2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/kmemcheck.h>
44 #include <linux/interrupt.h>
46 #include <linux/inet.h>
47 #include <linux/slab.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
62 #include <net/protocol.h>
65 #include <net/checksum.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <trace/events/skb.h>
74 static struct kmem_cache
*skbuff_head_cache __read_mostly
;
75 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
77 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
78 struct pipe_buffer
*buf
)
83 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
84 struct pipe_buffer
*buf
)
89 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
90 struct pipe_buffer
*buf
)
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops
= {
99 .map
= generic_pipe_buf_map
,
100 .unmap
= generic_pipe_buf_unmap
,
101 .confirm
= generic_pipe_buf_confirm
,
102 .release
= sock_pipe_buf_release
,
103 .steal
= sock_pipe_buf_steal
,
104 .get
= sock_pipe_buf_get
,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
114 * skb_over_panic - private function
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff
*skb
, int sz
, void *here
)
123 printk(KERN_EMERG
"skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
126 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
127 skb
->dev
? skb
->dev
->name
: "<NULL>");
132 * skb_under_panic - private function
137 * Out of line support code for skb_push(). Not user callable.
140 static void skb_under_panic(struct sk_buff
*skb
, int sz
, void *here
)
142 printk(KERN_EMERG
"skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here
, skb
->len
, sz
, skb
->head
, skb
->data
,
145 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
146 skb
->dev
? skb
->dev
->name
: "<NULL>");
150 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
151 * 'private' fields and also do memory statistics to find all the
157 * __alloc_skb - allocate a network buffer
158 * @size: size to allocate
159 * @gfp_mask: allocation mask
160 * @fclone: allocate from fclone cache instead of head cache
161 * and allocate a cloned (child) skb
162 * @node: numa node to allocate memory on
164 * Allocate a new &sk_buff. The returned buffer has no headroom and a
165 * tail room of size bytes. The object has a reference count of one.
166 * The return is the buffer. On a failure the return is %NULL.
168 * Buffers may only be allocated from interrupts using a @gfp_mask of
171 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
172 int fclone
, int node
)
174 struct kmem_cache
*cache
;
175 struct skb_shared_info
*shinfo
;
179 cache
= fclone
? skbuff_fclone_cache
: skbuff_head_cache
;
182 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
187 size
= SKB_DATA_ALIGN(size
);
188 data
= kmalloc_node_track_caller(size
+ sizeof(struct skb_shared_info
),
192 prefetchw(data
+ size
);
195 * Only clear those fields we need to clear, not those that we will
196 * actually initialise below. Hence, don't put any more fields after
197 * the tail pointer in struct sk_buff!
199 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
200 skb
->truesize
= size
+ sizeof(struct sk_buff
);
201 atomic_set(&skb
->users
, 1);
204 skb_reset_tail_pointer(skb
);
205 skb
->end
= skb
->tail
+ size
;
206 #ifdef NET_SKBUFF_DATA_USES_OFFSET
207 skb
->mac_header
= ~0U;
210 /* make sure we initialize shinfo sequentially */
211 shinfo
= skb_shinfo(skb
);
212 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
213 atomic_set(&shinfo
->dataref
, 1);
214 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
217 struct sk_buff
*child
= skb
+ 1;
218 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
220 kmemcheck_annotate_bitfield(child
, flags1
);
221 kmemcheck_annotate_bitfield(child
, flags2
);
222 skb
->fclone
= SKB_FCLONE_ORIG
;
223 atomic_set(fclone_ref
, 1);
225 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
230 kmem_cache_free(cache
, skb
);
234 EXPORT_SYMBOL(__alloc_skb
);
237 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
238 * @dev: network device to receive on
239 * @length: length to allocate
240 * @gfp_mask: get_free_pages mask, passed to alloc_skb
242 * Allocate a new &sk_buff and assign it a usage count of one. The
243 * buffer has unspecified headroom built in. Users should allocate
244 * the headroom they think they need without accounting for the
245 * built in space. The built in space is used for optimisations.
247 * %NULL is returned if there is no free memory.
249 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
250 unsigned int length
, gfp_t gfp_mask
)
254 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
, 0, NUMA_NO_NODE
);
256 skb_reserve(skb
, NET_SKB_PAD
);
261 EXPORT_SYMBOL(__netdev_alloc_skb
);
263 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
266 skb_fill_page_desc(skb
, i
, page
, off
, size
);
268 skb
->data_len
+= size
;
269 skb
->truesize
+= size
;
271 EXPORT_SYMBOL(skb_add_rx_frag
);
274 * dev_alloc_skb - allocate an skbuff for receiving
275 * @length: length to allocate
277 * Allocate a new &sk_buff and assign it a usage count of one. The
278 * buffer has unspecified headroom built in. Users should allocate
279 * the headroom they think they need without accounting for the
280 * built in space. The built in space is used for optimisations.
282 * %NULL is returned if there is no free memory. Although this function
283 * allocates memory it can be called from an interrupt.
285 struct sk_buff
*dev_alloc_skb(unsigned int length
)
288 * There is more code here than it seems:
289 * __dev_alloc_skb is an inline
291 return __dev_alloc_skb(length
, GFP_ATOMIC
);
293 EXPORT_SYMBOL(dev_alloc_skb
);
295 static void skb_drop_list(struct sk_buff
**listp
)
297 struct sk_buff
*list
= *listp
;
302 struct sk_buff
*this = list
;
308 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
310 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
313 static void skb_clone_fraglist(struct sk_buff
*skb
)
315 struct sk_buff
*list
;
317 skb_walk_frags(skb
, list
)
321 static void skb_release_data(struct sk_buff
*skb
)
324 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
325 &skb_shinfo(skb
)->dataref
)) {
326 if (skb_shinfo(skb
)->nr_frags
) {
328 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
329 put_page(skb_shinfo(skb
)->frags
[i
].page
);
333 * If skb buf is from userspace, we need to notify the caller
334 * the lower device DMA has done;
336 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
337 struct ubuf_info
*uarg
;
339 uarg
= skb_shinfo(skb
)->destructor_arg
;
341 uarg
->callback(uarg
);
344 if (skb_has_frag_list(skb
))
345 skb_drop_fraglist(skb
);
352 * Free an skbuff by memory without cleaning the state.
354 static void kfree_skbmem(struct sk_buff
*skb
)
356 struct sk_buff
*other
;
357 atomic_t
*fclone_ref
;
359 switch (skb
->fclone
) {
360 case SKB_FCLONE_UNAVAILABLE
:
361 kmem_cache_free(skbuff_head_cache
, skb
);
364 case SKB_FCLONE_ORIG
:
365 fclone_ref
= (atomic_t
*) (skb
+ 2);
366 if (atomic_dec_and_test(fclone_ref
))
367 kmem_cache_free(skbuff_fclone_cache
, skb
);
370 case SKB_FCLONE_CLONE
:
371 fclone_ref
= (atomic_t
*) (skb
+ 1);
374 /* The clone portion is available for
375 * fast-cloning again.
377 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
379 if (atomic_dec_and_test(fclone_ref
))
380 kmem_cache_free(skbuff_fclone_cache
, other
);
385 static void skb_release_head_state(struct sk_buff
*skb
)
389 secpath_put(skb
->sp
);
391 if (skb
->destructor
) {
393 skb
->destructor(skb
);
395 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
396 nf_conntrack_put(skb
->nfct
);
398 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
399 nf_conntrack_put_reasm(skb
->nfct_reasm
);
401 #ifdef CONFIG_BRIDGE_NETFILTER
402 nf_bridge_put(skb
->nf_bridge
);
404 /* XXX: IS this still necessary? - JHS */
405 #ifdef CONFIG_NET_SCHED
407 #ifdef CONFIG_NET_CLS_ACT
413 /* Free everything but the sk_buff shell. */
414 static void skb_release_all(struct sk_buff
*skb
)
416 skb_release_head_state(skb
);
417 skb_release_data(skb
);
421 * __kfree_skb - private function
424 * Free an sk_buff. Release anything attached to the buffer.
425 * Clean the state. This is an internal helper function. Users should
426 * always call kfree_skb
429 void __kfree_skb(struct sk_buff
*skb
)
431 skb_release_all(skb
);
434 EXPORT_SYMBOL(__kfree_skb
);
437 * kfree_skb - free an sk_buff
438 * @skb: buffer to free
440 * Drop a reference to the buffer and free it if the usage count has
443 void kfree_skb(struct sk_buff
*skb
)
447 if (likely(atomic_read(&skb
->users
) == 1))
449 else if (likely(!atomic_dec_and_test(&skb
->users
)))
451 trace_kfree_skb(skb
, __builtin_return_address(0));
454 EXPORT_SYMBOL(kfree_skb
);
457 * consume_skb - free an skbuff
458 * @skb: buffer to free
460 * Drop a ref to the buffer and free it if the usage count has hit zero
461 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
462 * is being dropped after a failure and notes that
464 void consume_skb(struct sk_buff
*skb
)
468 if (likely(atomic_read(&skb
->users
) == 1))
470 else if (likely(!atomic_dec_and_test(&skb
->users
)))
472 trace_consume_skb(skb
);
475 EXPORT_SYMBOL(consume_skb
);
478 * skb_recycle_check - check if skb can be reused for receive
480 * @skb_size: minimum receive buffer size
482 * Checks that the skb passed in is not shared or cloned, and
483 * that it is linear and its head portion at least as large as
484 * skb_size so that it can be recycled as a receive buffer.
485 * If these conditions are met, this function does any necessary
486 * reference count dropping and cleans up the skbuff as if it
487 * just came from __alloc_skb().
489 bool skb_recycle_check(struct sk_buff
*skb
, int skb_size
)
491 struct skb_shared_info
*shinfo
;
496 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
)
499 if (skb_is_nonlinear(skb
) || skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
502 skb_size
= SKB_DATA_ALIGN(skb_size
+ NET_SKB_PAD
);
503 if (skb_end_pointer(skb
) - skb
->head
< skb_size
)
506 if (skb_shared(skb
) || skb_cloned(skb
))
509 skb_release_head_state(skb
);
511 shinfo
= skb_shinfo(skb
);
512 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
513 atomic_set(&shinfo
->dataref
, 1);
515 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
516 skb
->data
= skb
->head
+ NET_SKB_PAD
;
517 skb_reset_tail_pointer(skb
);
521 EXPORT_SYMBOL(skb_recycle_check
);
523 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
525 new->tstamp
= old
->tstamp
;
527 new->transport_header
= old
->transport_header
;
528 new->network_header
= old
->network_header
;
529 new->mac_header
= old
->mac_header
;
530 skb_dst_copy(new, old
);
531 new->rxhash
= old
->rxhash
;
533 new->sp
= secpath_get(old
->sp
);
535 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
536 new->csum
= old
->csum
;
537 new->local_df
= old
->local_df
;
538 new->pkt_type
= old
->pkt_type
;
539 new->ip_summed
= old
->ip_summed
;
540 skb_copy_queue_mapping(new, old
);
541 new->priority
= old
->priority
;
542 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
543 new->ipvs_property
= old
->ipvs_property
;
545 new->protocol
= old
->protocol
;
546 new->mark
= old
->mark
;
547 new->skb_iif
= old
->skb_iif
;
549 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
550 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
551 new->nf_trace
= old
->nf_trace
;
553 #ifdef CONFIG_NET_SCHED
554 new->tc_index
= old
->tc_index
;
555 #ifdef CONFIG_NET_CLS_ACT
556 new->tc_verd
= old
->tc_verd
;
559 new->vlan_tci
= old
->vlan_tci
;
561 skb_copy_secmark(new, old
);
565 * You should not add any new code to this function. Add it to
566 * __copy_skb_header above instead.
568 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
570 #define C(x) n->x = skb->x
572 n
->next
= n
->prev
= NULL
;
574 __copy_skb_header(n
, skb
);
579 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
582 n
->destructor
= NULL
;
588 atomic_set(&n
->users
, 1);
590 atomic_inc(&(skb_shinfo(skb
)->dataref
));
598 * skb_morph - morph one skb into another
599 * @dst: the skb to receive the contents
600 * @src: the skb to supply the contents
602 * This is identical to skb_clone except that the target skb is
603 * supplied by the user.
605 * The target skb is returned upon exit.
607 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
609 skb_release_all(dst
);
610 return __skb_clone(dst
, src
);
612 EXPORT_SYMBOL_GPL(skb_morph
);
614 /* skb_copy_ubufs - copy userspace skb frags buffers to kernel
615 * @skb: the skb to modify
616 * @gfp_mask: allocation priority
618 * This must be called on SKBTX_DEV_ZEROCOPY skb.
619 * It will copy all frags into kernel and drop the reference
620 * to userspace pages.
622 * If this function is called from an interrupt gfp_mask() must be
625 * Returns 0 on success or a negative error code on failure
626 * to allocate kernel memory to copy to.
628 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
631 int num_frags
= skb_shinfo(skb
)->nr_frags
;
632 struct page
*page
, *head
= NULL
;
633 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
635 for (i
= 0; i
< num_frags
; i
++) {
637 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
639 page
= alloc_page(GFP_ATOMIC
);
642 struct page
*next
= (struct page
*)head
->private;
648 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
649 memcpy(page_address(page
),
650 vaddr
+ f
->page_offset
, f
->size
);
651 kunmap_skb_frag(vaddr
);
652 page
->private = (unsigned long)head
;
656 /* skb frags release userspace buffers */
657 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
658 put_page(skb_shinfo(skb
)->frags
[i
].page
);
660 uarg
->callback(uarg
);
662 /* skb frags point to kernel buffers */
663 for (i
= skb_shinfo(skb
)->nr_frags
; i
> 0; i
--) {
664 skb_shinfo(skb
)->frags
[i
- 1].page_offset
= 0;
665 skb_shinfo(skb
)->frags
[i
- 1].page
= head
;
666 head
= (struct page
*)head
->private;
669 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
675 * skb_clone - duplicate an sk_buff
676 * @skb: buffer to clone
677 * @gfp_mask: allocation priority
679 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
680 * copies share the same packet data but not structure. The new
681 * buffer has a reference count of 1. If the allocation fails the
682 * function returns %NULL otherwise the new buffer is returned.
684 * If this function is called from an interrupt gfp_mask() must be
688 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
692 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
693 if (skb_copy_ubufs(skb
, gfp_mask
))
698 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
699 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
700 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
701 n
->fclone
= SKB_FCLONE_CLONE
;
702 atomic_inc(fclone_ref
);
704 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
708 kmemcheck_annotate_bitfield(n
, flags1
);
709 kmemcheck_annotate_bitfield(n
, flags2
);
710 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
713 return __skb_clone(n
, skb
);
715 EXPORT_SYMBOL(skb_clone
);
717 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
719 #ifndef NET_SKBUFF_DATA_USES_OFFSET
721 * Shift between the two data areas in bytes
723 unsigned long offset
= new->data
- old
->data
;
726 __copy_skb_header(new, old
);
728 #ifndef NET_SKBUFF_DATA_USES_OFFSET
729 /* {transport,network,mac}_header are relative to skb->head */
730 new->transport_header
+= offset
;
731 new->network_header
+= offset
;
732 if (skb_mac_header_was_set(new))
733 new->mac_header
+= offset
;
735 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
736 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
737 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
741 * skb_copy - create private copy of an sk_buff
742 * @skb: buffer to copy
743 * @gfp_mask: allocation priority
745 * Make a copy of both an &sk_buff and its data. This is used when the
746 * caller wishes to modify the data and needs a private copy of the
747 * data to alter. Returns %NULL on failure or the pointer to the buffer
748 * on success. The returned buffer has a reference count of 1.
750 * As by-product this function converts non-linear &sk_buff to linear
751 * one, so that &sk_buff becomes completely private and caller is allowed
752 * to modify all the data of returned buffer. This means that this
753 * function is not recommended for use in circumstances when only
754 * header is going to be modified. Use pskb_copy() instead.
757 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
759 int headerlen
= skb_headroom(skb
);
760 unsigned int size
= (skb_end_pointer(skb
) - skb
->head
) + skb
->data_len
;
761 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
766 /* Set the data pointer */
767 skb_reserve(n
, headerlen
);
768 /* Set the tail pointer and length */
769 skb_put(n
, skb
->len
);
771 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
774 copy_skb_header(n
, skb
);
777 EXPORT_SYMBOL(skb_copy
);
780 * pskb_copy - create copy of an sk_buff with private head.
781 * @skb: buffer to copy
782 * @gfp_mask: allocation priority
784 * Make a copy of both an &sk_buff and part of its data, located
785 * in header. Fragmented data remain shared. This is used when
786 * the caller wishes to modify only header of &sk_buff and needs
787 * private copy of the header to alter. Returns %NULL on failure
788 * or the pointer to the buffer on success.
789 * The returned buffer has a reference count of 1.
792 struct sk_buff
*pskb_copy(struct sk_buff
*skb
, gfp_t gfp_mask
)
794 unsigned int size
= skb_end_pointer(skb
) - skb
->head
;
795 struct sk_buff
*n
= alloc_skb(size
, gfp_mask
);
800 /* Set the data pointer */
801 skb_reserve(n
, skb_headroom(skb
));
802 /* Set the tail pointer and length */
803 skb_put(n
, skb_headlen(skb
));
805 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
807 n
->truesize
+= skb
->data_len
;
808 n
->data_len
= skb
->data_len
;
811 if (skb_shinfo(skb
)->nr_frags
) {
814 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
815 if (skb_copy_ubufs(skb
, gfp_mask
)) {
821 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
822 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
823 get_page(skb_shinfo(n
)->frags
[i
].page
);
825 skb_shinfo(n
)->nr_frags
= i
;
828 if (skb_has_frag_list(skb
)) {
829 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
830 skb_clone_fraglist(n
);
833 copy_skb_header(n
, skb
);
837 EXPORT_SYMBOL(pskb_copy
);
840 * pskb_expand_head - reallocate header of &sk_buff
841 * @skb: buffer to reallocate
842 * @nhead: room to add at head
843 * @ntail: room to add at tail
844 * @gfp_mask: allocation priority
846 * Expands (or creates identical copy, if &nhead and &ntail are zero)
847 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
848 * reference count of 1. Returns zero in the case of success or error,
849 * if expansion failed. In the last case, &sk_buff is not changed.
851 * All the pointers pointing into skb header may change and must be
852 * reloaded after call to this function.
855 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
860 int size
= nhead
+ (skb_end_pointer(skb
) - skb
->head
) + ntail
;
869 size
= SKB_DATA_ALIGN(size
);
871 /* Check if we can avoid taking references on fragments if we own
872 * the last reference on skb->head. (see skb_release_data())
877 int delta
= skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1;
878 fastpath
= atomic_read(&skb_shinfo(skb
)->dataref
) == delta
;
882 size
+ sizeof(struct skb_shared_info
) <= ksize(skb
->head
)) {
883 memmove(skb
->head
+ size
, skb_shinfo(skb
),
884 offsetof(struct skb_shared_info
,
885 frags
[skb_shinfo(skb
)->nr_frags
]));
886 memmove(skb
->head
+ nhead
, skb
->head
,
887 skb_tail_pointer(skb
) - skb
->head
);
892 data
= kmalloc(size
+ sizeof(struct skb_shared_info
), gfp_mask
);
896 /* Copy only real data... and, alas, header. This should be
897 * optimized for the cases when header is void.
899 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
901 memcpy((struct skb_shared_info
*)(data
+ size
),
903 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
908 /* copy this zero copy skb frags */
909 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
910 if (skb_copy_ubufs(skb
, gfp_mask
))
913 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
914 get_page(skb_shinfo(skb
)->frags
[i
].page
);
916 if (skb_has_frag_list(skb
))
917 skb_clone_fraglist(skb
);
919 skb_release_data(skb
);
921 off
= (data
+ nhead
) - skb
->head
;
926 #ifdef NET_SKBUFF_DATA_USES_OFFSET
930 skb
->end
= skb
->head
+ size
;
932 /* {transport,network,mac}_header and tail are relative to skb->head */
934 skb
->transport_header
+= off
;
935 skb
->network_header
+= off
;
936 if (skb_mac_header_was_set(skb
))
937 skb
->mac_header
+= off
;
938 /* Only adjust this if it actually is csum_start rather than csum */
939 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
940 skb
->csum_start
+= nhead
;
944 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
952 EXPORT_SYMBOL(pskb_expand_head
);
954 /* Make private copy of skb with writable head and some headroom */
956 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
958 struct sk_buff
*skb2
;
959 int delta
= headroom
- skb_headroom(skb
);
962 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
964 skb2
= skb_clone(skb
, GFP_ATOMIC
);
965 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
973 EXPORT_SYMBOL(skb_realloc_headroom
);
976 * skb_copy_expand - copy and expand sk_buff
977 * @skb: buffer to copy
978 * @newheadroom: new free bytes at head
979 * @newtailroom: new free bytes at tail
980 * @gfp_mask: allocation priority
982 * Make a copy of both an &sk_buff and its data and while doing so
983 * allocate additional space.
985 * This is used when the caller wishes to modify the data and needs a
986 * private copy of the data to alter as well as more space for new fields.
987 * Returns %NULL on failure or the pointer to the buffer
988 * on success. The returned buffer has a reference count of 1.
990 * You must pass %GFP_ATOMIC as the allocation priority if this function
991 * is called from an interrupt.
993 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
994 int newheadroom
, int newtailroom
,
998 * Allocate the copy buffer
1000 struct sk_buff
*n
= alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1002 int oldheadroom
= skb_headroom(skb
);
1003 int head_copy_len
, head_copy_off
;
1009 skb_reserve(n
, newheadroom
);
1011 /* Set the tail pointer and length */
1012 skb_put(n
, skb
->len
);
1014 head_copy_len
= oldheadroom
;
1016 if (newheadroom
<= head_copy_len
)
1017 head_copy_len
= newheadroom
;
1019 head_copy_off
= newheadroom
- head_copy_len
;
1021 /* Copy the linear header and data. */
1022 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1023 skb
->len
+ head_copy_len
))
1026 copy_skb_header(n
, skb
);
1028 off
= newheadroom
- oldheadroom
;
1029 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
1030 n
->csum_start
+= off
;
1031 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1032 n
->transport_header
+= off
;
1033 n
->network_header
+= off
;
1034 if (skb_mac_header_was_set(skb
))
1035 n
->mac_header
+= off
;
1040 EXPORT_SYMBOL(skb_copy_expand
);
1043 * skb_pad - zero pad the tail of an skb
1044 * @skb: buffer to pad
1045 * @pad: space to pad
1047 * Ensure that a buffer is followed by a padding area that is zero
1048 * filled. Used by network drivers which may DMA or transfer data
1049 * beyond the buffer end onto the wire.
1051 * May return error in out of memory cases. The skb is freed on error.
1054 int skb_pad(struct sk_buff
*skb
, int pad
)
1059 /* If the skbuff is non linear tailroom is always zero.. */
1060 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1061 memset(skb
->data
+skb
->len
, 0, pad
);
1065 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1066 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1067 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1072 /* FIXME: The use of this function with non-linear skb's really needs
1075 err
= skb_linearize(skb
);
1079 memset(skb
->data
+ skb
->len
, 0, pad
);
1086 EXPORT_SYMBOL(skb_pad
);
1089 * skb_put - add data to a buffer
1090 * @skb: buffer to use
1091 * @len: amount of data to add
1093 * This function extends the used data area of the buffer. If this would
1094 * exceed the total buffer size the kernel will panic. A pointer to the
1095 * first byte of the extra data is returned.
1097 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1099 unsigned char *tmp
= skb_tail_pointer(skb
);
1100 SKB_LINEAR_ASSERT(skb
);
1103 if (unlikely(skb
->tail
> skb
->end
))
1104 skb_over_panic(skb
, len
, __builtin_return_address(0));
1107 EXPORT_SYMBOL(skb_put
);
1110 * skb_push - add data to the start of a buffer
1111 * @skb: buffer to use
1112 * @len: amount of data to add
1114 * This function extends the used data area of the buffer at the buffer
1115 * start. If this would exceed the total buffer headroom the kernel will
1116 * panic. A pointer to the first byte of the extra data is returned.
1118 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1122 if (unlikely(skb
->data
<skb
->head
))
1123 skb_under_panic(skb
, len
, __builtin_return_address(0));
1126 EXPORT_SYMBOL(skb_push
);
1129 * skb_pull - remove data from the start of a buffer
1130 * @skb: buffer to use
1131 * @len: amount of data to remove
1133 * This function removes data from the start of a buffer, returning
1134 * the memory to the headroom. A pointer to the next data in the buffer
1135 * is returned. Once the data has been pulled future pushes will overwrite
1138 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1140 return skb_pull_inline(skb
, len
);
1142 EXPORT_SYMBOL(skb_pull
);
1145 * skb_trim - remove end from a buffer
1146 * @skb: buffer to alter
1149 * Cut the length of a buffer down by removing data from the tail. If
1150 * the buffer is already under the length specified it is not modified.
1151 * The skb must be linear.
1153 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1156 __skb_trim(skb
, len
);
1158 EXPORT_SYMBOL(skb_trim
);
1160 /* Trims skb to length len. It can change skb pointers.
1163 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1165 struct sk_buff
**fragp
;
1166 struct sk_buff
*frag
;
1167 int offset
= skb_headlen(skb
);
1168 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1172 if (skb_cloned(skb
) &&
1173 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1180 for (; i
< nfrags
; i
++) {
1181 int end
= offset
+ skb_shinfo(skb
)->frags
[i
].size
;
1188 skb_shinfo(skb
)->frags
[i
++].size
= len
- offset
;
1191 skb_shinfo(skb
)->nr_frags
= i
;
1193 for (; i
< nfrags
; i
++)
1194 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1196 if (skb_has_frag_list(skb
))
1197 skb_drop_fraglist(skb
);
1201 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1202 fragp
= &frag
->next
) {
1203 int end
= offset
+ frag
->len
;
1205 if (skb_shared(frag
)) {
1206 struct sk_buff
*nfrag
;
1208 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1209 if (unlikely(!nfrag
))
1212 nfrag
->next
= frag
->next
;
1224 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1228 skb_drop_list(&frag
->next
);
1233 if (len
> skb_headlen(skb
)) {
1234 skb
->data_len
-= skb
->len
- len
;
1239 skb_set_tail_pointer(skb
, len
);
1244 EXPORT_SYMBOL(___pskb_trim
);
1247 * __pskb_pull_tail - advance tail of skb header
1248 * @skb: buffer to reallocate
1249 * @delta: number of bytes to advance tail
1251 * The function makes a sense only on a fragmented &sk_buff,
1252 * it expands header moving its tail forward and copying necessary
1253 * data from fragmented part.
1255 * &sk_buff MUST have reference count of 1.
1257 * Returns %NULL (and &sk_buff does not change) if pull failed
1258 * or value of new tail of skb in the case of success.
1260 * All the pointers pointing into skb header may change and must be
1261 * reloaded after call to this function.
1264 /* Moves tail of skb head forward, copying data from fragmented part,
1265 * when it is necessary.
1266 * 1. It may fail due to malloc failure.
1267 * 2. It may change skb pointers.
1269 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1271 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1273 /* If skb has not enough free space at tail, get new one
1274 * plus 128 bytes for future expansions. If we have enough
1275 * room at tail, reallocate without expansion only if skb is cloned.
1277 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1279 if (eat
> 0 || skb_cloned(skb
)) {
1280 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1285 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1288 /* Optimization: no fragments, no reasons to preestimate
1289 * size of pulled pages. Superb.
1291 if (!skb_has_frag_list(skb
))
1294 /* Estimate size of pulled pages. */
1296 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1297 if (skb_shinfo(skb
)->frags
[i
].size
>= eat
)
1299 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1302 /* If we need update frag list, we are in troubles.
1303 * Certainly, it possible to add an offset to skb data,
1304 * but taking into account that pulling is expected to
1305 * be very rare operation, it is worth to fight against
1306 * further bloating skb head and crucify ourselves here instead.
1307 * Pure masohism, indeed. 8)8)
1310 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1311 struct sk_buff
*clone
= NULL
;
1312 struct sk_buff
*insp
= NULL
;
1317 if (list
->len
<= eat
) {
1318 /* Eaten as whole. */
1323 /* Eaten partially. */
1325 if (skb_shared(list
)) {
1326 /* Sucks! We need to fork list. :-( */
1327 clone
= skb_clone(list
, GFP_ATOMIC
);
1333 /* This may be pulled without
1337 if (!pskb_pull(list
, eat
)) {
1345 /* Free pulled out fragments. */
1346 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1347 skb_shinfo(skb
)->frag_list
= list
->next
;
1350 /* And insert new clone at head. */
1353 skb_shinfo(skb
)->frag_list
= clone
;
1356 /* Success! Now we may commit changes to skb data. */
1361 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1362 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
1363 put_page(skb_shinfo(skb
)->frags
[i
].page
);
1364 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
1366 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1368 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1369 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
1375 skb_shinfo(skb
)->nr_frags
= k
;
1378 skb
->data_len
-= delta
;
1380 return skb_tail_pointer(skb
);
1382 EXPORT_SYMBOL(__pskb_pull_tail
);
1385 * skb_copy_bits - copy bits from skb to kernel buffer
1387 * @offset: offset in source
1388 * @to: destination buffer
1389 * @len: number of bytes to copy
1391 * Copy the specified number of bytes from the source skb to the
1392 * destination buffer.
1395 * If its prototype is ever changed,
1396 * check arch/{*}/net/{*}.S files,
1397 * since it is called from BPF assembly code.
1399 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1401 int start
= skb_headlen(skb
);
1402 struct sk_buff
*frag_iter
;
1405 if (offset
> (int)skb
->len
- len
)
1409 if ((copy
= start
- offset
) > 0) {
1412 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1413 if ((len
-= copy
) == 0)
1419 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1422 WARN_ON(start
> offset
+ len
);
1424 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1425 if ((copy
= end
- offset
) > 0) {
1431 vaddr
= kmap_skb_frag(&skb_shinfo(skb
)->frags
[i
]);
1433 vaddr
+ skb_shinfo(skb
)->frags
[i
].page_offset
+
1434 offset
- start
, copy
);
1435 kunmap_skb_frag(vaddr
);
1437 if ((len
-= copy
) == 0)
1445 skb_walk_frags(skb
, frag_iter
) {
1448 WARN_ON(start
> offset
+ len
);
1450 end
= start
+ frag_iter
->len
;
1451 if ((copy
= end
- offset
) > 0) {
1454 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1456 if ((len
-= copy
) == 0)
1470 EXPORT_SYMBOL(skb_copy_bits
);
1473 * Callback from splice_to_pipe(), if we need to release some pages
1474 * at the end of the spd in case we error'ed out in filling the pipe.
1476 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1478 put_page(spd
->pages
[i
]);
1481 static inline struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1482 unsigned int *offset
,
1483 struct sk_buff
*skb
, struct sock
*sk
)
1485 struct page
*p
= sk
->sk_sndmsg_page
;
1490 p
= sk
->sk_sndmsg_page
= alloc_pages(sk
->sk_allocation
, 0);
1494 off
= sk
->sk_sndmsg_off
= 0;
1495 /* hold one ref to this page until it's full */
1499 off
= sk
->sk_sndmsg_off
;
1500 mlen
= PAGE_SIZE
- off
;
1501 if (mlen
< 64 && mlen
< *len
) {
1506 *len
= min_t(unsigned int, *len
, mlen
);
1509 memcpy(page_address(p
) + off
, page_address(page
) + *offset
, *len
);
1510 sk
->sk_sndmsg_off
+= *len
;
1518 * Fill page/offset/length into spd, if it can hold more pages.
1520 static inline int spd_fill_page(struct splice_pipe_desc
*spd
,
1521 struct pipe_inode_info
*pipe
, struct page
*page
,
1522 unsigned int *len
, unsigned int offset
,
1523 struct sk_buff
*skb
, int linear
,
1526 if (unlikely(spd
->nr_pages
== pipe
->buffers
))
1530 page
= linear_to_page(page
, len
, &offset
, skb
, sk
);
1536 spd
->pages
[spd
->nr_pages
] = page
;
1537 spd
->partial
[spd
->nr_pages
].len
= *len
;
1538 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1544 static inline void __segment_seek(struct page
**page
, unsigned int *poff
,
1545 unsigned int *plen
, unsigned int off
)
1550 n
= *poff
/ PAGE_SIZE
;
1552 *page
= nth_page(*page
, n
);
1554 *poff
= *poff
% PAGE_SIZE
;
1558 static inline int __splice_segment(struct page
*page
, unsigned int poff
,
1559 unsigned int plen
, unsigned int *off
,
1560 unsigned int *len
, struct sk_buff
*skb
,
1561 struct splice_pipe_desc
*spd
, int linear
,
1563 struct pipe_inode_info
*pipe
)
1568 /* skip this segment if already processed */
1574 /* ignore any bits we already processed */
1576 __segment_seek(&page
, &poff
, &plen
, *off
);
1581 unsigned int flen
= min(*len
, plen
);
1583 /* the linear region may spread across several pages */
1584 flen
= min_t(unsigned int, flen
, PAGE_SIZE
- poff
);
1586 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
, skb
, linear
, sk
))
1589 __segment_seek(&page
, &poff
, &plen
, flen
);
1592 } while (*len
&& plen
);
1598 * Map linear and fragment data from the skb to spd. It reports failure if the
1599 * pipe is full or if we already spliced the requested length.
1601 static int __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1602 unsigned int *offset
, unsigned int *len
,
1603 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1608 * map the linear part
1610 if (__splice_segment(virt_to_page(skb
->data
),
1611 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1613 offset
, len
, skb
, spd
, 1, sk
, pipe
))
1617 * then map the fragments
1619 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1620 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1622 if (__splice_segment(f
->page
, f
->page_offset
, f
->size
,
1623 offset
, len
, skb
, spd
, 0, sk
, pipe
))
1631 * Map data from the skb to a pipe. Should handle both the linear part,
1632 * the fragments, and the frag list. It does NOT handle frag lists within
1633 * the frag list, if such a thing exists. We'd probably need to recurse to
1634 * handle that cleanly.
1636 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1637 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1640 struct partial_page partial
[PIPE_DEF_BUFFERS
];
1641 struct page
*pages
[PIPE_DEF_BUFFERS
];
1642 struct splice_pipe_desc spd
= {
1646 .ops
= &sock_pipe_buf_ops
,
1647 .spd_release
= sock_spd_release
,
1649 struct sk_buff
*frag_iter
;
1650 struct sock
*sk
= skb
->sk
;
1653 if (splice_grow_spd(pipe
, &spd
))
1657 * __skb_splice_bits() only fails if the output has no room left,
1658 * so no point in going over the frag_list for the error case.
1660 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1666 * now see if we have a frag_list to map
1668 skb_walk_frags(skb
, frag_iter
) {
1671 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1678 * Drop the socket lock, otherwise we have reverse
1679 * locking dependencies between sk_lock and i_mutex
1680 * here as compared to sendfile(). We enter here
1681 * with the socket lock held, and splice_to_pipe() will
1682 * grab the pipe inode lock. For sendfile() emulation,
1683 * we call into ->sendpage() with the i_mutex lock held
1684 * and networking will grab the socket lock.
1687 ret
= splice_to_pipe(pipe
, &spd
);
1691 splice_shrink_spd(pipe
, &spd
);
1696 * skb_store_bits - store bits from kernel buffer to skb
1697 * @skb: destination buffer
1698 * @offset: offset in destination
1699 * @from: source buffer
1700 * @len: number of bytes to copy
1702 * Copy the specified number of bytes from the source buffer to the
1703 * destination skb. This function handles all the messy bits of
1704 * traversing fragment lists and such.
1707 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1709 int start
= skb_headlen(skb
);
1710 struct sk_buff
*frag_iter
;
1713 if (offset
> (int)skb
->len
- len
)
1716 if ((copy
= start
- offset
) > 0) {
1719 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1720 if ((len
-= copy
) == 0)
1726 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1727 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1730 WARN_ON(start
> offset
+ len
);
1732 end
= start
+ frag
->size
;
1733 if ((copy
= end
- offset
) > 0) {
1739 vaddr
= kmap_skb_frag(frag
);
1740 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1742 kunmap_skb_frag(vaddr
);
1744 if ((len
-= copy
) == 0)
1752 skb_walk_frags(skb
, frag_iter
) {
1755 WARN_ON(start
> offset
+ len
);
1757 end
= start
+ frag_iter
->len
;
1758 if ((copy
= end
- offset
) > 0) {
1761 if (skb_store_bits(frag_iter
, offset
- start
,
1764 if ((len
-= copy
) == 0)
1777 EXPORT_SYMBOL(skb_store_bits
);
1779 /* Checksum skb data. */
1781 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1782 int len
, __wsum csum
)
1784 int start
= skb_headlen(skb
);
1785 int i
, copy
= start
- offset
;
1786 struct sk_buff
*frag_iter
;
1789 /* Checksum header. */
1793 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1794 if ((len
-= copy
) == 0)
1800 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1803 WARN_ON(start
> offset
+ len
);
1805 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1806 if ((copy
= end
- offset
) > 0) {
1809 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1813 vaddr
= kmap_skb_frag(frag
);
1814 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1815 offset
- start
, copy
, 0);
1816 kunmap_skb_frag(vaddr
);
1817 csum
= csum_block_add(csum
, csum2
, pos
);
1826 skb_walk_frags(skb
, frag_iter
) {
1829 WARN_ON(start
> offset
+ len
);
1831 end
= start
+ frag_iter
->len
;
1832 if ((copy
= end
- offset
) > 0) {
1836 csum2
= skb_checksum(frag_iter
, offset
- start
,
1838 csum
= csum_block_add(csum
, csum2
, pos
);
1839 if ((len
-= copy
) == 0)
1850 EXPORT_SYMBOL(skb_checksum
);
1852 /* Both of above in one bottle. */
1854 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
1855 u8
*to
, int len
, __wsum csum
)
1857 int start
= skb_headlen(skb
);
1858 int i
, copy
= start
- offset
;
1859 struct sk_buff
*frag_iter
;
1866 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
1868 if ((len
-= copy
) == 0)
1875 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1878 WARN_ON(start
> offset
+ len
);
1880 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
1881 if ((copy
= end
- offset
) > 0) {
1884 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1888 vaddr
= kmap_skb_frag(frag
);
1889 csum2
= csum_partial_copy_nocheck(vaddr
+
1893 kunmap_skb_frag(vaddr
);
1894 csum
= csum_block_add(csum
, csum2
, pos
);
1904 skb_walk_frags(skb
, frag_iter
) {
1908 WARN_ON(start
> offset
+ len
);
1910 end
= start
+ frag_iter
->len
;
1911 if ((copy
= end
- offset
) > 0) {
1914 csum2
= skb_copy_and_csum_bits(frag_iter
,
1917 csum
= csum_block_add(csum
, csum2
, pos
);
1918 if ((len
-= copy
) == 0)
1929 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
1931 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
1936 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1937 csstart
= skb_checksum_start_offset(skb
);
1939 csstart
= skb_headlen(skb
);
1941 BUG_ON(csstart
> skb_headlen(skb
));
1943 skb_copy_from_linear_data(skb
, to
, csstart
);
1946 if (csstart
!= skb
->len
)
1947 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
1948 skb
->len
- csstart
, 0);
1950 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1951 long csstuff
= csstart
+ skb
->csum_offset
;
1953 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
1956 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
1959 * skb_dequeue - remove from the head of the queue
1960 * @list: list to dequeue from
1962 * Remove the head of the list. The list lock is taken so the function
1963 * may be used safely with other locking list functions. The head item is
1964 * returned or %NULL if the list is empty.
1967 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
1969 unsigned long flags
;
1970 struct sk_buff
*result
;
1972 spin_lock_irqsave(&list
->lock
, flags
);
1973 result
= __skb_dequeue(list
);
1974 spin_unlock_irqrestore(&list
->lock
, flags
);
1977 EXPORT_SYMBOL(skb_dequeue
);
1980 * skb_dequeue_tail - remove from the tail of the queue
1981 * @list: list to dequeue from
1983 * Remove the tail of the list. The list lock is taken so the function
1984 * may be used safely with other locking list functions. The tail item is
1985 * returned or %NULL if the list is empty.
1987 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
1989 unsigned long flags
;
1990 struct sk_buff
*result
;
1992 spin_lock_irqsave(&list
->lock
, flags
);
1993 result
= __skb_dequeue_tail(list
);
1994 spin_unlock_irqrestore(&list
->lock
, flags
);
1997 EXPORT_SYMBOL(skb_dequeue_tail
);
2000 * skb_queue_purge - empty a list
2001 * @list: list to empty
2003 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2004 * the list and one reference dropped. This function takes the list
2005 * lock and is atomic with respect to other list locking functions.
2007 void skb_queue_purge(struct sk_buff_head
*list
)
2009 struct sk_buff
*skb
;
2010 while ((skb
= skb_dequeue(list
)) != NULL
)
2013 EXPORT_SYMBOL(skb_queue_purge
);
2016 * skb_queue_head - queue a buffer at the list head
2017 * @list: list to use
2018 * @newsk: buffer to queue
2020 * Queue a buffer at the start of the list. This function takes the
2021 * list lock and can be used safely with other locking &sk_buff functions
2024 * A buffer cannot be placed on two lists at the same time.
2026 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2028 unsigned long flags
;
2030 spin_lock_irqsave(&list
->lock
, flags
);
2031 __skb_queue_head(list
, newsk
);
2032 spin_unlock_irqrestore(&list
->lock
, flags
);
2034 EXPORT_SYMBOL(skb_queue_head
);
2037 * skb_queue_tail - queue a buffer at the list tail
2038 * @list: list to use
2039 * @newsk: buffer to queue
2041 * Queue a buffer at the tail of the list. This function takes the
2042 * list lock and can be used safely with other locking &sk_buff functions
2045 * A buffer cannot be placed on two lists at the same time.
2047 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2049 unsigned long flags
;
2051 spin_lock_irqsave(&list
->lock
, flags
);
2052 __skb_queue_tail(list
, newsk
);
2053 spin_unlock_irqrestore(&list
->lock
, flags
);
2055 EXPORT_SYMBOL(skb_queue_tail
);
2058 * skb_unlink - remove a buffer from a list
2059 * @skb: buffer to remove
2060 * @list: list to use
2062 * Remove a packet from a list. The list locks are taken and this
2063 * function is atomic with respect to other list locked calls
2065 * You must know what list the SKB is on.
2067 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2069 unsigned long flags
;
2071 spin_lock_irqsave(&list
->lock
, flags
);
2072 __skb_unlink(skb
, list
);
2073 spin_unlock_irqrestore(&list
->lock
, flags
);
2075 EXPORT_SYMBOL(skb_unlink
);
2078 * skb_append - append a buffer
2079 * @old: buffer to insert after
2080 * @newsk: buffer to insert
2081 * @list: list to use
2083 * Place a packet after a given packet in a list. The list locks are taken
2084 * and this function is atomic with respect to other list locked calls.
2085 * A buffer cannot be placed on two lists at the same time.
2087 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2089 unsigned long flags
;
2091 spin_lock_irqsave(&list
->lock
, flags
);
2092 __skb_queue_after(list
, old
, newsk
);
2093 spin_unlock_irqrestore(&list
->lock
, flags
);
2095 EXPORT_SYMBOL(skb_append
);
2098 * skb_insert - insert a buffer
2099 * @old: buffer to insert before
2100 * @newsk: buffer to insert
2101 * @list: list to use
2103 * Place a packet before a given packet in a list. The list locks are
2104 * taken and this function is atomic with respect to other list locked
2107 * A buffer cannot be placed on two lists at the same time.
2109 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2111 unsigned long flags
;
2113 spin_lock_irqsave(&list
->lock
, flags
);
2114 __skb_insert(newsk
, old
->prev
, old
, list
);
2115 spin_unlock_irqrestore(&list
->lock
, flags
);
2117 EXPORT_SYMBOL(skb_insert
);
2119 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2120 struct sk_buff
* skb1
,
2121 const u32 len
, const int pos
)
2125 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2127 /* And move data appendix as is. */
2128 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2129 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2131 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2132 skb_shinfo(skb
)->nr_frags
= 0;
2133 skb1
->data_len
= skb
->data_len
;
2134 skb1
->len
+= skb1
->data_len
;
2137 skb_set_tail_pointer(skb
, len
);
2140 static inline void skb_split_no_header(struct sk_buff
*skb
,
2141 struct sk_buff
* skb1
,
2142 const u32 len
, int pos
)
2145 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2147 skb_shinfo(skb
)->nr_frags
= 0;
2148 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2150 skb
->data_len
= len
- pos
;
2152 for (i
= 0; i
< nfrags
; i
++) {
2153 int size
= skb_shinfo(skb
)->frags
[i
].size
;
2155 if (pos
+ size
> len
) {
2156 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2160 * We have two variants in this case:
2161 * 1. Move all the frag to the second
2162 * part, if it is possible. F.e.
2163 * this approach is mandatory for TUX,
2164 * where splitting is expensive.
2165 * 2. Split is accurately. We make this.
2167 get_page(skb_shinfo(skb
)->frags
[i
].page
);
2168 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2169 skb_shinfo(skb1
)->frags
[0].size
-= len
- pos
;
2170 skb_shinfo(skb
)->frags
[i
].size
= len
- pos
;
2171 skb_shinfo(skb
)->nr_frags
++;
2175 skb_shinfo(skb
)->nr_frags
++;
2178 skb_shinfo(skb1
)->nr_frags
= k
;
2182 * skb_split - Split fragmented skb to two parts at length len.
2183 * @skb: the buffer to split
2184 * @skb1: the buffer to receive the second part
2185 * @len: new length for skb
2187 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2189 int pos
= skb_headlen(skb
);
2191 if (len
< pos
) /* Split line is inside header. */
2192 skb_split_inside_header(skb
, skb1
, len
, pos
);
2193 else /* Second chunk has no header, nothing to copy. */
2194 skb_split_no_header(skb
, skb1
, len
, pos
);
2196 EXPORT_SYMBOL(skb_split
);
2198 /* Shifting from/to a cloned skb is a no-go.
2200 * Caller cannot keep skb_shinfo related pointers past calling here!
2202 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2204 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2208 * skb_shift - Shifts paged data partially from skb to another
2209 * @tgt: buffer into which tail data gets added
2210 * @skb: buffer from which the paged data comes from
2211 * @shiftlen: shift up to this many bytes
2213 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2214 * the length of the skb, from tgt to skb. Returns number bytes shifted.
2215 * It's up to caller to free skb if everything was shifted.
2217 * If @tgt runs out of frags, the whole operation is aborted.
2219 * Skb cannot include anything else but paged data while tgt is allowed
2220 * to have non-paged data as well.
2222 * TODO: full sized shift could be optimized but that would need
2223 * specialized skb free'er to handle frags without up-to-date nr_frags.
2225 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2227 int from
, to
, merge
, todo
;
2228 struct skb_frag_struct
*fragfrom
, *fragto
;
2230 BUG_ON(shiftlen
> skb
->len
);
2231 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2235 to
= skb_shinfo(tgt
)->nr_frags
;
2236 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2238 /* Actual merge is delayed until the point when we know we can
2239 * commit all, so that we don't have to undo partial changes
2242 !skb_can_coalesce(tgt
, to
, fragfrom
->page
, fragfrom
->page_offset
)) {
2247 todo
-= fragfrom
->size
;
2249 if (skb_prepare_for_shift(skb
) ||
2250 skb_prepare_for_shift(tgt
))
2253 /* All previous frag pointers might be stale! */
2254 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2255 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2257 fragto
->size
+= shiftlen
;
2258 fragfrom
->size
-= shiftlen
;
2259 fragfrom
->page_offset
+= shiftlen
;
2267 /* Skip full, not-fitting skb to avoid expensive operations */
2268 if ((shiftlen
== skb
->len
) &&
2269 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2272 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2275 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2276 if (to
== MAX_SKB_FRAGS
)
2279 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2280 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2282 if (todo
>= fragfrom
->size
) {
2283 *fragto
= *fragfrom
;
2284 todo
-= fragfrom
->size
;
2289 get_page(fragfrom
->page
);
2290 fragto
->page
= fragfrom
->page
;
2291 fragto
->page_offset
= fragfrom
->page_offset
;
2292 fragto
->size
= todo
;
2294 fragfrom
->page_offset
+= todo
;
2295 fragfrom
->size
-= todo
;
2303 /* Ready to "commit" this state change to tgt */
2304 skb_shinfo(tgt
)->nr_frags
= to
;
2307 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2308 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2310 fragto
->size
+= fragfrom
->size
;
2311 put_page(fragfrom
->page
);
2314 /* Reposition in the original skb */
2316 while (from
< skb_shinfo(skb
)->nr_frags
)
2317 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2318 skb_shinfo(skb
)->nr_frags
= to
;
2320 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2323 /* Most likely the tgt won't ever need its checksum anymore, skb on
2324 * the other hand might need it if it needs to be resent
2326 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2327 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2329 /* Yak, is it really working this way? Some helper please? */
2330 skb
->len
-= shiftlen
;
2331 skb
->data_len
-= shiftlen
;
2332 skb
->truesize
-= shiftlen
;
2333 tgt
->len
+= shiftlen
;
2334 tgt
->data_len
+= shiftlen
;
2335 tgt
->truesize
+= shiftlen
;
2341 * skb_prepare_seq_read - Prepare a sequential read of skb data
2342 * @skb: the buffer to read
2343 * @from: lower offset of data to be read
2344 * @to: upper offset of data to be read
2345 * @st: state variable
2347 * Initializes the specified state variable. Must be called before
2348 * invoking skb_seq_read() for the first time.
2350 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2351 unsigned int to
, struct skb_seq_state
*st
)
2353 st
->lower_offset
= from
;
2354 st
->upper_offset
= to
;
2355 st
->root_skb
= st
->cur_skb
= skb
;
2356 st
->frag_idx
= st
->stepped_offset
= 0;
2357 st
->frag_data
= NULL
;
2359 EXPORT_SYMBOL(skb_prepare_seq_read
);
2362 * skb_seq_read - Sequentially read skb data
2363 * @consumed: number of bytes consumed by the caller so far
2364 * @data: destination pointer for data to be returned
2365 * @st: state variable
2367 * Reads a block of skb data at &consumed relative to the
2368 * lower offset specified to skb_prepare_seq_read(). Assigns
2369 * the head of the data block to &data and returns the length
2370 * of the block or 0 if the end of the skb data or the upper
2371 * offset has been reached.
2373 * The caller is not required to consume all of the data
2374 * returned, i.e. &consumed is typically set to the number
2375 * of bytes already consumed and the next call to
2376 * skb_seq_read() will return the remaining part of the block.
2378 * Note 1: The size of each block of data returned can be arbitrary,
2379 * this limitation is the cost for zerocopy seqeuental
2380 * reads of potentially non linear data.
2382 * Note 2: Fragment lists within fragments are not implemented
2383 * at the moment, state->root_skb could be replaced with
2384 * a stack for this purpose.
2386 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2387 struct skb_seq_state
*st
)
2389 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2392 if (unlikely(abs_offset
>= st
->upper_offset
))
2396 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2398 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2399 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2400 return block_limit
- abs_offset
;
2403 if (st
->frag_idx
== 0 && !st
->frag_data
)
2404 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2406 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2407 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2408 block_limit
= frag
->size
+ st
->stepped_offset
;
2410 if (abs_offset
< block_limit
) {
2412 st
->frag_data
= kmap_skb_frag(frag
);
2414 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2415 (abs_offset
- st
->stepped_offset
);
2417 return block_limit
- abs_offset
;
2420 if (st
->frag_data
) {
2421 kunmap_skb_frag(st
->frag_data
);
2422 st
->frag_data
= NULL
;
2426 st
->stepped_offset
+= frag
->size
;
2429 if (st
->frag_data
) {
2430 kunmap_skb_frag(st
->frag_data
);
2431 st
->frag_data
= NULL
;
2434 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2435 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2438 } else if (st
->cur_skb
->next
) {
2439 st
->cur_skb
= st
->cur_skb
->next
;
2446 EXPORT_SYMBOL(skb_seq_read
);
2449 * skb_abort_seq_read - Abort a sequential read of skb data
2450 * @st: state variable
2452 * Must be called if skb_seq_read() was not called until it
2455 void skb_abort_seq_read(struct skb_seq_state
*st
)
2458 kunmap_skb_frag(st
->frag_data
);
2460 EXPORT_SYMBOL(skb_abort_seq_read
);
2462 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2464 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2465 struct ts_config
*conf
,
2466 struct ts_state
*state
)
2468 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2471 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2473 skb_abort_seq_read(TS_SKB_CB(state
));
2477 * skb_find_text - Find a text pattern in skb data
2478 * @skb: the buffer to look in
2479 * @from: search offset
2481 * @config: textsearch configuration
2482 * @state: uninitialized textsearch state variable
2484 * Finds a pattern in the skb data according to the specified
2485 * textsearch configuration. Use textsearch_next() to retrieve
2486 * subsequent occurrences of the pattern. Returns the offset
2487 * to the first occurrence or UINT_MAX if no match was found.
2489 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2490 unsigned int to
, struct ts_config
*config
,
2491 struct ts_state
*state
)
2495 config
->get_next_block
= skb_ts_get_next_block
;
2496 config
->finish
= skb_ts_finish
;
2498 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2500 ret
= textsearch_find(config
, state
);
2501 return (ret
<= to
- from
? ret
: UINT_MAX
);
2503 EXPORT_SYMBOL(skb_find_text
);
2506 * skb_append_datato_frags: - append the user data to a skb
2507 * @sk: sock structure
2508 * @skb: skb structure to be appened with user data.
2509 * @getfrag: call back function to be used for getting the user data
2510 * @from: pointer to user message iov
2511 * @length: length of the iov message
2513 * Description: This procedure append the user data in the fragment part
2514 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2516 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2517 int (*getfrag
)(void *from
, char *to
, int offset
,
2518 int len
, int odd
, struct sk_buff
*skb
),
2519 void *from
, int length
)
2522 skb_frag_t
*frag
= NULL
;
2523 struct page
*page
= NULL
;
2529 /* Return error if we don't have space for new frag */
2530 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2531 if (frg_cnt
>= MAX_SKB_FRAGS
)
2534 /* allocate a new page for next frag */
2535 page
= alloc_pages(sk
->sk_allocation
, 0);
2537 /* If alloc_page fails just return failure and caller will
2538 * free previous allocated pages by doing kfree_skb()
2543 /* initialize the next frag */
2544 skb_fill_page_desc(skb
, frg_cnt
, page
, 0, 0);
2545 skb
->truesize
+= PAGE_SIZE
;
2546 atomic_add(PAGE_SIZE
, &sk
->sk_wmem_alloc
);
2548 /* get the new initialized frag */
2549 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2550 frag
= &skb_shinfo(skb
)->frags
[frg_cnt
- 1];
2552 /* copy the user data to page */
2553 left
= PAGE_SIZE
- frag
->page_offset
;
2554 copy
= (length
> left
)? left
: length
;
2556 ret
= getfrag(from
, (page_address(frag
->page
) +
2557 frag
->page_offset
+ frag
->size
),
2558 offset
, copy
, 0, skb
);
2562 /* copy was successful so update the size parameters */
2565 skb
->data_len
+= copy
;
2569 } while (length
> 0);
2573 EXPORT_SYMBOL(skb_append_datato_frags
);
2576 * skb_pull_rcsum - pull skb and update receive checksum
2577 * @skb: buffer to update
2578 * @len: length of data pulled
2580 * This function performs an skb_pull on the packet and updates
2581 * the CHECKSUM_COMPLETE checksum. It should be used on
2582 * receive path processing instead of skb_pull unless you know
2583 * that the checksum difference is zero (e.g., a valid IP header)
2584 * or you are setting ip_summed to CHECKSUM_NONE.
2586 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2588 BUG_ON(len
> skb
->len
);
2590 BUG_ON(skb
->len
< skb
->data_len
);
2591 skb_postpull_rcsum(skb
, skb
->data
, len
);
2592 return skb
->data
+= len
;
2594 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2597 * skb_segment - Perform protocol segmentation on skb.
2598 * @skb: buffer to segment
2599 * @features: features for the output path (see dev->features)
2601 * This function performs segmentation on the given skb. It returns
2602 * a pointer to the first in a list of new skbs for the segments.
2603 * In case of error it returns ERR_PTR(err).
2605 struct sk_buff
*skb_segment(struct sk_buff
*skb
, u32 features
)
2607 struct sk_buff
*segs
= NULL
;
2608 struct sk_buff
*tail
= NULL
;
2609 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2610 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2611 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2612 unsigned int offset
= doffset
;
2613 unsigned int headroom
;
2615 int sg
= !!(features
& NETIF_F_SG
);
2616 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2621 __skb_push(skb
, doffset
);
2622 headroom
= skb_headroom(skb
);
2623 pos
= skb_headlen(skb
);
2626 struct sk_buff
*nskb
;
2631 len
= skb
->len
- offset
;
2635 hsize
= skb_headlen(skb
) - offset
;
2638 if (hsize
> len
|| !sg
)
2641 if (!hsize
&& i
>= nfrags
) {
2642 BUG_ON(fskb
->len
!= len
);
2645 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2648 if (unlikely(!nskb
))
2651 hsize
= skb_end_pointer(nskb
) - nskb
->head
;
2652 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2657 nskb
->truesize
+= skb_end_pointer(nskb
) - nskb
->head
-
2659 skb_release_head_state(nskb
);
2660 __skb_push(nskb
, doffset
);
2662 nskb
= alloc_skb(hsize
+ doffset
+ headroom
,
2665 if (unlikely(!nskb
))
2668 skb_reserve(nskb
, headroom
);
2669 __skb_put(nskb
, doffset
);
2678 __copy_skb_header(nskb
, skb
);
2679 nskb
->mac_len
= skb
->mac_len
;
2681 /* nskb and skb might have different headroom */
2682 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2683 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2685 skb_reset_mac_header(nskb
);
2686 skb_set_network_header(nskb
, skb
->mac_len
);
2687 nskb
->transport_header
= (nskb
->network_header
+
2688 skb_network_header_len(skb
));
2689 skb_copy_from_linear_data(skb
, nskb
->data
, doffset
);
2691 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2695 nskb
->ip_summed
= CHECKSUM_NONE
;
2696 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2702 frag
= skb_shinfo(nskb
)->frags
;
2704 skb_copy_from_linear_data_offset(skb
, offset
,
2705 skb_put(nskb
, hsize
), hsize
);
2707 while (pos
< offset
+ len
&& i
< nfrags
) {
2708 *frag
= skb_shinfo(skb
)->frags
[i
];
2709 get_page(frag
->page
);
2713 frag
->page_offset
+= offset
- pos
;
2714 frag
->size
-= offset
- pos
;
2717 skb_shinfo(nskb
)->nr_frags
++;
2719 if (pos
+ size
<= offset
+ len
) {
2723 frag
->size
-= pos
+ size
- (offset
+ len
);
2730 if (pos
< offset
+ len
) {
2731 struct sk_buff
*fskb2
= fskb
;
2733 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2739 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2745 SKB_FRAG_ASSERT(nskb
);
2746 skb_shinfo(nskb
)->frag_list
= fskb2
;
2750 nskb
->data_len
= len
- hsize
;
2751 nskb
->len
+= nskb
->data_len
;
2752 nskb
->truesize
+= nskb
->data_len
;
2753 } while ((offset
+= len
) < skb
->len
);
2758 while ((skb
= segs
)) {
2762 return ERR_PTR(err
);
2764 EXPORT_SYMBOL_GPL(skb_segment
);
2766 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2768 struct sk_buff
*p
= *head
;
2769 struct sk_buff
*nskb
;
2770 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2771 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2772 unsigned int headroom
;
2773 unsigned int len
= skb_gro_len(skb
);
2774 unsigned int offset
= skb_gro_offset(skb
);
2775 unsigned int headlen
= skb_headlen(skb
);
2777 if (p
->len
+ len
>= 65536)
2780 if (pinfo
->frag_list
)
2782 else if (headlen
<= offset
) {
2785 int i
= skbinfo
->nr_frags
;
2786 int nr_frags
= pinfo
->nr_frags
+ i
;
2790 if (nr_frags
> MAX_SKB_FRAGS
)
2793 pinfo
->nr_frags
= nr_frags
;
2794 skbinfo
->nr_frags
= 0;
2796 frag
= pinfo
->frags
+ nr_frags
;
2797 frag2
= skbinfo
->frags
+ i
;
2802 frag
->page_offset
+= offset
;
2803 frag
->size
-= offset
;
2805 skb
->truesize
-= skb
->data_len
;
2806 skb
->len
-= skb
->data_len
;
2809 NAPI_GRO_CB(skb
)->free
= 1;
2811 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
2814 headroom
= skb_headroom(p
);
2815 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
2816 if (unlikely(!nskb
))
2819 __copy_skb_header(nskb
, p
);
2820 nskb
->mac_len
= p
->mac_len
;
2822 skb_reserve(nskb
, headroom
);
2823 __skb_put(nskb
, skb_gro_offset(p
));
2825 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
2826 skb_set_network_header(nskb
, skb_network_offset(p
));
2827 skb_set_transport_header(nskb
, skb_transport_offset(p
));
2829 __skb_pull(p
, skb_gro_offset(p
));
2830 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
2831 p
->data
- skb_mac_header(p
));
2833 *NAPI_GRO_CB(nskb
) = *NAPI_GRO_CB(p
);
2834 skb_shinfo(nskb
)->frag_list
= p
;
2835 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
2836 pinfo
->gso_size
= 0;
2837 skb_header_release(p
);
2840 nskb
->data_len
+= p
->len
;
2841 nskb
->truesize
+= p
->len
;
2842 nskb
->len
+= p
->len
;
2845 nskb
->next
= p
->next
;
2851 if (offset
> headlen
) {
2852 unsigned int eat
= offset
- headlen
;
2854 skbinfo
->frags
[0].page_offset
+= eat
;
2855 skbinfo
->frags
[0].size
-= eat
;
2856 skb
->data_len
-= eat
;
2861 __skb_pull(skb
, offset
);
2863 p
->prev
->next
= skb
;
2865 skb_header_release(skb
);
2868 NAPI_GRO_CB(p
)->count
++;
2873 NAPI_GRO_CB(skb
)->same_flow
= 1;
2876 EXPORT_SYMBOL_GPL(skb_gro_receive
);
2878 void __init
skb_init(void)
2880 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
2881 sizeof(struct sk_buff
),
2883 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2885 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
2886 (2*sizeof(struct sk_buff
)) +
2889 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
2894 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2895 * @skb: Socket buffer containing the buffers to be mapped
2896 * @sg: The scatter-gather list to map into
2897 * @offset: The offset into the buffer's contents to start mapping
2898 * @len: Length of buffer space to be mapped
2900 * Fill the specified scatter-gather list with mappings/pointers into a
2901 * region of the buffer space attached to a socket buffer.
2904 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2906 int start
= skb_headlen(skb
);
2907 int i
, copy
= start
- offset
;
2908 struct sk_buff
*frag_iter
;
2914 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
2916 if ((len
-= copy
) == 0)
2921 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2924 WARN_ON(start
> offset
+ len
);
2926 end
= start
+ skb_shinfo(skb
)->frags
[i
].size
;
2927 if ((copy
= end
- offset
) > 0) {
2928 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2932 sg_set_page(&sg
[elt
], frag
->page
, copy
,
2933 frag
->page_offset
+offset
-start
);
2942 skb_walk_frags(skb
, frag_iter
) {
2945 WARN_ON(start
> offset
+ len
);
2947 end
= start
+ frag_iter
->len
;
2948 if ((copy
= end
- offset
) > 0) {
2951 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
2953 if ((len
-= copy
) == 0)
2963 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
2965 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
2967 sg_mark_end(&sg
[nsg
- 1]);
2971 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
2974 * skb_cow_data - Check that a socket buffer's data buffers are writable
2975 * @skb: The socket buffer to check.
2976 * @tailbits: Amount of trailing space to be added
2977 * @trailer: Returned pointer to the skb where the @tailbits space begins
2979 * Make sure that the data buffers attached to a socket buffer are
2980 * writable. If they are not, private copies are made of the data buffers
2981 * and the socket buffer is set to use these instead.
2983 * If @tailbits is given, make sure that there is space to write @tailbits
2984 * bytes of data beyond current end of socket buffer. @trailer will be
2985 * set to point to the skb in which this space begins.
2987 * The number of scatterlist elements required to completely map the
2988 * COW'd and extended socket buffer will be returned.
2990 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
2994 struct sk_buff
*skb1
, **skb_p
;
2996 /* If skb is cloned or its head is paged, reallocate
2997 * head pulling out all the pages (pages are considered not writable
2998 * at the moment even if they are anonymous).
3000 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3001 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3004 /* Easy case. Most of packets will go this way. */
3005 if (!skb_has_frag_list(skb
)) {
3006 /* A little of trouble, not enough of space for trailer.
3007 * This should not happen, when stack is tuned to generate
3008 * good frames. OK, on miss we reallocate and reserve even more
3009 * space, 128 bytes is fair. */
3011 if (skb_tailroom(skb
) < tailbits
&&
3012 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3020 /* Misery. We are in troubles, going to mincer fragments... */
3023 skb_p
= &skb_shinfo(skb
)->frag_list
;
3026 while ((skb1
= *skb_p
) != NULL
) {
3029 /* The fragment is partially pulled by someone,
3030 * this can happen on input. Copy it and everything
3033 if (skb_shared(skb1
))
3036 /* If the skb is the last, worry about trailer. */
3038 if (skb1
->next
== NULL
&& tailbits
) {
3039 if (skb_shinfo(skb1
)->nr_frags
||
3040 skb_has_frag_list(skb1
) ||
3041 skb_tailroom(skb1
) < tailbits
)
3042 ntail
= tailbits
+ 128;
3048 skb_shinfo(skb1
)->nr_frags
||
3049 skb_has_frag_list(skb1
)) {
3050 struct sk_buff
*skb2
;
3052 /* Fuck, we are miserable poor guys... */
3054 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3056 skb2
= skb_copy_expand(skb1
,
3060 if (unlikely(skb2
== NULL
))
3064 skb_set_owner_w(skb2
, skb1
->sk
);
3066 /* Looking around. Are we still alive?
3067 * OK, link new skb, drop old one */
3069 skb2
->next
= skb1
->next
;
3076 skb_p
= &skb1
->next
;
3081 EXPORT_SYMBOL_GPL(skb_cow_data
);
3083 static void sock_rmem_free(struct sk_buff
*skb
)
3085 struct sock
*sk
= skb
->sk
;
3087 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3091 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3093 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3095 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3096 (unsigned)sk
->sk_rcvbuf
)
3101 skb
->destructor
= sock_rmem_free
;
3102 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3104 /* before exiting rcu section, make sure dst is refcounted */
3107 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3108 if (!sock_flag(sk
, SOCK_DEAD
))
3109 sk
->sk_data_ready(sk
, skb
->len
);
3112 EXPORT_SYMBOL(sock_queue_err_skb
);
3114 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3115 struct skb_shared_hwtstamps
*hwtstamps
)
3117 struct sock
*sk
= orig_skb
->sk
;
3118 struct sock_exterr_skb
*serr
;
3119 struct sk_buff
*skb
;
3125 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3130 *skb_hwtstamps(skb
) =
3134 * no hardware time stamps available,
3135 * so keep the shared tx_flags and only
3136 * store software time stamp
3138 skb
->tstamp
= ktime_get_real();
3141 serr
= SKB_EXT_ERR(skb
);
3142 memset(serr
, 0, sizeof(*serr
));
3143 serr
->ee
.ee_errno
= ENOMSG
;
3144 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3146 err
= sock_queue_err_skb(sk
, skb
);
3151 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3155 * skb_partial_csum_set - set up and verify partial csum values for packet
3156 * @skb: the skb to set
3157 * @start: the number of bytes after skb->data to start checksumming.
3158 * @off: the offset from start to place the checksum.
3160 * For untrusted partially-checksummed packets, we need to make sure the values
3161 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3163 * This function checks and sets those values and skb->ip_summed: if this
3164 * returns false you should drop the packet.
3166 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3168 if (unlikely(start
> skb_headlen(skb
)) ||
3169 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3170 if (net_ratelimit())
3172 "bad partial csum: csum=%u/%u len=%u\n",
3173 start
, off
, skb_headlen(skb
));
3176 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3177 skb
->csum_start
= skb_headroom(skb
) + start
;
3178 skb
->csum_offset
= off
;
3181 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3183 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3185 if (net_ratelimit())
3186 pr_warning("%s: received packets cannot be forwarded"
3187 " while LRO is enabled\n", skb
->dev
->name
);
3189 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);