty(sbi))
823 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
825 spin_lock(&sbi->s_inode_lock);
826 if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
827 ret++;
829 spin_unlock(&sbi->s_inode_lock);
830 return ret;
833 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
835 struct nilfs_sb_info *sbi = sci->sc_sbi;
836 struct the_nilfs *nilfs = sbi->s_nilfs;
838 nilfs_mdt_clear_dirty(sbi->s_ifile);
839 nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
840 nilfs_mdt_clear_dirty(nilfs->ns_sufile);
841 nilfs_mdt_clear_dirty(nilfs_dat_inode(nilfs));
844 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
846 struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
847 struct buffer_head *bh_cp;
848 struct nilfs_checkpoint *raw_cp;
849 int err;
851 /* XXX: this interface will be changed */
852 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
853 &raw_cp, &bh_cp);
854 if (likely(!err)) {
855 /* The following code is duplicated with cpfile. But, it is
856 needed to collect the checkpoint even if it was not newly
857 created */
858 nilfs_mdt_mark_buffer_dirty(bh_cp);
859 nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
860 nilfs_cpfile_put_checkpoint(
861 nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
862 } else
863 WARN_ON(err == -EINVAL || err == -ENOENT);
865 return err;
868 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
870 struct nilfs_sb_info *sbi = sci->sc_sbi;
871 struct the_nilfs *nilfs = sbi->s_nilfs;
872 struct buffer_head *bh_cp;
873 struct nilfs_checkpoint *raw_cp;
874 int err;
876 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
877 &raw_cp, &bh_cp);
878 if (unlikely(err)) {
879 WARN_ON(err == -EINVAL || err == -ENOENT);
880 goto failed_ibh;
882 raw_cp->cp_snapshot_list.ssl_next = 0;
883 raw_cp->cp_snapshot_list.ssl_prev = 0;
884 raw_cp->cp_inodes_count =
885 cpu_to_le64(atomic_read(&sbi->s_inodes_count));
886 raw_cp->cp_blocks_count =
887 cpu_to_le64(atomic_read(&sbi->s_blocks_count));
888 raw_cp->cp_nblk_inc =
889 cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
890 raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
891 raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
893 if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
894 nilfs_checkpoint_clear_minor(raw_cp);
895 else
896 nilfs_checkpoint_set_minor(raw_cp);
898 nilfs_write_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode, 1);
899 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
900 return 0;
902 failed_ibh:
903 return err;
906 static void nilfs_fill_in_file_bmap(struct inode *ifile,
907 struct nilfs_inode_info *ii)
910 struct buffer_head *ibh;
911 struct nilfs_inode *raw_inode;
913 if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
914 ibh = ii->i_bh;
915 BUG_ON(!ibh);
916 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
917 ibh);
918 nilfs_bmap_write(ii->i_bmap, raw_inode);
919 nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
923 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci,
924 struct inode *ifile)
926 struct nilfs_inode_info *ii;
928 list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
929 nilfs_fill_in_file_bmap(ifile, ii);
930 set_bit(NILFS_I_COLLECTED, &ii->i_state);
935 * CRC calculation routines
937 static void nilfs_fill_in_super_root_crc(struct buffer_head *bh_sr, u32 seed)
939 struct nilfs_super_root *raw_sr =
940 (struct nilfs_super_root *)bh_sr->b_data;
941 u32 crc;
943 crc = crc32_le(seed,
944 (unsigned char *)raw_sr + sizeof(raw_sr->sr_sum),
945 NILFS_SR_BYTES - sizeof(raw_sr->sr_sum));
946 raw_sr->sr_sum = cpu_to_le32(crc);
949 static void nilfs_segctor_fill_in_checksums(struct nilfs_sc_info *sci,
950 u32 seed)
952 struct nilfs_segment_buffer *segbuf;
954 if (sci->sc_super_root)
955 nilfs_fill_in_super_root_crc(sci->sc_super_root, seed);
957 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
958 nilfs_segbuf_fill_in_segsum_crc(segbuf, seed);
959 nilfs_segbuf_fill_in_data_crc(segbuf, seed);
963 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
964 struct the_nilfs *nilfs)
966 struct buffer_head *bh_sr = sci->sc_super_root;
967 struct nilfs_super_root *raw_sr =
968 (struct nilfs_super_root *)bh_sr->b_data;
969 unsigned isz = nilfs->ns_inode_size;
971 raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
972 raw_sr->sr_nongc_ctime
973 = cpu_to_le64(nilfs_doing_gc() ?
974 nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
975 raw_sr->sr_flags = 0;
977 nilfs_mdt_write_inode_direct(
978 nilfs_dat_inode(nilfs), bh_sr, NILFS_SR_DAT_OFFSET(isz));
979 nilfs_mdt_write_inode_direct(
980 nilfs->ns_cpfile, bh_sr, NILFS_SR_CPFILE_OFFSET(isz));
981 nilfs_mdt_write_inode_direct(
982 nilfs->ns_sufile, bh_sr, NILFS_SR_SUFILE_OFFSET(isz));
985 static void nilfs_redirty_inodes(struct list_head *head)
987 struct nilfs_inode_info *ii;
989 list_for_each_entry(ii, head, i_dirty) {
990 if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
991 clear_bit(NILFS_I_COLLECTED, &ii->i_state);
995 static void nilfs_drop_collected_inodes(struct list_head *head)
997 struct nilfs_inode_info *ii;
999 list_for_each_entry(ii, head, i_dirty) {
1000 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
1001 continue;
1003 clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
1004 set_bit(NILFS_I_UPDATED, &ii->i_state);
1008 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
1009 struct inode *inode,
1010 struct list_head *listp,
1011 int (*collect)(struct nilfs_sc_info *,
1012 struct buffer_head *,
1013 struct inode *))
1015 struct buffer_head *bh, *n;
1016 int err = 0;
1018 if (collect) {
1019 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1020 list_del_init(&bh->b_assoc_buffers);
1021 err = collect(sci, bh, inode);
1022 brelse(bh);
1023 if (unlikely(err))
1024 goto dispose_buffers;
1026 return 0;
1029 dispose_buffers:
1030 while (!list_empty(listp)) {
1031 bh = list_entry(listp->next, struct buffer_head,
1032 b_assoc_buffers);
1033 list_del_init(&bh->b_assoc_buffers);
1034 brelse(bh);
1036 return err;
1039 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1041 /* Remaining number of blocks within segment buffer */
1042 return sci->sc_segbuf_nblocks -
1043 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1046 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1047 struct inode *inode,
1048 struct nilfs_sc_operations *sc_ops)
1050 LIST_HEAD(data_buffers);
1051 LIST_HEAD(node_buffers);
1052 int err;
1054 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1055 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1057 n = nilfs_lookup_dirty_data_buffers(
1058 inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1059 if (n > rest) {
1060 err = nilfs_segctor_apply_buffers(
1061 sci, inode, &data_buffers,
1062 sc_ops->collect_data);
1063 BUG_ON(!err); /* always receive -E2BIG or true error */
1064 goto break_or_fail;
1067 nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1069 if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1070 err = nilfs_segctor_apply_buffers(
1071 sci, inode, &data_buffers, sc_ops->collect_data);
1072 if (unlikely(err)) {
1073 /* dispose node list */
1074 nilfs_segctor_apply_buffers(
1075 sci, inode, &node_buffers, NULL);
1076 goto break_or_fail;
1078 sci->sc_stage.flags |= NILFS_CF_NODE;
1080 /* Collect node */
1081 err = nilfs_segctor_apply_buffers(
1082 sci, inode, &node_buffers, sc_ops->collect_node);
1083 if (unlikely(err))
1084 goto break_or_fail;
1086 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1087 err = nilfs_segctor_apply_buffers(
1088 sci, inode, &node_buffers, sc_ops->collect_bmap);
1089 if (unlikely(err))
1090 goto break_or_fail;
1092 nilfs_segctor_end_finfo(sci, inode);
1093 sci->sc_stage.flags &= ~NILFS_CF_NODE;
1095 break_or_fail:
1096 return err;
1099 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1100 struct inode *inode)
1102 LIST_HEAD(data_buffers);
1103 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1104 int err;
1106 n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1107 sci->sc_dsync_start,
1108 sci->sc_dsync_end);
1110 err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1111 nilfs_collect_file_data);
1112 if (!err) {
1113 nilfs_segctor_end_finfo(sci, inode);
1114 BUG_ON(n > rest);
1115 /* always receive -E2BIG or true error if n > rest */
1117 return err;
1120 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1122 struct nilfs_sb_info *sbi = sci->sc_sbi;
1123 struct the_nilfs *nilfs = sbi->s_nilfs;
1124 struct list_head *head;
1125 struct nilfs_inode_info *ii;
1126 size_t ndone;
1127 int err = 0;
1129 switch (sci->sc_stage.scnt) {
1130 case NILFS_ST_INIT:
1131 /* Pre-processes */
1132 sci->sc_stage.flags = 0;
1134 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1135 sci->sc_nblk_inc = 0;
1136 sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1137 if (mode == SC_LSEG_DSYNC) {
1138 sci->sc_stage.scnt = NILFS_ST_DSYNC;
1139 goto dsync_mode;
1143 sci->sc_stage.dirty_file_ptr = NULL;
1144 sci->sc_stage.gc_inode_ptr = NULL;
1145 if (mode == SC_FLUSH_DAT) {
1146 sci->sc_stage.scnt = NILFS_ST_DAT;
1147 goto dat_stage;
1149 sci->sc_stage.scnt++; /* Fall through */
1150 case NILFS_ST_GC:
1151 if (nilfs_doing_gc()) {
1152 head = &sci->sc_gc_inodes;
1153 ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1154 head, i_dirty);
1155 list_for_each_entry_continue(ii, head, i_dirty) {
1156 err = nilfs_segctor_scan_file(
1157 sci, &ii->vfs_inode,
1158 &nilfs_sc_file_ops);
1159 if (unlikely(err)) {
1160 sci->sc_stage.gc_inode_ptr = list_entry(
1161 ii->i_dirty.prev,
1162 struct nilfs_inode_info,
1163 i_dirty);
1164 goto break_or_fail;
1166 set_bit(NILFS_I_COLLECTED, &ii->i_state);
1168 sci->sc_stage.gc_inode_ptr = NULL;
1170 sci->sc_stage.scnt++; /* Fall through */
1171 case NILFS_ST_FILE:
1172 head = &sci->sc_dirty_files;
1173 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1174 i_dirty);
1175 list_for_each_entry_continue(ii, head, i_dirty) {
1176 clear_bit(NILFS_I_DIRTY, &ii->i_state);
1178 err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1179 &nilfs_sc_file_ops);
1180 if (unlikely(err)) {
1181 sci->sc_stage.dirty_file_ptr =
1182 list_entry(ii->i_dirty.prev,
1183 struct nilfs_inode_info,
1184 i_dirty);
1185 goto break_or_fail;
1187 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1188 /* XXX: required ? */
1190 sci->sc_stage.dirty_file_ptr = NULL;
1191 if (mode == SC_FLUSH_FILE) {
1192 sci->sc_stage.scnt = NILFS_ST_DONE;
1193 return 0;
1195 sci->sc_stage.scnt++;
1196 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1197 /* Fall through */
1198 case NILFS_ST_IFILE:
1199 err = nilfs_segctor_scan_file(sci, sbi->s_ifile,
1200 &nilfs_sc_file_ops);
1201 if (unlikely(err))
1202 break;
1203 sci->sc_stage.scnt++;
1204 /* Creating a checkpoint */
1205 err = nilfs_segctor_create_checkpoint(sci);
1206 if (unlikely(err))
1207 break;
1208 /* Fall through */
1209 case NILFS_ST_CPFILE:
1210 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1211 &nilfs_sc_file_ops);
1212 if (unlikely(err))
1213 break;
1214 sci->sc_stage.scnt++; /* Fall through */
1215 case NILFS_ST_SUFILE:
1216 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1217 sci->sc_nfreesegs, &ndone);
1218 if (unlikely(err)) {
1219 nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1220 sci->sc_freesegs, ndone,
1221 NULL);
1222 break;
1224 sci->sc_stage.flags |= NILFS_CF_SUFREED;
1226 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1227 &nilfs_sc_file_ops);
1228 if (unlikely(err))
1229 break;
1230 sci->sc_stage.scnt++; /* Fall through */
1231 case NILFS_ST_DAT:
1232 dat_stage:
1233 err = nilfs_segctor_scan_file(sci, nilfs_dat_inode(nilfs),
1234 &nilfs_sc_dat_ops);
1235 if (unlikely(err))
1236 break;
1237 if (mode == SC_FLUSH_DAT) {
1238 sci->sc_stage.scnt = NILFS_ST_DONE;
1239 return 0;
1241 sci->sc_stage.scnt++; /* Fall through */
1242 case NILFS_ST_SR:
1243 if (mode == SC_LSEG_SR) {
1244 /* Appending a super root */
1245 err = nilfs_segctor_add_super_root(sci);
1246 if (unlikely(err))
1247 break;
1249 /* End of a logical segment */
1250 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1251 sci->sc_stage.scnt = NILFS_ST_DONE;
1252 return 0;
1253 case NILFS_ST_DSYNC:
1254 dsync_mode:
1255 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1256 ii = sci->sc_dsync_inode;
1257 if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1258 break;
1260 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1261 if (unlikely(err))
1262 break;
1263 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1264 sci->sc_stage.scnt = NILFS_ST_DONE;
1265 return 0;
1266 case NILFS_ST_DONE:
1267 return 0;
1268 default:
1269 BUG();
1272 break_or_fail:
1273 return err;
1276 static int nilfs_touch_segusage(struct inode *sufile, __u64 segnum)
1278 struct buffer_head *bh_su;
1279 struct nilfs_segment_usage *raw_su;
1280 int err;
1282 err = nilfs_sufile_get_segment_usage(sufile, segnum, &raw_su, &bh_su);
1283 if (unlikely(err))
1284 return err;
1285 nilfs_mdt_mark_buffer_dirty(bh_su);
1286 nilfs_mdt_mark_dirty(sufile);
1287 nilfs_sufile_put_segment_usage(sufile, segnum, bh_su);
1288 return 0;
1291 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1292 struct the_nilfs *nilfs)
1294 struct nilfs_segment_buffer *segbuf, *n;
1295 __u64 nextnum;
1296 int err;
1298 if (list_empty(&sci->sc_segbufs)) {
1299 segbuf = nilfs_segbuf_new(sci->sc_super);
1300 if (unlikely(!segbuf))
1301 return -ENOMEM;
1302 list_add(&segbuf->sb_list, &sci->sc_segbufs);
1303 } else
1304 segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1306 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, nilfs->ns_pseg_offset,
1307 nilfs);
1309 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1310 nilfs_shift_to_next_segment(nilfs);
1311 nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1313 sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1315 err = nilfs_touch_segusage(nilfs->ns_sufile, segbuf->sb_segnum);
1316 if (unlikely(err))
1317 return err;
1319 if (nilfs->ns_segnum == nilfs->ns_nextnum) {
1320 /* Start from the head of a new full segment */
1321 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1322 if (unlikely(err))
1323 return err;
1324 } else
1325 nextnum = nilfs->ns_nextnum;
1327 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1328 nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1330 /* truncating segment buffers */
1331 list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
1332 sb_list) {
1333 list_del_init(&segbuf->sb_list);
1334 nilfs_segbuf_free(segbuf);
1336 return 0;
1339 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1340 struct the_nilfs *nilfs, int nadd)
1342 struct nilfs_segment_buffer *segbuf, *prev, *n;
1343 struct inode *sufile = nilfs->ns_sufile;
1344 __u64 nextnextnum;
1345 LIST_HEAD(list);
1346 int err, ret, i;
1348 prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1350 * Since the segment specified with nextnum might be allocated during
1351 * the previous construction, the buffer including its segusage may
1352 * not be dirty. The following call ensures that the buffer is dirty
1353 * and will pin the buffer on memory until the sufile is written.
1355 err = nilfs_touch_segusage(sufile, prev->sb_nextnum);
1356 if (unlikely(err))
1357 return err;
1359 for (i = 0; i < nadd; i++) {
1360 /* extend segment info */
1361 err = -ENOMEM;
1362 segbuf = nilfs_segbuf_new(sci->sc_super);
1363 if (unlikely(!segbuf))
1364 goto failed;
1366 /* map this buffer to region of segment on-disk */
1367 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1368 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1370 /* allocate the next next full segment */
1371 err = nilfs_sufile_alloc(sufile, &nextnextnum);
1372 if (unlikely(err))
1373 goto failed_segbuf;
1375 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1376 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1378 list_add_tail(&segbuf->sb_list, &list);
1379 prev = segbuf;
1381 list_splice(&list, sci->sc_segbufs.prev);
1382 return 0;
1384 failed_segbuf:
1385 nilfs_segbuf_free(segbuf);
1386 failed:
1387 list_for_each_entry_safe(segbuf, n, &list, sb_list) {
1388 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1389 WARN_ON(ret); /* never fails */
1390 list_del_init(&segbuf->sb_list);
1391 nilfs_segbuf_free(segbuf);
1393 return err;
1396 static void nilfs_segctor_free_incomplete_segments(struct nilfs_sc_info *sci,
1397 struct the_nilfs *nilfs)
1399 struct nilfs_segment_buffer *segbuf;
1400 int ret, done = 0;
1402 segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1403 if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1404 ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
1405 WARN_ON(ret); /* never fails */
1407 if (segbuf->sb_io_error) {
1408 /* Case 1: The first segment failed */
1409 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1410 /* Case 1a: Partial segment appended into an existing
1411 segment */
1412 nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1413 segbuf->sb_fseg_end);
1414 else /* Case 1b: New full segment */
1415 set_nilfs_discontinued(nilfs);
1416 done++;
1419 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1420 ret = nilfs_sufile_free(nilfs->ns_sufile, segbuf->sb_nextnum);
1421 WARN_ON(ret); /* never fails */
1422 if (!done && segbuf->sb_io_error) {
1423 if (segbuf->sb_segnum != nilfs->ns_nextnum)
1424 /* Case 2: extended segment (!= next) failed */
1425 nilfs_sufile_set_error(nilfs->ns_sufile,
1426 segbuf->sb_segnum);
1427 done++;
1432 static void nilfs_segctor_clear_segment_buffers(struct nilfs_sc_info *sci)
1434 struct nilfs_segment_buffer *segbuf;
1436 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list)
1437 nilfs_segbuf_clear(segbuf);
1438 sci->sc_super_root = NULL;
1441 static void nilfs_segctor_destroy_segment_buffers(struct nilfs_sc_info *sci)
1443 struct nilfs_segment_buffer *segbuf;
1445 while (!list_empty(&sci->sc_segbufs)) {
1446 segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1447 list_del_init(&segbuf->sb_list);
1448 nilfs_segbuf_free(segbuf);
1450 /* sci->sc_curseg = NULL; */
1453 static void nilfs_segctor_end_construction(struct nilfs_sc_info *sci,
1454 struct the_nilfs *nilfs, int err)
1456 if (unlikely(err)) {
1457 nilfs_segctor_free_incomplete_segments(sci, nilfs);
1458 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1459 int ret;
1461 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1462 sci->sc_freesegs,
1463 sci->sc_nfreesegs,
1464 NULL);
1465 WARN_ON(ret); /* do not happen */
1468 nilfs_segctor_clear_segment_buffers(sci);
1471 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1472 struct inode *sufile)
1474 struct nilfs_segment_buffer *segbuf;
1475 struct buffer_head *bh_su;
1476 struct nilfs_segment_usage *raw_su;
1477 unsigned long live_blocks;
1478 int ret;
1480 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1481 ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
1482 &raw_su, &bh_su);
1483 WARN_ON(ret); /* always succeed because bh_su is dirty */
1484 live_blocks = segbuf->sb_sum.nblocks +
1485 (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1486 raw_su->su_lastmod = cpu_to_le64(sci->sc_seg_ctime);
1487 raw_su->su_nblocks = cpu_to_le32(live_blocks);
1488 nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
1489 bh_su);
1493 static void nilfs_segctor_cancel_segusage(struct nilfs_sc_info *sci,
1494 struct inode *sufile)
1496 struct nilfs_segment_buffer *segbuf;
1497 struct buffer_head *bh_su;
1498 struct nilfs_segment_usage *raw_su;
1499 int ret;
1501 segbuf = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1502 ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
1503 &raw_su, &bh_su);
1504 WARN_ON(ret); /* always succeed because bh_su is dirty */
1505 raw_su->su_nblocks = cpu_to_le32(segbuf->sb_pseg_start -
1506 segbuf->sb_fseg_start);
1507 nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum, bh_su);
1509 list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1510 ret = nilfs_sufile_get_segment_usage(sufile, segbuf->sb_segnum,
1511 &raw_su, &bh_su);
1512 WARN_ON(ret); /* always succeed */
1513 raw_su->su_nblocks = 0;
1514 nilfs_sufile_put_segment_usage(sufile, segbuf->sb_segnum,
1515 bh_su);
1519 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1520 struct nilfs_segment_buffer *last,
1521 struct inode *sufile)
1523 struct nilfs_segment_buffer *segbuf = last, *n;
1524 int ret;
1526 list_for_each_entry_safe_continue(segbuf, n, &sci->sc_segbufs,
1527 sb_list) {
1528 list_del_init(&segbuf->sb_list);
1529 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1530 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1531 WARN_ON(ret);
1532 nilfs_segbuf_free(segbuf);
1537 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1538 struct the_nilfs *nilfs, int mode)
1540 struct nilfs_cstage prev_stage = sci->sc_stage;
1541 int err, nadd = 1;
1543 /* Collection retry loop */
1544 for (;;) {
1545 sci->sc_super_root = NULL;
1546 sci->sc_nblk_this_inc = 0;
1547 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1549 err = nilfs_segctor_reset_segment_buffer(sci);
1550 if (unlikely(err))
1551 goto failed;
1553 err = nilfs_segctor_collect_blocks(sci, mode);
1554 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1555 if (!err)
1556 break;
1558 if (unlikely(err != -E2BIG))
1559 goto failed;
1561 /* The current segment is filled up */
1562 if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
1563 break;
1565 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1566 err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1567 sci->sc_freesegs,
1568 sci->sc_nfreesegs,
1569 NULL);
1570 WARN_ON(err); /* do not happen */
1572 nilfs_segctor_clear_segment_buffers(sci);
1574 err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1575 if (unlikely(err))
1576 return err;
1578 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1579 sci->sc_stage = prev_stage;
1581 nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1582 return 0;
1584 failed:
1585 return err;
1588 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1589 struct buffer_head *new_bh)
1591 BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1593 list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1594 /* The caller must release old_bh */
1597 static int
1598 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1599 struct nilfs_segment_buffer *segbuf,
1600 int mode)
1602 struct inode *inode = NULL;
1603 sector_t blocknr;
1604 unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1605 unsigned long nblocks = 0, ndatablk = 0;
1606 struct nilfs_sc_operations *sc_op = NULL;
1607 struct nilfs_segsum_pointer ssp;
1608 struct nilfs_finfo *finfo = NULL;
1609 union nilfs_binfo binfo;
1610 struct buffer_head *bh, *bh_org;
1611 ino_t ino = 0;
1612 int err = 0;
1614 if (!nfinfo)
1615 goto out;
1617 blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1618 ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1619 ssp.offset = sizeof(struct nilfs_segment_summary);
1621 list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1622 if (bh == sci->sc_super_root)
1623 break;
1624 if (!finfo) {
1625 finfo = nilfs_segctor_map_segsum_entry(
1626 sci, &ssp, sizeof(*finfo));
1627 ino = le64_to_cpu(finfo->fi_ino);
1628 nblocks = le32_to_cpu(finfo->fi_nblocks);
1629 ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1631 if (buffer_nilfs_node(bh))
1632 inode = NILFS_BTNC_I(bh->b_page->mapping);
1633 else
1634 inode = NILFS_AS_I(bh->b_page->mapping);
1636 if (mode == SC_LSEG_DSYNC)
1637 sc_op = &nilfs_sc_dsync_ops;
1638 else if (ino == NILFS_DAT_INO)
1639 sc_op = &nilfs_sc_dat_ops;
1640 else /* file blocks */
1641 sc_op = &nilfs_sc_file_ops;
1643 bh_org = bh;
1644 get_bh(bh_org);
1645 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1646 &binfo);
1647 if (bh != bh_org)
1648 nilfs_list_replace_buffer(bh_org, bh);
1649 brelse(bh_org);
1650 if (unlikely(err))
1651 goto failed_bmap;
1653 if (ndatablk > 0)
1654 sc_op->write_data_binfo(sci, &ssp, &binfo);
1655 else
1656 sc_op->write_node_binfo(sci, &ssp, &binfo);
1658 blocknr++;
1659 if (--nblocks == 0) {
1660 finfo = NULL;
1661 if (--nfinfo == 0)
1662 break;
1663 } else if (ndatablk > 0)
1664 ndatablk--;
1666 out:
1667 return 0;
1669 failed_bmap:
1670 err = nilfs_handle_bmap_error(err, __func__, inode, sci->sc_super);
1671 return err;
1674 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1676 struct nilfs_segment_buffer *segbuf;
1677 int err;
1679 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1680 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1681 if (unlikely(err))
1682 return err;
1683 nilfs_segbuf_fill_in_segsum(segbuf);
1685 return 0;
1688 static int
1689 nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
1691 struct page *clone_page;
1692 struct buffer_head *bh, *head, *bh2;
1693 void *kaddr;
1695 bh = head = page_buffers(page);
1697 clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
1698 if (unlikely(!clone_page))
1699 return -ENOMEM;
1701 bh2 = page_buffers(clone_page);
1702 kaddr = kmap_atomic(page, KM_USER0);
1703 do {
1704 if (list_empty(&bh->b_assoc_buffers))
1705 continue;
1706 get_bh(bh2);
1707 page_cache_get(clone_page); /* for each bh */
1708 memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
1709 bh2->b_blocknr = bh->b_blocknr;
1710 list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
1711 list_add_tail(&bh->b_assoc_buffers, out);
1712 } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
1713 kunmap_atomic(kaddr, KM_USER0);
1715 if (!TestSetPageWriteback(clone_page))
1716 inc_zone_page_state(clone_page, NR_WRITEBACK);
1717 unlock_page(clone_page);
1719 return 0;
1722 static int nilfs_test_page_to_be_frozen(struct page *page)
1724 struct address_space *mapping = page->mapping;
1726 if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
1727 return 0;
1729 if (page_mapped(page)) {
1730 ClearPageChecked(page);
1731 return 1;
1733 return PageChecked(page);
1736 static int nilfs_begin_page_io(struct page *page, struct list_head *out)
1738 if (!page || PageWriteback(page))
1739 /* For split b-tree node pages, this function may be called
1740 twice. We ignore the 2nd or later calls by this check. */
1741 return 0;
1743 lock_page(page);
1744 clear_page_dirty_for_io(page);
1745 set_page_writeback(page);
1746 unlock_page(page);
1748 if (nilfs_test_page_to_be_frozen(page)) {
1749 int err = nilfs_copy_replace_page_buffers(page, out);
1750 if (unlikely(err))
1751 return err;
1753 return 0;
1756 static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
1757 struct page **failed_page)
1759 struct nilfs_segment_buffer *segbuf;
1760 struct page *bd_page = NULL, *fs_page = NULL;
1761 struct list_head *list = &sci->sc_copied_buffers;
1762 int err;
1764 *failed_page = NULL;
1765 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1766 struct buffer_head *bh;
1768 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1769 b_assoc_buffers) {
1770 if (bh->b_page != bd_page) {
1771 if (bd_page) {
1772 lock_page(bd_page);
1773 clear_page_dirty_for_io(bd_page);
1774 set_page_writeback(bd_page);
1775 unlock_page(bd_page);
1777 bd_page = bh->b_page;
1781 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1782 b_assoc_buffers) {
1783 if (bh == sci->sc_super_root) {
1784 if (bh->b_page != bd_page) {
1785 lock_page(bd_page);
1786 clear_page_dirty_for_io(bd_page);
1787 set_page_writeback(bd_page);
1788 unlock_page(bd_page);
1789 bd_page = bh->b_page;
1791 break;
1793 if (bh->b_page != fs_page) {
1794 err = nilfs_begin_page_io(fs_page, list);
1795 if (unlikely(err)) {
1796 *failed_page = fs_page;
1797 goto out;
1799 fs_page = bh->b_page;
1803 if (bd_page) {
1804 lock_page(bd_page);
1805 clear_page_dirty_for_io(bd_page);
1806 set_page_writeback(bd_page);
1807 unlock_page(bd_page);
1809 err = nilfs_begin_page_io(fs_page, list);
1810 if (unlikely(err))
1811 *failed_page = fs_page;
1812 out:
1813 return err;
1816 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1817 struct backing_dev_info *bdi)
1819 struct nilfs_segment_buffer *segbuf;
1820 struct nilfs_write_info wi;
1821 int err, res;
1823 wi.sb = sci->sc_super;
1824 wi.bh_sr = sci->sc_super_root;
1825 wi.bdi = bdi;
1827 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1828 nilfs_segbuf_prepare_write(segbuf, &wi);
1829 err = nilfs_segbuf_write(segbuf, &wi);
1831 res = nilfs_segbuf_wait(segbuf, &wi);
1832 err = err ? : res;
1833 if (err)
1834 return err;
1836 return 0;
1839 static void __nilfs_end_page_io(struct page *page, int err)
1841 if (!err) {
1842 if (!nilfs_page_buffers_clean(page))
1843 __set_page_dirty_nobuffers(page);
1844 ClearPageError(page);
1845 } else {
1846 __set_page_dirty_nobuffers(page);
1847 SetPageError(page);
1850 if (buffer_nilfs_allocated(page_buffers(page))) {
1851 if (TestClearPageWriteback(page))
1852 dec_zone_page_state(page, NR_WRITEBACK);
1853 } else
1854 end_page_writeback(page);
1857 static void nilfs_end_page_io(struct page *page, int err)
1859 if (!page)
1860 return;
1862 if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
1864 * For b-tree node pages, this function may be called twice
1865 * or more because they might be split in a segment.
1867 if (PageDirty(page)) {
1869 * For pages holding split b-tree node buffers, dirty
1870 * flag on the buffers may be cleared discretely.
1871 * In that case, the page is once redirtied for
1872 * remaining buffers, and it must be cancelled if
1873 * all the buffers get cleaned later.
1875 lock_page(page);
1876 if (nilfs_page_buffers_clean(page))
1877 __nilfs_clear_page_dirty(page);
1878 unlock_page(page);
1880 return;
1883 __nilfs_end_page_io(page, err);
1886 static void nilfs_clear_copied_buffers(struct list_head *list, int err)
1888 struct buffer_head *bh, *head;
1889 struct page *page;
1891 while (!list_empty(list)) {
1892 bh = list_entry(list->next, struct buffer_head,
1893 b_assoc_buffers);
1894 page = bh->b_page;
1895 page_cache_get(page);
1896 head = bh = page_buffers(page);
1897 do {
1898 if (!list_empty(&bh->b_assoc_buffers)) {
1899 list_del_init(&bh->b_assoc_buffers);
1900 if (!err) {
1901 set_buffer_uptodate(bh);
1902 clear_buffer_dirty(bh);
1903 clear_buffer_nilfs_volatile(bh);
1905 brelse(bh); /* for b_assoc_buffers */
1907 } while ((bh = bh->b_this_page) != head);
1909 __nilfs_end_page_io(page, err);
1910 page_cache_release(page);
1914 static void nilfs_segctor_abort_write(struct nilfs_sc_info *sci,
1915 struct page *failed_page, int err)
1917 struct nilfs_segment_buffer *segbuf;
1918 struct page *bd_page = NULL, *fs_page = NULL;
1920 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1921 struct buffer_head *bh;
1923 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1924 b_assoc_buffers) {
1925 if (bh->b_page != bd_page) {
1926 if (bd_page)
1927 end_page_writeback(bd_page);
1928 bd_page = bh->b_page;
1932 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1933 b_assoc_buffers) {
1934 if (bh == sci->sc_super_root) {
1935 if (bh->b_page != bd_page) {
1936 end_page_writeback(bd_page);
1937 bd_page = bh->b_page;
1939 break;
1941 if (bh->b_page != fs_page) {
1942 nilfs_end_page_io(fs_page, err);
1943 if (fs_page && fs_page == failed_page)
1944 goto done;
1945 fs_page = bh->b_page;
1949 if (bd_page)
1950 end_page_writeback(bd_page);
1952 nilfs_end_page_io(fs_page, err);
1953 done:
1954 nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
1957 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1958 struct nilfs_segment_buffer *segbuf)
1960 nilfs->ns_segnum = segbuf->sb_segnum;
1961 nilfs->ns_nextnum = segbuf->sb_nextnum;
1962 nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1963 + segbuf->sb_sum.nblocks;
1964 nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1965 nilfs->ns_ctime = segbuf->sb_sum.ctime;
1968 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1970 struct nilfs_segment_buffer *segbuf;
1971 struct page *bd_page = NULL, *fs_page = NULL;
1972 struct nilfs_sb_info *sbi = sci->sc_sbi;
1973 struct the_nilfs *nilfs = sbi->s_nilfs;
1974 int update_sr = (sci->sc_super_root != NULL);
1976 list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1977 struct buffer_head *bh;
1979 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1980 b_assoc_buffers) {
1981 set_buffer_uptodate(bh);
1982 clear_buffer_dirty(bh);
1983 if (bh->b_page != bd_page) {
1984 if (bd_page)
1985 end_page_writeback(bd_page);
1986 bd_page = bh->b_page;
1990 * We assume that the buffers which belong to the same page
1991 * continue over the buffer list.
1992 * Under this assumption, the last BHs of pages is
1993 * identifiable by the discontinuity of bh->b_page
1994 * (page != fs_page).
1996 * For B-tree node blocks, however, this assumption is not
1997 * guaranteed. The cleanup code of B-tree node pages needs
1998 * special care.
2000 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
2001 b_assoc_buffers) {
2002 set_buffer_uptodate(bh);
2003 clear_buffer_dirty(bh);
2004 clear_buffer_nilfs_volatile(bh);
2005 if (bh == sci->sc_super_root) {
2006 if (bh->b_page != bd_page) {
2007 end_page_writeback(bd_page);
2008 bd_page = bh->b_page;
2010 break;
2012 if (bh->b_page != fs_page) {
2013 nilfs_end_page_io(fs_page, 0);
2014 fs_page = bh->b_page;
2018 if (!NILFS_SEG_SIMPLEX(&segbuf->sb_sum)) {
2019 if (NILFS_SEG_LOGBGN(&segbuf->sb_sum)) {
2020 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
2021 sci->sc_lseg_stime = jiffies;
2023 if (NILFS_SEG_LOGEND(&segbuf->sb_sum))
2024 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
2028 * Since pages may continue over multiple segment buffers,
2029 * end of the last page must be checked outside of the loop.
2031 if (bd_page)
2032 end_page_writeback(bd_page);
2034 nilfs_end_page_io(fs_page, 0);
2036 nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
2038 nilfs_drop_collected_inodes(&sci->sc_dirty_files);
2040 if (nilfs_doing_gc()) {
2041 nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
2042 if (update_sr)
2043 nilfs_commit_gcdat_inode(nilfs);
2044 } else
2045 nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
2047 sci->sc_nblk_inc += sci->sc_nblk_this_inc;
2049 segbuf = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
2050 nilfs_set_next_segment(nilfs, segbuf);
2052 if (update_sr) {
2053 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
2054 segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
2055 sbi->s_super->s_dirt = 1;
2057 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
2058 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2059 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
2060 } else
2061 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
2064 static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
2065 struct nilfs_sb_info *sbi)
2067 struct nilfs_inode_info *ii, *n;
2068 __u64 cno = sbi->s_nilfs->ns_cno;
2070 spin_lock(&sbi->s_inode_lock);
2071 retry:
2072 list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
2073 if (!ii->i_bh) {
2074 struct buffer_head *ibh;
2075 int err;
2077 spin_unlock(&sbi->s_inode_lock);
2078 err = nilfs_ifile_get_inode_block(
2079 sbi->s_ifile, ii->vfs_inode.i_ino, &ibh);
2080 if (unlikely(err)) {
2081 nilfs_warning(sbi->s_super, __func__,
2082 "failed to get inode block.\n");
2083 return err;
2085 nilfs_mdt_mark_buffer_dirty(ibh);
2086 nilfs_mdt_mark_dirty(sbi->s_ifile);
2087 spin_lock(&sbi->s_inode_lock);
2088 if (likely(!ii->i_bh))
2089 ii->i_bh = ibh;
2090 else
2091 brelse(ibh);
2092 goto retry;
2094 ii->i_cno = cno;
2096 clear_bit(NILFS_I_QUEUED, &ii->i_state);
2097 set_bit(NILFS_I_BUSY, &ii->i_state);
2098 list_del(&ii->i_dirty);
2099 list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
2101 spin_unlock(&sbi->s_inode_lock);
2103 NILFS_I(sbi->s_ifile)->i_cno = cno;
2105 return 0;
2108 static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
2109 struct nilfs_sb_info *sbi)
2111 struct nilfs_transaction_info *ti = current->journal_info;
2112 struct nilfs_inode_info *ii, *n;
2113 __u64 cno = sbi->s_nilfs->ns_cno;
2115 spin_lock(&sbi->s_inode_lock);
2116 list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2117 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2118 test_bit(NILFS_I_DIRTY, &ii->i_state)) {
2119 /* The current checkpoint number (=nilfs->ns_cno) is
2120 changed between check-in and check-out only if the
2121 super root is written out. So, we can update i_cno
2122 for the inodes that remain in the dirty list. */
2123 ii->i_cno = cno;
2124 continue;
2126 clear_bit(NILFS_I_BUSY, &ii->i_state);
2127 brelse(ii->i_bh);
2128 ii->i_bh = NULL;
2129 list_del(&ii->i_dirty);
2130 list_add_tail(&ii->i_dirty, &ti->ti_garbage);
2132 spin_unlock(&sbi->s_inode_lock);
2136 * Main procedure of segment constructor
2138 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2140 struct nilfs_sb_info *sbi = sci->sc_sbi;
2141 struct the_nilfs *nilfs = sbi->s_nilfs;
2142 struct page *failed_page;
2143 int err, has_sr = 0;
2145 sci->sc_stage.scnt = NILFS_ST_INIT;
2147 err = nilfs_segctor_check_in_files(sci, sbi);
2148 if (unlikely(err))
2149 goto out;
2151 if (nilfs_test_metadata_dirty(sbi))
2152 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2154 if (nilfs_segctor_clean(sci))
2155 goto out;
2157 do {
2158 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2160 err = nilfs_segctor_begin_construction(sci, nilfs);
2161 if (unlikely(err))
2162 goto out;
2164 /* Update time stamp */
2165 sci->sc_seg_ctime = get_seconds();
2167 err = nilfs_segctor_collect(sci, nilfs, mode);
2168 if (unlikely(err))
2169 goto failed;
2171 has_sr = (sci->sc_super_root != NULL);
2173 /* Avoid empty segment */
2174 if (sci->sc_stage.scnt == NILFS_ST_DONE &&
2175 NILFS_SEG_EMPTY(&sci->sc_curseg->sb_sum)) {
2176 nilfs_segctor_end_construction(sci, nilfs, 1);
2177 goto out;
2180 err = nilfs_segctor_assign(sci, mode);
2181 if (unlikely(err))
2182 goto failed;
2184 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2185 nilfs_segctor_fill_in_file_bmap(sci, sbi->s_ifile);
2187 if (has_sr) {
2188 err = nilfs_segctor_fill_in_checkpoint(sci);
2189 if (unlikely(err))
2190 goto failed_to_make_up;
2192 nilfs_segctor_fill_in_super_root(sci, nilfs);
2194 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2196 /* Write partial segments */
2197 err = nilfs_segctor_prepare_write(sci, &failed_page);
2198 if (unlikely(err))
2199 goto failed_to_write;
2201 nilfs_segctor_fill_in_checksums(sci, nilfs->ns_crc_seed);
2203 err = nilfs_segctor_write(sci, nilfs->ns_bdi);
2204 if (unlikely(err))
2205 goto failed_to_write;
2207 nilfs_segctor_complete_write(sci);
2209 /* Commit segments */
2210 if (has_sr)
2211 nilfs_segctor_clear_metadata_dirty(sci);
2213 nilfs_segctor_end_construction(sci, nilfs, 0);
2215 } while (sci->sc_stage.scnt != NILFS_ST_DONE);
2217 out:
2218 nilfs_segctor_destroy_segment_buffers(sci);
2219 nilfs_segctor_check_out_files(sci, sbi);
2220 return err;
2222 failed_to_write:
2223 nilfs_segctor_abort_write(sci, failed_page, err);
2224 nilfs_segctor_cancel_segusage(sci, nilfs->ns_sufile);
2226 failed_to_make_up:
2227 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2228 nilfs_redirty_inodes(&sci->sc_dirty_files);
2230 failed:
2231 if (nilfs_doing_gc())
2232 nilfs_redirty_inodes(&sci->sc_gc_inodes);
2233 nilfs_segctor_end_construction(sci, nilfs, err);
2234 goto out;
2238 * nilfs_secgtor_start_timer - set timer of background write
2239 * @sci: nilfs_sc_info
2241 * If the timer has already been set, it ignores the new request.
2242 * This function MUST be called within a section locking the segment
2243 * semaphore.
2245 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2247 spin_lock(&sci->sc_state_lock);
2248 if (sci->sc_timer && !(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2249 sci->sc_timer->expires = jiffies + sci->sc_interval;
2250 add_timer(sci->sc_timer);
2251 sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2253 spin_unlock(&sci->sc_state_lock);
2256 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2258 spin_lock(&sci->sc_state_lock);
2259 if (!(sci->sc_flush_request & (1 << bn))) {
2260 unsigned long prev_req = sci->sc_flush_request;
2262 sci->sc_flush_request |= (1 << bn);
2263 if (!prev_req)
2264 wake_up(&sci->sc_wait_daemon);
2266 spin_unlock(&sci->sc_state_lock);
2270 * nilfs_flush_segment - trigger a segment construction for resource control
2271 * @sb: super block
2272 * @ino: inode number of the file to be flushed out.
2274 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2276 struct nilfs_sb_info *sbi = NILFS_SB(sb);
2277 struct nilfs_sc_info *sci = NILFS_SC(sbi);
2279 if (!sci || nilfs_doing_construction())
2280 return;
2281 nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2282 /* assign bit 0 to data files */
2285 struct nilfs_segctor_wait_request {
2286 wait_queue_t wq;
2287 __u32 seq;
2288 int err;
2289 atomic_t done;
2292 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2294 struct nilfs_segctor_wait_request wait_req;
2295 int err = 0;
2297 spin_lock(&sci->sc_state_lock);
2298 init_wait(&wait_req.wq);
2299 wait_req.err = 0;
2300 atomic_set(&wait_req.done, 0);
2301 wait_req.seq = ++sci->sc_seq_request;
2302 spin_unlock(&sci->sc_state_lock);
2304 init_waitqueue_entry(&wait_req.wq, current);
2305 add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2306 set_current_state(TASK_INTERRUPTIBLE);
2307 wake_up(&sci->sc_wait_daemon);
2309 for (;;) {
2310 if (atomic_read(&wait_req.done)) {
2311 err = wait_req.err;
2312 break;
2314 if (!signal_pending(current)) {
2315 schedule();
2316 continue;
2318 err = -ERESTARTSYS;
2319 break;
2321 finish_wait(&sci->sc_wait_request, &wait_req.wq);
2322 return err;
2325 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
2327 struct nilfs_segctor_wait_request *wrq, *n;
2328 unsigned long flags;
2330 spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2331 list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
2332 wq.task_list) {
2333 if (!atomic_read(&wrq->done) &&
2334 nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
2335 wrq->err = err;
2336 atomic_set(&wrq->done, 1);
2338 if (atomic_read(&wrq->done)) {
2339 wrq->wq.func(&wrq->wq,
2340 TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2341 0, NULL);
2344 spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2348 * nilfs_construct_segment - construct a logical segment
2349 * @sb: super block
2351 * Return Value: On success, 0 is retured. On errors, one of the following
2352 * negative error code is returned.
2354 * %-EROFS - Read only filesystem.
2356 * %-EIO - I/O error
2358 * %-ENOSPC - No space left on device (only in a panic state).
2360 * %-ERESTARTSYS - Interrupted.
2362 * %-ENOMEM - Insufficient memory available.
2364 int nilfs_construct_segment(struct super_block *sb)
2366 struct nilfs_sb_info *sbi = NILFS_SB(sb);
2367 struct nilfs_sc_info *sci = NILFS_SC(sbi);
2368 struct nilfs_transaction_info *ti;
2369 int err;
2371 if (!sci)
2372 return -EROFS;
2374 /* A call inside transactions causes a deadlock. */
2375 BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2377 err = nilfs_segctor_sync(sci);
2378 return err;
2382 * nilfs_construct_dsync_segment - construct a data-only logical segment
2383 * @sb: super block
2384 * @inode: inode whose data blocks should be written out
2385 * @start: start byte offset
2386 * @end: end byte offset (inclusive)
2388 * Return Value: On success, 0 is retured. On errors, one of the following
2389 * negative error code is returned.
2391 * %-EROFS - Read only filesystem.
2393 * %-EIO - I/O error
2395 * %-ENOSPC - No space left on device (only in a panic state).
2397 * %-ERESTARTSYS - Interrupted.
2399 * %-ENOMEM - Insufficient memory available.
2401 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2402 loff_t start, loff_t end)
2404 struct nilfs_sb_info *sbi = NILFS_SB(sb);
2405 struct nilfs_sc_info *sci = NILFS_SC(sbi);
2406 struct nilfs_inode_info *ii;
2407 struct nilfs_transaction_info ti;
2408 int err = 0;
2410 if (!sci)
2411 return -EROFS;
2413 nilfs_transaction_lock(sbi, &ti, 0);
2415 ii = NILFS_I(inode);
2416 if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
2417 nilfs_test_opt(sbi, STRICT_ORDER) ||
2418 test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2419 nilfs_discontinued(sbi->s_nilfs)) {
2420 nilfs_transaction_unlock(sbi);
2421 err = nilfs_segctor_sync(sci);
2422 return err;
2425 spin_lock(&sbi->s_inode_lock);
2426 if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2427 !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2428 spin_unlock(&sbi->s_inode_lock);
2429 nilfs_transaction_unlock(sbi);
2430 return 0;
2432 spin_unlock(&sbi->s_inode_lock);
2433 sci->sc_dsync_inode = ii;
2434 sci->sc_dsync_start = start;
2435 sci->sc_dsync_end = end;
2437 err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2439 nilfs_transaction_unlock(sbi);
2440 return err;
2443 struct nilfs_segctor_req {
2444 int mode;
2445 __u32 seq_accepted;
2446 int sc_err; /* construction failure */
2447 int sb_err; /* super block writeback failure */
2450 #define FLUSH_FILE_BIT (0x1) /* data file only */
2451 #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
2453 static void nilfs_segctor_accept(struct nilfs_sc_info *sci,
2454 struct nilfs_segctor_req *req)
2456 req->sc_err = req->sb_err = 0;
2457 spin_lock(&sci->sc_state_lock);
2458 req->seq_accepted = sci->sc_seq_request;
2459 spin_unlock(&sci->sc_state_lock);
2461 if (sci->sc_timer)
2462 del_timer_sync(sci->sc_timer);
2465 static void nilfs_segctor_notify(struct nilfs_sc_info *sci,
2466 struct nilfs_segctor_req *req)
2468 /* Clear requests (even when the construction failed) */
2469 spin_lock(&sci->sc_state_lock);
2471 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2473 if (req->mode == SC_LSEG_SR) {
2474 sci->sc_seq_done = req->seq_accepted;
2475 nilfs_segctor_wakeup(sci, req->sc_err ? : req->sb_err);
2476 sci->sc_flush_request = 0;
2477 } else if (req->mode == SC_FLUSH_FILE)
2478 sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2479 else if (req->mode == SC_FLUSH_DAT)
2480 sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2482 spin_unlock(&sci->sc_state_lock);
2485 static int nilfs_segctor_construct(struct nilfs_sc_info *sci,
2486 struct nilfs_segctor_req *req)
2488 struct nilfs_sb_info *sbi = sci->sc_sbi;
2489 struct the_nilfs *nilfs = sbi->s_nilfs;
2490 int err = 0;
2492 if (nilfs_discontinued(nilfs))
2493 req->mode = SC_LSEG_SR;
2494 if (!nilfs_segctor_confirm(sci)) {
2495 err = nilfs_segctor_do_construct(sci, req->mode);
2496 req->sc_err = err;
2498 if (likely(!err)) {
2499 if (req->mode != SC_FLUSH_DAT)
2500 atomic_set(&nilfs->ns_ndirtyblks, 0);
2501 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2502 nilfs_discontinued(nilfs)) {
2503 down_write(&nilfs->ns_sem);
2504 req->sb_err = nilfs_commit_super(sbi, 0);
2505 up_write(&nilfs->ns_sem);
2508 return err;
2511 static void nilfs_construction_timeout(unsigned long data)
2513 struct task_struct *p = (struct task_struct *)data;
2514 wake_up_process(p);
2517 static void
2518 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2520 struct nilfs_inode_info *ii, *n;
2522 list_for_each_entry_safe(ii, n, head, i_dirty) {
2523 if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2524 continue;
2525 hlist_del_init(&ii->vfs_inode.i_hash);
2526 list_del_init(&ii->i_dirty);
2527 nilfs_clear_gcinode(&ii->vfs_inode);
2531 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2532 void **kbufs)
2534 struct nilfs_sb_info *sbi = NILFS_SB(sb);
2535 struct nilfs_sc_info *sci = NILFS_SC(sbi);
2536 struct the_nilfs *nilfs = sbi->s_nilfs;
2537 struct nilfs_transaction_info ti;
2538 struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
2539 int err;
2541 if (unlikely(!sci))
2542 return -EROFS;
2544 nilfs_transaction_lock(sbi, &ti, 1);
2546 err = nilfs_init_gcdat_inode(nilfs);
2547 if (unlikely(err))
2548 goto out_unlock;
2550 err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2551 if (unlikely(err))
2552 goto out_unlock;
2554 sci->sc_freesegs = kbufs[4];
2555 sci->sc_nfreesegs = argv[4].v_nmembs;
2556 list_splice_init(&nilfs->ns_gc_inodes, sci->sc_gc_inodes.prev);
2558 for (;;) {
2559 nilfs_segctor_accept(sci, &req);
2560 err = nilfs_segctor_construct(sci, &req);
2561 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2562 nilfs_segctor_notify(sci, &req);
2564 if (likely(!err))
2565 break;
2567 nilfs_warning(sb, __func__,
2568 "segment construction failed. (err=%d)", err);
2569 set_current_state(TASK_INTERRUPTIBLE);
2570 schedule_timeout(sci->sc_interval);
2573 out_unlock:
2574 sci->sc_freesegs = NULL;
2575 sci->sc_nfreesegs = 0;
2576 nilfs_clear_gcdat_inode(nilfs);
2577 nilfs_transaction_unlock(sbi);
2578 return err;
2581 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2583 struct nilfs_sb_info *sbi = sci->sc_sbi;
2584 struct nilfs_transaction_info ti;
2585 struct nilfs_segctor_req req = { .mode = mode };
2587 nilfs_transaction_lock(sbi, &ti, 0);
2589 nilfs_segctor_accept(sci, &req);
2590 nilfs_segctor_construct(sci, &req);
2591 nilfs_segctor_notify(sci, &req);
2594 * Unclosed segment should be retried. We do this using sc_timer.
2595 * Timeout of sc_timer will invoke complete construction which leads
2596 * to close the current logical segment.
2598 if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2599 nilfs_segctor_start_timer(sci);
2601 nilfs_transaction_unlock(sbi);
2604 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2606 int mode = 0;
2607 int err;
2609 spin_lock(&sci->sc_state_lock);
2610 mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2611 SC_FLUSH_DAT : SC_FLUSH_FILE;
2612 spin_unlock(&sci->sc_state_lock);
2614 if (mode) {
2615 err = nilfs_segctor_do_construct(sci, mode);
2617 spin_lock(&sci->sc_state_lock);
2618 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2619 ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2620 spin_unlock(&sci->sc_state_lock);
2622 clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2625 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2627 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2628 time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2629 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2630 return SC_FLUSH_FILE;
2631 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2632 return SC_FLUSH_DAT;
2634 return SC_LSEG_SR;
2638 * nilfs_segctor_thread - main loop of the segment constructor thread.
2639 * @arg: pointer to a struct nilfs_sc_info.
2641 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2642 * to execute segment constructions.
2644 static int nilfs_segctor_thread(void *arg)
2646 struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2647 struct timer_list timer;
2648 int timeout = 0;
2650 init_timer(&timer);
2651 timer.data = (unsigned long)current;
2652 timer.function = nilfs_construction_timeout;
2653 sci->sc_timer = &timer;
2655 /* start sync. */
2656 sci->sc_task = current;
2657 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2658 printk(KERN_INFO
2659 "segctord starting. Construction interval = %lu seconds, "
2660 "CP frequency < %lu seconds\n",
2661 sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2663 spin_lock(&sci->sc_state_lock);
2664 loop:
2665 for (;;) {
2666 int mode;
2668 if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2669 goto end_thread;
2671 if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2672 mode = SC_LSEG_SR;
2673 else if (!sci->sc_flush_request)
2674 break;
2675 else
2676 mode = nilfs_segctor_flush_mode(sci);
2678 spin_unlock(&sci->sc_state_lock);
2679 nilfs_segctor_thread_construct(sci, mode);
2680 spin_lock(&sci->sc_state_lock);
2681 timeout = 0;
2685 if (freezing(current)) {
2686 spin_unlock(&sci->sc_state_lock);
2687 refrigerator();
2688 spin_lock(&sci->sc_state_lock);
2689 } else {
2690 DEFINE_WAIT(wait);
2691 int should_sleep = 1;
2693 prepare_to_wait(&sci->sc_wait_daemon, &wait,
2694 TASK_INTERRUPTIBLE);
2696 if (sci->sc_seq_request != sci->sc_seq_done)
2697 should_sleep = 0;
2698 else if (sci->sc_flush_request)
2699 should_sleep = 0;
2700 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2701 should_sleep = time_before(jiffies,
2702 sci->sc_timer->expires);
2704 if (should_sleep) {
2705 spin_unlock(&sci->sc_state_lock);
2706 schedule();
2707 spin_lock(&sci->sc_state_lock);
2709 finish_wait(&sci->sc_wait_daemon, &wait);
2710 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2711 time_after_eq(jiffies, sci->sc_timer->expires));
2713 goto loop;
2715 end_thread:
2716 spin_unlock(&sci->sc_state_lock);
2717 del_timer_sync(sci->sc_timer);
2718 sci->sc_timer = NULL;
2720 /* end sync. */
2721 sci->sc_task = NULL;
2722 wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2723 return 0;
2726 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2728 struct task_struct *t;
2730 t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2731 if (IS_ERR(t)) {
2732 int err = PTR_ERR(t);
2734 printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
2735 err);
2736 return err;
2738 wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2739 return 0;
2742 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2744 sci->sc_state |= NILFS_SEGCTOR_QUIT;
2746 while (sci->sc_task) {
2747 wake_up(&sci->sc_wait_daemon);
2748 spin_unlock(&sci->sc_state_lock);
2749 wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2750 spin_lock(&sci->sc_state_lock);
2754 static int nilfs_segctor_init(struct nilfs_sc_info *sci)
2756 sci->sc_seq_done = sci->sc_seq_request;
2758 return nilfs_segctor_start_thread(sci);
2762 * Setup & clean-up functions
2764 static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi)
2766 struct nilfs_sc_info *sci;
2768 sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2769 if (!sci)
2770 return NULL;
2772 sci->sc_sbi = sbi;
2773 sci->sc_super = sbi->s_super;
2775 init_waitqueue_head(&sci->sc_wait_request);
2776 init_waitqueue_head(&sci->sc_wait_daemon);
2777 init_waitqueue_head(&sci->sc_wait_task);
2778 spin_lock_init(&sci->sc_state_lock);
2779 INIT_LIST_HEAD(&sci->sc_dirty_files);
2780 INIT_LIST_HEAD(&sci->sc_segbufs);
2781 INIT_LIST_HEAD(&sci->sc_gc_inodes);
2782 INIT_LIST_HEAD(&sci->sc_copied_buffers);
2784 sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2785 sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2786 sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2788 if (sbi->s_interval)
2789 sci->sc_interval = sbi->s_interval;
2790 if (sbi->s_watermark)
2791 sci->sc_watermark = sbi->s_watermark;
2792 return sci;
2795 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2797 int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2799 /* The segctord thread was stopped and its timer was removed.
2800 But some tasks remain. */
2801 do {
2802 struct nilfs_sb_info *sbi = sci->sc_sbi;
2803 struct nilfs_transaction_info ti;
2804 struct nilfs_segctor_req req = { .mode = SC_LSEG_SR };
2806 nilfs_transaction_lock(sbi, &ti, 0);
2807 nilfs_segctor_accept(sci, &req);
2808 ret = nilfs_segctor_construct(sci, &req);
2809 nilfs_segctor_notify(sci, &req);
2810 nilfs_transaction_unlock(sbi);
2812 } while (ret && retrycount-- > 0);
2816 * nilfs_segctor_destroy - destroy the segment constructor.
2817 * @sci: nilfs_sc_info
2819 * nilfs_segctor_destroy() kills the segctord thread and frees
2820 * the nilfs_sc_info struct.
2821 * Caller must hold the segment semaphore.
2823 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2825 struct nilfs_sb_info *sbi = sci->sc_sbi;
2826 int flag;
2828 up_write(&sbi->s_nilfs->ns_segctor_sem);
2830 spin_lock(&sci->sc_state_lock);
2831 nilfs_segctor_kill_thread(sci);
2832 flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2833 || sci->sc_seq_request != sci->sc_seq_done);
2834 spin_unlock(&sci->sc_state_lock);
2836 if (flag || nilfs_segctor_confirm(sci))
2837 nilfs_segctor_write_out(sci);
2839 WARN_ON(!list_empty(&sci->sc_copied_buffers));
2841 if (!list_empty(&sci->sc_dirty_files)) {
2842 nilfs_warning(sbi->s_super, __func__,
2843 "dirty file(s) after the final construction\n");
2844 nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
2847 WARN_ON(!list_empty(&sci->sc_segbufs));
2849 down_write(&sbi->s_nilfs->ns_segctor_sem);
2851 kfree(sci);
2855 * nilfs_attach_segment_constructor - attach a segment constructor
2856 * @sbi: nilfs_sb_info
2858 * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
2859 * initilizes it, and starts the segment constructor.
2861 * Return Value: On success, 0 is returned. On error, one of the following
2862 * negative error code is returned.
2864 * %-ENOMEM - Insufficient memory available.
2866 int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi)
2868 struct the_nilfs *nilfs = sbi->s_nilfs;
2869 int err;
2871 /* Each field of nilfs_segctor is cleared through the initialization
2872 of super-block info */
2873 sbi->s_sc_info = nilfs_segctor_new(sbi);
2874 if (!sbi->s_sc_info)
2875 return -ENOMEM;
2877 nilfs_attach_writer(nilfs, sbi);
2878 err = nilfs_segctor_init(NILFS_SC(sbi));
2879 if (err) {
2880 nilfs_detach_writer(nilfs, sbi);
2881 kfree(sbi->s_sc_info);
2882 sbi->s_sc_info = NULL;
2884 return err;
2888 * nilfs_detach_segment_constructor - destroy the segment constructor
2889 * @sbi: nilfs_sb_info
2891 * nilfs_detach_segment_constructor() kills the segment constructor daemon,
2892 * frees the struct nilfs_sc_info, and destroy the dirty file list.
2894 void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
2896 struct the_nilfs *nilfs = sbi->s_nilfs;
2897 LIST_HEAD(garbage_list);
2899 down_write(&nilfs->ns_segctor_sem);
2900 if (NILFS_SC(sbi)) {
2901 nilfs_segctor_destroy(NILFS_SC(sbi));
2902 sbi->s_sc_info = NULL;
2905 /* Force to free the list of dirty files */
2906 spin_lock(&sbi->s_inode_lock);
2907 if (!list_empty(&sbi->s_dirty_files)) {
2908 list_splice_init(&sbi->s_dirty_files, &garbage_list);
2909 nilfs_warning(sbi->s_super, __func__,
2910 "Non empty dirty list after the last "
2911 "segment construction\n");
2913 spin_unlock(&sbi->s_inode_lock);
2914 up_write(&nilfs->ns_segctor_sem);
2916 nilfs_dispose_list(sbi, &garbage_list, 1);
2917 nilfs_detach_writer(nilfs, sbi);