1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2010 Exar Corp.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explanation of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_max_pkts: This parameter defines maximum number of packets can be
42 * aggregated as a single large packet
43 * napi: This parameter used to enable/disable NAPI (polling Rx)
44 * Possible values '1' for enable and '0' for disable. Default is '1'
45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
46 * Possible values '1' for enable and '0' for disable. Default is '0'
47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
48 * Possible values '1' for enable , '0' for disable.
49 * Default is '2' - which means disable in promisc mode
50 * and enable in non-promiscuous mode.
51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
52 * Possible values '1' for enable and '0' for disable. Default is '0'
53 ************************************************************************/
55 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/mdio.h>
67 #include <linux/skbuff.h>
68 #include <linux/init.h>
69 #include <linux/delay.h>
70 #include <linux/stddef.h>
71 #include <linux/ioctl.h>
72 #include <linux/timex.h>
73 #include <linux/ethtool.h>
74 #include <linux/workqueue.h>
75 #include <linux/if_vlan.h>
77 #include <linux/tcp.h>
78 #include <linux/uaccess.h>
80 #include <linux/slab.h>
83 #include <asm/system.h>
84 #include <asm/div64.h>
89 #include "s2io-regs.h"
91 #define DRV_VERSION "2.0.26.27"
93 /* S2io Driver name & version. */
94 static char s2io_driver_name
[] = "Neterion";
95 static char s2io_driver_version
[] = DRV_VERSION
;
97 static int rxd_size
[2] = {32, 48};
98 static int rxd_count
[2] = {127, 85};
100 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
104 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
105 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
111 * Cards with following subsystem_id have a link state indication
112 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
113 * macro below identifies these cards given the subsystem_id.
115 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
116 (dev_type == XFRAME_I_DEVICE) ? \
117 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
118 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
120 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
121 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
123 static inline int is_s2io_card_up(const struct s2io_nic
*sp
)
125 return test_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
128 /* Ethtool related variables and Macros. */
129 static const char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
130 "Register test\t(offline)",
131 "Eeprom test\t(offline)",
132 "Link test\t(online)",
133 "RLDRAM test\t(offline)",
134 "BIST Test\t(offline)"
137 static const char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
139 {"tmac_data_octets"},
143 {"tmac_pause_ctrl_frms"},
147 {"tmac_any_err_frms"},
148 {"tmac_ttl_less_fb_octets"},
149 {"tmac_vld_ip_octets"},
157 {"rmac_data_octets"},
158 {"rmac_fcs_err_frms"},
160 {"rmac_vld_mcst_frms"},
161 {"rmac_vld_bcst_frms"},
162 {"rmac_in_rng_len_err_frms"},
163 {"rmac_out_rng_len_err_frms"},
165 {"rmac_pause_ctrl_frms"},
166 {"rmac_unsup_ctrl_frms"},
168 {"rmac_accepted_ucst_frms"},
169 {"rmac_accepted_nucst_frms"},
170 {"rmac_discarded_frms"},
171 {"rmac_drop_events"},
172 {"rmac_ttl_less_fb_octets"},
174 {"rmac_usized_frms"},
175 {"rmac_osized_frms"},
177 {"rmac_jabber_frms"},
178 {"rmac_ttl_64_frms"},
179 {"rmac_ttl_65_127_frms"},
180 {"rmac_ttl_128_255_frms"},
181 {"rmac_ttl_256_511_frms"},
182 {"rmac_ttl_512_1023_frms"},
183 {"rmac_ttl_1024_1518_frms"},
191 {"rmac_err_drp_udp"},
192 {"rmac_xgmii_err_sym"},
210 {"rmac_xgmii_data_err_cnt"},
211 {"rmac_xgmii_ctrl_err_cnt"},
212 {"rmac_accepted_ip"},
216 {"new_rd_req_rtry_cnt"},
218 {"wr_rtry_rd_ack_cnt"},
221 {"new_wr_req_rtry_cnt"},
224 {"rd_rtry_wr_ack_cnt"},
234 static const char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
235 {"rmac_ttl_1519_4095_frms"},
236 {"rmac_ttl_4096_8191_frms"},
237 {"rmac_ttl_8192_max_frms"},
238 {"rmac_ttl_gt_max_frms"},
239 {"rmac_osized_alt_frms"},
240 {"rmac_jabber_alt_frms"},
241 {"rmac_gt_max_alt_frms"},
243 {"rmac_len_discard"},
244 {"rmac_fcs_discard"},
247 {"rmac_red_discard"},
248 {"rmac_rts_discard"},
249 {"rmac_ingm_full_discard"},
253 static const char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
254 {"\n DRIVER STATISTICS"},
255 {"single_bit_ecc_errs"},
256 {"double_bit_ecc_errs"},
269 {"alarm_transceiver_temp_high"},
270 {"alarm_transceiver_temp_low"},
271 {"alarm_laser_bias_current_high"},
272 {"alarm_laser_bias_current_low"},
273 {"alarm_laser_output_power_high"},
274 {"alarm_laser_output_power_low"},
275 {"warn_transceiver_temp_high"},
276 {"warn_transceiver_temp_low"},
277 {"warn_laser_bias_current_high"},
278 {"warn_laser_bias_current_low"},
279 {"warn_laser_output_power_high"},
280 {"warn_laser_output_power_low"},
281 {"lro_aggregated_pkts"},
282 {"lro_flush_both_count"},
283 {"lro_out_of_sequence_pkts"},
284 {"lro_flush_due_to_max_pkts"},
285 {"lro_avg_aggr_pkts"},
286 {"mem_alloc_fail_cnt"},
287 {"pci_map_fail_cnt"},
288 {"watchdog_timer_cnt"},
295 {"tx_tcode_buf_abort_cnt"},
296 {"tx_tcode_desc_abort_cnt"},
297 {"tx_tcode_parity_err_cnt"},
298 {"tx_tcode_link_loss_cnt"},
299 {"tx_tcode_list_proc_err_cnt"},
300 {"rx_tcode_parity_err_cnt"},
301 {"rx_tcode_abort_cnt"},
302 {"rx_tcode_parity_abort_cnt"},
303 {"rx_tcode_rda_fail_cnt"},
304 {"rx_tcode_unkn_prot_cnt"},
305 {"rx_tcode_fcs_err_cnt"},
306 {"rx_tcode_buf_size_err_cnt"},
307 {"rx_tcode_rxd_corrupt_cnt"},
308 {"rx_tcode_unkn_err_cnt"},
316 {"mac_tmac_err_cnt"},
317 {"mac_rmac_err_cnt"},
318 {"xgxs_txgxs_err_cnt"},
319 {"xgxs_rxgxs_err_cnt"},
321 {"prc_pcix_err_cnt"},
328 #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
329 #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
330 #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
332 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
333 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
335 #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
336 #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
338 #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
339 #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
341 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
342 init_timer(&timer); \
343 timer.function = handle; \
344 timer.data = (unsigned long)arg; \
345 mod_timer(&timer, (jiffies + exp)) \
347 /* copy mac addr to def_mac_addr array */
348 static void do_s2io_copy_mac_addr(struct s2io_nic
*sp
, int offset
, u64 mac_addr
)
350 sp
->def_mac_addr
[offset
].mac_addr
[5] = (u8
) (mac_addr
);
351 sp
->def_mac_addr
[offset
].mac_addr
[4] = (u8
) (mac_addr
>> 8);
352 sp
->def_mac_addr
[offset
].mac_addr
[3] = (u8
) (mac_addr
>> 16);
353 sp
->def_mac_addr
[offset
].mac_addr
[2] = (u8
) (mac_addr
>> 24);
354 sp
->def_mac_addr
[offset
].mac_addr
[1] = (u8
) (mac_addr
>> 32);
355 sp
->def_mac_addr
[offset
].mac_addr
[0] = (u8
) (mac_addr
>> 40);
359 static void s2io_vlan_rx_register(struct net_device
*dev
,
360 struct vlan_group
*grp
)
363 struct s2io_nic
*nic
= netdev_priv(dev
);
364 unsigned long flags
[MAX_TX_FIFOS
];
365 struct config_param
*config
= &nic
->config
;
366 struct mac_info
*mac_control
= &nic
->mac_control
;
368 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
369 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
371 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
376 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
377 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
379 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
383 /* Unregister the vlan */
384 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned short vid
)
387 struct s2io_nic
*nic
= netdev_priv(dev
);
388 unsigned long flags
[MAX_TX_FIFOS
];
389 struct config_param
*config
= &nic
->config
;
390 struct mac_info
*mac_control
= &nic
->mac_control
;
392 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
393 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
395 spin_lock_irqsave(&fifo
->tx_lock
, flags
[i
]);
399 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
401 for (i
= config
->tx_fifo_num
- 1; i
>= 0; i
--) {
402 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
404 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
[i
]);
409 * Constants to be programmed into the Xena's registers, to configure
414 static const u64 herc_act_dtx_cfg
[] = {
416 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
418 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
420 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
422 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
424 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
426 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
428 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
430 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
435 static const u64 xena_dtx_cfg
[] = {
437 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
439 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
441 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
443 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
445 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
447 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
452 * Constants for Fixing the MacAddress problem seen mostly on
455 static const u64 fix_mac
[] = {
456 0x0060000000000000ULL
, 0x0060600000000000ULL
,
457 0x0040600000000000ULL
, 0x0000600000000000ULL
,
458 0x0020600000000000ULL
, 0x0060600000000000ULL
,
459 0x0020600000000000ULL
, 0x0060600000000000ULL
,
460 0x0020600000000000ULL
, 0x0060600000000000ULL
,
461 0x0020600000000000ULL
, 0x0060600000000000ULL
,
462 0x0020600000000000ULL
, 0x0060600000000000ULL
,
463 0x0020600000000000ULL
, 0x0060600000000000ULL
,
464 0x0020600000000000ULL
, 0x0060600000000000ULL
,
465 0x0020600000000000ULL
, 0x0060600000000000ULL
,
466 0x0020600000000000ULL
, 0x0060600000000000ULL
,
467 0x0020600000000000ULL
, 0x0060600000000000ULL
,
468 0x0020600000000000ULL
, 0x0000600000000000ULL
,
469 0x0040600000000000ULL
, 0x0060600000000000ULL
,
473 MODULE_LICENSE("GPL");
474 MODULE_VERSION(DRV_VERSION
);
477 /* Module Loadable parameters. */
478 S2IO_PARM_INT(tx_fifo_num
, FIFO_DEFAULT_NUM
);
479 S2IO_PARM_INT(rx_ring_num
, 1);
480 S2IO_PARM_INT(multiq
, 0);
481 S2IO_PARM_INT(rx_ring_mode
, 1);
482 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
483 S2IO_PARM_INT(rmac_pause_time
, 0x100);
484 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
485 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
486 S2IO_PARM_INT(shared_splits
, 0);
487 S2IO_PARM_INT(tmac_util_period
, 5);
488 S2IO_PARM_INT(rmac_util_period
, 5);
489 S2IO_PARM_INT(l3l4hdr_size
, 128);
490 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
491 S2IO_PARM_INT(tx_steering_type
, TX_DEFAULT_STEERING
);
492 /* Frequency of Rx desc syncs expressed as power of 2 */
493 S2IO_PARM_INT(rxsync_frequency
, 3);
494 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
495 S2IO_PARM_INT(intr_type
, 2);
496 /* Large receive offload feature */
498 /* Max pkts to be aggregated by LRO at one time. If not specified,
499 * aggregation happens until we hit max IP pkt size(64K)
501 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
502 S2IO_PARM_INT(indicate_max_pkts
, 0);
504 S2IO_PARM_INT(napi
, 1);
505 S2IO_PARM_INT(ufo
, 0);
506 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
508 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
509 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
510 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
511 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
512 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
513 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
515 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
516 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
517 module_param_array(rts_frm_len
, uint
, NULL
, 0);
521 * This table lists all the devices that this driver supports.
523 static DEFINE_PCI_DEVICE_TABLE(s2io_tbl
) = {
524 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
525 PCI_ANY_ID
, PCI_ANY_ID
},
526 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
527 PCI_ANY_ID
, PCI_ANY_ID
},
528 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
529 PCI_ANY_ID
, PCI_ANY_ID
},
530 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
531 PCI_ANY_ID
, PCI_ANY_ID
},
535 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
537 static struct pci_error_handlers s2io_err_handler
= {
538 .error_detected
= s2io_io_error_detected
,
539 .slot_reset
= s2io_io_slot_reset
,
540 .resume
= s2io_io_resume
,
543 static struct pci_driver s2io_driver
= {
545 .id_table
= s2io_tbl
,
546 .probe
= s2io_init_nic
,
547 .remove
= __devexit_p(s2io_rem_nic
),
548 .err_handler
= &s2io_err_handler
,
551 /* A simplifier macro used both by init and free shared_mem Fns(). */
552 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
554 /* netqueue manipulation helper functions */
555 static inline void s2io_stop_all_tx_queue(struct s2io_nic
*sp
)
557 if (!sp
->config
.multiq
) {
560 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
561 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_STOP
;
563 netif_tx_stop_all_queues(sp
->dev
);
566 static inline void s2io_stop_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
568 if (!sp
->config
.multiq
)
569 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
572 netif_tx_stop_all_queues(sp
->dev
);
575 static inline void s2io_start_all_tx_queue(struct s2io_nic
*sp
)
577 if (!sp
->config
.multiq
) {
580 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
581 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
583 netif_tx_start_all_queues(sp
->dev
);
586 static inline void s2io_start_tx_queue(struct s2io_nic
*sp
, int fifo_no
)
588 if (!sp
->config
.multiq
)
589 sp
->mac_control
.fifos
[fifo_no
].queue_state
=
592 netif_tx_start_all_queues(sp
->dev
);
595 static inline void s2io_wake_all_tx_queue(struct s2io_nic
*sp
)
597 if (!sp
->config
.multiq
) {
600 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++)
601 sp
->mac_control
.fifos
[i
].queue_state
= FIFO_QUEUE_START
;
603 netif_tx_wake_all_queues(sp
->dev
);
606 static inline void s2io_wake_tx_queue(
607 struct fifo_info
*fifo
, int cnt
, u8 multiq
)
611 if (cnt
&& __netif_subqueue_stopped(fifo
->dev
, fifo
->fifo_no
))
612 netif_wake_subqueue(fifo
->dev
, fifo
->fifo_no
);
613 } else if (cnt
&& (fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
614 if (netif_queue_stopped(fifo
->dev
)) {
615 fifo
->queue_state
= FIFO_QUEUE_START
;
616 netif_wake_queue(fifo
->dev
);
622 * init_shared_mem - Allocation and Initialization of Memory
623 * @nic: Device private variable.
624 * Description: The function allocates all the memory areas shared
625 * between the NIC and the driver. This includes Tx descriptors,
626 * Rx descriptors and the statistics block.
629 static int init_shared_mem(struct s2io_nic
*nic
)
632 void *tmp_v_addr
, *tmp_v_addr_next
;
633 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
634 struct RxD_block
*pre_rxd_blk
= NULL
;
636 int lst_size
, lst_per_page
;
637 struct net_device
*dev
= nic
->dev
;
640 struct config_param
*config
= &nic
->config
;
641 struct mac_info
*mac_control
= &nic
->mac_control
;
642 unsigned long long mem_allocated
= 0;
644 /* Allocation and initialization of TXDLs in FIFOs */
646 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
647 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
649 size
+= tx_cfg
->fifo_len
;
651 if (size
> MAX_AVAILABLE_TXDS
) {
653 "Too many TxDs requested: %d, max supported: %d\n",
654 size
, MAX_AVAILABLE_TXDS
);
659 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
660 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
662 size
= tx_cfg
->fifo_len
;
664 * Legal values are from 2 to 8192
667 DBG_PRINT(ERR_DBG
, "Fifo %d: Invalid length (%d) - "
668 "Valid lengths are 2 through 8192\n",
674 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
675 lst_per_page
= PAGE_SIZE
/ lst_size
;
677 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
678 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
679 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
680 int fifo_len
= tx_cfg
->fifo_len
;
681 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
683 fifo
->list_info
= kzalloc(list_holder_size
, GFP_KERNEL
);
684 if (!fifo
->list_info
) {
685 DBG_PRINT(INFO_DBG
, "Malloc failed for list_info\n");
688 mem_allocated
+= list_holder_size
;
690 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
691 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
693 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
694 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
696 fifo
->tx_curr_put_info
.offset
= 0;
697 fifo
->tx_curr_put_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
698 fifo
->tx_curr_get_info
.offset
= 0;
699 fifo
->tx_curr_get_info
.fifo_len
= tx_cfg
->fifo_len
- 1;
702 fifo
->max_txds
= MAX_SKB_FRAGS
+ 2;
705 for (j
= 0; j
< page_num
; j
++) {
709 tmp_v
= pci_alloc_consistent(nic
->pdev
,
713 "pci_alloc_consistent failed for TxDL\n");
716 /* If we got a zero DMA address(can happen on
717 * certain platforms like PPC), reallocate.
718 * Store virtual address of page we don't want,
722 mac_control
->zerodma_virt_addr
= tmp_v
;
724 "%s: Zero DMA address for TxDL. "
725 "Virtual address %p\n",
727 tmp_v
= pci_alloc_consistent(nic
->pdev
,
731 "pci_alloc_consistent failed for TxDL\n");
734 mem_allocated
+= PAGE_SIZE
;
736 while (k
< lst_per_page
) {
737 int l
= (j
* lst_per_page
) + k
;
738 if (l
== tx_cfg
->fifo_len
)
740 fifo
->list_info
[l
].list_virt_addr
=
741 tmp_v
+ (k
* lst_size
);
742 fifo
->list_info
[l
].list_phy_addr
=
743 tmp_p
+ (k
* lst_size
);
749 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
750 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
751 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
753 size
= tx_cfg
->fifo_len
;
754 fifo
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
755 if (!fifo
->ufo_in_band_v
)
757 mem_allocated
+= (size
* sizeof(u64
));
760 /* Allocation and initialization of RXDs in Rings */
762 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
763 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
764 struct ring_info
*ring
= &mac_control
->rings
[i
];
766 if (rx_cfg
->num_rxd
% (rxd_count
[nic
->rxd_mode
] + 1)) {
767 DBG_PRINT(ERR_DBG
, "%s: Ring%d RxD count is not a "
768 "multiple of RxDs per Block\n",
772 size
+= rx_cfg
->num_rxd
;
773 ring
->block_count
= rx_cfg
->num_rxd
/
774 (rxd_count
[nic
->rxd_mode
] + 1);
775 ring
->pkt_cnt
= rx_cfg
->num_rxd
- ring
->block_count
;
777 if (nic
->rxd_mode
== RXD_MODE_1
)
778 size
= (size
* (sizeof(struct RxD1
)));
780 size
= (size
* (sizeof(struct RxD3
)));
782 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
783 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
784 struct ring_info
*ring
= &mac_control
->rings
[i
];
786 ring
->rx_curr_get_info
.block_index
= 0;
787 ring
->rx_curr_get_info
.offset
= 0;
788 ring
->rx_curr_get_info
.ring_len
= rx_cfg
->num_rxd
- 1;
789 ring
->rx_curr_put_info
.block_index
= 0;
790 ring
->rx_curr_put_info
.offset
= 0;
791 ring
->rx_curr_put_info
.ring_len
= rx_cfg
->num_rxd
- 1;
795 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[nic
->rxd_mode
] + 1);
796 /* Allocating all the Rx blocks */
797 for (j
= 0; j
< blk_cnt
; j
++) {
798 struct rx_block_info
*rx_blocks
;
801 rx_blocks
= &ring
->rx_blocks
[j
];
802 size
= SIZE_OF_BLOCK
; /* size is always page size */
803 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
805 if (tmp_v_addr
== NULL
) {
807 * In case of failure, free_shared_mem()
808 * is called, which should free any
809 * memory that was alloced till the
812 rx_blocks
->block_virt_addr
= tmp_v_addr
;
815 mem_allocated
+= size
;
816 memset(tmp_v_addr
, 0, size
);
818 size
= sizeof(struct rxd_info
) *
819 rxd_count
[nic
->rxd_mode
];
820 rx_blocks
->block_virt_addr
= tmp_v_addr
;
821 rx_blocks
->block_dma_addr
= tmp_p_addr
;
822 rx_blocks
->rxds
= kmalloc(size
, GFP_KERNEL
);
823 if (!rx_blocks
->rxds
)
825 mem_allocated
+= size
;
826 for (l
= 0; l
< rxd_count
[nic
->rxd_mode
]; l
++) {
827 rx_blocks
->rxds
[l
].virt_addr
=
828 rx_blocks
->block_virt_addr
+
829 (rxd_size
[nic
->rxd_mode
] * l
);
830 rx_blocks
->rxds
[l
].dma_addr
=
831 rx_blocks
->block_dma_addr
+
832 (rxd_size
[nic
->rxd_mode
] * l
);
835 /* Interlinking all Rx Blocks */
836 for (j
= 0; j
< blk_cnt
; j
++) {
837 int next
= (j
+ 1) % blk_cnt
;
838 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
839 tmp_v_addr_next
= ring
->rx_blocks
[next
].block_virt_addr
;
840 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
841 tmp_p_addr_next
= ring
->rx_blocks
[next
].block_dma_addr
;
843 pre_rxd_blk
= (struct RxD_block
*)tmp_v_addr
;
844 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
845 (unsigned long)tmp_v_addr_next
;
846 pre_rxd_blk
->pNext_RxD_Blk_physical
=
847 (u64
)tmp_p_addr_next
;
850 if (nic
->rxd_mode
== RXD_MODE_3B
) {
852 * Allocation of Storages for buffer addresses in 2BUFF mode
853 * and the buffers as well.
855 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
856 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
857 struct ring_info
*ring
= &mac_control
->rings
[i
];
859 blk_cnt
= rx_cfg
->num_rxd
/
860 (rxd_count
[nic
->rxd_mode
] + 1);
861 size
= sizeof(struct buffAdd
*) * blk_cnt
;
862 ring
->ba
= kmalloc(size
, GFP_KERNEL
);
865 mem_allocated
+= size
;
866 for (j
= 0; j
< blk_cnt
; j
++) {
869 size
= sizeof(struct buffAdd
) *
870 (rxd_count
[nic
->rxd_mode
] + 1);
871 ring
->ba
[j
] = kmalloc(size
, GFP_KERNEL
);
874 mem_allocated
+= size
;
875 while (k
!= rxd_count
[nic
->rxd_mode
]) {
876 ba
= &ring
->ba
[j
][k
];
877 size
= BUF0_LEN
+ ALIGN_SIZE
;
878 ba
->ba_0_org
= kmalloc(size
, GFP_KERNEL
);
881 mem_allocated
+= size
;
882 tmp
= (unsigned long)ba
->ba_0_org
;
884 tmp
&= ~((unsigned long)ALIGN_SIZE
);
885 ba
->ba_0
= (void *)tmp
;
887 size
= BUF1_LEN
+ ALIGN_SIZE
;
888 ba
->ba_1_org
= kmalloc(size
, GFP_KERNEL
);
891 mem_allocated
+= size
;
892 tmp
= (unsigned long)ba
->ba_1_org
;
894 tmp
&= ~((unsigned long)ALIGN_SIZE
);
895 ba
->ba_1
= (void *)tmp
;
902 /* Allocation and initialization of Statistics block */
903 size
= sizeof(struct stat_block
);
904 mac_control
->stats_mem
=
905 pci_alloc_consistent(nic
->pdev
, size
,
906 &mac_control
->stats_mem_phy
);
908 if (!mac_control
->stats_mem
) {
910 * In case of failure, free_shared_mem() is called, which
911 * should free any memory that was alloced till the
916 mem_allocated
+= size
;
917 mac_control
->stats_mem_sz
= size
;
919 tmp_v_addr
= mac_control
->stats_mem
;
920 mac_control
->stats_info
= (struct stat_block
*)tmp_v_addr
;
921 memset(tmp_v_addr
, 0, size
);
922 DBG_PRINT(INIT_DBG
, "%s: Ring Mem PHY: 0x%llx\n",
923 dev_name(&nic
->pdev
->dev
), (unsigned long long)tmp_p_addr
);
924 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
929 * free_shared_mem - Free the allocated Memory
930 * @nic: Device private variable.
931 * Description: This function is to free all memory locations allocated by
932 * the init_shared_mem() function and return it to the kernel.
935 static void free_shared_mem(struct s2io_nic
*nic
)
937 int i
, j
, blk_cnt
, size
;
939 dma_addr_t tmp_p_addr
;
940 int lst_size
, lst_per_page
;
941 struct net_device
*dev
;
943 struct config_param
*config
;
944 struct mac_info
*mac_control
;
945 struct stat_block
*stats
;
946 struct swStat
*swstats
;
953 config
= &nic
->config
;
954 mac_control
= &nic
->mac_control
;
955 stats
= mac_control
->stats_info
;
956 swstats
= &stats
->sw_stat
;
958 lst_size
= sizeof(struct TxD
) * config
->max_txds
;
959 lst_per_page
= PAGE_SIZE
/ lst_size
;
961 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
962 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
963 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
965 page_num
= TXD_MEM_PAGE_CNT(tx_cfg
->fifo_len
, lst_per_page
);
966 for (j
= 0; j
< page_num
; j
++) {
967 int mem_blks
= (j
* lst_per_page
);
968 struct list_info_hold
*fli
;
970 if (!fifo
->list_info
)
973 fli
= &fifo
->list_info
[mem_blks
];
974 if (!fli
->list_virt_addr
)
976 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
979 swstats
->mem_freed
+= PAGE_SIZE
;
981 /* If we got a zero DMA address during allocation,
984 if (mac_control
->zerodma_virt_addr
) {
985 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
986 mac_control
->zerodma_virt_addr
,
989 "%s: Freeing TxDL with zero DMA address. "
990 "Virtual address %p\n",
991 dev
->name
, mac_control
->zerodma_virt_addr
);
992 swstats
->mem_freed
+= PAGE_SIZE
;
994 kfree(fifo
->list_info
);
995 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
996 sizeof(struct list_info_hold
);
999 size
= SIZE_OF_BLOCK
;
1000 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1001 struct ring_info
*ring
= &mac_control
->rings
[i
];
1003 blk_cnt
= ring
->block_count
;
1004 for (j
= 0; j
< blk_cnt
; j
++) {
1005 tmp_v_addr
= ring
->rx_blocks
[j
].block_virt_addr
;
1006 tmp_p_addr
= ring
->rx_blocks
[j
].block_dma_addr
;
1007 if (tmp_v_addr
== NULL
)
1009 pci_free_consistent(nic
->pdev
, size
,
1010 tmp_v_addr
, tmp_p_addr
);
1011 swstats
->mem_freed
+= size
;
1012 kfree(ring
->rx_blocks
[j
].rxds
);
1013 swstats
->mem_freed
+= sizeof(struct rxd_info
) *
1014 rxd_count
[nic
->rxd_mode
];
1018 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1019 /* Freeing buffer storage addresses in 2BUFF mode. */
1020 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1021 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1022 struct ring_info
*ring
= &mac_control
->rings
[i
];
1024 blk_cnt
= rx_cfg
->num_rxd
/
1025 (rxd_count
[nic
->rxd_mode
] + 1);
1026 for (j
= 0; j
< blk_cnt
; j
++) {
1030 while (k
!= rxd_count
[nic
->rxd_mode
]) {
1031 struct buffAdd
*ba
= &ring
->ba
[j
][k
];
1032 kfree(ba
->ba_0_org
);
1033 swstats
->mem_freed
+=
1034 BUF0_LEN
+ ALIGN_SIZE
;
1035 kfree(ba
->ba_1_org
);
1036 swstats
->mem_freed
+=
1037 BUF1_LEN
+ ALIGN_SIZE
;
1041 swstats
->mem_freed
+= sizeof(struct buffAdd
) *
1042 (rxd_count
[nic
->rxd_mode
] + 1);
1045 swstats
->mem_freed
+= sizeof(struct buffAdd
*) *
1050 for (i
= 0; i
< nic
->config
.tx_fifo_num
; i
++) {
1051 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
1052 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1054 if (fifo
->ufo_in_band_v
) {
1055 swstats
->mem_freed
+= tx_cfg
->fifo_len
*
1057 kfree(fifo
->ufo_in_band_v
);
1061 if (mac_control
->stats_mem
) {
1062 swstats
->mem_freed
+= mac_control
->stats_mem_sz
;
1063 pci_free_consistent(nic
->pdev
,
1064 mac_control
->stats_mem_sz
,
1065 mac_control
->stats_mem
,
1066 mac_control
->stats_mem_phy
);
1071 * s2io_verify_pci_mode -
1074 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
1076 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1077 register u64 val64
= 0;
1080 val64
= readq(&bar0
->pci_mode
);
1081 mode
= (u8
)GET_PCI_MODE(val64
);
1083 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1084 return -1; /* Unknown PCI mode */
1088 #define NEC_VENID 0x1033
1089 #define NEC_DEVID 0x0125
1090 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
1092 struct pci_dev
*tdev
= NULL
;
1093 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
1094 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
1095 if (tdev
->bus
== s2io_pdev
->bus
->parent
) {
1104 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1106 * s2io_print_pci_mode -
1108 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
1110 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1111 register u64 val64
= 0;
1113 struct config_param
*config
= &nic
->config
;
1114 const char *pcimode
;
1116 val64
= readq(&bar0
->pci_mode
);
1117 mode
= (u8
)GET_PCI_MODE(val64
);
1119 if (val64
& PCI_MODE_UNKNOWN_MODE
)
1120 return -1; /* Unknown PCI mode */
1122 config
->bus_speed
= bus_speed
[mode
];
1124 if (s2io_on_nec_bridge(nic
->pdev
)) {
1125 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
1131 case PCI_MODE_PCI_33
:
1132 pcimode
= "33MHz PCI bus";
1134 case PCI_MODE_PCI_66
:
1135 pcimode
= "66MHz PCI bus";
1137 case PCI_MODE_PCIX_M1_66
:
1138 pcimode
= "66MHz PCIX(M1) bus";
1140 case PCI_MODE_PCIX_M1_100
:
1141 pcimode
= "100MHz PCIX(M1) bus";
1143 case PCI_MODE_PCIX_M1_133
:
1144 pcimode
= "133MHz PCIX(M1) bus";
1146 case PCI_MODE_PCIX_M2_66
:
1147 pcimode
= "133MHz PCIX(M2) bus";
1149 case PCI_MODE_PCIX_M2_100
:
1150 pcimode
= "200MHz PCIX(M2) bus";
1152 case PCI_MODE_PCIX_M2_133
:
1153 pcimode
= "266MHz PCIX(M2) bus";
1156 pcimode
= "unsupported bus!";
1160 DBG_PRINT(ERR_DBG
, "%s: Device is on %d bit %s\n",
1161 nic
->dev
->name
, val64
& PCI_MODE_32_BITS
? 32 : 64, pcimode
);
1167 * init_tti - Initialization transmit traffic interrupt scheme
1168 * @nic: device private variable
1169 * @link: link status (UP/DOWN) used to enable/disable continuous
1170 * transmit interrupts
1171 * Description: The function configures transmit traffic interrupts
1172 * Return Value: SUCCESS on success and
1176 static int init_tti(struct s2io_nic
*nic
, int link
)
1178 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1179 register u64 val64
= 0;
1181 struct config_param
*config
= &nic
->config
;
1183 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
1185 * TTI Initialization. Default Tx timer gets us about
1186 * 250 interrupts per sec. Continuous interrupts are enabled
1189 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1190 int count
= (nic
->config
.bus_speed
* 125)/2;
1191 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1193 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1195 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1196 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1197 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1198 TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1200 if (use_continuous_tx_intrs
&& (link
== LINK_UP
))
1201 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1202 writeq(val64
, &bar0
->tti_data1_mem
);
1204 if (nic
->config
.intr_type
== MSI_X
) {
1205 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1206 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1207 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1208 TTI_DATA2_MEM_TX_UFC_D(0x300);
1210 if ((nic
->config
.tx_steering_type
==
1211 TX_DEFAULT_STEERING
) &&
1212 (config
->tx_fifo_num
> 1) &&
1213 (i
>= nic
->udp_fifo_idx
) &&
1214 (i
< (nic
->udp_fifo_idx
+
1215 nic
->total_udp_fifos
)))
1216 val64
= TTI_DATA2_MEM_TX_UFC_A(0x50) |
1217 TTI_DATA2_MEM_TX_UFC_B(0x80) |
1218 TTI_DATA2_MEM_TX_UFC_C(0x100) |
1219 TTI_DATA2_MEM_TX_UFC_D(0x120);
1221 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1222 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1223 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1224 TTI_DATA2_MEM_TX_UFC_D(0x80);
1227 writeq(val64
, &bar0
->tti_data2_mem
);
1229 val64
= TTI_CMD_MEM_WE
|
1230 TTI_CMD_MEM_STROBE_NEW_CMD
|
1231 TTI_CMD_MEM_OFFSET(i
);
1232 writeq(val64
, &bar0
->tti_command_mem
);
1234 if (wait_for_cmd_complete(&bar0
->tti_command_mem
,
1235 TTI_CMD_MEM_STROBE_NEW_CMD
,
1236 S2IO_BIT_RESET
) != SUCCESS
)
1244 * init_nic - Initialization of hardware
1245 * @nic: device private variable
1246 * Description: The function sequentially configures every block
1247 * of the H/W from their reset values.
1248 * Return Value: SUCCESS on success and
1249 * '-1' on failure (endian settings incorrect).
1252 static int init_nic(struct s2io_nic
*nic
)
1254 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1255 struct net_device
*dev
= nic
->dev
;
1256 register u64 val64
= 0;
1261 unsigned long long mem_share
;
1263 struct config_param
*config
= &nic
->config
;
1264 struct mac_info
*mac_control
= &nic
->mac_control
;
1266 /* to set the swapper controle on the card */
1267 if (s2io_set_swapper(nic
)) {
1268 DBG_PRINT(ERR_DBG
, "ERROR: Setting Swapper failed\n");
1273 * Herc requires EOI to be removed from reset before XGXS, so..
1275 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1276 val64
= 0xA500000000ULL
;
1277 writeq(val64
, &bar0
->sw_reset
);
1279 val64
= readq(&bar0
->sw_reset
);
1282 /* Remove XGXS from reset state */
1284 writeq(val64
, &bar0
->sw_reset
);
1286 val64
= readq(&bar0
->sw_reset
);
1288 /* Ensure that it's safe to access registers by checking
1289 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1291 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1292 for (i
= 0; i
< 50; i
++) {
1293 val64
= readq(&bar0
->adapter_status
);
1294 if (!(val64
& ADAPTER_STATUS_RIC_RUNNING
))
1302 /* Enable Receiving broadcasts */
1303 add
= &bar0
->mac_cfg
;
1304 val64
= readq(&bar0
->mac_cfg
);
1305 val64
|= MAC_RMAC_BCAST_ENABLE
;
1306 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1307 writel((u32
)val64
, add
);
1308 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1309 writel((u32
) (val64
>> 32), (add
+ 4));
1311 /* Read registers in all blocks */
1312 val64
= readq(&bar0
->mac_int_mask
);
1313 val64
= readq(&bar0
->mc_int_mask
);
1314 val64
= readq(&bar0
->xgxs_int_mask
);
1318 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1320 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1321 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1322 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1323 &bar0
->dtx_control
, UF
);
1325 msleep(1); /* Necessary!! */
1329 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1330 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1331 &bar0
->dtx_control
, UF
);
1332 val64
= readq(&bar0
->dtx_control
);
1337 /* Tx DMA Initialization */
1339 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1340 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1341 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1342 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1344 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1345 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
1347 val64
|= vBIT(tx_cfg
->fifo_len
- 1, ((j
* 32) + 19), 13) |
1348 vBIT(tx_cfg
->fifo_priority
, ((j
* 32) + 5), 3);
1350 if (i
== (config
->tx_fifo_num
- 1)) {
1357 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1362 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1367 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1372 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1383 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1384 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1386 if ((nic
->device_type
== XFRAME_I_DEVICE
) && (nic
->pdev
->revision
< 4))
1387 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1389 val64
= readq(&bar0
->tx_fifo_partition_0
);
1390 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1391 &bar0
->tx_fifo_partition_0
, (unsigned long long)val64
);
1394 * Initialization of Tx_PA_CONFIG register to ignore packet
1395 * integrity checking.
1397 val64
= readq(&bar0
->tx_pa_cfg
);
1398 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
|
1399 TX_PA_CFG_IGNORE_SNAP_OUI
|
1400 TX_PA_CFG_IGNORE_LLC_CTRL
|
1401 TX_PA_CFG_IGNORE_L2_ERR
;
1402 writeq(val64
, &bar0
->tx_pa_cfg
);
1404 /* Rx DMA intialization. */
1406 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1407 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
1409 val64
|= vBIT(rx_cfg
->ring_priority
, (5 + (i
* 8)), 3);
1411 writeq(val64
, &bar0
->rx_queue_priority
);
1414 * Allocating equal share of memory to all the
1418 if (nic
->device_type
& XFRAME_II_DEVICE
)
1423 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1426 mem_share
= (mem_size
/ config
->rx_ring_num
+
1427 mem_size
% config
->rx_ring_num
);
1428 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1431 mem_share
= (mem_size
/ config
->rx_ring_num
);
1432 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1435 mem_share
= (mem_size
/ config
->rx_ring_num
);
1436 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1439 mem_share
= (mem_size
/ config
->rx_ring_num
);
1440 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1443 mem_share
= (mem_size
/ config
->rx_ring_num
);
1444 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1447 mem_share
= (mem_size
/ config
->rx_ring_num
);
1448 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1451 mem_share
= (mem_size
/ config
->rx_ring_num
);
1452 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1455 mem_share
= (mem_size
/ config
->rx_ring_num
);
1456 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1460 writeq(val64
, &bar0
->rx_queue_cfg
);
1463 * Filling Tx round robin registers
1464 * as per the number of FIFOs for equal scheduling priority
1466 switch (config
->tx_fifo_num
) {
1469 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1470 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1471 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1472 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1473 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1476 val64
= 0x0001000100010001ULL
;
1477 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1478 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1479 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1480 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1481 val64
= 0x0001000100000000ULL
;
1482 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1485 val64
= 0x0001020001020001ULL
;
1486 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1487 val64
= 0x0200010200010200ULL
;
1488 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1489 val64
= 0x0102000102000102ULL
;
1490 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1491 val64
= 0x0001020001020001ULL
;
1492 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1493 val64
= 0x0200010200000000ULL
;
1494 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1497 val64
= 0x0001020300010203ULL
;
1498 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1499 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1500 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1501 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1502 val64
= 0x0001020300000000ULL
;
1503 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1506 val64
= 0x0001020304000102ULL
;
1507 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1508 val64
= 0x0304000102030400ULL
;
1509 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1510 val64
= 0x0102030400010203ULL
;
1511 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1512 val64
= 0x0400010203040001ULL
;
1513 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1514 val64
= 0x0203040000000000ULL
;
1515 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1518 val64
= 0x0001020304050001ULL
;
1519 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1520 val64
= 0x0203040500010203ULL
;
1521 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1522 val64
= 0x0405000102030405ULL
;
1523 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1524 val64
= 0x0001020304050001ULL
;
1525 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1526 val64
= 0x0203040500000000ULL
;
1527 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1530 val64
= 0x0001020304050600ULL
;
1531 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1532 val64
= 0x0102030405060001ULL
;
1533 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1534 val64
= 0x0203040506000102ULL
;
1535 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1536 val64
= 0x0304050600010203ULL
;
1537 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1538 val64
= 0x0405060000000000ULL
;
1539 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1542 val64
= 0x0001020304050607ULL
;
1543 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1544 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1545 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1546 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1547 val64
= 0x0001020300000000ULL
;
1548 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1552 /* Enable all configured Tx FIFO partitions */
1553 val64
= readq(&bar0
->tx_fifo_partition_0
);
1554 val64
|= (TX_FIFO_PARTITION_EN
);
1555 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1557 /* Filling the Rx round robin registers as per the
1558 * number of Rings and steering based on QoS with
1561 switch (config
->rx_ring_num
) {
1564 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1565 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1566 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1567 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1568 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1570 val64
= 0x8080808080808080ULL
;
1571 writeq(val64
, &bar0
->rts_qos_steering
);
1574 val64
= 0x0001000100010001ULL
;
1575 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1576 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1577 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1578 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1579 val64
= 0x0001000100000000ULL
;
1580 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1582 val64
= 0x8080808040404040ULL
;
1583 writeq(val64
, &bar0
->rts_qos_steering
);
1586 val64
= 0x0001020001020001ULL
;
1587 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1588 val64
= 0x0200010200010200ULL
;
1589 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1590 val64
= 0x0102000102000102ULL
;
1591 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1592 val64
= 0x0001020001020001ULL
;
1593 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1594 val64
= 0x0200010200000000ULL
;
1595 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1597 val64
= 0x8080804040402020ULL
;
1598 writeq(val64
, &bar0
->rts_qos_steering
);
1601 val64
= 0x0001020300010203ULL
;
1602 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1603 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1604 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1605 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1606 val64
= 0x0001020300000000ULL
;
1607 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1609 val64
= 0x8080404020201010ULL
;
1610 writeq(val64
, &bar0
->rts_qos_steering
);
1613 val64
= 0x0001020304000102ULL
;
1614 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1615 val64
= 0x0304000102030400ULL
;
1616 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1617 val64
= 0x0102030400010203ULL
;
1618 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1619 val64
= 0x0400010203040001ULL
;
1620 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1621 val64
= 0x0203040000000000ULL
;
1622 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1624 val64
= 0x8080404020201008ULL
;
1625 writeq(val64
, &bar0
->rts_qos_steering
);
1628 val64
= 0x0001020304050001ULL
;
1629 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1630 val64
= 0x0203040500010203ULL
;
1631 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1632 val64
= 0x0405000102030405ULL
;
1633 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1634 val64
= 0x0001020304050001ULL
;
1635 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1636 val64
= 0x0203040500000000ULL
;
1637 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1639 val64
= 0x8080404020100804ULL
;
1640 writeq(val64
, &bar0
->rts_qos_steering
);
1643 val64
= 0x0001020304050600ULL
;
1644 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1645 val64
= 0x0102030405060001ULL
;
1646 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1647 val64
= 0x0203040506000102ULL
;
1648 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1649 val64
= 0x0304050600010203ULL
;
1650 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1651 val64
= 0x0405060000000000ULL
;
1652 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1654 val64
= 0x8080402010080402ULL
;
1655 writeq(val64
, &bar0
->rts_qos_steering
);
1658 val64
= 0x0001020304050607ULL
;
1659 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1660 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1661 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1662 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1663 val64
= 0x0001020300000000ULL
;
1664 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1666 val64
= 0x8040201008040201ULL
;
1667 writeq(val64
, &bar0
->rts_qos_steering
);
1673 for (i
= 0; i
< 8; i
++)
1674 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1676 /* Set the default rts frame length for the rings configured */
1677 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1678 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1679 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1681 /* Set the frame length for the configured rings
1682 * desired by the user
1684 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1685 /* If rts_frm_len[i] == 0 then it is assumed that user not
1686 * specified frame length steering.
1687 * If the user provides the frame length then program
1688 * the rts_frm_len register for those values or else
1689 * leave it as it is.
1691 if (rts_frm_len
[i
] != 0) {
1692 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1693 &bar0
->rts_frm_len_n
[i
]);
1697 /* Disable differentiated services steering logic */
1698 for (i
= 0; i
< 64; i
++) {
1699 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1701 "%s: rts_ds_steer failed on codepoint %d\n",
1707 /* Program statistics memory */
1708 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1710 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1711 val64
= STAT_BC(0x320);
1712 writeq(val64
, &bar0
->stat_byte_cnt
);
1716 * Initializing the sampling rate for the device to calculate the
1717 * bandwidth utilization.
1719 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1720 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1721 writeq(val64
, &bar0
->mac_link_util
);
1724 * Initializing the Transmit and Receive Traffic Interrupt
1728 /* Initialize TTI */
1729 if (SUCCESS
!= init_tti(nic
, nic
->last_link_state
))
1732 /* RTI Initialization */
1733 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1735 * Programmed to generate Apprx 500 Intrs per
1738 int count
= (nic
->config
.bus_speed
* 125)/4;
1739 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1741 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1742 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1743 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1744 RTI_DATA1_MEM_RX_URNG_C(0x30) |
1745 RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1747 writeq(val64
, &bar0
->rti_data1_mem
);
1749 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1750 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1751 if (nic
->config
.intr_type
== MSI_X
)
1752 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1753 RTI_DATA2_MEM_RX_UFC_D(0x40));
1755 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1756 RTI_DATA2_MEM_RX_UFC_D(0x80));
1757 writeq(val64
, &bar0
->rti_data2_mem
);
1759 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1760 val64
= RTI_CMD_MEM_WE
|
1761 RTI_CMD_MEM_STROBE_NEW_CMD
|
1762 RTI_CMD_MEM_OFFSET(i
);
1763 writeq(val64
, &bar0
->rti_command_mem
);
1766 * Once the operation completes, the Strobe bit of the
1767 * command register will be reset. We poll for this
1768 * particular condition. We wait for a maximum of 500ms
1769 * for the operation to complete, if it's not complete
1770 * by then we return error.
1774 val64
= readq(&bar0
->rti_command_mem
);
1775 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
))
1779 DBG_PRINT(ERR_DBG
, "%s: RTI init failed\n",
1789 * Initializing proper values as Pause threshold into all
1790 * the 8 Queues on Rx side.
1792 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1793 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1795 /* Disable RMAC PAD STRIPPING */
1796 add
= &bar0
->mac_cfg
;
1797 val64
= readq(&bar0
->mac_cfg
);
1798 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1799 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1800 writel((u32
) (val64
), add
);
1801 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1802 writel((u32
) (val64
>> 32), (add
+ 4));
1803 val64
= readq(&bar0
->mac_cfg
);
1805 /* Enable FCS stripping by adapter */
1806 add
= &bar0
->mac_cfg
;
1807 val64
= readq(&bar0
->mac_cfg
);
1808 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1809 if (nic
->device_type
== XFRAME_II_DEVICE
)
1810 writeq(val64
, &bar0
->mac_cfg
);
1812 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1813 writel((u32
) (val64
), add
);
1814 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1815 writel((u32
) (val64
>> 32), (add
+ 4));
1819 * Set the time value to be inserted in the pause frame
1820 * generated by xena.
1822 val64
= readq(&bar0
->rmac_pause_cfg
);
1823 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1824 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1825 writeq(val64
, &bar0
->rmac_pause_cfg
);
1828 * Set the Threshold Limit for Generating the pause frame
1829 * If the amount of data in any Queue exceeds ratio of
1830 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1831 * pause frame is generated
1834 for (i
= 0; i
< 4; i
++) {
1835 val64
|= (((u64
)0xFF00 |
1836 nic
->mac_control
.mc_pause_threshold_q0q3
)
1839 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1842 for (i
= 0; i
< 4; i
++) {
1843 val64
|= (((u64
)0xFF00 |
1844 nic
->mac_control
.mc_pause_threshold_q4q7
)
1847 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1850 * TxDMA will stop Read request if the number of read split has
1851 * exceeded the limit pointed by shared_splits
1853 val64
= readq(&bar0
->pic_control
);
1854 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1855 writeq(val64
, &bar0
->pic_control
);
1857 if (nic
->config
.bus_speed
== 266) {
1858 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1859 writeq(0x0, &bar0
->read_retry_delay
);
1860 writeq(0x0, &bar0
->write_retry_delay
);
1864 * Programming the Herc to split every write transaction
1865 * that does not start on an ADB to reduce disconnects.
1867 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1868 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1869 MISC_LINK_STABILITY_PRD(3);
1870 writeq(val64
, &bar0
->misc_control
);
1871 val64
= readq(&bar0
->pic_control2
);
1872 val64
&= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1873 writeq(val64
, &bar0
->pic_control2
);
1875 if (strstr(nic
->product_name
, "CX4")) {
1876 val64
= TMAC_AVG_IPG(0x17);
1877 writeq(val64
, &bar0
->tmac_avg_ipg
);
1882 #define LINK_UP_DOWN_INTERRUPT 1
1883 #define MAC_RMAC_ERR_TIMER 2
1885 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1887 if (nic
->device_type
== XFRAME_II_DEVICE
)
1888 return LINK_UP_DOWN_INTERRUPT
;
1890 return MAC_RMAC_ERR_TIMER
;
1894 * do_s2io_write_bits - update alarm bits in alarm register
1895 * @value: alarm bits
1896 * @flag: interrupt status
1897 * @addr: address value
1898 * Description: update alarm bits in alarm register
1902 static void do_s2io_write_bits(u64 value
, int flag
, void __iomem
*addr
)
1906 temp64
= readq(addr
);
1908 if (flag
== ENABLE_INTRS
)
1909 temp64
&= ~((u64
)value
);
1911 temp64
|= ((u64
)value
);
1912 writeq(temp64
, addr
);
1915 static void en_dis_err_alarms(struct s2io_nic
*nic
, u16 mask
, int flag
)
1917 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1918 register u64 gen_int_mask
= 0;
1921 writeq(DISABLE_ALL_INTRS
, &bar0
->general_int_mask
);
1922 if (mask
& TX_DMA_INTR
) {
1923 gen_int_mask
|= TXDMA_INT_M
;
1925 do_s2io_write_bits(TXDMA_TDA_INT
| TXDMA_PFC_INT
|
1926 TXDMA_PCC_INT
| TXDMA_TTI_INT
|
1927 TXDMA_LSO_INT
| TXDMA_TPA_INT
|
1928 TXDMA_SM_INT
, flag
, &bar0
->txdma_int_mask
);
1930 do_s2io_write_bits(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
1931 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
1932 PFC_PCIX_ERR
| PFC_ECC_SG_ERR
, flag
,
1933 &bar0
->pfc_err_mask
);
1935 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR
| TDA_SM0_ERR_ALARM
|
1936 TDA_SM1_ERR_ALARM
| TDA_Fn_ECC_SG_ERR
|
1937 TDA_PCIX_ERR
, flag
, &bar0
->tda_err_mask
);
1939 do_s2io_write_bits(PCC_FB_ECC_DB_ERR
| PCC_TXB_ECC_DB_ERR
|
1940 PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
1941 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
1942 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
1943 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_SG_ERR
|
1945 flag
, &bar0
->pcc_err_mask
);
1947 do_s2io_write_bits(TTI_SM_ERR_ALARM
| TTI_ECC_SG_ERR
|
1948 TTI_ECC_DB_ERR
, flag
, &bar0
->tti_err_mask
);
1950 do_s2io_write_bits(LSO6_ABORT
| LSO7_ABORT
|
1951 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
|
1952 LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
1953 flag
, &bar0
->lso_err_mask
);
1955 do_s2io_write_bits(TPA_SM_ERR_ALARM
| TPA_TX_FRM_DROP
,
1956 flag
, &bar0
->tpa_err_mask
);
1958 do_s2io_write_bits(SM_SM_ERR_ALARM
, flag
, &bar0
->sm_err_mask
);
1961 if (mask
& TX_MAC_INTR
) {
1962 gen_int_mask
|= TXMAC_INT_M
;
1963 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT
, flag
,
1964 &bar0
->mac_int_mask
);
1965 do_s2io_write_bits(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
|
1966 TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
1967 TMAC_DESC_ECC_SG_ERR
| TMAC_DESC_ECC_DB_ERR
,
1968 flag
, &bar0
->mac_tmac_err_mask
);
1971 if (mask
& TX_XGXS_INTR
) {
1972 gen_int_mask
|= TXXGXS_INT_M
;
1973 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS
, flag
,
1974 &bar0
->xgxs_int_mask
);
1975 do_s2io_write_bits(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
|
1976 TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
1977 flag
, &bar0
->xgxs_txgxs_err_mask
);
1980 if (mask
& RX_DMA_INTR
) {
1981 gen_int_mask
|= RXDMA_INT_M
;
1982 do_s2io_write_bits(RXDMA_INT_RC_INT_M
| RXDMA_INT_RPA_INT_M
|
1983 RXDMA_INT_RDA_INT_M
| RXDMA_INT_RTI_INT_M
,
1984 flag
, &bar0
->rxdma_int_mask
);
1985 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR
| RC_FTC_ECC_DB_ERR
|
1986 RC_PRCn_SM_ERR_ALARM
| RC_FTC_SM_ERR_ALARM
|
1987 RC_PRCn_ECC_SG_ERR
| RC_FTC_ECC_SG_ERR
|
1988 RC_RDA_FAIL_WR_Rn
, flag
, &bar0
->rc_err_mask
);
1989 do_s2io_write_bits(PRC_PCI_AB_RD_Rn
| PRC_PCI_AB_WR_Rn
|
1990 PRC_PCI_AB_F_WR_Rn
| PRC_PCI_DP_RD_Rn
|
1991 PRC_PCI_DP_WR_Rn
| PRC_PCI_DP_F_WR_Rn
, flag
,
1992 &bar0
->prc_pcix_err_mask
);
1993 do_s2io_write_bits(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
|
1994 RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
, flag
,
1995 &bar0
->rpa_err_mask
);
1996 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR
| RDA_FRM_ECC_DB_N_AERR
|
1997 RDA_SM1_ERR_ALARM
| RDA_SM0_ERR_ALARM
|
1998 RDA_RXD_ECC_DB_SERR
| RDA_RXDn_ECC_SG_ERR
|
1999 RDA_FRM_ECC_SG_ERR
|
2000 RDA_MISC_ERR
|RDA_PCIX_ERR
,
2001 flag
, &bar0
->rda_err_mask
);
2002 do_s2io_write_bits(RTI_SM_ERR_ALARM
|
2003 RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
2004 flag
, &bar0
->rti_err_mask
);
2007 if (mask
& RX_MAC_INTR
) {
2008 gen_int_mask
|= RXMAC_INT_M
;
2009 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT
, flag
,
2010 &bar0
->mac_int_mask
);
2011 interruptible
= (RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
|
2012 RMAC_UNUSED_INT
| RMAC_SINGLE_ECC_ERR
|
2013 RMAC_DOUBLE_ECC_ERR
);
2014 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
)
2015 interruptible
|= RMAC_LINK_STATE_CHANGE_INT
;
2016 do_s2io_write_bits(interruptible
,
2017 flag
, &bar0
->mac_rmac_err_mask
);
2020 if (mask
& RX_XGXS_INTR
) {
2021 gen_int_mask
|= RXXGXS_INT_M
;
2022 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS
, flag
,
2023 &bar0
->xgxs_int_mask
);
2024 do_s2io_write_bits(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
, flag
,
2025 &bar0
->xgxs_rxgxs_err_mask
);
2028 if (mask
& MC_INTR
) {
2029 gen_int_mask
|= MC_INT_M
;
2030 do_s2io_write_bits(MC_INT_MASK_MC_INT
,
2031 flag
, &bar0
->mc_int_mask
);
2032 do_s2io_write_bits(MC_ERR_REG_SM_ERR
| MC_ERR_REG_ECC_ALL_SNG
|
2033 MC_ERR_REG_ECC_ALL_DBL
| PLL_LOCK_N
, flag
,
2034 &bar0
->mc_err_mask
);
2036 nic
->general_int_mask
= gen_int_mask
;
2038 /* Remove this line when alarm interrupts are enabled */
2039 nic
->general_int_mask
= 0;
2043 * en_dis_able_nic_intrs - Enable or Disable the interrupts
2044 * @nic: device private variable,
2045 * @mask: A mask indicating which Intr block must be modified and,
2046 * @flag: A flag indicating whether to enable or disable the Intrs.
2047 * Description: This function will either disable or enable the interrupts
2048 * depending on the flag argument. The mask argument can be used to
2049 * enable/disable any Intr block.
2050 * Return Value: NONE.
2053 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
2055 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2056 register u64 temp64
= 0, intr_mask
= 0;
2058 intr_mask
= nic
->general_int_mask
;
2060 /* Top level interrupt classification */
2061 /* PIC Interrupts */
2062 if (mask
& TX_PIC_INTR
) {
2063 /* Enable PIC Intrs in the general intr mask register */
2064 intr_mask
|= TXPIC_INT_M
;
2065 if (flag
== ENABLE_INTRS
) {
2067 * If Hercules adapter enable GPIO otherwise
2068 * disable all PCIX, Flash, MDIO, IIC and GPIO
2069 * interrupts for now.
2072 if (s2io_link_fault_indication(nic
) ==
2073 LINK_UP_DOWN_INTERRUPT
) {
2074 do_s2io_write_bits(PIC_INT_GPIO
, flag
,
2075 &bar0
->pic_int_mask
);
2076 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP
, flag
,
2077 &bar0
->gpio_int_mask
);
2079 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2080 } else if (flag
== DISABLE_INTRS
) {
2082 * Disable PIC Intrs in the general
2083 * intr mask register
2085 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
2089 /* Tx traffic interrupts */
2090 if (mask
& TX_TRAFFIC_INTR
) {
2091 intr_mask
|= TXTRAFFIC_INT_M
;
2092 if (flag
== ENABLE_INTRS
) {
2094 * Enable all the Tx side interrupts
2095 * writing 0 Enables all 64 TX interrupt levels
2097 writeq(0x0, &bar0
->tx_traffic_mask
);
2098 } else if (flag
== DISABLE_INTRS
) {
2100 * Disable Tx Traffic Intrs in the general intr mask
2103 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
2107 /* Rx traffic interrupts */
2108 if (mask
& RX_TRAFFIC_INTR
) {
2109 intr_mask
|= RXTRAFFIC_INT_M
;
2110 if (flag
== ENABLE_INTRS
) {
2111 /* writing 0 Enables all 8 RX interrupt levels */
2112 writeq(0x0, &bar0
->rx_traffic_mask
);
2113 } else if (flag
== DISABLE_INTRS
) {
2115 * Disable Rx Traffic Intrs in the general intr mask
2118 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
2122 temp64
= readq(&bar0
->general_int_mask
);
2123 if (flag
== ENABLE_INTRS
)
2124 temp64
&= ~((u64
)intr_mask
);
2126 temp64
= DISABLE_ALL_INTRS
;
2127 writeq(temp64
, &bar0
->general_int_mask
);
2129 nic
->general_int_mask
= readq(&bar0
->general_int_mask
);
2133 * verify_pcc_quiescent- Checks for PCC quiescent state
2134 * Return: 1 If PCC is quiescence
2135 * 0 If PCC is not quiescence
2137 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
2140 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2141 u64 val64
= readq(&bar0
->adapter_status
);
2143 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
2145 if (flag
== false) {
2146 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2147 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
2150 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2154 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
2155 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
2156 ADAPTER_STATUS_RMAC_PCC_IDLE
))
2159 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
2160 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
2168 * verify_xena_quiescence - Checks whether the H/W is ready
2169 * Description: Returns whether the H/W is ready to go or not. Depending
2170 * on whether adapter enable bit was written or not the comparison
2171 * differs and the calling function passes the input argument flag to
2173 * Return: 1 If xena is quiescence
2174 * 0 If Xena is not quiescence
2177 static int verify_xena_quiescence(struct s2io_nic
*sp
)
2180 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2181 u64 val64
= readq(&bar0
->adapter_status
);
2182 mode
= s2io_verify_pci_mode(sp
);
2184 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
2185 DBG_PRINT(ERR_DBG
, "TDMA is not ready!\n");
2188 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
2189 DBG_PRINT(ERR_DBG
, "RDMA is not ready!\n");
2192 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
2193 DBG_PRINT(ERR_DBG
, "PFC is not ready!\n");
2196 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
2197 DBG_PRINT(ERR_DBG
, "TMAC BUF is not empty!\n");
2200 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
2201 DBG_PRINT(ERR_DBG
, "PIC is not QUIESCENT!\n");
2204 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
2205 DBG_PRINT(ERR_DBG
, "MC_DRAM is not ready!\n");
2208 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
2209 DBG_PRINT(ERR_DBG
, "MC_QUEUES is not ready!\n");
2212 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
2213 DBG_PRINT(ERR_DBG
, "M_PLL is not locked!\n");
2218 * In PCI 33 mode, the P_PLL is not used, and therefore,
2219 * the the P_PLL_LOCK bit in the adapter_status register will
2222 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
2223 sp
->device_type
== XFRAME_II_DEVICE
&&
2224 mode
!= PCI_MODE_PCI_33
) {
2225 DBG_PRINT(ERR_DBG
, "P_PLL is not locked!\n");
2228 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
2229 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
2230 DBG_PRINT(ERR_DBG
, "RC_PRC is not QUIESCENT!\n");
2237 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2238 * @sp: Pointer to device specifc structure
2240 * New procedure to clear mac address reading problems on Alpha platforms
2244 static void fix_mac_address(struct s2io_nic
*sp
)
2246 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2250 while (fix_mac
[i
] != END_SIGN
) {
2251 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
2253 val64
= readq(&bar0
->gpio_control
);
2258 * start_nic - Turns the device on
2259 * @nic : device private variable.
2261 * This function actually turns the device on. Before this function is
2262 * called,all Registers are configured from their reset states
2263 * and shared memory is allocated but the NIC is still quiescent. On
2264 * calling this function, the device interrupts are cleared and the NIC is
2265 * literally switched on by writing into the adapter control register.
2267 * SUCCESS on success and -1 on failure.
2270 static int start_nic(struct s2io_nic
*nic
)
2272 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2273 struct net_device
*dev
= nic
->dev
;
2274 register u64 val64
= 0;
2276 struct config_param
*config
= &nic
->config
;
2277 struct mac_info
*mac_control
= &nic
->mac_control
;
2279 /* PRC Initialization and configuration */
2280 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2281 struct ring_info
*ring
= &mac_control
->rings
[i
];
2283 writeq((u64
)ring
->rx_blocks
[0].block_dma_addr
,
2284 &bar0
->prc_rxd0_n
[i
]);
2286 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2287 if (nic
->rxd_mode
== RXD_MODE_1
)
2288 val64
|= PRC_CTRL_RC_ENABLED
;
2290 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2291 if (nic
->device_type
== XFRAME_II_DEVICE
)
2292 val64
|= PRC_CTRL_GROUP_READS
;
2293 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2294 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2295 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2298 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2299 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2300 val64
= readq(&bar0
->rx_pa_cfg
);
2301 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2302 writeq(val64
, &bar0
->rx_pa_cfg
);
2305 if (vlan_tag_strip
== 0) {
2306 val64
= readq(&bar0
->rx_pa_cfg
);
2307 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2308 writeq(val64
, &bar0
->rx_pa_cfg
);
2309 nic
->vlan_strip_flag
= 0;
2313 * Enabling MC-RLDRAM. After enabling the device, we timeout
2314 * for around 100ms, which is approximately the time required
2315 * for the device to be ready for operation.
2317 val64
= readq(&bar0
->mc_rldram_mrs
);
2318 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2319 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2320 val64
= readq(&bar0
->mc_rldram_mrs
);
2322 msleep(100); /* Delay by around 100 ms. */
2324 /* Enabling ECC Protection. */
2325 val64
= readq(&bar0
->adapter_control
);
2326 val64
&= ~ADAPTER_ECC_EN
;
2327 writeq(val64
, &bar0
->adapter_control
);
2330 * Verify if the device is ready to be enabled, if so enable
2333 val64
= readq(&bar0
->adapter_status
);
2334 if (!verify_xena_quiescence(nic
)) {
2335 DBG_PRINT(ERR_DBG
, "%s: device is not ready, "
2336 "Adapter status reads: 0x%llx\n",
2337 dev
->name
, (unsigned long long)val64
);
2342 * With some switches, link might be already up at this point.
2343 * Because of this weird behavior, when we enable laser,
2344 * we may not get link. We need to handle this. We cannot
2345 * figure out which switch is misbehaving. So we are forced to
2346 * make a global change.
2349 /* Enabling Laser. */
2350 val64
= readq(&bar0
->adapter_control
);
2351 val64
|= ADAPTER_EOI_TX_ON
;
2352 writeq(val64
, &bar0
->adapter_control
);
2354 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2356 * Dont see link state interrupts initally on some switches,
2357 * so directly scheduling the link state task here.
2359 schedule_work(&nic
->set_link_task
);
2361 /* SXE-002: Initialize link and activity LED */
2362 subid
= nic
->pdev
->subsystem_device
;
2363 if (((subid
& 0xFF) >= 0x07) &&
2364 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2365 val64
= readq(&bar0
->gpio_control
);
2366 val64
|= 0x0000800000000000ULL
;
2367 writeq(val64
, &bar0
->gpio_control
);
2368 val64
= 0x0411040400000000ULL
;
2369 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2375 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2377 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
,
2378 struct TxD
*txdlp
, int get_off
)
2380 struct s2io_nic
*nic
= fifo_data
->nic
;
2381 struct sk_buff
*skb
;
2386 if (txds
->Host_Control
== (u64
)(long)fifo_data
->ufo_in_band_v
) {
2387 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2388 sizeof(u64
), PCI_DMA_TODEVICE
);
2392 skb
= (struct sk_buff
*)((unsigned long)txds
->Host_Control
);
2394 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2397 pci_unmap_single(nic
->pdev
, (dma_addr_t
)txds
->Buffer_Pointer
,
2398 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2399 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2402 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2403 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2404 if (!txds
->Buffer_Pointer
)
2406 pci_unmap_page(nic
->pdev
,
2407 (dma_addr_t
)txds
->Buffer_Pointer
,
2408 frag
->size
, PCI_DMA_TODEVICE
);
2411 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2416 * free_tx_buffers - Free all queued Tx buffers
2417 * @nic : device private variable.
2419 * Free all queued Tx buffers.
2420 * Return Value: void
2423 static void free_tx_buffers(struct s2io_nic
*nic
)
2425 struct net_device
*dev
= nic
->dev
;
2426 struct sk_buff
*skb
;
2430 struct config_param
*config
= &nic
->config
;
2431 struct mac_info
*mac_control
= &nic
->mac_control
;
2432 struct stat_block
*stats
= mac_control
->stats_info
;
2433 struct swStat
*swstats
= &stats
->sw_stat
;
2435 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2436 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
2437 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
2438 unsigned long flags
;
2440 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
2441 for (j
= 0; j
< tx_cfg
->fifo_len
; j
++) {
2442 txdp
= (struct TxD
*)fifo
->list_info
[j
].list_virt_addr
;
2443 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2445 swstats
->mem_freed
+= skb
->truesize
;
2451 "%s: forcibly freeing %d skbs on FIFO%d\n",
2453 fifo
->tx_curr_get_info
.offset
= 0;
2454 fifo
->tx_curr_put_info
.offset
= 0;
2455 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
2460 * stop_nic - To stop the nic
2461 * @nic ; device private variable.
2463 * This function does exactly the opposite of what the start_nic()
2464 * function does. This function is called to stop the device.
2469 static void stop_nic(struct s2io_nic
*nic
)
2471 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2472 register u64 val64
= 0;
2475 /* Disable all interrupts */
2476 en_dis_err_alarms(nic
, ENA_ALL_INTRS
, DISABLE_INTRS
);
2477 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2478 interruptible
|= TX_PIC_INTR
;
2479 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2481 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2482 val64
= readq(&bar0
->adapter_control
);
2483 val64
&= ~(ADAPTER_CNTL_EN
);
2484 writeq(val64
, &bar0
->adapter_control
);
2488 * fill_rx_buffers - Allocates the Rx side skbs
2489 * @ring_info: per ring structure
2490 * @from_card_up: If this is true, we will map the buffer to get
2491 * the dma address for buf0 and buf1 to give it to the card.
2492 * Else we will sync the already mapped buffer to give it to the card.
2494 * The function allocates Rx side skbs and puts the physical
2495 * address of these buffers into the RxD buffer pointers, so that the NIC
2496 * can DMA the received frame into these locations.
2497 * The NIC supports 3 receive modes, viz
2499 * 2. three buffer and
2500 * 3. Five buffer modes.
2501 * Each mode defines how many fragments the received frame will be split
2502 * up into by the NIC. The frame is split into L3 header, L4 Header,
2503 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2504 * is split into 3 fragments. As of now only single buffer mode is
2507 * SUCCESS on success or an appropriate -ve value on failure.
2509 static int fill_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
,
2512 struct sk_buff
*skb
;
2514 int off
, size
, block_no
, block_no1
;
2519 struct RxD_t
*first_rxdp
= NULL
;
2520 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2524 struct swStat
*swstats
= &ring
->nic
->mac_control
.stats_info
->sw_stat
;
2526 alloc_cnt
= ring
->pkt_cnt
- ring
->rx_bufs_left
;
2528 block_no1
= ring
->rx_curr_get_info
.block_index
;
2529 while (alloc_tab
< alloc_cnt
) {
2530 block_no
= ring
->rx_curr_put_info
.block_index
;
2532 off
= ring
->rx_curr_put_info
.offset
;
2534 rxdp
= ring
->rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2536 rxd_index
= off
+ 1;
2538 rxd_index
+= (block_no
* ring
->rxd_count
);
2540 if ((block_no
== block_no1
) &&
2541 (off
== ring
->rx_curr_get_info
.offset
) &&
2542 (rxdp
->Host_Control
)) {
2543 DBG_PRINT(INTR_DBG
, "%s: Get and Put info equated\n",
2547 if (off
&& (off
== ring
->rxd_count
)) {
2548 ring
->rx_curr_put_info
.block_index
++;
2549 if (ring
->rx_curr_put_info
.block_index
==
2551 ring
->rx_curr_put_info
.block_index
= 0;
2552 block_no
= ring
->rx_curr_put_info
.block_index
;
2554 ring
->rx_curr_put_info
.offset
= off
;
2555 rxdp
= ring
->rx_blocks
[block_no
].block_virt_addr
;
2556 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2557 ring
->dev
->name
, rxdp
);
2561 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2562 ((ring
->rxd_mode
== RXD_MODE_3B
) &&
2563 (rxdp
->Control_2
& s2BIT(0)))) {
2564 ring
->rx_curr_put_info
.offset
= off
;
2567 /* calculate size of skb based on ring mode */
2569 HEADER_ETHERNET_II_802_3_SIZE
+
2570 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2571 if (ring
->rxd_mode
== RXD_MODE_1
)
2572 size
+= NET_IP_ALIGN
;
2574 size
= ring
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2577 skb
= dev_alloc_skb(size
);
2579 DBG_PRINT(INFO_DBG
, "%s: Could not allocate skb\n",
2583 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2585 swstats
->mem_alloc_fail_cnt
++;
2589 swstats
->mem_allocated
+= skb
->truesize
;
2591 if (ring
->rxd_mode
== RXD_MODE_1
) {
2592 /* 1 buffer mode - normal operation mode */
2593 rxdp1
= (struct RxD1
*)rxdp
;
2594 memset(rxdp
, 0, sizeof(struct RxD1
));
2595 skb_reserve(skb
, NET_IP_ALIGN
);
2596 rxdp1
->Buffer0_ptr
=
2597 pci_map_single(ring
->pdev
, skb
->data
,
2598 size
- NET_IP_ALIGN
,
2599 PCI_DMA_FROMDEVICE
);
2600 if (pci_dma_mapping_error(nic
->pdev
,
2601 rxdp1
->Buffer0_ptr
))
2602 goto pci_map_failed
;
2605 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2606 rxdp
->Host_Control
= (unsigned long)skb
;
2607 } else if (ring
->rxd_mode
== RXD_MODE_3B
) {
2610 * 2 buffer mode provides 128
2611 * byte aligned receive buffers.
2614 rxdp3
= (struct RxD3
*)rxdp
;
2615 /* save buffer pointers to avoid frequent dma mapping */
2616 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2617 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2618 memset(rxdp
, 0, sizeof(struct RxD3
));
2619 /* restore the buffer pointers for dma sync*/
2620 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2621 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2623 ba
= &ring
->ba
[block_no
][off
];
2624 skb_reserve(skb
, BUF0_LEN
);
2625 tmp
= (u64
)(unsigned long)skb
->data
;
2628 skb
->data
= (void *) (unsigned long)tmp
;
2629 skb_reset_tail_pointer(skb
);
2632 rxdp3
->Buffer0_ptr
=
2633 pci_map_single(ring
->pdev
, ba
->ba_0
,
2635 PCI_DMA_FROMDEVICE
);
2636 if (pci_dma_mapping_error(nic
->pdev
,
2637 rxdp3
->Buffer0_ptr
))
2638 goto pci_map_failed
;
2640 pci_dma_sync_single_for_device(ring
->pdev
,
2641 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2643 PCI_DMA_FROMDEVICE
);
2645 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2646 if (ring
->rxd_mode
== RXD_MODE_3B
) {
2647 /* Two buffer mode */
2650 * Buffer2 will have L3/L4 header plus
2653 rxdp3
->Buffer2_ptr
= pci_map_single(ring
->pdev
,
2656 PCI_DMA_FROMDEVICE
);
2658 if (pci_dma_mapping_error(nic
->pdev
,
2659 rxdp3
->Buffer2_ptr
))
2660 goto pci_map_failed
;
2663 rxdp3
->Buffer1_ptr
=
2664 pci_map_single(ring
->pdev
,
2667 PCI_DMA_FROMDEVICE
);
2669 if (pci_dma_mapping_error(nic
->pdev
,
2670 rxdp3
->Buffer1_ptr
)) {
2671 pci_unmap_single(ring
->pdev
,
2672 (dma_addr_t
)(unsigned long)
2675 PCI_DMA_FROMDEVICE
);
2676 goto pci_map_failed
;
2679 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2680 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2683 rxdp
->Control_2
|= s2BIT(0);
2684 rxdp
->Host_Control
= (unsigned long) (skb
);
2686 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2687 rxdp
->Control_1
|= RXD_OWN_XENA
;
2689 if (off
== (ring
->rxd_count
+ 1))
2691 ring
->rx_curr_put_info
.offset
= off
;
2693 rxdp
->Control_2
|= SET_RXD_MARKER
;
2694 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2697 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2701 ring
->rx_bufs_left
+= 1;
2706 /* Transfer ownership of first descriptor to adapter just before
2707 * exiting. Before that, use memory barrier so that ownership
2708 * and other fields are seen by adapter correctly.
2712 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2718 swstats
->pci_map_fail_cnt
++;
2719 swstats
->mem_freed
+= skb
->truesize
;
2720 dev_kfree_skb_irq(skb
);
2724 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2726 struct net_device
*dev
= sp
->dev
;
2728 struct sk_buff
*skb
;
2733 struct mac_info
*mac_control
= &sp
->mac_control
;
2734 struct stat_block
*stats
= mac_control
->stats_info
;
2735 struct swStat
*swstats
= &stats
->sw_stat
;
2737 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2738 rxdp
= mac_control
->rings
[ring_no
].
2739 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2740 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2743 if (sp
->rxd_mode
== RXD_MODE_1
) {
2744 rxdp1
= (struct RxD1
*)rxdp
;
2745 pci_unmap_single(sp
->pdev
,
2746 (dma_addr_t
)rxdp1
->Buffer0_ptr
,
2748 HEADER_ETHERNET_II_802_3_SIZE
+
2749 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
,
2750 PCI_DMA_FROMDEVICE
);
2751 memset(rxdp
, 0, sizeof(struct RxD1
));
2752 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
2753 rxdp3
= (struct RxD3
*)rxdp
;
2754 ba
= &mac_control
->rings
[ring_no
].ba
[blk
][j
];
2755 pci_unmap_single(sp
->pdev
,
2756 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
2758 PCI_DMA_FROMDEVICE
);
2759 pci_unmap_single(sp
->pdev
,
2760 (dma_addr_t
)rxdp3
->Buffer1_ptr
,
2762 PCI_DMA_FROMDEVICE
);
2763 pci_unmap_single(sp
->pdev
,
2764 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
2766 PCI_DMA_FROMDEVICE
);
2767 memset(rxdp
, 0, sizeof(struct RxD3
));
2769 swstats
->mem_freed
+= skb
->truesize
;
2771 mac_control
->rings
[ring_no
].rx_bufs_left
-= 1;
2776 * free_rx_buffers - Frees all Rx buffers
2777 * @sp: device private variable.
2779 * This function will free all Rx buffers allocated by host.
2784 static void free_rx_buffers(struct s2io_nic
*sp
)
2786 struct net_device
*dev
= sp
->dev
;
2787 int i
, blk
= 0, buf_cnt
= 0;
2788 struct config_param
*config
= &sp
->config
;
2789 struct mac_info
*mac_control
= &sp
->mac_control
;
2791 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2792 struct ring_info
*ring
= &mac_control
->rings
[i
];
2794 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2795 free_rxd_blk(sp
, i
, blk
);
2797 ring
->rx_curr_put_info
.block_index
= 0;
2798 ring
->rx_curr_get_info
.block_index
= 0;
2799 ring
->rx_curr_put_info
.offset
= 0;
2800 ring
->rx_curr_get_info
.offset
= 0;
2801 ring
->rx_bufs_left
= 0;
2802 DBG_PRINT(INIT_DBG
, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2803 dev
->name
, buf_cnt
, i
);
2807 static int s2io_chk_rx_buffers(struct s2io_nic
*nic
, struct ring_info
*ring
)
2809 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2810 DBG_PRINT(INFO_DBG
, "%s: Out of memory in Rx Intr!!\n",
2817 * s2io_poll - Rx interrupt handler for NAPI support
2818 * @napi : pointer to the napi structure.
2819 * @budget : The number of packets that were budgeted to be processed
2820 * during one pass through the 'Poll" function.
2822 * Comes into picture only if NAPI support has been incorporated. It does
2823 * the same thing that rx_intr_handler does, but not in a interrupt context
2824 * also It will process only a given number of packets.
2826 * 0 on success and 1 if there are No Rx packets to be processed.
2829 static int s2io_poll_msix(struct napi_struct
*napi
, int budget
)
2831 struct ring_info
*ring
= container_of(napi
, struct ring_info
, napi
);
2832 struct net_device
*dev
= ring
->dev
;
2833 int pkts_processed
= 0;
2834 u8 __iomem
*addr
= NULL
;
2836 struct s2io_nic
*nic
= netdev_priv(dev
);
2837 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2838 int budget_org
= budget
;
2840 if (unlikely(!is_s2io_card_up(nic
)))
2843 pkts_processed
= rx_intr_handler(ring
, budget
);
2844 s2io_chk_rx_buffers(nic
, ring
);
2846 if (pkts_processed
< budget_org
) {
2847 napi_complete(napi
);
2848 /*Re Enable MSI-Rx Vector*/
2849 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
2850 addr
+= 7 - ring
->ring_no
;
2851 val8
= (ring
->ring_no
== 0) ? 0x3f : 0xbf;
2855 return pkts_processed
;
2858 static int s2io_poll_inta(struct napi_struct
*napi
, int budget
)
2860 struct s2io_nic
*nic
= container_of(napi
, struct s2io_nic
, napi
);
2861 int pkts_processed
= 0;
2862 int ring_pkts_processed
, i
;
2863 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2864 int budget_org
= budget
;
2865 struct config_param
*config
= &nic
->config
;
2866 struct mac_info
*mac_control
= &nic
->mac_control
;
2868 if (unlikely(!is_s2io_card_up(nic
)))
2871 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2872 struct ring_info
*ring
= &mac_control
->rings
[i
];
2873 ring_pkts_processed
= rx_intr_handler(ring
, budget
);
2874 s2io_chk_rx_buffers(nic
, ring
);
2875 pkts_processed
+= ring_pkts_processed
;
2876 budget
-= ring_pkts_processed
;
2880 if (pkts_processed
< budget_org
) {
2881 napi_complete(napi
);
2882 /* Re enable the Rx interrupts for the ring */
2883 writeq(0, &bar0
->rx_traffic_mask
);
2884 readl(&bar0
->rx_traffic_mask
);
2886 return pkts_processed
;
2889 #ifdef CONFIG_NET_POLL_CONTROLLER
2891 * s2io_netpoll - netpoll event handler entry point
2892 * @dev : pointer to the device structure.
2894 * This function will be called by upper layer to check for events on the
2895 * interface in situations where interrupts are disabled. It is used for
2896 * specific in-kernel networking tasks, such as remote consoles and kernel
2897 * debugging over the network (example netdump in RedHat).
2899 static void s2io_netpoll(struct net_device
*dev
)
2901 struct s2io_nic
*nic
= netdev_priv(dev
);
2902 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2903 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2905 struct config_param
*config
= &nic
->config
;
2906 struct mac_info
*mac_control
= &nic
->mac_control
;
2908 if (pci_channel_offline(nic
->pdev
))
2911 disable_irq(dev
->irq
);
2913 writeq(val64
, &bar0
->rx_traffic_int
);
2914 writeq(val64
, &bar0
->tx_traffic_int
);
2916 /* we need to free up the transmitted skbufs or else netpoll will
2917 * run out of skbs and will fail and eventually netpoll application such
2918 * as netdump will fail.
2920 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2921 tx_intr_handler(&mac_control
->fifos
[i
]);
2923 /* check for received packet and indicate up to network */
2924 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2925 struct ring_info
*ring
= &mac_control
->rings
[i
];
2927 rx_intr_handler(ring
, 0);
2930 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2931 struct ring_info
*ring
= &mac_control
->rings
[i
];
2933 if (fill_rx_buffers(nic
, ring
, 0) == -ENOMEM
) {
2935 "%s: Out of memory in Rx Netpoll!!\n",
2940 enable_irq(dev
->irq
);
2945 * rx_intr_handler - Rx interrupt handler
2946 * @ring_info: per ring structure.
2947 * @budget: budget for napi processing.
2949 * If the interrupt is because of a received frame or if the
2950 * receive ring contains fresh as yet un-processed frames,this function is
2951 * called. It picks out the RxD at which place the last Rx processing had
2952 * stopped and sends the skb to the OSM's Rx handler and then increments
2955 * No. of napi packets processed.
2957 static int rx_intr_handler(struct ring_info
*ring_data
, int budget
)
2959 int get_block
, put_block
;
2960 struct rx_curr_get_info get_info
, put_info
;
2962 struct sk_buff
*skb
;
2963 int pkt_cnt
= 0, napi_pkts
= 0;
2968 get_info
= ring_data
->rx_curr_get_info
;
2969 get_block
= get_info
.block_index
;
2970 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2971 put_block
= put_info
.block_index
;
2972 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2974 while (RXD_IS_UP2DT(rxdp
)) {
2976 * If your are next to put index then it's
2977 * FIFO full condition
2979 if ((get_block
== put_block
) &&
2980 (get_info
.offset
+ 1) == put_info
.offset
) {
2981 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",
2982 ring_data
->dev
->name
);
2985 skb
= (struct sk_buff
*)((unsigned long)rxdp
->Host_Control
);
2987 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Rx Intr\n",
2988 ring_data
->dev
->name
);
2991 if (ring_data
->rxd_mode
== RXD_MODE_1
) {
2992 rxdp1
= (struct RxD1
*)rxdp
;
2993 pci_unmap_single(ring_data
->pdev
, (dma_addr_t
)
2996 HEADER_ETHERNET_II_802_3_SIZE
+
2999 PCI_DMA_FROMDEVICE
);
3000 } else if (ring_data
->rxd_mode
== RXD_MODE_3B
) {
3001 rxdp3
= (struct RxD3
*)rxdp
;
3002 pci_dma_sync_single_for_cpu(ring_data
->pdev
,
3003 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
3005 PCI_DMA_FROMDEVICE
);
3006 pci_unmap_single(ring_data
->pdev
,
3007 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
3009 PCI_DMA_FROMDEVICE
);
3011 prefetch(skb
->data
);
3012 rx_osm_handler(ring_data
, rxdp
);
3014 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3015 rxdp
= ring_data
->rx_blocks
[get_block
].
3016 rxds
[get_info
.offset
].virt_addr
;
3017 if (get_info
.offset
== rxd_count
[ring_data
->rxd_mode
]) {
3018 get_info
.offset
= 0;
3019 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
3021 if (get_block
== ring_data
->block_count
)
3023 ring_data
->rx_curr_get_info
.block_index
= get_block
;
3024 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
3027 if (ring_data
->nic
->config
.napi
) {
3034 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
3037 if (ring_data
->lro
) {
3038 /* Clear all LRO sessions before exiting */
3039 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
3040 struct lro
*lro
= &ring_data
->lro0_n
[i
];
3042 update_L3L4_header(ring_data
->nic
, lro
);
3043 queue_rx_frame(lro
->parent
, lro
->vlan_tag
);
3044 clear_lro_session(lro
);
3052 * tx_intr_handler - Transmit interrupt handler
3053 * @nic : device private variable
3055 * If an interrupt was raised to indicate DMA complete of the
3056 * Tx packet, this function is called. It identifies the last TxD
3057 * whose buffer was freed and frees all skbs whose data have already
3058 * DMA'ed into the NICs internal memory.
3063 static void tx_intr_handler(struct fifo_info
*fifo_data
)
3065 struct s2io_nic
*nic
= fifo_data
->nic
;
3066 struct tx_curr_get_info get_info
, put_info
;
3067 struct sk_buff
*skb
= NULL
;
3070 unsigned long flags
= 0;
3072 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3073 struct swStat
*swstats
= &stats
->sw_stat
;
3075 if (!spin_trylock_irqsave(&fifo_data
->tx_lock
, flags
))
3078 get_info
= fifo_data
->tx_curr_get_info
;
3079 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
3080 txdlp
= (struct TxD
*)
3081 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3082 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
3083 (get_info
.offset
!= put_info
.offset
) &&
3084 (txdlp
->Host_Control
)) {
3085 /* Check for TxD errors */
3086 if (txdlp
->Control_1
& TXD_T_CODE
) {
3087 unsigned long long err
;
3088 err
= txdlp
->Control_1
& TXD_T_CODE
;
3090 swstats
->parity_err_cnt
++;
3093 /* update t_code statistics */
3094 err_mask
= err
>> 48;
3097 swstats
->tx_buf_abort_cnt
++;
3101 swstats
->tx_desc_abort_cnt
++;
3105 swstats
->tx_parity_err_cnt
++;
3109 swstats
->tx_link_loss_cnt
++;
3113 swstats
->tx_list_proc_err_cnt
++;
3118 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
3120 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3121 DBG_PRINT(ERR_DBG
, "%s: NULL skb in Tx Free Intr\n",
3127 /* Updating the statistics block */
3128 swstats
->mem_freed
+= skb
->truesize
;
3129 dev_kfree_skb_irq(skb
);
3132 if (get_info
.offset
== get_info
.fifo_len
+ 1)
3133 get_info
.offset
= 0;
3134 txdlp
= (struct TxD
*)
3135 fifo_data
->list_info
[get_info
.offset
].list_virt_addr
;
3136 fifo_data
->tx_curr_get_info
.offset
= get_info
.offset
;
3139 s2io_wake_tx_queue(fifo_data
, pkt_cnt
, nic
->config
.multiq
);
3141 spin_unlock_irqrestore(&fifo_data
->tx_lock
, flags
);
3145 * s2io_mdio_write - Function to write in to MDIO registers
3146 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3147 * @addr : address value
3148 * @value : data value
3149 * @dev : pointer to net_device structure
3151 * This function is used to write values to the MDIO registers
3154 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
,
3155 struct net_device
*dev
)
3158 struct s2io_nic
*sp
= netdev_priv(dev
);
3159 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3161 /* address transaction */
3162 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3163 MDIO_MMD_DEV_ADDR(mmd_type
) |
3164 MDIO_MMS_PRT_ADDR(0x0);
3165 writeq(val64
, &bar0
->mdio_control
);
3166 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3167 writeq(val64
, &bar0
->mdio_control
);
3170 /* Data transaction */
3171 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3172 MDIO_MMD_DEV_ADDR(mmd_type
) |
3173 MDIO_MMS_PRT_ADDR(0x0) |
3174 MDIO_MDIO_DATA(value
) |
3175 MDIO_OP(MDIO_OP_WRITE_TRANS
);
3176 writeq(val64
, &bar0
->mdio_control
);
3177 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3178 writeq(val64
, &bar0
->mdio_control
);
3181 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3182 MDIO_MMD_DEV_ADDR(mmd_type
) |
3183 MDIO_MMS_PRT_ADDR(0x0) |
3184 MDIO_OP(MDIO_OP_READ_TRANS
);
3185 writeq(val64
, &bar0
->mdio_control
);
3186 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3187 writeq(val64
, &bar0
->mdio_control
);
3192 * s2io_mdio_read - Function to write in to MDIO registers
3193 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3194 * @addr : address value
3195 * @dev : pointer to net_device structure
3197 * This function is used to read values to the MDIO registers
3200 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
3204 struct s2io_nic
*sp
= netdev_priv(dev
);
3205 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3207 /* address transaction */
3208 val64
= val64
| (MDIO_MMD_INDX_ADDR(addr
)
3209 | MDIO_MMD_DEV_ADDR(mmd_type
)
3210 | MDIO_MMS_PRT_ADDR(0x0));
3211 writeq(val64
, &bar0
->mdio_control
);
3212 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3213 writeq(val64
, &bar0
->mdio_control
);
3216 /* Data transaction */
3217 val64
= MDIO_MMD_INDX_ADDR(addr
) |
3218 MDIO_MMD_DEV_ADDR(mmd_type
) |
3219 MDIO_MMS_PRT_ADDR(0x0) |
3220 MDIO_OP(MDIO_OP_READ_TRANS
);
3221 writeq(val64
, &bar0
->mdio_control
);
3222 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
3223 writeq(val64
, &bar0
->mdio_control
);
3226 /* Read the value from regs */
3227 rval64
= readq(&bar0
->mdio_control
);
3228 rval64
= rval64
& 0xFFFF0000;
3229 rval64
= rval64
>> 16;
3234 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3235 * @counter : counter value to be updated
3236 * @flag : flag to indicate the status
3237 * @type : counter type
3239 * This function is to check the status of the xpak counters value
3243 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
,
3249 for (i
= 0; i
< index
; i
++)
3253 *counter
= *counter
+ 1;
3254 val64
= *regs_stat
& mask
;
3255 val64
= val64
>> (index
* 0x2);
3261 "Take Xframe NIC out of service.\n");
3263 "Excessive temperatures may result in premature transceiver failure.\n");
3267 "Take Xframe NIC out of service.\n");
3269 "Excessive bias currents may indicate imminent laser diode failure.\n");
3273 "Take Xframe NIC out of service.\n");
3275 "Excessive laser output power may saturate far-end receiver.\n");
3279 "Incorrect XPAK Alarm type\n");
3283 val64
= val64
<< (index
* 0x2);
3284 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3287 *regs_stat
= *regs_stat
& (~mask
);
3292 * s2io_updt_xpak_counter - Function to update the xpak counters
3293 * @dev : pointer to net_device struct
3295 * This function is to upate the status of the xpak counters value
3298 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3306 struct s2io_nic
*sp
= netdev_priv(dev
);
3307 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
3308 struct xpakStat
*xstats
= &stats
->xpak_stat
;
3310 /* Check the communication with the MDIO slave */
3313 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3314 if ((val64
== 0xFFFF) || (val64
== 0x0000)) {
3316 "ERR: MDIO slave access failed - Returned %llx\n",
3317 (unsigned long long)val64
);
3321 /* Check for the expected value of control reg 1 */
3322 if (val64
!= MDIO_CTRL1_SPEED10G
) {
3323 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - "
3324 "Returned: %llx- Expected: 0x%x\n",
3325 (unsigned long long)val64
, MDIO_CTRL1_SPEED10G
);
3329 /* Loading the DOM register to MDIO register */
3331 s2io_mdio_write(MDIO_MMD_PMAPMD
, addr
, val16
, dev
);
3332 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3334 /* Reading the Alarm flags */
3337 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3339 flag
= CHECKBIT(val64
, 0x7);
3341 s2io_chk_xpak_counter(&xstats
->alarm_transceiver_temp_high
,
3342 &xstats
->xpak_regs_stat
,
3345 if (CHECKBIT(val64
, 0x6))
3346 xstats
->alarm_transceiver_temp_low
++;
3348 flag
= CHECKBIT(val64
, 0x3);
3350 s2io_chk_xpak_counter(&xstats
->alarm_laser_bias_current_high
,
3351 &xstats
->xpak_regs_stat
,
3354 if (CHECKBIT(val64
, 0x2))
3355 xstats
->alarm_laser_bias_current_low
++;
3357 flag
= CHECKBIT(val64
, 0x1);
3359 s2io_chk_xpak_counter(&xstats
->alarm_laser_output_power_high
,
3360 &xstats
->xpak_regs_stat
,
3363 if (CHECKBIT(val64
, 0x0))
3364 xstats
->alarm_laser_output_power_low
++;
3366 /* Reading the Warning flags */
3369 val64
= s2io_mdio_read(MDIO_MMD_PMAPMD
, addr
, dev
);
3371 if (CHECKBIT(val64
, 0x7))
3372 xstats
->warn_transceiver_temp_high
++;
3374 if (CHECKBIT(val64
, 0x6))
3375 xstats
->warn_transceiver_temp_low
++;
3377 if (CHECKBIT(val64
, 0x3))
3378 xstats
->warn_laser_bias_current_high
++;
3380 if (CHECKBIT(val64
, 0x2))
3381 xstats
->warn_laser_bias_current_low
++;
3383 if (CHECKBIT(val64
, 0x1))
3384 xstats
->warn_laser_output_power_high
++;
3386 if (CHECKBIT(val64
, 0x0))
3387 xstats
->warn_laser_output_power_low
++;
3391 * wait_for_cmd_complete - waits for a command to complete.
3392 * @sp : private member of the device structure, which is a pointer to the
3393 * s2io_nic structure.
3394 * Description: Function that waits for a command to Write into RMAC
3395 * ADDR DATA registers to be completed and returns either success or
3396 * error depending on whether the command was complete or not.
3398 * SUCCESS on success and FAILURE on failure.
3401 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3404 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3407 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3411 val64
= readq(addr
);
3412 if (bit_state
== S2IO_BIT_RESET
) {
3413 if (!(val64
& busy_bit
)) {
3418 if (val64
& busy_bit
) {
3435 * check_pci_device_id - Checks if the device id is supported
3437 * Description: Function to check if the pci device id is supported by driver.
3438 * Return value: Actual device id if supported else PCI_ANY_ID
3440 static u16
check_pci_device_id(u16 id
)
3443 case PCI_DEVICE_ID_HERC_WIN
:
3444 case PCI_DEVICE_ID_HERC_UNI
:
3445 return XFRAME_II_DEVICE
;
3446 case PCI_DEVICE_ID_S2IO_UNI
:
3447 case PCI_DEVICE_ID_S2IO_WIN
:
3448 return XFRAME_I_DEVICE
;
3455 * s2io_reset - Resets the card.
3456 * @sp : private member of the device structure.
3457 * Description: Function to Reset the card. This function then also
3458 * restores the previously saved PCI configuration space registers as
3459 * the card reset also resets the configuration space.
3464 static void s2io_reset(struct s2io_nic
*sp
)
3466 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3471 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3472 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3473 struct stat_block
*stats
;
3474 struct swStat
*swstats
;
3476 DBG_PRINT(INIT_DBG
, "%s: Resetting XFrame card %s\n",
3477 __func__
, pci_name(sp
->pdev
));
3479 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3480 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3482 val64
= SW_RESET_ALL
;
3483 writeq(val64
, &bar0
->sw_reset
);
3484 if (strstr(sp
->product_name
, "CX4"))
3487 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3489 /* Restore the PCI state saved during initialization. */
3490 pci_restore_state(sp
->pdev
);
3491 pci_save_state(sp
->pdev
);
3492 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3493 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3498 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
)
3499 DBG_PRINT(ERR_DBG
, "%s SW_Reset failed!\n", __func__
);
3501 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3505 /* Set swapper to enable I/O register access */
3506 s2io_set_swapper(sp
);
3508 /* restore mac_addr entries */
3509 do_s2io_restore_unicast_mc(sp
);
3511 /* Restore the MSIX table entries from local variables */
3512 restore_xmsi_data(sp
);
3514 /* Clear certain PCI/PCI-X fields after reset */
3515 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3516 /* Clear "detected parity error" bit */
3517 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3519 /* Clearing PCIX Ecc status register */
3520 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3522 /* Clearing PCI_STATUS error reflected here */
3523 writeq(s2BIT(62), &bar0
->txpic_int_reg
);
3526 /* Reset device statistics maintained by OS */
3527 memset(&sp
->stats
, 0, sizeof(struct net_device_stats
));
3529 stats
= sp
->mac_control
.stats_info
;
3530 swstats
= &stats
->sw_stat
;
3532 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3533 up_cnt
= swstats
->link_up_cnt
;
3534 down_cnt
= swstats
->link_down_cnt
;
3535 up_time
= swstats
->link_up_time
;
3536 down_time
= swstats
->link_down_time
;
3537 reset_cnt
= swstats
->soft_reset_cnt
;
3538 mem_alloc_cnt
= swstats
->mem_allocated
;
3539 mem_free_cnt
= swstats
->mem_freed
;
3540 watchdog_cnt
= swstats
->watchdog_timer_cnt
;
3542 memset(stats
, 0, sizeof(struct stat_block
));
3544 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3545 swstats
->link_up_cnt
= up_cnt
;
3546 swstats
->link_down_cnt
= down_cnt
;
3547 swstats
->link_up_time
= up_time
;
3548 swstats
->link_down_time
= down_time
;
3549 swstats
->soft_reset_cnt
= reset_cnt
;
3550 swstats
->mem_allocated
= mem_alloc_cnt
;
3551 swstats
->mem_freed
= mem_free_cnt
;
3552 swstats
->watchdog_timer_cnt
= watchdog_cnt
;
3554 /* SXE-002: Configure link and activity LED to turn it off */
3555 subid
= sp
->pdev
->subsystem_device
;
3556 if (((subid
& 0xFF) >= 0x07) &&
3557 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3558 val64
= readq(&bar0
->gpio_control
);
3559 val64
|= 0x0000800000000000ULL
;
3560 writeq(val64
, &bar0
->gpio_control
);
3561 val64
= 0x0411040400000000ULL
;
3562 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3566 * Clear spurious ECC interrupts that would have occured on
3567 * XFRAME II cards after reset.
3569 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3570 val64
= readq(&bar0
->pcc_err_reg
);
3571 writeq(val64
, &bar0
->pcc_err_reg
);
3574 sp
->device_enabled_once
= false;
3578 * s2io_set_swapper - to set the swapper controle on the card
3579 * @sp : private member of the device structure,
3580 * pointer to the s2io_nic structure.
3581 * Description: Function to set the swapper control on the card
3582 * correctly depending on the 'endianness' of the system.
3584 * SUCCESS on success and FAILURE on failure.
3587 static int s2io_set_swapper(struct s2io_nic
*sp
)
3589 struct net_device
*dev
= sp
->dev
;
3590 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3591 u64 val64
, valt
, valr
;
3594 * Set proper endian settings and verify the same by reading
3595 * the PIF Feed-back register.
3598 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3599 if (val64
!= 0x0123456789ABCDEFULL
) {
3601 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3602 0x8100008181000081ULL
, /* FE=1, SE=0 */
3603 0x4200004242000042ULL
, /* FE=0, SE=1 */
3604 0}; /* FE=0, SE=0 */
3607 writeq(value
[i
], &bar0
->swapper_ctrl
);
3608 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3609 if (val64
== 0x0123456789ABCDEFULL
)
3614 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, "
3615 "feedback read %llx\n",
3616 dev
->name
, (unsigned long long)val64
);
3621 valr
= readq(&bar0
->swapper_ctrl
);
3624 valt
= 0x0123456789ABCDEFULL
;
3625 writeq(valt
, &bar0
->xmsi_address
);
3626 val64
= readq(&bar0
->xmsi_address
);
3628 if (val64
!= valt
) {
3630 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3631 0x0081810000818100ULL
, /* FE=1, SE=0 */
3632 0x0042420000424200ULL
, /* FE=0, SE=1 */
3633 0}; /* FE=0, SE=0 */
3636 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3637 writeq(valt
, &bar0
->xmsi_address
);
3638 val64
= readq(&bar0
->xmsi_address
);
3644 unsigned long long x
= val64
;
3646 "Write failed, Xmsi_addr reads:0x%llx\n", x
);
3650 val64
= readq(&bar0
->swapper_ctrl
);
3651 val64
&= 0xFFFF000000000000ULL
;
3655 * The device by default set to a big endian format, so a
3656 * big endian driver need not set anything.
3658 val64
|= (SWAPPER_CTRL_TXP_FE
|
3659 SWAPPER_CTRL_TXP_SE
|
3660 SWAPPER_CTRL_TXD_R_FE
|
3661 SWAPPER_CTRL_TXD_W_FE
|
3662 SWAPPER_CTRL_TXF_R_FE
|
3663 SWAPPER_CTRL_RXD_R_FE
|
3664 SWAPPER_CTRL_RXD_W_FE
|
3665 SWAPPER_CTRL_RXF_W_FE
|
3666 SWAPPER_CTRL_XMSI_FE
|
3667 SWAPPER_CTRL_STATS_FE
|
3668 SWAPPER_CTRL_STATS_SE
);
3669 if (sp
->config
.intr_type
== INTA
)
3670 val64
|= SWAPPER_CTRL_XMSI_SE
;
3671 writeq(val64
, &bar0
->swapper_ctrl
);
3674 * Initially we enable all bits to make it accessible by the
3675 * driver, then we selectively enable only those bits that
3678 val64
|= (SWAPPER_CTRL_TXP_FE
|
3679 SWAPPER_CTRL_TXP_SE
|
3680 SWAPPER_CTRL_TXD_R_FE
|
3681 SWAPPER_CTRL_TXD_R_SE
|
3682 SWAPPER_CTRL_TXD_W_FE
|
3683 SWAPPER_CTRL_TXD_W_SE
|
3684 SWAPPER_CTRL_TXF_R_FE
|
3685 SWAPPER_CTRL_RXD_R_FE
|
3686 SWAPPER_CTRL_RXD_R_SE
|
3687 SWAPPER_CTRL_RXD_W_FE
|
3688 SWAPPER_CTRL_RXD_W_SE
|
3689 SWAPPER_CTRL_RXF_W_FE
|
3690 SWAPPER_CTRL_XMSI_FE
|
3691 SWAPPER_CTRL_STATS_FE
|
3692 SWAPPER_CTRL_STATS_SE
);
3693 if (sp
->config
.intr_type
== INTA
)
3694 val64
|= SWAPPER_CTRL_XMSI_SE
;
3695 writeq(val64
, &bar0
->swapper_ctrl
);
3697 val64
= readq(&bar0
->swapper_ctrl
);
3700 * Verifying if endian settings are accurate by reading a
3701 * feedback register.
3703 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3704 if (val64
!= 0x0123456789ABCDEFULL
) {
3705 /* Endian settings are incorrect, calls for another dekko. */
3707 "%s: Endian settings are wrong, feedback read %llx\n",
3708 dev
->name
, (unsigned long long)val64
);
3715 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3717 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3719 int ret
= 0, cnt
= 0;
3722 val64
= readq(&bar0
->xmsi_access
);
3723 if (!(val64
& s2BIT(15)))
3729 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3736 static void restore_xmsi_data(struct s2io_nic
*nic
)
3738 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3742 if (nic
->device_type
== XFRAME_I_DEVICE
)
3745 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3746 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3747 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3748 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3749 val64
= (s2BIT(7) | s2BIT(15) | vBIT(msix_index
, 26, 6));
3750 writeq(val64
, &bar0
->xmsi_access
);
3751 if (wait_for_msix_trans(nic
, msix_index
)) {
3752 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3753 __func__
, msix_index
);
3759 static void store_xmsi_data(struct s2io_nic
*nic
)
3761 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3762 u64 val64
, addr
, data
;
3765 if (nic
->device_type
== XFRAME_I_DEVICE
)
3768 /* Store and display */
3769 for (i
= 0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3770 msix_index
= (i
) ? ((i
-1) * 8 + 1) : 0;
3771 val64
= (s2BIT(15) | vBIT(msix_index
, 26, 6));
3772 writeq(val64
, &bar0
->xmsi_access
);
3773 if (wait_for_msix_trans(nic
, msix_index
)) {
3774 DBG_PRINT(ERR_DBG
, "%s: index: %d failed\n",
3775 __func__
, msix_index
);
3778 addr
= readq(&bar0
->xmsi_address
);
3779 data
= readq(&bar0
->xmsi_data
);
3781 nic
->msix_info
[i
].addr
= addr
;
3782 nic
->msix_info
[i
].data
= data
;
3787 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3789 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3791 u16 msi_control
; /* Temp variable */
3792 int ret
, i
, j
, msix_indx
= 1;
3794 struct stat_block
*stats
= nic
->mac_control
.stats_info
;
3795 struct swStat
*swstats
= &stats
->sw_stat
;
3797 size
= nic
->num_entries
* sizeof(struct msix_entry
);
3798 nic
->entries
= kzalloc(size
, GFP_KERNEL
);
3799 if (!nic
->entries
) {
3800 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3802 swstats
->mem_alloc_fail_cnt
++;
3805 swstats
->mem_allocated
+= size
;
3807 size
= nic
->num_entries
* sizeof(struct s2io_msix_entry
);
3808 nic
->s2io_entries
= kzalloc(size
, GFP_KERNEL
);
3809 if (!nic
->s2io_entries
) {
3810 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3812 swstats
->mem_alloc_fail_cnt
++;
3813 kfree(nic
->entries
);
3815 += (nic
->num_entries
* sizeof(struct msix_entry
));
3818 swstats
->mem_allocated
+= size
;
3820 nic
->entries
[0].entry
= 0;
3821 nic
->s2io_entries
[0].entry
= 0;
3822 nic
->s2io_entries
[0].in_use
= MSIX_FLG
;
3823 nic
->s2io_entries
[0].type
= MSIX_ALARM_TYPE
;
3824 nic
->s2io_entries
[0].arg
= &nic
->mac_control
.fifos
;
3826 for (i
= 1; i
< nic
->num_entries
; i
++) {
3827 nic
->entries
[i
].entry
= ((i
- 1) * 8) + 1;
3828 nic
->s2io_entries
[i
].entry
= ((i
- 1) * 8) + 1;
3829 nic
->s2io_entries
[i
].arg
= NULL
;
3830 nic
->s2io_entries
[i
].in_use
= 0;
3833 rx_mat
= readq(&bar0
->rx_mat
);
3834 for (j
= 0; j
< nic
->config
.rx_ring_num
; j
++) {
3835 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3836 nic
->s2io_entries
[j
+1].arg
= &nic
->mac_control
.rings
[j
];
3837 nic
->s2io_entries
[j
+1].type
= MSIX_RING_TYPE
;
3838 nic
->s2io_entries
[j
+1].in_use
= MSIX_FLG
;
3841 writeq(rx_mat
, &bar0
->rx_mat
);
3842 readq(&bar0
->rx_mat
);
3844 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, nic
->num_entries
);
3845 /* We fail init if error or we get less vectors than min required */
3847 DBG_PRINT(ERR_DBG
, "Enabling MSI-X failed\n");
3848 kfree(nic
->entries
);
3849 swstats
->mem_freed
+= nic
->num_entries
*
3850 sizeof(struct msix_entry
);
3851 kfree(nic
->s2io_entries
);
3852 swstats
->mem_freed
+= nic
->num_entries
*
3853 sizeof(struct s2io_msix_entry
);
3854 nic
->entries
= NULL
;
3855 nic
->s2io_entries
= NULL
;
3860 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3861 * in the herc NIC. (Temp change, needs to be removed later)
3863 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3864 msi_control
|= 0x1; /* Enable MSI */
3865 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3870 /* Handle software interrupt used during MSI(X) test */
3871 static irqreturn_t
s2io_test_intr(int irq
, void *dev_id
)
3873 struct s2io_nic
*sp
= dev_id
;
3875 sp
->msi_detected
= 1;
3876 wake_up(&sp
->msi_wait
);
3881 /* Test interrupt path by forcing a a software IRQ */
3882 static int s2io_test_msi(struct s2io_nic
*sp
)
3884 struct pci_dev
*pdev
= sp
->pdev
;
3885 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3889 err
= request_irq(sp
->entries
[1].vector
, s2io_test_intr
, 0,
3892 DBG_PRINT(ERR_DBG
, "%s: PCI %s: cannot assign irq %d\n",
3893 sp
->dev
->name
, pci_name(pdev
), pdev
->irq
);
3897 init_waitqueue_head(&sp
->msi_wait
);
3898 sp
->msi_detected
= 0;
3900 saved64
= val64
= readq(&bar0
->scheduled_int_ctrl
);
3901 val64
|= SCHED_INT_CTRL_ONE_SHOT
;
3902 val64
|= SCHED_INT_CTRL_TIMER_EN
;
3903 val64
|= SCHED_INT_CTRL_INT2MSI(1);
3904 writeq(val64
, &bar0
->scheduled_int_ctrl
);
3906 wait_event_timeout(sp
->msi_wait
, sp
->msi_detected
, HZ
/10);
3908 if (!sp
->msi_detected
) {
3909 /* MSI(X) test failed, go back to INTx mode */
3910 DBG_PRINT(ERR_DBG
, "%s: PCI %s: No interrupt was generated "
3911 "using MSI(X) during test\n",
3912 sp
->dev
->name
, pci_name(pdev
));
3917 free_irq(sp
->entries
[1].vector
, sp
);
3919 writeq(saved64
, &bar0
->scheduled_int_ctrl
);
3924 static void remove_msix_isr(struct s2io_nic
*sp
)
3929 for (i
= 0; i
< sp
->num_entries
; i
++) {
3930 if (sp
->s2io_entries
[i
].in_use
== MSIX_REGISTERED_SUCCESS
) {
3931 int vector
= sp
->entries
[i
].vector
;
3932 void *arg
= sp
->s2io_entries
[i
].arg
;
3933 free_irq(vector
, arg
);
3938 kfree(sp
->s2io_entries
);
3940 sp
->s2io_entries
= NULL
;
3942 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
3943 msi_control
&= 0xFFFE; /* Disable MSI */
3944 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
3946 pci_disable_msix(sp
->pdev
);
3949 static void remove_inta_isr(struct s2io_nic
*sp
)
3951 struct net_device
*dev
= sp
->dev
;
3953 free_irq(sp
->pdev
->irq
, dev
);
3956 /* ********************************************************* *
3957 * Functions defined below concern the OS part of the driver *
3958 * ********************************************************* */
3961 * s2io_open - open entry point of the driver
3962 * @dev : pointer to the device structure.
3964 * This function is the open entry point of the driver. It mainly calls a
3965 * function to allocate Rx buffers and inserts them into the buffer
3966 * descriptors and then enables the Rx part of the NIC.
3968 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3972 static int s2io_open(struct net_device
*dev
)
3974 struct s2io_nic
*sp
= netdev_priv(dev
);
3975 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
3979 * Make sure you have link off by default every time
3980 * Nic is initialized
3982 netif_carrier_off(dev
);
3983 sp
->last_link_state
= 0;
3985 /* Initialize H/W and enable interrupts */
3986 err
= s2io_card_up(sp
);
3988 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3990 goto hw_init_failed
;
3993 if (do_s2io_prog_unicast(dev
, dev
->dev_addr
) == FAILURE
) {
3994 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3997 goto hw_init_failed
;
3999 s2io_start_all_tx_queue(sp
);
4003 if (sp
->config
.intr_type
== MSI_X
) {
4006 swstats
->mem_freed
+= sp
->num_entries
*
4007 sizeof(struct msix_entry
);
4009 if (sp
->s2io_entries
) {
4010 kfree(sp
->s2io_entries
);
4011 swstats
->mem_freed
+= sp
->num_entries
*
4012 sizeof(struct s2io_msix_entry
);
4019 * s2io_close -close entry point of the driver
4020 * @dev : device pointer.
4022 * This is the stop entry point of the driver. It needs to undo exactly
4023 * whatever was done by the open entry point,thus it's usually referred to
4024 * as the close function.Among other things this function mainly stops the
4025 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4027 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4031 static int s2io_close(struct net_device
*dev
)
4033 struct s2io_nic
*sp
= netdev_priv(dev
);
4034 struct config_param
*config
= &sp
->config
;
4038 /* Return if the device is already closed *
4039 * Can happen when s2io_card_up failed in change_mtu *
4041 if (!is_s2io_card_up(sp
))
4044 s2io_stop_all_tx_queue(sp
);
4045 /* delete all populated mac entries */
4046 for (offset
= 1; offset
< config
->max_mc_addr
; offset
++) {
4047 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
4048 if (tmp64
!= S2IO_DISABLE_MAC_ENTRY
)
4049 do_s2io_delete_unicast_mc(sp
, tmp64
);
4058 * s2io_xmit - Tx entry point of te driver
4059 * @skb : the socket buffer containing the Tx data.
4060 * @dev : device pointer.
4062 * This function is the Tx entry point of the driver. S2IO NIC supports
4063 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
4064 * NOTE: when device cant queue the pkt,just the trans_start variable will
4067 * 0 on success & 1 on failure.
4070 static netdev_tx_t
s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
4072 struct s2io_nic
*sp
= netdev_priv(dev
);
4073 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
4076 struct TxFIFO_element __iomem
*tx_fifo
;
4077 unsigned long flags
= 0;
4079 struct fifo_info
*fifo
= NULL
;
4080 int do_spin_lock
= 1;
4082 int enable_per_list_interrupt
= 0;
4083 struct config_param
*config
= &sp
->config
;
4084 struct mac_info
*mac_control
= &sp
->mac_control
;
4085 struct stat_block
*stats
= mac_control
->stats_info
;
4086 struct swStat
*swstats
= &stats
->sw_stat
;
4088 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
4090 if (unlikely(skb
->len
<= 0)) {
4091 DBG_PRINT(TX_DBG
, "%s: Buffer has no data..\n", dev
->name
);
4092 dev_kfree_skb_any(skb
);
4093 return NETDEV_TX_OK
;
4096 if (!is_s2io_card_up(sp
)) {
4097 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
4100 return NETDEV_TX_OK
;
4104 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
))
4105 vlan_tag
= vlan_tx_tag_get(skb
);
4106 if (sp
->config
.tx_steering_type
== TX_DEFAULT_STEERING
) {
4107 if (skb
->protocol
== htons(ETH_P_IP
)) {
4112 if ((ip
->frag_off
& htons(IP_OFFSET
|IP_MF
)) == 0) {
4113 th
= (struct tcphdr
*)(((unsigned char *)ip
) +
4116 if (ip
->protocol
== IPPROTO_TCP
) {
4117 queue_len
= sp
->total_tcp_fifos
;
4118 queue
= (ntohs(th
->source
) +
4120 sp
->fifo_selector
[queue_len
- 1];
4121 if (queue
>= queue_len
)
4122 queue
= queue_len
- 1;
4123 } else if (ip
->protocol
== IPPROTO_UDP
) {
4124 queue_len
= sp
->total_udp_fifos
;
4125 queue
= (ntohs(th
->source
) +
4127 sp
->fifo_selector
[queue_len
- 1];
4128 if (queue
>= queue_len
)
4129 queue
= queue_len
- 1;
4130 queue
+= sp
->udp_fifo_idx
;
4131 if (skb
->len
> 1024)
4132 enable_per_list_interrupt
= 1;
4137 } else if (sp
->config
.tx_steering_type
== TX_PRIORITY_STEERING
)
4138 /* get fifo number based on skb->priority value */
4139 queue
= config
->fifo_mapping
4140 [skb
->priority
& (MAX_TX_FIFOS
- 1)];
4141 fifo
= &mac_control
->fifos
[queue
];
4144 spin_lock_irqsave(&fifo
->tx_lock
, flags
);
4146 if (unlikely(!spin_trylock_irqsave(&fifo
->tx_lock
, flags
)))
4147 return NETDEV_TX_LOCKED
;
4150 if (sp
->config
.multiq
) {
4151 if (__netif_subqueue_stopped(dev
, fifo
->fifo_no
)) {
4152 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4153 return NETDEV_TX_BUSY
;
4155 } else if (unlikely(fifo
->queue_state
== FIFO_QUEUE_STOP
)) {
4156 if (netif_queue_stopped(dev
)) {
4157 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4158 return NETDEV_TX_BUSY
;
4162 put_off
= (u16
)fifo
->tx_curr_put_info
.offset
;
4163 get_off
= (u16
)fifo
->tx_curr_get_info
.offset
;
4164 txdp
= (struct TxD
*)fifo
->list_info
[put_off
].list_virt_addr
;
4166 queue_len
= fifo
->tx_curr_put_info
.fifo_len
+ 1;
4167 /* Avoid "put" pointer going beyond "get" pointer */
4168 if (txdp
->Host_Control
||
4169 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4170 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
4171 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4173 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4174 return NETDEV_TX_OK
;
4177 offload_type
= s2io_offload_type(skb
);
4178 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
4179 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
4180 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
4182 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
4183 txdp
->Control_2
|= (TXD_TX_CKO_IPV4_EN
|
4187 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
4188 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
4189 txdp
->Control_2
|= TXD_INT_NUMBER(fifo
->fifo_no
);
4190 if (enable_per_list_interrupt
)
4191 if (put_off
& (queue_len
>> 5))
4192 txdp
->Control_2
|= TXD_INT_TYPE_PER_LIST
;
4194 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
4195 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
4198 frg_len
= skb_headlen(skb
);
4199 if (offload_type
== SKB_GSO_UDP
) {
4202 ufo_size
= s2io_udp_mss(skb
);
4204 txdp
->Control_1
|= TXD_UFO_EN
;
4205 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
4206 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
4208 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4209 fifo
->ufo_in_band_v
[put_off
] =
4210 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
;
4212 fifo
->ufo_in_band_v
[put_off
] =
4213 (__force u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
4215 txdp
->Host_Control
= (unsigned long)fifo
->ufo_in_band_v
;
4216 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
4217 fifo
->ufo_in_band_v
,
4220 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4221 goto pci_map_failed
;
4225 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
, skb
->data
,
4226 frg_len
, PCI_DMA_TODEVICE
);
4227 if (pci_dma_mapping_error(sp
->pdev
, txdp
->Buffer_Pointer
))
4228 goto pci_map_failed
;
4230 txdp
->Host_Control
= (unsigned long)skb
;
4231 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
4232 if (offload_type
== SKB_GSO_UDP
)
4233 txdp
->Control_1
|= TXD_UFO_EN
;
4235 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
4236 /* For fragmented SKB. */
4237 for (i
= 0; i
< frg_cnt
; i
++) {
4238 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4239 /* A '0' length fragment will be ignored */
4243 txdp
->Buffer_Pointer
= (u64
)pci_map_page(sp
->pdev
, frag
->page
,
4247 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4248 if (offload_type
== SKB_GSO_UDP
)
4249 txdp
->Control_1
|= TXD_UFO_EN
;
4251 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4253 if (offload_type
== SKB_GSO_UDP
)
4254 frg_cnt
++; /* as Txd0 was used for inband header */
4256 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4257 val64
= fifo
->list_info
[put_off
].list_phy_addr
;
4258 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4260 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4263 val64
|= TX_FIFO_SPECIAL_FUNC
;
4265 writeq(val64
, &tx_fifo
->List_Control
);
4270 if (put_off
== fifo
->tx_curr_put_info
.fifo_len
+ 1)
4272 fifo
->tx_curr_put_info
.offset
= put_off
;
4274 /* Avoid "put" pointer going beyond "get" pointer */
4275 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4276 swstats
->fifo_full_cnt
++;
4278 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4280 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4282 swstats
->mem_allocated
+= skb
->truesize
;
4283 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4285 if (sp
->config
.intr_type
== MSI_X
)
4286 tx_intr_handler(fifo
);
4288 return NETDEV_TX_OK
;
4291 swstats
->pci_map_fail_cnt
++;
4292 s2io_stop_tx_queue(sp
, fifo
->fifo_no
);
4293 swstats
->mem_freed
+= skb
->truesize
;
4295 spin_unlock_irqrestore(&fifo
->tx_lock
, flags
);
4296 return NETDEV_TX_OK
;
4300 s2io_alarm_handle(unsigned long data
)
4302 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4303 struct net_device
*dev
= sp
->dev
;
4305 s2io_handle_errors(dev
);
4306 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4309 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4311 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4312 struct s2io_nic
*sp
= ring
->nic
;
4313 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4315 if (unlikely(!is_s2io_card_up(sp
)))
4318 if (sp
->config
.napi
) {
4319 u8 __iomem
*addr
= NULL
;
4322 addr
= (u8 __iomem
*)&bar0
->xmsi_mask_reg
;
4323 addr
+= (7 - ring
->ring_no
);
4324 val8
= (ring
->ring_no
== 0) ? 0x7f : 0xff;
4327 napi_schedule(&ring
->napi
);
4329 rx_intr_handler(ring
, 0);
4330 s2io_chk_rx_buffers(sp
, ring
);
4336 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4339 struct fifo_info
*fifos
= (struct fifo_info
*)dev_id
;
4340 struct s2io_nic
*sp
= fifos
->nic
;
4341 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4342 struct config_param
*config
= &sp
->config
;
4345 if (unlikely(!is_s2io_card_up(sp
)))
4348 reason
= readq(&bar0
->general_int_status
);
4349 if (unlikely(reason
== S2IO_MINUS_ONE
))
4350 /* Nothing much can be done. Get out */
4353 if (reason
& (GEN_INTR_TXPIC
| GEN_INTR_TXTRAFFIC
)) {
4354 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4356 if (reason
& GEN_INTR_TXPIC
)
4357 s2io_txpic_intr_handle(sp
);
4359 if (reason
& GEN_INTR_TXTRAFFIC
)
4360 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4362 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4363 tx_intr_handler(&fifos
[i
]);
4365 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4366 readl(&bar0
->general_int_status
);
4369 /* The interrupt was not raised by us */
4373 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4375 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4378 val64
= readq(&bar0
->pic_int_status
);
4379 if (val64
& PIC_INT_GPIO
) {
4380 val64
= readq(&bar0
->gpio_int_reg
);
4381 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4382 (val64
& GPIO_INT_REG_LINK_UP
)) {
4384 * This is unstable state so clear both up/down
4385 * interrupt and adapter to re-evaluate the link state.
4387 val64
|= GPIO_INT_REG_LINK_DOWN
;
4388 val64
|= GPIO_INT_REG_LINK_UP
;
4389 writeq(val64
, &bar0
->gpio_int_reg
);
4390 val64
= readq(&bar0
->gpio_int_mask
);
4391 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4392 GPIO_INT_MASK_LINK_DOWN
);
4393 writeq(val64
, &bar0
->gpio_int_mask
);
4394 } else if (val64
& GPIO_INT_REG_LINK_UP
) {
4395 val64
= readq(&bar0
->adapter_status
);
4396 /* Enable Adapter */
4397 val64
= readq(&bar0
->adapter_control
);
4398 val64
|= ADAPTER_CNTL_EN
;
4399 writeq(val64
, &bar0
->adapter_control
);
4400 val64
|= ADAPTER_LED_ON
;
4401 writeq(val64
, &bar0
->adapter_control
);
4402 if (!sp
->device_enabled_once
)
4403 sp
->device_enabled_once
= 1;
4405 s2io_link(sp
, LINK_UP
);
4407 * unmask link down interrupt and mask link-up
4410 val64
= readq(&bar0
->gpio_int_mask
);
4411 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4412 val64
|= GPIO_INT_MASK_LINK_UP
;
4413 writeq(val64
, &bar0
->gpio_int_mask
);
4415 } else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4416 val64
= readq(&bar0
->adapter_status
);
4417 s2io_link(sp
, LINK_DOWN
);
4418 /* Link is down so unmaks link up interrupt */
4419 val64
= readq(&bar0
->gpio_int_mask
);
4420 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4421 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4422 writeq(val64
, &bar0
->gpio_int_mask
);
4425 val64
= readq(&bar0
->adapter_control
);
4426 val64
= val64
& (~ADAPTER_LED_ON
);
4427 writeq(val64
, &bar0
->adapter_control
);
4430 val64
= readq(&bar0
->gpio_int_mask
);
4434 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4435 * @value: alarm bits
4436 * @addr: address value
4437 * @cnt: counter variable
4438 * Description: Check for alarm and increment the counter
4440 * 1 - if alarm bit set
4441 * 0 - if alarm bit is not set
4443 static int do_s2io_chk_alarm_bit(u64 value
, void __iomem
*addr
,
4444 unsigned long long *cnt
)
4447 val64
= readq(addr
);
4448 if (val64
& value
) {
4449 writeq(val64
, addr
);
4458 * s2io_handle_errors - Xframe error indication handler
4459 * @nic: device private variable
4460 * Description: Handle alarms such as loss of link, single or
4461 * double ECC errors, critical and serious errors.
4465 static void s2io_handle_errors(void *dev_id
)
4467 struct net_device
*dev
= (struct net_device
*)dev_id
;
4468 struct s2io_nic
*sp
= netdev_priv(dev
);
4469 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4470 u64 temp64
= 0, val64
= 0;
4473 struct swStat
*sw_stat
= &sp
->mac_control
.stats_info
->sw_stat
;
4474 struct xpakStat
*stats
= &sp
->mac_control
.stats_info
->xpak_stat
;
4476 if (!is_s2io_card_up(sp
))
4479 if (pci_channel_offline(sp
->pdev
))
4482 memset(&sw_stat
->ring_full_cnt
, 0,
4483 sizeof(sw_stat
->ring_full_cnt
));
4485 /* Handling the XPAK counters update */
4486 if (stats
->xpak_timer_count
< 72000) {
4487 /* waiting for an hour */
4488 stats
->xpak_timer_count
++;
4490 s2io_updt_xpak_counter(dev
);
4491 /* reset the count to zero */
4492 stats
->xpak_timer_count
= 0;
4495 /* Handling link status change error Intr */
4496 if (s2io_link_fault_indication(sp
) == MAC_RMAC_ERR_TIMER
) {
4497 val64
= readq(&bar0
->mac_rmac_err_reg
);
4498 writeq(val64
, &bar0
->mac_rmac_err_reg
);
4499 if (val64
& RMAC_LINK_STATE_CHANGE_INT
)
4500 schedule_work(&sp
->set_link_task
);
4503 /* In case of a serious error, the device will be Reset. */
4504 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY
, &bar0
->serr_source
,
4505 &sw_stat
->serious_err_cnt
))
4508 /* Check for data parity error */
4509 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT
, &bar0
->gpio_int_reg
,
4510 &sw_stat
->parity_err_cnt
))
4513 /* Check for ring full counter */
4514 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4515 val64
= readq(&bar0
->ring_bump_counter1
);
4516 for (i
= 0; i
< 4; i
++) {
4517 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4518 temp64
>>= 64 - ((i
+1)*16);
4519 sw_stat
->ring_full_cnt
[i
] += temp64
;
4522 val64
= readq(&bar0
->ring_bump_counter2
);
4523 for (i
= 0; i
< 4; i
++) {
4524 temp64
= (val64
& vBIT(0xFFFF, (i
*16), 16));
4525 temp64
>>= 64 - ((i
+1)*16);
4526 sw_stat
->ring_full_cnt
[i
+4] += temp64
;
4530 val64
= readq(&bar0
->txdma_int_status
);
4531 /*check for pfc_err*/
4532 if (val64
& TXDMA_PFC_INT
) {
4533 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR
| PFC_SM_ERR_ALARM
|
4534 PFC_MISC_0_ERR
| PFC_MISC_1_ERR
|
4537 &sw_stat
->pfc_err_cnt
))
4539 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR
,
4541 &sw_stat
->pfc_err_cnt
);
4544 /*check for tda_err*/
4545 if (val64
& TXDMA_TDA_INT
) {
4546 if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR
|
4550 &sw_stat
->tda_err_cnt
))
4552 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR
| TDA_PCIX_ERR
,
4554 &sw_stat
->tda_err_cnt
);
4556 /*check for pcc_err*/
4557 if (val64
& TXDMA_PCC_INT
) {
4558 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM
| PCC_WR_ERR_ALARM
|
4559 PCC_N_SERR
| PCC_6_COF_OV_ERR
|
4560 PCC_7_COF_OV_ERR
| PCC_6_LSO_OV_ERR
|
4561 PCC_7_LSO_OV_ERR
| PCC_FB_ECC_DB_ERR
|
4564 &sw_stat
->pcc_err_cnt
))
4566 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR
| PCC_TXB_ECC_SG_ERR
,
4568 &sw_stat
->pcc_err_cnt
);
4571 /*check for tti_err*/
4572 if (val64
& TXDMA_TTI_INT
) {
4573 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM
,
4575 &sw_stat
->tti_err_cnt
))
4577 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR
| TTI_ECC_DB_ERR
,
4579 &sw_stat
->tti_err_cnt
);
4582 /*check for lso_err*/
4583 if (val64
& TXDMA_LSO_INT
) {
4584 if (do_s2io_chk_alarm_bit(LSO6_ABORT
| LSO7_ABORT
|
4585 LSO6_SM_ERR_ALARM
| LSO7_SM_ERR_ALARM
,
4587 &sw_stat
->lso_err_cnt
))
4589 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW
| LSO7_SEND_OFLOW
,
4591 &sw_stat
->lso_err_cnt
);
4594 /*check for tpa_err*/
4595 if (val64
& TXDMA_TPA_INT
) {
4596 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM
,
4598 &sw_stat
->tpa_err_cnt
))
4600 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP
,
4602 &sw_stat
->tpa_err_cnt
);
4605 /*check for sm_err*/
4606 if (val64
& TXDMA_SM_INT
) {
4607 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM
,
4609 &sw_stat
->sm_err_cnt
))
4613 val64
= readq(&bar0
->mac_int_status
);
4614 if (val64
& MAC_INT_STATUS_TMAC_INT
) {
4615 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN
| TMAC_TX_SM_ERR
,
4616 &bar0
->mac_tmac_err_reg
,
4617 &sw_stat
->mac_tmac_err_cnt
))
4619 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR
| TMAC_ECC_DB_ERR
|
4620 TMAC_DESC_ECC_SG_ERR
|
4621 TMAC_DESC_ECC_DB_ERR
,
4622 &bar0
->mac_tmac_err_reg
,
4623 &sw_stat
->mac_tmac_err_cnt
);
4626 val64
= readq(&bar0
->xgxs_int_status
);
4627 if (val64
& XGXS_INT_STATUS_TXGXS
) {
4628 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW
| TXGXS_TX_SM_ERR
,
4629 &bar0
->xgxs_txgxs_err_reg
,
4630 &sw_stat
->xgxs_txgxs_err_cnt
))
4632 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR
| TXGXS_ECC_DB_ERR
,
4633 &bar0
->xgxs_txgxs_err_reg
,
4634 &sw_stat
->xgxs_txgxs_err_cnt
);
4637 val64
= readq(&bar0
->rxdma_int_status
);
4638 if (val64
& RXDMA_INT_RC_INT_M
) {
4639 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR
|
4641 RC_PRCn_SM_ERR_ALARM
|
4642 RC_FTC_SM_ERR_ALARM
,
4644 &sw_stat
->rc_err_cnt
))
4646 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR
|
4648 RC_RDA_FAIL_WR_Rn
, &bar0
->rc_err_reg
,
4649 &sw_stat
->rc_err_cnt
);
4650 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn
|
4653 &bar0
->prc_pcix_err_reg
,
4654 &sw_stat
->prc_pcix_err_cnt
))
4656 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn
|
4659 &bar0
->prc_pcix_err_reg
,
4660 &sw_stat
->prc_pcix_err_cnt
);
4663 if (val64
& RXDMA_INT_RPA_INT_M
) {
4664 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM
| RPA_CREDIT_ERR
,
4666 &sw_stat
->rpa_err_cnt
))
4668 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR
| RPA_ECC_DB_ERR
,
4670 &sw_stat
->rpa_err_cnt
);
4673 if (val64
& RXDMA_INT_RDA_INT_M
) {
4674 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
|
4675 RDA_FRM_ECC_DB_N_AERR
|
4678 RDA_RXD_ECC_DB_SERR
,
4680 &sw_stat
->rda_err_cnt
))
4682 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR
|
4683 RDA_FRM_ECC_SG_ERR
|
4687 &sw_stat
->rda_err_cnt
);
4690 if (val64
& RXDMA_INT_RTI_INT_M
) {
4691 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM
,
4693 &sw_stat
->rti_err_cnt
))
4695 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR
| RTI_ECC_DB_ERR
,
4697 &sw_stat
->rti_err_cnt
);
4700 val64
= readq(&bar0
->mac_int_status
);
4701 if (val64
& MAC_INT_STATUS_RMAC_INT
) {
4702 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN
| RMAC_RX_SM_ERR
,
4703 &bar0
->mac_rmac_err_reg
,
4704 &sw_stat
->mac_rmac_err_cnt
))
4706 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT
|
4707 RMAC_SINGLE_ECC_ERR
|
4708 RMAC_DOUBLE_ECC_ERR
,
4709 &bar0
->mac_rmac_err_reg
,
4710 &sw_stat
->mac_rmac_err_cnt
);
4713 val64
= readq(&bar0
->xgxs_int_status
);
4714 if (val64
& XGXS_INT_STATUS_RXGXS
) {
4715 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW
| RXGXS_RX_SM_ERR
,
4716 &bar0
->xgxs_rxgxs_err_reg
,
4717 &sw_stat
->xgxs_rxgxs_err_cnt
))
4721 val64
= readq(&bar0
->mc_int_status
);
4722 if (val64
& MC_INT_STATUS_MC_INT
) {
4723 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR
,
4725 &sw_stat
->mc_err_cnt
))
4728 /* Handling Ecc errors */
4729 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
4730 writeq(val64
, &bar0
->mc_err_reg
);
4731 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
4732 sw_stat
->double_ecc_errs
++;
4733 if (sp
->device_type
!= XFRAME_II_DEVICE
) {
4735 * Reset XframeI only if critical error
4738 (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
4739 MC_ERR_REG_MIRI_ECC_DB_ERR_1
))
4743 sw_stat
->single_ecc_errs
++;
4749 s2io_stop_all_tx_queue(sp
);
4750 schedule_work(&sp
->rst_timer_task
);
4751 sw_stat
->soft_reset_cnt
++;
4755 * s2io_isr - ISR handler of the device .
4756 * @irq: the irq of the device.
4757 * @dev_id: a void pointer to the dev structure of the NIC.
4758 * Description: This function is the ISR handler of the device. It
4759 * identifies the reason for the interrupt and calls the relevant
4760 * service routines. As a contongency measure, this ISR allocates the
4761 * recv buffers, if their numbers are below the panic value which is
4762 * presently set to 25% of the original number of rcv buffers allocated.
4764 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4765 * IRQ_NONE: will be returned if interrupt is not from our device
4767 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4769 struct net_device
*dev
= (struct net_device
*)dev_id
;
4770 struct s2io_nic
*sp
= netdev_priv(dev
);
4771 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4774 struct mac_info
*mac_control
;
4775 struct config_param
*config
;
4777 /* Pretend we handled any irq's from a disconnected card */
4778 if (pci_channel_offline(sp
->pdev
))
4781 if (!is_s2io_card_up(sp
))
4784 config
= &sp
->config
;
4785 mac_control
= &sp
->mac_control
;
4788 * Identify the cause for interrupt and call the appropriate
4789 * interrupt handler. Causes for the interrupt could be;
4794 reason
= readq(&bar0
->general_int_status
);
4796 if (unlikely(reason
== S2IO_MINUS_ONE
))
4797 return IRQ_HANDLED
; /* Nothing much can be done. Get out */
4800 (GEN_INTR_RXTRAFFIC
| GEN_INTR_TXTRAFFIC
| GEN_INTR_TXPIC
)) {
4801 writeq(S2IO_MINUS_ONE
, &bar0
->general_int_mask
);
4804 if (reason
& GEN_INTR_RXTRAFFIC
) {
4805 napi_schedule(&sp
->napi
);
4806 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4807 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4808 readl(&bar0
->rx_traffic_int
);
4812 * rx_traffic_int reg is an R1 register, writing all 1's
4813 * will ensure that the actual interrupt causing bit
4814 * get's cleared and hence a read can be avoided.
4816 if (reason
& GEN_INTR_RXTRAFFIC
)
4817 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4819 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4820 struct ring_info
*ring
= &mac_control
->rings
[i
];
4822 rx_intr_handler(ring
, 0);
4827 * tx_traffic_int reg is an R1 register, writing all 1's
4828 * will ensure that the actual interrupt causing bit get's
4829 * cleared and hence a read can be avoided.
4831 if (reason
& GEN_INTR_TXTRAFFIC
)
4832 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4834 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4835 tx_intr_handler(&mac_control
->fifos
[i
]);
4837 if (reason
& GEN_INTR_TXPIC
)
4838 s2io_txpic_intr_handle(sp
);
4841 * Reallocate the buffers from the interrupt handler itself.
4843 if (!config
->napi
) {
4844 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4845 struct ring_info
*ring
= &mac_control
->rings
[i
];
4847 s2io_chk_rx_buffers(sp
, ring
);
4850 writeq(sp
->general_int_mask
, &bar0
->general_int_mask
);
4851 readl(&bar0
->general_int_status
);
4855 } else if (!reason
) {
4856 /* The interrupt was not raised by us */
4866 static void s2io_updt_stats(struct s2io_nic
*sp
)
4868 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4872 if (is_s2io_card_up(sp
)) {
4873 /* Apprx 30us on a 133 MHz bus */
4874 val64
= SET_UPDT_CLICKS(10) |
4875 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4876 writeq(val64
, &bar0
->stat_cfg
);
4879 val64
= readq(&bar0
->stat_cfg
);
4880 if (!(val64
& s2BIT(0)))
4884 break; /* Updt failed */
4890 * s2io_get_stats - Updates the device statistics structure.
4891 * @dev : pointer to the device structure.
4893 * This function updates the device statistics structure in the s2io_nic
4894 * structure and returns a pointer to the same.
4896 * pointer to the updated net_device_stats structure.
4898 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4900 struct s2io_nic
*sp
= netdev_priv(dev
);
4901 struct mac_info
*mac_control
= &sp
->mac_control
;
4902 struct stat_block
*stats
= mac_control
->stats_info
;
4905 /* Configure Stats for immediate updt */
4906 s2io_updt_stats(sp
);
4908 /* A device reset will cause the on-adapter statistics to be zero'ed.
4909 * This can be done while running by changing the MTU. To prevent the
4910 * system from having the stats zero'ed, the driver keeps a copy of the
4911 * last update to the system (which is also zero'ed on reset). This
4912 * enables the driver to accurately know the delta between the last
4913 * update and the current update.
4915 delta
= ((u64
) le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
4916 le32_to_cpu(stats
->rmac_vld_frms
)) - sp
->stats
.rx_packets
;
4917 sp
->stats
.rx_packets
+= delta
;
4918 dev
->stats
.rx_packets
+= delta
;
4920 delta
= ((u64
) le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
4921 le32_to_cpu(stats
->tmac_frms
)) - sp
->stats
.tx_packets
;
4922 sp
->stats
.tx_packets
+= delta
;
4923 dev
->stats
.tx_packets
+= delta
;
4925 delta
= ((u64
) le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
4926 le32_to_cpu(stats
->rmac_data_octets
)) - sp
->stats
.rx_bytes
;
4927 sp
->stats
.rx_bytes
+= delta
;
4928 dev
->stats
.rx_bytes
+= delta
;
4930 delta
= ((u64
) le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
4931 le32_to_cpu(stats
->tmac_data_octets
)) - sp
->stats
.tx_bytes
;
4932 sp
->stats
.tx_bytes
+= delta
;
4933 dev
->stats
.tx_bytes
+= delta
;
4935 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_errors
;
4936 sp
->stats
.rx_errors
+= delta
;
4937 dev
->stats
.rx_errors
+= delta
;
4939 delta
= ((u64
) le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
4940 le32_to_cpu(stats
->tmac_any_err_frms
)) - sp
->stats
.tx_errors
;
4941 sp
->stats
.tx_errors
+= delta
;
4942 dev
->stats
.tx_errors
+= delta
;
4944 delta
= le64_to_cpu(stats
->rmac_drop_frms
) - sp
->stats
.rx_dropped
;
4945 sp
->stats
.rx_dropped
+= delta
;
4946 dev
->stats
.rx_dropped
+= delta
;
4948 delta
= le64_to_cpu(stats
->tmac_drop_frms
) - sp
->stats
.tx_dropped
;
4949 sp
->stats
.tx_dropped
+= delta
;
4950 dev
->stats
.tx_dropped
+= delta
;
4952 /* The adapter MAC interprets pause frames as multicast packets, but
4953 * does not pass them up. This erroneously increases the multicast
4954 * packet count and needs to be deducted when the multicast frame count
4957 delta
= (u64
) le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
4958 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
4959 delta
-= le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
4960 delta
-= sp
->stats
.multicast
;
4961 sp
->stats
.multicast
+= delta
;
4962 dev
->stats
.multicast
+= delta
;
4964 delta
= ((u64
) le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
4965 le32_to_cpu(stats
->rmac_usized_frms
)) +
4966 le64_to_cpu(stats
->rmac_long_frms
) - sp
->stats
.rx_length_errors
;
4967 sp
->stats
.rx_length_errors
+= delta
;
4968 dev
->stats
.rx_length_errors
+= delta
;
4970 delta
= le64_to_cpu(stats
->rmac_fcs_err_frms
) - sp
->stats
.rx_crc_errors
;
4971 sp
->stats
.rx_crc_errors
+= delta
;
4972 dev
->stats
.rx_crc_errors
+= delta
;
4978 * s2io_set_multicast - entry point for multicast address enable/disable.
4979 * @dev : pointer to the device structure
4981 * This function is a driver entry point which gets called by the kernel
4982 * whenever multicast addresses must be enabled/disabled. This also gets
4983 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4984 * determine, if multicast address must be enabled or if promiscuous mode
4985 * is to be disabled etc.
4990 static void s2io_set_multicast(struct net_device
*dev
)
4993 struct netdev_hw_addr
*ha
;
4994 struct s2io_nic
*sp
= netdev_priv(dev
);
4995 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4996 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4998 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, mac_addr
= 0;
5000 struct config_param
*config
= &sp
->config
;
5002 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
5003 /* Enable all Multicast addresses */
5004 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
5005 &bar0
->rmac_addr_data0_mem
);
5006 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
5007 &bar0
->rmac_addr_data1_mem
);
5008 val64
= RMAC_ADDR_CMD_MEM_WE
|
5009 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5010 RMAC_ADDR_CMD_MEM_OFFSET(config
->max_mc_addr
- 1);
5011 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5012 /* Wait till command completes */
5013 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5014 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5018 sp
->all_multi_pos
= config
->max_mc_addr
- 1;
5019 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
5020 /* Disable all Multicast addresses */
5021 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5022 &bar0
->rmac_addr_data0_mem
);
5023 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
5024 &bar0
->rmac_addr_data1_mem
);
5025 val64
= RMAC_ADDR_CMD_MEM_WE
|
5026 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5027 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
5028 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5029 /* Wait till command completes */
5030 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5031 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5035 sp
->all_multi_pos
= 0;
5038 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
5039 /* Put the NIC into promiscuous mode */
5040 add
= &bar0
->mac_cfg
;
5041 val64
= readq(&bar0
->mac_cfg
);
5042 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
5044 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5045 writel((u32
)val64
, add
);
5046 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5047 writel((u32
) (val64
>> 32), (add
+ 4));
5049 if (vlan_tag_strip
!= 1) {
5050 val64
= readq(&bar0
->rx_pa_cfg
);
5051 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
5052 writeq(val64
, &bar0
->rx_pa_cfg
);
5053 sp
->vlan_strip_flag
= 0;
5056 val64
= readq(&bar0
->mac_cfg
);
5057 sp
->promisc_flg
= 1;
5058 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
5060 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
5061 /* Remove the NIC from promiscuous mode */
5062 add
= &bar0
->mac_cfg
;
5063 val64
= readq(&bar0
->mac_cfg
);
5064 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
5066 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5067 writel((u32
)val64
, add
);
5068 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
5069 writel((u32
) (val64
>> 32), (add
+ 4));
5071 if (vlan_tag_strip
!= 0) {
5072 val64
= readq(&bar0
->rx_pa_cfg
);
5073 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
5074 writeq(val64
, &bar0
->rx_pa_cfg
);
5075 sp
->vlan_strip_flag
= 1;
5078 val64
= readq(&bar0
->mac_cfg
);
5079 sp
->promisc_flg
= 0;
5080 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n", dev
->name
);
5083 /* Update individual M_CAST address list */
5084 if ((!sp
->m_cast_flg
) && netdev_mc_count(dev
)) {
5085 if (netdev_mc_count(dev
) >
5086 (config
->max_mc_addr
- config
->max_mac_addr
)) {
5088 "%s: No more Rx filters can be added - "
5089 "please enable ALL_MULTI instead\n",
5094 prev_cnt
= sp
->mc_addr_count
;
5095 sp
->mc_addr_count
= netdev_mc_count(dev
);
5097 /* Clear out the previous list of Mc in the H/W. */
5098 for (i
= 0; i
< prev_cnt
; i
++) {
5099 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
5100 &bar0
->rmac_addr_data0_mem
);
5101 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5102 &bar0
->rmac_addr_data1_mem
);
5103 val64
= RMAC_ADDR_CMD_MEM_WE
|
5104 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5105 RMAC_ADDR_CMD_MEM_OFFSET
5106 (config
->mc_start_offset
+ i
);
5107 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5109 /* Wait for command completes */
5110 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5111 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5114 "%s: Adding Multicasts failed\n",
5120 /* Create the new Rx filter list and update the same in H/W. */
5122 netdev_for_each_mc_addr(ha
, dev
) {
5124 for (j
= 0; j
< ETH_ALEN
; j
++) {
5125 mac_addr
|= ha
->addr
[j
];
5129 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
5130 &bar0
->rmac_addr_data0_mem
);
5131 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5132 &bar0
->rmac_addr_data1_mem
);
5133 val64
= RMAC_ADDR_CMD_MEM_WE
|
5134 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5135 RMAC_ADDR_CMD_MEM_OFFSET
5136 (i
+ config
->mc_start_offset
);
5137 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5139 /* Wait for command completes */
5140 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5141 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5144 "%s: Adding Multicasts failed\n",
5153 /* read from CAM unicast & multicast addresses and store it in
5154 * def_mac_addr structure
5156 static void do_s2io_store_unicast_mc(struct s2io_nic
*sp
)
5160 struct config_param
*config
= &sp
->config
;
5162 /* store unicast & multicast mac addresses */
5163 for (offset
= 0; offset
< config
->max_mc_addr
; offset
++) {
5164 mac_addr
= do_s2io_read_unicast_mc(sp
, offset
);
5165 /* if read fails disable the entry */
5166 if (mac_addr
== FAILURE
)
5167 mac_addr
= S2IO_DISABLE_MAC_ENTRY
;
5168 do_s2io_copy_mac_addr(sp
, offset
, mac_addr
);
5172 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5173 static void do_s2io_restore_unicast_mc(struct s2io_nic
*sp
)
5176 struct config_param
*config
= &sp
->config
;
5177 /* restore unicast mac address */
5178 for (offset
= 0; offset
< config
->max_mac_addr
; offset
++)
5179 do_s2io_prog_unicast(sp
->dev
,
5180 sp
->def_mac_addr
[offset
].mac_addr
);
5182 /* restore multicast mac address */
5183 for (offset
= config
->mc_start_offset
;
5184 offset
< config
->max_mc_addr
; offset
++)
5185 do_s2io_add_mc(sp
, sp
->def_mac_addr
[offset
].mac_addr
);
5188 /* add a multicast MAC address to CAM */
5189 static int do_s2io_add_mc(struct s2io_nic
*sp
, u8
*addr
)
5193 struct config_param
*config
= &sp
->config
;
5195 for (i
= 0; i
< ETH_ALEN
; i
++) {
5197 mac_addr
|= addr
[i
];
5199 if ((0ULL == mac_addr
) || (mac_addr
== S2IO_DISABLE_MAC_ENTRY
))
5202 /* check if the multicast mac already preset in CAM */
5203 for (i
= config
->mc_start_offset
; i
< config
->max_mc_addr
; i
++) {
5205 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5206 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5209 if (tmp64
== mac_addr
)
5212 if (i
== config
->max_mc_addr
) {
5214 "CAM full no space left for multicast MAC\n");
5217 /* Update the internal structure with this new mac address */
5218 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5220 return do_s2io_add_mac(sp
, mac_addr
, i
);
5223 /* add MAC address to CAM */
5224 static int do_s2io_add_mac(struct s2io_nic
*sp
, u64 addr
, int off
)
5227 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5229 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr
),
5230 &bar0
->rmac_addr_data0_mem
);
5232 val64
= RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5233 RMAC_ADDR_CMD_MEM_OFFSET(off
);
5234 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5236 /* Wait till command completes */
5237 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5238 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5240 DBG_PRINT(INFO_DBG
, "do_s2io_add_mac failed\n");
5245 /* deletes a specified unicast/multicast mac entry from CAM */
5246 static int do_s2io_delete_unicast_mc(struct s2io_nic
*sp
, u64 addr
)
5249 u64 dis_addr
= S2IO_DISABLE_MAC_ENTRY
, tmp64
;
5250 struct config_param
*config
= &sp
->config
;
5253 offset
< config
->max_mc_addr
; offset
++) {
5254 tmp64
= do_s2io_read_unicast_mc(sp
, offset
);
5255 if (tmp64
== addr
) {
5256 /* disable the entry by writing 0xffffffffffffULL */
5257 if (do_s2io_add_mac(sp
, dis_addr
, offset
) == FAILURE
)
5259 /* store the new mac list from CAM */
5260 do_s2io_store_unicast_mc(sp
);
5264 DBG_PRINT(ERR_DBG
, "MAC address 0x%llx not found in CAM\n",
5265 (unsigned long long)addr
);
5269 /* read mac entries from CAM */
5270 static u64
do_s2io_read_unicast_mc(struct s2io_nic
*sp
, int offset
)
5272 u64 tmp64
= 0xffffffffffff0000ULL
, val64
;
5273 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5276 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
5277 RMAC_ADDR_CMD_MEM_OFFSET(offset
);
5278 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
5280 /* Wait till command completes */
5281 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
5282 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
5284 DBG_PRINT(INFO_DBG
, "do_s2io_read_unicast_mc failed\n");
5287 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
5293 * s2io_set_mac_addr driver entry point
5296 static int s2io_set_mac_addr(struct net_device
*dev
, void *p
)
5298 struct sockaddr
*addr
= p
;
5300 if (!is_valid_ether_addr(addr
->sa_data
))
5303 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
5305 /* store the MAC address in CAM */
5306 return do_s2io_prog_unicast(dev
, dev
->dev_addr
);
5309 * do_s2io_prog_unicast - Programs the Xframe mac address
5310 * @dev : pointer to the device structure.
5311 * @addr: a uchar pointer to the new mac address which is to be set.
5312 * Description : This procedure will program the Xframe to receive
5313 * frames with new Mac Address
5314 * Return value: SUCCESS on success and an appropriate (-)ve integer
5315 * as defined in errno.h file on failure.
5318 static int do_s2io_prog_unicast(struct net_device
*dev
, u8
*addr
)
5320 struct s2io_nic
*sp
= netdev_priv(dev
);
5321 register u64 mac_addr
= 0, perm_addr
= 0;
5324 struct config_param
*config
= &sp
->config
;
5327 * Set the new MAC address as the new unicast filter and reflect this
5328 * change on the device address registered with the OS. It will be
5331 for (i
= 0; i
< ETH_ALEN
; i
++) {
5333 mac_addr
|= addr
[i
];
5335 perm_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
5338 /* check if the dev_addr is different than perm_addr */
5339 if (mac_addr
== perm_addr
)
5342 /* check if the mac already preset in CAM */
5343 for (i
= 1; i
< config
->max_mac_addr
; i
++) {
5344 tmp64
= do_s2io_read_unicast_mc(sp
, i
);
5345 if (tmp64
== S2IO_DISABLE_MAC_ENTRY
) /* CAM entry is empty */
5348 if (tmp64
== mac_addr
) {
5350 "MAC addr:0x%llx already present in CAM\n",
5351 (unsigned long long)mac_addr
);
5355 if (i
== config
->max_mac_addr
) {
5356 DBG_PRINT(ERR_DBG
, "CAM full no space left for Unicast MAC\n");
5359 /* Update the internal structure with this new mac address */
5360 do_s2io_copy_mac_addr(sp
, i
, mac_addr
);
5362 return do_s2io_add_mac(sp
, mac_addr
, i
);
5366 * s2io_ethtool_sset - Sets different link parameters.
5367 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5368 * @info: pointer to the structure with parameters given by ethtool to set
5371 * The function sets different link parameters provided by the user onto
5377 static int s2io_ethtool_sset(struct net_device
*dev
,
5378 struct ethtool_cmd
*info
)
5380 struct s2io_nic
*sp
= netdev_priv(dev
);
5381 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
5382 (info
->speed
!= SPEED_10000
) ||
5383 (info
->duplex
!= DUPLEX_FULL
))
5386 s2io_close(sp
->dev
);
5394 * s2io_ethtol_gset - Return link specific information.
5395 * @sp : private member of the device structure, pointer to the
5396 * s2io_nic structure.
5397 * @info : pointer to the structure with parameters given by ethtool
5398 * to return link information.
5400 * Returns link specific information like speed, duplex etc.. to ethtool.
5402 * return 0 on success.
5405 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
5407 struct s2io_nic
*sp
= netdev_priv(dev
);
5408 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5409 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
5410 info
->port
= PORT_FIBRE
;
5412 /* info->transceiver */
5413 info
->transceiver
= XCVR_EXTERNAL
;
5415 if (netif_carrier_ok(sp
->dev
)) {
5416 info
->speed
= 10000;
5417 info
->duplex
= DUPLEX_FULL
;
5423 info
->autoneg
= AUTONEG_DISABLE
;
5428 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5429 * @sp : private member of the device structure, which is a pointer to the
5430 * s2io_nic structure.
5431 * @info : pointer to the structure with parameters given by ethtool to
5432 * return driver information.
5434 * Returns driver specefic information like name, version etc.. to ethtool.
5439 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
5440 struct ethtool_drvinfo
*info
)
5442 struct s2io_nic
*sp
= netdev_priv(dev
);
5444 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
5445 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
5446 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
5447 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
5448 info
->regdump_len
= XENA_REG_SPACE
;
5449 info
->eedump_len
= XENA_EEPROM_SPACE
;
5453 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5454 * @sp: private member of the device structure, which is a pointer to the
5455 * s2io_nic structure.
5456 * @regs : pointer to the structure with parameters given by ethtool for
5457 * dumping the registers.
5458 * @reg_space: The input argumnet into which all the registers are dumped.
5460 * Dumps the entire register space of xFrame NIC into the user given
5466 static void s2io_ethtool_gregs(struct net_device
*dev
,
5467 struct ethtool_regs
*regs
, void *space
)
5471 u8
*reg_space
= (u8
*)space
;
5472 struct s2io_nic
*sp
= netdev_priv(dev
);
5474 regs
->len
= XENA_REG_SPACE
;
5475 regs
->version
= sp
->pdev
->subsystem_device
;
5477 for (i
= 0; i
< regs
->len
; i
+= 8) {
5478 reg
= readq(sp
->bar0
+ i
);
5479 memcpy((reg_space
+ i
), ®
, 8);
5484 * s2io_phy_id - timer function that alternates adapter LED.
5485 * @data : address of the private member of the device structure, which
5486 * is a pointer to the s2io_nic structure, provided as an u32.
5487 * Description: This is actually the timer function that alternates the
5488 * adapter LED bit of the adapter control bit to set/reset every time on
5489 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5490 * once every second.
5492 static void s2io_phy_id(unsigned long data
)
5494 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
5495 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5499 subid
= sp
->pdev
->subsystem_device
;
5500 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
5501 ((subid
& 0xFF) >= 0x07)) {
5502 val64
= readq(&bar0
->gpio_control
);
5503 val64
^= GPIO_CTRL_GPIO_0
;
5504 writeq(val64
, &bar0
->gpio_control
);
5506 val64
= readq(&bar0
->adapter_control
);
5507 val64
^= ADAPTER_LED_ON
;
5508 writeq(val64
, &bar0
->adapter_control
);
5511 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
5515 * s2io_ethtool_idnic - To physically identify the nic on the system.
5516 * @sp : private member of the device structure, which is a pointer to the
5517 * s2io_nic structure.
5518 * @id : pointer to the structure with identification parameters given by
5520 * Description: Used to physically identify the NIC on the system.
5521 * The Link LED will blink for a time specified by the user for
5523 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5524 * identification is possible only if it's link is up.
5526 * int , returns 0 on success
5529 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
5531 u64 val64
= 0, last_gpio_ctrl_val
;
5532 struct s2io_nic
*sp
= netdev_priv(dev
);
5533 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5536 subid
= sp
->pdev
->subsystem_device
;
5537 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5538 if ((sp
->device_type
== XFRAME_I_DEVICE
) && ((subid
& 0xFF) < 0x07)) {
5539 val64
= readq(&bar0
->adapter_control
);
5540 if (!(val64
& ADAPTER_CNTL_EN
)) {
5541 pr_err("Adapter Link down, cannot blink LED\n");
5545 if (sp
->id_timer
.function
== NULL
) {
5546 init_timer(&sp
->id_timer
);
5547 sp
->id_timer
.function
= s2io_phy_id
;
5548 sp
->id_timer
.data
= (unsigned long)sp
;
5550 mod_timer(&sp
->id_timer
, jiffies
);
5552 msleep_interruptible(data
* HZ
);
5554 msleep_interruptible(MAX_FLICKER_TIME
);
5555 del_timer_sync(&sp
->id_timer
);
5557 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
5558 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
5559 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
5565 static void s2io_ethtool_gringparam(struct net_device
*dev
,
5566 struct ethtool_ringparam
*ering
)
5568 struct s2io_nic
*sp
= netdev_priv(dev
);
5569 int i
, tx_desc_count
= 0, rx_desc_count
= 0;
5571 if (sp
->rxd_mode
== RXD_MODE_1
)
5572 ering
->rx_max_pending
= MAX_RX_DESC_1
;
5573 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5574 ering
->rx_max_pending
= MAX_RX_DESC_2
;
5576 ering
->tx_max_pending
= MAX_TX_DESC
;
5577 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
5578 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
5580 DBG_PRINT(INFO_DBG
, "max txds: %d\n", sp
->config
.max_txds
);
5581 ering
->tx_pending
= tx_desc_count
;
5583 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
5584 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
5586 ering
->rx_pending
= rx_desc_count
;
5588 ering
->rx_mini_max_pending
= 0;
5589 ering
->rx_mini_pending
= 0;
5590 if (sp
->rxd_mode
== RXD_MODE_1
)
5591 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
5592 else if (sp
->rxd_mode
== RXD_MODE_3B
)
5593 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
5594 ering
->rx_jumbo_pending
= rx_desc_count
;
5598 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5599 * @sp : private member of the device structure, which is a pointer to the
5600 * s2io_nic structure.
5601 * @ep : pointer to the structure with pause parameters given by ethtool.
5603 * Returns the Pause frame generation and reception capability of the NIC.
5607 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
5608 struct ethtool_pauseparam
*ep
)
5611 struct s2io_nic
*sp
= netdev_priv(dev
);
5612 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5614 val64
= readq(&bar0
->rmac_pause_cfg
);
5615 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
5616 ep
->tx_pause
= true;
5617 if (val64
& RMAC_PAUSE_RX_ENABLE
)
5618 ep
->rx_pause
= true;
5619 ep
->autoneg
= false;
5623 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5624 * @sp : private member of the device structure, which is a pointer to the
5625 * s2io_nic structure.
5626 * @ep : pointer to the structure with pause parameters given by ethtool.
5628 * It can be used to set or reset Pause frame generation or reception
5629 * support of the NIC.
5631 * int, returns 0 on Success
5634 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
5635 struct ethtool_pauseparam
*ep
)
5638 struct s2io_nic
*sp
= netdev_priv(dev
);
5639 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5641 val64
= readq(&bar0
->rmac_pause_cfg
);
5643 val64
|= RMAC_PAUSE_GEN_ENABLE
;
5645 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
5647 val64
|= RMAC_PAUSE_RX_ENABLE
;
5649 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
5650 writeq(val64
, &bar0
->rmac_pause_cfg
);
5655 * read_eeprom - reads 4 bytes of data from user given offset.
5656 * @sp : private member of the device structure, which is a pointer to the
5657 * s2io_nic structure.
5658 * @off : offset at which the data must be written
5659 * @data : Its an output parameter where the data read at the given
5662 * Will read 4 bytes of data from the user given offset and return the
5664 * NOTE: Will allow to read only part of the EEPROM visible through the
5667 * -1 on failure and 0 on success.
5670 #define S2IO_DEV_ID 5
5671 static int read_eeprom(struct s2io_nic
*sp
, int off
, u64
*data
)
5676 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5678 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5679 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5680 I2C_CONTROL_ADDR(off
) |
5681 I2C_CONTROL_BYTE_CNT(0x3) |
5683 I2C_CONTROL_CNTL_START
;
5684 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5686 while (exit_cnt
< 5) {
5687 val64
= readq(&bar0
->i2c_control
);
5688 if (I2C_CONTROL_CNTL_END(val64
)) {
5689 *data
= I2C_CONTROL_GET_DATA(val64
);
5698 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5699 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5700 SPI_CONTROL_BYTECNT(0x3) |
5701 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
5702 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5703 val64
|= SPI_CONTROL_REQ
;
5704 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5705 while (exit_cnt
< 5) {
5706 val64
= readq(&bar0
->spi_control
);
5707 if (val64
& SPI_CONTROL_NACK
) {
5710 } else if (val64
& SPI_CONTROL_DONE
) {
5711 *data
= readq(&bar0
->spi_data
);
5724 * write_eeprom - actually writes the relevant part of the data value.
5725 * @sp : private member of the device structure, which is a pointer to the
5726 * s2io_nic structure.
5727 * @off : offset at which the data must be written
5728 * @data : The data that is to be written
5729 * @cnt : Number of bytes of the data that are actually to be written into
5730 * the Eeprom. (max of 3)
5732 * Actually writes the relevant part of the data value into the Eeprom
5733 * through the I2C bus.
5735 * 0 on success, -1 on failure.
5738 static int write_eeprom(struct s2io_nic
*sp
, int off
, u64 data
, int cnt
)
5740 int exit_cnt
= 0, ret
= -1;
5742 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5744 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5745 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) |
5746 I2C_CONTROL_ADDR(off
) |
5747 I2C_CONTROL_BYTE_CNT(cnt
) |
5748 I2C_CONTROL_SET_DATA((u32
)data
) |
5749 I2C_CONTROL_CNTL_START
;
5750 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
5752 while (exit_cnt
< 5) {
5753 val64
= readq(&bar0
->i2c_control
);
5754 if (I2C_CONTROL_CNTL_END(val64
)) {
5755 if (!(val64
& I2C_CONTROL_NACK
))
5764 if (sp
->device_type
== XFRAME_II_DEVICE
) {
5765 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
5766 writeq(SPI_DATA_WRITE(data
, (cnt
<< 3)), &bar0
->spi_data
);
5768 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
5769 SPI_CONTROL_BYTECNT(write_cnt
) |
5770 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
5771 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5772 val64
|= SPI_CONTROL_REQ
;
5773 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
5774 while (exit_cnt
< 5) {
5775 val64
= readq(&bar0
->spi_control
);
5776 if (val64
& SPI_CONTROL_NACK
) {
5779 } else if (val64
& SPI_CONTROL_DONE
) {
5789 static void s2io_vpd_read(struct s2io_nic
*nic
)
5793 int i
= 0, cnt
, len
, fail
= 0;
5794 int vpd_addr
= 0x80;
5795 struct swStat
*swstats
= &nic
->mac_control
.stats_info
->sw_stat
;
5797 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5798 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5801 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5804 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5806 vpd_data
= kmalloc(256, GFP_KERNEL
);
5808 swstats
->mem_alloc_fail_cnt
++;
5811 swstats
->mem_allocated
+= 256;
5813 for (i
= 0; i
< 256; i
+= 4) {
5814 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5815 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5816 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5817 for (cnt
= 0; cnt
< 5; cnt
++) {
5819 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5824 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5828 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5829 (u32
*)&vpd_data
[i
]);
5833 /* read serial number of adapter */
5834 for (cnt
= 0; cnt
< 252; cnt
++) {
5835 if ((vpd_data
[cnt
] == 'S') &&
5836 (vpd_data
[cnt
+1] == 'N')) {
5837 len
= vpd_data
[cnt
+2];
5838 if (len
< min(VPD_STRING_LEN
, 256-cnt
-2)) {
5839 memcpy(nic
->serial_num
,
5842 memset(nic
->serial_num
+len
,
5844 VPD_STRING_LEN
-len
);
5851 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5853 memcpy(nic
->product_name
, &vpd_data
[3], len
);
5854 nic
->product_name
[len
] = 0;
5857 swstats
->mem_freed
+= 256;
5861 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5862 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5863 * @eeprom : pointer to the user level structure provided by ethtool,
5864 * containing all relevant information.
5865 * @data_buf : user defined value to be written into Eeprom.
5866 * Description: Reads the values stored in the Eeprom at given offset
5867 * for a given length. Stores these values int the input argument data
5868 * buffer 'data_buf' and returns these to the caller (ethtool.)
5873 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5874 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5878 struct s2io_nic
*sp
= netdev_priv(dev
);
5880 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5882 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5883 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5885 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5886 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5887 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5891 memcpy((data_buf
+ i
), &valid
, 4);
5897 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5898 * @sp : private member of the device structure, which is a pointer to the
5899 * s2io_nic structure.
5900 * @eeprom : pointer to the user level structure provided by ethtool,
5901 * containing all relevant information.
5902 * @data_buf ; user defined value to be written into Eeprom.
5904 * Tries to write the user provided value in the Eeprom, at the offset
5905 * given by the user.
5907 * 0 on success, -EFAULT on failure.
5910 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5911 struct ethtool_eeprom
*eeprom
,
5914 int len
= eeprom
->len
, cnt
= 0;
5915 u64 valid
= 0, data
;
5916 struct s2io_nic
*sp
= netdev_priv(dev
);
5918 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5920 "ETHTOOL_WRITE_EEPROM Err: "
5921 "Magic value is wrong, it is 0x%x should be 0x%x\n",
5922 (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16)),
5928 data
= (u32
)data_buf
[cnt
] & 0x000000FF;
5930 valid
= (u32
)(data
<< 24);
5934 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5936 "ETHTOOL_WRITE_EEPROM Err: "
5937 "Cannot write into the specified offset\n");
5948 * s2io_register_test - reads and writes into all clock domains.
5949 * @sp : private member of the device structure, which is a pointer to the
5950 * s2io_nic structure.
5951 * @data : variable that returns the result of each of the test conducted b
5954 * Read and write into all clock domains. The NIC has 3 clock domains,
5955 * see that registers in all the three regions are accessible.
5960 static int s2io_register_test(struct s2io_nic
*sp
, uint64_t *data
)
5962 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5963 u64 val64
= 0, exp_val
;
5966 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5967 if (val64
!= 0x123456789abcdefULL
) {
5969 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 1);
5972 val64
= readq(&bar0
->rmac_pause_cfg
);
5973 if (val64
!= 0xc000ffff00000000ULL
) {
5975 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 2);
5978 val64
= readq(&bar0
->rx_queue_cfg
);
5979 if (sp
->device_type
== XFRAME_II_DEVICE
)
5980 exp_val
= 0x0404040404040404ULL
;
5982 exp_val
= 0x0808080808080808ULL
;
5983 if (val64
!= exp_val
) {
5985 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 3);
5988 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5989 if (val64
!= 0x000000001923141EULL
) {
5991 DBG_PRINT(INFO_DBG
, "Read Test level %d fails\n", 4);
5994 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5995 writeq(val64
, &bar0
->xmsi_data
);
5996 val64
= readq(&bar0
->xmsi_data
);
5997 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5999 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 1);
6002 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
6003 writeq(val64
, &bar0
->xmsi_data
);
6004 val64
= readq(&bar0
->xmsi_data
);
6005 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
6007 DBG_PRINT(ERR_DBG
, "Write Test level %d fails\n", 2);
6015 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
6016 * @sp : private member of the device structure, which is a pointer to the
6017 * s2io_nic structure.
6018 * @data:variable that returns the result of each of the test conducted by
6021 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
6027 static int s2io_eeprom_test(struct s2io_nic
*sp
, uint64_t *data
)
6030 u64 ret_data
, org_4F0
, org_7F0
;
6031 u8 saved_4F0
= 0, saved_7F0
= 0;
6032 struct net_device
*dev
= sp
->dev
;
6034 /* Test Write Error at offset 0 */
6035 /* Note that SPI interface allows write access to all areas
6036 * of EEPROM. Hence doing all negative testing only for Xframe I.
6038 if (sp
->device_type
== XFRAME_I_DEVICE
)
6039 if (!write_eeprom(sp
, 0, 0, 3))
6042 /* Save current values at offsets 0x4F0 and 0x7F0 */
6043 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
6045 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
6048 /* Test Write at offset 4f0 */
6049 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
6051 if (read_eeprom(sp
, 0x4F0, &ret_data
))
6054 if (ret_data
!= 0x012345) {
6055 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
6056 "Data written %llx Data read %llx\n",
6057 dev
->name
, (unsigned long long)0x12345,
6058 (unsigned long long)ret_data
);
6062 /* Reset the EEPROM data go FFFF */
6063 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
6065 /* Test Write Request Error at offset 0x7c */
6066 if (sp
->device_type
== XFRAME_I_DEVICE
)
6067 if (!write_eeprom(sp
, 0x07C, 0, 3))
6070 /* Test Write Request at offset 0x7f0 */
6071 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
6073 if (read_eeprom(sp
, 0x7F0, &ret_data
))
6076 if (ret_data
!= 0x012345) {
6077 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
6078 "Data written %llx Data read %llx\n",
6079 dev
->name
, (unsigned long long)0x12345,
6080 (unsigned long long)ret_data
);
6084 /* Reset the EEPROM data go FFFF */
6085 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
6087 if (sp
->device_type
== XFRAME_I_DEVICE
) {
6088 /* Test Write Error at offset 0x80 */
6089 if (!write_eeprom(sp
, 0x080, 0, 3))
6092 /* Test Write Error at offset 0xfc */
6093 if (!write_eeprom(sp
, 0x0FC, 0, 3))
6096 /* Test Write Error at offset 0x100 */
6097 if (!write_eeprom(sp
, 0x100, 0, 3))
6100 /* Test Write Error at offset 4ec */
6101 if (!write_eeprom(sp
, 0x4EC, 0, 3))
6105 /* Restore values at offsets 0x4F0 and 0x7F0 */
6107 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
6109 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
6116 * s2io_bist_test - invokes the MemBist test of the card .
6117 * @sp : private member of the device structure, which is a pointer to the
6118 * s2io_nic structure.
6119 * @data:variable that returns the result of each of the test conducted by
6122 * This invokes the MemBist test of the card. We give around
6123 * 2 secs time for the Test to complete. If it's still not complete
6124 * within this peiod, we consider that the test failed.
6126 * 0 on success and -1 on failure.
6129 static int s2io_bist_test(struct s2io_nic
*sp
, uint64_t *data
)
6132 int cnt
= 0, ret
= -1;
6134 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6135 bist
|= PCI_BIST_START
;
6136 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
6139 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
6140 if (!(bist
& PCI_BIST_START
)) {
6141 *data
= (bist
& PCI_BIST_CODE_MASK
);
6153 * s2io-link_test - verifies the link state of the nic
6154 * @sp ; private member of the device structure, which is a pointer to the
6155 * s2io_nic structure.
6156 * @data: variable that returns the result of each of the test conducted by
6159 * The function verifies the link state of the NIC and updates the input
6160 * argument 'data' appropriately.
6165 static int s2io_link_test(struct s2io_nic
*sp
, uint64_t *data
)
6167 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6170 val64
= readq(&bar0
->adapter_status
);
6171 if (!(LINK_IS_UP(val64
)))
6180 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6181 * @sp - private member of the device structure, which is a pointer to the
6182 * s2io_nic structure.
6183 * @data - variable that returns the result of each of the test
6184 * conducted by the driver.
6186 * This is one of the offline test that tests the read and write
6187 * access to the RldRam chip on the NIC.
6192 static int s2io_rldram_test(struct s2io_nic
*sp
, uint64_t *data
)
6194 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6196 int cnt
, iteration
= 0, test_fail
= 0;
6198 val64
= readq(&bar0
->adapter_control
);
6199 val64
&= ~ADAPTER_ECC_EN
;
6200 writeq(val64
, &bar0
->adapter_control
);
6202 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6203 val64
|= MC_RLDRAM_TEST_MODE
;
6204 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6206 val64
= readq(&bar0
->mc_rldram_mrs
);
6207 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
6208 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6210 val64
|= MC_RLDRAM_MRS_ENABLE
;
6211 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
6213 while (iteration
< 2) {
6214 val64
= 0x55555555aaaa0000ULL
;
6216 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6217 writeq(val64
, &bar0
->mc_rldram_test_d0
);
6219 val64
= 0xaaaa5a5555550000ULL
;
6221 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6222 writeq(val64
, &bar0
->mc_rldram_test_d1
);
6224 val64
= 0x55aaaaaaaa5a0000ULL
;
6226 val64
^= 0xFFFFFFFFFFFF0000ULL
;
6227 writeq(val64
, &bar0
->mc_rldram_test_d2
);
6229 val64
= (u64
) (0x0000003ffffe0100ULL
);
6230 writeq(val64
, &bar0
->mc_rldram_test_add
);
6232 val64
= MC_RLDRAM_TEST_MODE
|
6233 MC_RLDRAM_TEST_WRITE
|
6235 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6237 for (cnt
= 0; cnt
< 5; cnt
++) {
6238 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6239 if (val64
& MC_RLDRAM_TEST_DONE
)
6247 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
6248 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
6250 for (cnt
= 0; cnt
< 5; cnt
++) {
6251 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6252 if (val64
& MC_RLDRAM_TEST_DONE
)
6260 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
6261 if (!(val64
& MC_RLDRAM_TEST_PASS
))
6269 /* Bring the adapter out of test mode */
6270 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
6276 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6277 * @sp : private member of the device structure, which is a pointer to the
6278 * s2io_nic structure.
6279 * @ethtest : pointer to a ethtool command specific structure that will be
6280 * returned to the user.
6281 * @data : variable that returns the result of each of the test
6282 * conducted by the driver.
6284 * This function conducts 6 tests ( 4 offline and 2 online) to determine
6285 * the health of the card.
6290 static void s2io_ethtool_test(struct net_device
*dev
,
6291 struct ethtool_test
*ethtest
,
6294 struct s2io_nic
*sp
= netdev_priv(dev
);
6295 int orig_state
= netif_running(sp
->dev
);
6297 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
6298 /* Offline Tests. */
6300 s2io_close(sp
->dev
);
6302 if (s2io_register_test(sp
, &data
[0]))
6303 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6307 if (s2io_rldram_test(sp
, &data
[3]))
6308 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6312 if (s2io_eeprom_test(sp
, &data
[1]))
6313 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6315 if (s2io_bist_test(sp
, &data
[4]))
6316 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6325 DBG_PRINT(ERR_DBG
, "%s: is not up, cannot run test\n",
6334 if (s2io_link_test(sp
, &data
[2]))
6335 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
6344 static void s2io_get_ethtool_stats(struct net_device
*dev
,
6345 struct ethtool_stats
*estats
,
6349 struct s2io_nic
*sp
= netdev_priv(dev
);
6350 struct stat_block
*stats
= sp
->mac_control
.stats_info
;
6351 struct swStat
*swstats
= &stats
->sw_stat
;
6352 struct xpakStat
*xstats
= &stats
->xpak_stat
;
6354 s2io_updt_stats(sp
);
6356 (u64
)le32_to_cpu(stats
->tmac_frms_oflow
) << 32 |
6357 le32_to_cpu(stats
->tmac_frms
);
6359 (u64
)le32_to_cpu(stats
->tmac_data_octets_oflow
) << 32 |
6360 le32_to_cpu(stats
->tmac_data_octets
);
6361 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_drop_frms
);
6363 (u64
)le32_to_cpu(stats
->tmac_mcst_frms_oflow
) << 32 |
6364 le32_to_cpu(stats
->tmac_mcst_frms
);
6366 (u64
)le32_to_cpu(stats
->tmac_bcst_frms_oflow
) << 32 |
6367 le32_to_cpu(stats
->tmac_bcst_frms
);
6368 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_pause_ctrl_frms
);
6370 (u64
)le32_to_cpu(stats
->tmac_ttl_octets_oflow
) << 32 |
6371 le32_to_cpu(stats
->tmac_ttl_octets
);
6373 (u64
)le32_to_cpu(stats
->tmac_ucst_frms_oflow
) << 32 |
6374 le32_to_cpu(stats
->tmac_ucst_frms
);
6376 (u64
)le32_to_cpu(stats
->tmac_nucst_frms_oflow
) << 32 |
6377 le32_to_cpu(stats
->tmac_nucst_frms
);
6379 (u64
)le32_to_cpu(stats
->tmac_any_err_frms_oflow
) << 32 |
6380 le32_to_cpu(stats
->tmac_any_err_frms
);
6381 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_ttl_less_fb_octets
);
6382 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_vld_ip_octets
);
6384 (u64
)le32_to_cpu(stats
->tmac_vld_ip_oflow
) << 32 |
6385 le32_to_cpu(stats
->tmac_vld_ip
);
6387 (u64
)le32_to_cpu(stats
->tmac_drop_ip_oflow
) << 32 |
6388 le32_to_cpu(stats
->tmac_drop_ip
);
6390 (u64
)le32_to_cpu(stats
->tmac_icmp_oflow
) << 32 |
6391 le32_to_cpu(stats
->tmac_icmp
);
6393 (u64
)le32_to_cpu(stats
->tmac_rst_tcp_oflow
) << 32 |
6394 le32_to_cpu(stats
->tmac_rst_tcp
);
6395 tmp_stats
[i
++] = le64_to_cpu(stats
->tmac_tcp
);
6396 tmp_stats
[i
++] = (u64
)le32_to_cpu(stats
->tmac_udp_oflow
) << 32 |
6397 le32_to_cpu(stats
->tmac_udp
);
6399 (u64
)le32_to_cpu(stats
->rmac_vld_frms_oflow
) << 32 |
6400 le32_to_cpu(stats
->rmac_vld_frms
);
6402 (u64
)le32_to_cpu(stats
->rmac_data_octets_oflow
) << 32 |
6403 le32_to_cpu(stats
->rmac_data_octets
);
6404 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_fcs_err_frms
);
6405 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_drop_frms
);
6407 (u64
)le32_to_cpu(stats
->rmac_vld_mcst_frms_oflow
) << 32 |
6408 le32_to_cpu(stats
->rmac_vld_mcst_frms
);
6410 (u64
)le32_to_cpu(stats
->rmac_vld_bcst_frms_oflow
) << 32 |
6411 le32_to_cpu(stats
->rmac_vld_bcst_frms
);
6412 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_in_rng_len_err_frms
);
6413 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_out_rng_len_err_frms
);
6414 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_long_frms
);
6415 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_pause_ctrl_frms
);
6416 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_unsup_ctrl_frms
);
6418 (u64
)le32_to_cpu(stats
->rmac_ttl_octets_oflow
) << 32 |
6419 le32_to_cpu(stats
->rmac_ttl_octets
);
6421 (u64
)le32_to_cpu(stats
->rmac_accepted_ucst_frms_oflow
) << 32
6422 | le32_to_cpu(stats
->rmac_accepted_ucst_frms
);
6424 (u64
)le32_to_cpu(stats
->rmac_accepted_nucst_frms_oflow
)
6425 << 32 | le32_to_cpu(stats
->rmac_accepted_nucst_frms
);
6427 (u64
)le32_to_cpu(stats
->rmac_discarded_frms_oflow
) << 32 |
6428 le32_to_cpu(stats
->rmac_discarded_frms
);
6430 (u64
)le32_to_cpu(stats
->rmac_drop_events_oflow
)
6431 << 32 | le32_to_cpu(stats
->rmac_drop_events
);
6432 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_less_fb_octets
);
6433 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_frms
);
6435 (u64
)le32_to_cpu(stats
->rmac_usized_frms_oflow
) << 32 |
6436 le32_to_cpu(stats
->rmac_usized_frms
);
6438 (u64
)le32_to_cpu(stats
->rmac_osized_frms_oflow
) << 32 |
6439 le32_to_cpu(stats
->rmac_osized_frms
);
6441 (u64
)le32_to_cpu(stats
->rmac_frag_frms_oflow
) << 32 |
6442 le32_to_cpu(stats
->rmac_frag_frms
);
6444 (u64
)le32_to_cpu(stats
->rmac_jabber_frms_oflow
) << 32 |
6445 le32_to_cpu(stats
->rmac_jabber_frms
);
6446 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_64_frms
);
6447 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_65_127_frms
);
6448 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_128_255_frms
);
6449 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_256_511_frms
);
6450 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_512_1023_frms
);
6451 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_1024_1518_frms
);
6453 (u64
)le32_to_cpu(stats
->rmac_ip_oflow
) << 32 |
6454 le32_to_cpu(stats
->rmac_ip
);
6455 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ip_octets
);
6456 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_hdr_err_ip
);
6458 (u64
)le32_to_cpu(stats
->rmac_drop_ip_oflow
) << 32 |
6459 le32_to_cpu(stats
->rmac_drop_ip
);
6461 (u64
)le32_to_cpu(stats
->rmac_icmp_oflow
) << 32 |
6462 le32_to_cpu(stats
->rmac_icmp
);
6463 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_tcp
);
6465 (u64
)le32_to_cpu(stats
->rmac_udp_oflow
) << 32 |
6466 le32_to_cpu(stats
->rmac_udp
);
6468 (u64
)le32_to_cpu(stats
->rmac_err_drp_udp_oflow
) << 32 |
6469 le32_to_cpu(stats
->rmac_err_drp_udp
);
6470 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_err_sym
);
6471 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q0
);
6472 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q1
);
6473 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q2
);
6474 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q3
);
6475 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q4
);
6476 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q5
);
6477 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q6
);
6478 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_frms_q7
);
6479 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q0
);
6480 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q1
);
6481 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q2
);
6482 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q3
);
6483 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q4
);
6484 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q5
);
6485 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q6
);
6486 tmp_stats
[i
++] = le16_to_cpu(stats
->rmac_full_q7
);
6488 (u64
)le32_to_cpu(stats
->rmac_pause_cnt_oflow
) << 32 |
6489 le32_to_cpu(stats
->rmac_pause_cnt
);
6490 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_data_err_cnt
);
6491 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_xgmii_ctrl_err_cnt
);
6493 (u64
)le32_to_cpu(stats
->rmac_accepted_ip_oflow
) << 32 |
6494 le32_to_cpu(stats
->rmac_accepted_ip
);
6495 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_err_tcp
);
6496 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_req_cnt
);
6497 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_cnt
);
6498 tmp_stats
[i
++] = le32_to_cpu(stats
->new_rd_req_rtry_cnt
);
6499 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_cnt
);
6500 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_rd_ack_cnt
);
6501 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_req_cnt
);
6502 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_cnt
);
6503 tmp_stats
[i
++] = le32_to_cpu(stats
->new_wr_req_rtry_cnt
);
6504 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_rtry_cnt
);
6505 tmp_stats
[i
++] = le32_to_cpu(stats
->wr_disc_cnt
);
6506 tmp_stats
[i
++] = le32_to_cpu(stats
->rd_rtry_wr_ack_cnt
);
6507 tmp_stats
[i
++] = le32_to_cpu(stats
->txp_wr_cnt
);
6508 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_rd_cnt
);
6509 tmp_stats
[i
++] = le32_to_cpu(stats
->txd_wr_cnt
);
6510 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_rd_cnt
);
6511 tmp_stats
[i
++] = le32_to_cpu(stats
->rxd_wr_cnt
);
6512 tmp_stats
[i
++] = le32_to_cpu(stats
->txf_rd_cnt
);
6513 tmp_stats
[i
++] = le32_to_cpu(stats
->rxf_wr_cnt
);
6515 /* Enhanced statistics exist only for Hercules */
6516 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6518 le64_to_cpu(stats
->rmac_ttl_1519_4095_frms
);
6520 le64_to_cpu(stats
->rmac_ttl_4096_8191_frms
);
6522 le64_to_cpu(stats
->rmac_ttl_8192_max_frms
);
6523 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_ttl_gt_max_frms
);
6524 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_osized_alt_frms
);
6525 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_jabber_alt_frms
);
6526 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_gt_max_alt_frms
);
6527 tmp_stats
[i
++] = le64_to_cpu(stats
->rmac_vlan_frms
);
6528 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_len_discard
);
6529 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_fcs_discard
);
6530 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_pf_discard
);
6531 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_da_discard
);
6532 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_red_discard
);
6533 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_rts_discard
);
6534 tmp_stats
[i
++] = le32_to_cpu(stats
->rmac_ingm_full_discard
);
6535 tmp_stats
[i
++] = le32_to_cpu(stats
->link_fault_cnt
);
6539 tmp_stats
[i
++] = swstats
->single_ecc_errs
;
6540 tmp_stats
[i
++] = swstats
->double_ecc_errs
;
6541 tmp_stats
[i
++] = swstats
->parity_err_cnt
;
6542 tmp_stats
[i
++] = swstats
->serious_err_cnt
;
6543 tmp_stats
[i
++] = swstats
->soft_reset_cnt
;
6544 tmp_stats
[i
++] = swstats
->fifo_full_cnt
;
6545 for (k
= 0; k
< MAX_RX_RINGS
; k
++)
6546 tmp_stats
[i
++] = swstats
->ring_full_cnt
[k
];
6547 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_high
;
6548 tmp_stats
[i
++] = xstats
->alarm_transceiver_temp_low
;
6549 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_high
;
6550 tmp_stats
[i
++] = xstats
->alarm_laser_bias_current_low
;
6551 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_high
;
6552 tmp_stats
[i
++] = xstats
->alarm_laser_output_power_low
;
6553 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_high
;
6554 tmp_stats
[i
++] = xstats
->warn_transceiver_temp_low
;
6555 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_high
;
6556 tmp_stats
[i
++] = xstats
->warn_laser_bias_current_low
;
6557 tmp_stats
[i
++] = xstats
->warn_laser_output_power_high
;
6558 tmp_stats
[i
++] = xstats
->warn_laser_output_power_low
;
6559 tmp_stats
[i
++] = swstats
->clubbed_frms_cnt
;
6560 tmp_stats
[i
++] = swstats
->sending_both
;
6561 tmp_stats
[i
++] = swstats
->outof_sequence_pkts
;
6562 tmp_stats
[i
++] = swstats
->flush_max_pkts
;
6563 if (swstats
->num_aggregations
) {
6564 u64 tmp
= swstats
->sum_avg_pkts_aggregated
;
6567 * Since 64-bit divide does not work on all platforms,
6568 * do repeated subtraction.
6570 while (tmp
>= swstats
->num_aggregations
) {
6571 tmp
-= swstats
->num_aggregations
;
6574 tmp_stats
[i
++] = count
;
6577 tmp_stats
[i
++] = swstats
->mem_alloc_fail_cnt
;
6578 tmp_stats
[i
++] = swstats
->pci_map_fail_cnt
;
6579 tmp_stats
[i
++] = swstats
->watchdog_timer_cnt
;
6580 tmp_stats
[i
++] = swstats
->mem_allocated
;
6581 tmp_stats
[i
++] = swstats
->mem_freed
;
6582 tmp_stats
[i
++] = swstats
->link_up_cnt
;
6583 tmp_stats
[i
++] = swstats
->link_down_cnt
;
6584 tmp_stats
[i
++] = swstats
->link_up_time
;
6585 tmp_stats
[i
++] = swstats
->link_down_time
;
6587 tmp_stats
[i
++] = swstats
->tx_buf_abort_cnt
;
6588 tmp_stats
[i
++] = swstats
->tx_desc_abort_cnt
;
6589 tmp_stats
[i
++] = swstats
->tx_parity_err_cnt
;
6590 tmp_stats
[i
++] = swstats
->tx_link_loss_cnt
;
6591 tmp_stats
[i
++] = swstats
->tx_list_proc_err_cnt
;
6593 tmp_stats
[i
++] = swstats
->rx_parity_err_cnt
;
6594 tmp_stats
[i
++] = swstats
->rx_abort_cnt
;
6595 tmp_stats
[i
++] = swstats
->rx_parity_abort_cnt
;
6596 tmp_stats
[i
++] = swstats
->rx_rda_fail_cnt
;
6597 tmp_stats
[i
++] = swstats
->rx_unkn_prot_cnt
;
6598 tmp_stats
[i
++] = swstats
->rx_fcs_err_cnt
;
6599 tmp_stats
[i
++] = swstats
->rx_buf_size_err_cnt
;
6600 tmp_stats
[i
++] = swstats
->rx_rxd_corrupt_cnt
;
6601 tmp_stats
[i
++] = swstats
->rx_unkn_err_cnt
;
6602 tmp_stats
[i
++] = swstats
->tda_err_cnt
;
6603 tmp_stats
[i
++] = swstats
->pfc_err_cnt
;
6604 tmp_stats
[i
++] = swstats
->pcc_err_cnt
;
6605 tmp_stats
[i
++] = swstats
->tti_err_cnt
;
6606 tmp_stats
[i
++] = swstats
->tpa_err_cnt
;
6607 tmp_stats
[i
++] = swstats
->sm_err_cnt
;
6608 tmp_stats
[i
++] = swstats
->lso_err_cnt
;
6609 tmp_stats
[i
++] = swstats
->mac_tmac_err_cnt
;
6610 tmp_stats
[i
++] = swstats
->mac_rmac_err_cnt
;
6611 tmp_stats
[i
++] = swstats
->xgxs_txgxs_err_cnt
;
6612 tmp_stats
[i
++] = swstats
->xgxs_rxgxs_err_cnt
;
6613 tmp_stats
[i
++] = swstats
->rc_err_cnt
;
6614 tmp_stats
[i
++] = swstats
->prc_pcix_err_cnt
;
6615 tmp_stats
[i
++] = swstats
->rpa_err_cnt
;
6616 tmp_stats
[i
++] = swstats
->rda_err_cnt
;
6617 tmp_stats
[i
++] = swstats
->rti_err_cnt
;
6618 tmp_stats
[i
++] = swstats
->mc_err_cnt
;
6621 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
6623 return XENA_REG_SPACE
;
6627 static u32
s2io_ethtool_get_rx_csum(struct net_device
*dev
)
6629 struct s2io_nic
*sp
= netdev_priv(dev
);
6634 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
6636 struct s2io_nic
*sp
= netdev_priv(dev
);
6646 static int s2io_get_eeprom_len(struct net_device
*dev
)
6648 return XENA_EEPROM_SPACE
;
6651 static int s2io_get_sset_count(struct net_device
*dev
, int sset
)
6653 struct s2io_nic
*sp
= netdev_priv(dev
);
6657 return S2IO_TEST_LEN
;
6659 switch (sp
->device_type
) {
6660 case XFRAME_I_DEVICE
:
6661 return XFRAME_I_STAT_LEN
;
6662 case XFRAME_II_DEVICE
:
6663 return XFRAME_II_STAT_LEN
;
6672 static void s2io_ethtool_get_strings(struct net_device
*dev
,
6673 u32 stringset
, u8
*data
)
6676 struct s2io_nic
*sp
= netdev_priv(dev
);
6678 switch (stringset
) {
6680 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
6683 stat_size
= sizeof(ethtool_xena_stats_keys
);
6684 memcpy(data
, ðtool_xena_stats_keys
, stat_size
);
6685 if (sp
->device_type
== XFRAME_II_DEVICE
) {
6686 memcpy(data
+ stat_size
,
6687 ðtool_enhanced_stats_keys
,
6688 sizeof(ethtool_enhanced_stats_keys
));
6689 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
6692 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
6693 sizeof(ethtool_driver_stats_keys
));
6697 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
6700 dev
->features
|= NETIF_F_IP_CSUM
;
6702 dev
->features
&= ~NETIF_F_IP_CSUM
;
6707 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
6709 return (dev
->features
& NETIF_F_TSO
) != 0;
6712 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
6715 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
6717 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
6722 static int s2io_ethtool_set_flags(struct net_device
*dev
, u32 data
)
6724 struct s2io_nic
*sp
= netdev_priv(dev
);
6728 if (data
& ~ETH_FLAG_LRO
)
6731 if (data
& ETH_FLAG_LRO
) {
6732 if (!(dev
->features
& NETIF_F_LRO
)) {
6733 dev
->features
|= NETIF_F_LRO
;
6736 } else if (dev
->features
& NETIF_F_LRO
) {
6737 dev
->features
&= ~NETIF_F_LRO
;
6741 if (changed
&& netif_running(dev
)) {
6742 s2io_stop_all_tx_queue(sp
);
6744 rc
= s2io_card_up(sp
);
6748 s2io_start_all_tx_queue(sp
);
6754 static const struct ethtool_ops netdev_ethtool_ops
= {
6755 .get_settings
= s2io_ethtool_gset
,
6756 .set_settings
= s2io_ethtool_sset
,
6757 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
6758 .get_regs_len
= s2io_ethtool_get_regs_len
,
6759 .get_regs
= s2io_ethtool_gregs
,
6760 .get_link
= ethtool_op_get_link
,
6761 .get_eeprom_len
= s2io_get_eeprom_len
,
6762 .get_eeprom
= s2io_ethtool_geeprom
,
6763 .set_eeprom
= s2io_ethtool_seeprom
,
6764 .get_ringparam
= s2io_ethtool_gringparam
,
6765 .get_pauseparam
= s2io_ethtool_getpause_data
,
6766 .set_pauseparam
= s2io_ethtool_setpause_data
,
6767 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
6768 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
6769 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
6770 .set_flags
= s2io_ethtool_set_flags
,
6771 .get_flags
= ethtool_op_get_flags
,
6772 .set_sg
= ethtool_op_set_sg
,
6773 .get_tso
= s2io_ethtool_op_get_tso
,
6774 .set_tso
= s2io_ethtool_op_set_tso
,
6775 .set_ufo
= ethtool_op_set_ufo
,
6776 .self_test
= s2io_ethtool_test
,
6777 .get_strings
= s2io_ethtool_get_strings
,
6778 .phys_id
= s2io_ethtool_idnic
,
6779 .get_ethtool_stats
= s2io_get_ethtool_stats
,
6780 .get_sset_count
= s2io_get_sset_count
,
6784 * s2io_ioctl - Entry point for the Ioctl
6785 * @dev : Device pointer.
6786 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6787 * a proprietary structure used to pass information to the driver.
6788 * @cmd : This is used to distinguish between the different commands that
6789 * can be passed to the IOCTL functions.
6791 * Currently there are no special functionality supported in IOCTL, hence
6792 * function always return EOPNOTSUPPORTED
6795 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
6801 * s2io_change_mtu - entry point to change MTU size for the device.
6802 * @dev : device pointer.
6803 * @new_mtu : the new MTU size for the device.
6804 * Description: A driver entry point to change MTU size for the device.
6805 * Before changing the MTU the device must be stopped.
6807 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6811 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
6813 struct s2io_nic
*sp
= netdev_priv(dev
);
6816 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
6817 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n", dev
->name
);
6822 if (netif_running(dev
)) {
6823 s2io_stop_all_tx_queue(sp
);
6825 ret
= s2io_card_up(sp
);
6827 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6831 s2io_wake_all_tx_queue(sp
);
6832 } else { /* Device is down */
6833 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6834 u64 val64
= new_mtu
;
6836 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6843 * s2io_set_link - Set the LInk status
6844 * @data: long pointer to device private structue
6845 * Description: Sets the link status for the adapter
6848 static void s2io_set_link(struct work_struct
*work
)
6850 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
,
6852 struct net_device
*dev
= nic
->dev
;
6853 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6859 if (!netif_running(dev
))
6862 if (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
))) {
6863 /* The card is being reset, no point doing anything */
6867 subid
= nic
->pdev
->subsystem_device
;
6868 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6870 * Allow a small delay for the NICs self initiated
6871 * cleanup to complete.
6876 val64
= readq(&bar0
->adapter_status
);
6877 if (LINK_IS_UP(val64
)) {
6878 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6879 if (verify_xena_quiescence(nic
)) {
6880 val64
= readq(&bar0
->adapter_control
);
6881 val64
|= ADAPTER_CNTL_EN
;
6882 writeq(val64
, &bar0
->adapter_control
);
6883 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6884 nic
->device_type
, subid
)) {
6885 val64
= readq(&bar0
->gpio_control
);
6886 val64
|= GPIO_CTRL_GPIO_0
;
6887 writeq(val64
, &bar0
->gpio_control
);
6888 val64
= readq(&bar0
->gpio_control
);
6890 val64
|= ADAPTER_LED_ON
;
6891 writeq(val64
, &bar0
->adapter_control
);
6893 nic
->device_enabled_once
= true;
6896 "%s: Error: device is not Quiescent\n",
6898 s2io_stop_all_tx_queue(nic
);
6901 val64
= readq(&bar0
->adapter_control
);
6902 val64
|= ADAPTER_LED_ON
;
6903 writeq(val64
, &bar0
->adapter_control
);
6904 s2io_link(nic
, LINK_UP
);
6906 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6908 val64
= readq(&bar0
->gpio_control
);
6909 val64
&= ~GPIO_CTRL_GPIO_0
;
6910 writeq(val64
, &bar0
->gpio_control
);
6911 val64
= readq(&bar0
->gpio_control
);
6914 val64
= readq(&bar0
->adapter_control
);
6915 val64
= val64
& (~ADAPTER_LED_ON
);
6916 writeq(val64
, &bar0
->adapter_control
);
6917 s2io_link(nic
, LINK_DOWN
);
6919 clear_bit(__S2IO_STATE_LINK_TASK
, &(nic
->state
));
6925 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6927 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6928 u64
*temp2
, int size
)
6930 struct net_device
*dev
= sp
->dev
;
6931 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6933 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6934 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6937 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6939 * As Rx frame are not going to be processed,
6940 * using same mapped address for the Rxd
6943 rxdp1
->Buffer0_ptr
= *temp0
;
6945 *skb
= dev_alloc_skb(size
);
6948 "%s: Out of memory to allocate %s\n",
6949 dev
->name
, "1 buf mode SKBs");
6950 stats
->mem_alloc_fail_cnt
++;
6953 stats
->mem_allocated
+= (*skb
)->truesize
;
6954 /* storing the mapped addr in a temp variable
6955 * such it will be used for next rxd whose
6956 * Host Control is NULL
6958 rxdp1
->Buffer0_ptr
= *temp0
=
6959 pci_map_single(sp
->pdev
, (*skb
)->data
,
6960 size
- NET_IP_ALIGN
,
6961 PCI_DMA_FROMDEVICE
);
6962 if (pci_dma_mapping_error(sp
->pdev
, rxdp1
->Buffer0_ptr
))
6963 goto memalloc_failed
;
6964 rxdp
->Host_Control
= (unsigned long) (*skb
);
6966 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6967 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6968 /* Two buffer Mode */
6970 rxdp3
->Buffer2_ptr
= *temp2
;
6971 rxdp3
->Buffer0_ptr
= *temp0
;
6972 rxdp3
->Buffer1_ptr
= *temp1
;
6974 *skb
= dev_alloc_skb(size
);
6977 "%s: Out of memory to allocate %s\n",
6980 stats
->mem_alloc_fail_cnt
++;
6983 stats
->mem_allocated
+= (*skb
)->truesize
;
6984 rxdp3
->Buffer2_ptr
= *temp2
=
6985 pci_map_single(sp
->pdev
, (*skb
)->data
,
6987 PCI_DMA_FROMDEVICE
);
6988 if (pci_dma_mapping_error(sp
->pdev
, rxdp3
->Buffer2_ptr
))
6989 goto memalloc_failed
;
6990 rxdp3
->Buffer0_ptr
= *temp0
=
6991 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6992 PCI_DMA_FROMDEVICE
);
6993 if (pci_dma_mapping_error(sp
->pdev
,
6994 rxdp3
->Buffer0_ptr
)) {
6995 pci_unmap_single(sp
->pdev
,
6996 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
6998 PCI_DMA_FROMDEVICE
);
6999 goto memalloc_failed
;
7001 rxdp
->Host_Control
= (unsigned long) (*skb
);
7003 /* Buffer-1 will be dummy buffer not used */
7004 rxdp3
->Buffer1_ptr
= *temp1
=
7005 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
7006 PCI_DMA_FROMDEVICE
);
7007 if (pci_dma_mapping_error(sp
->pdev
,
7008 rxdp3
->Buffer1_ptr
)) {
7009 pci_unmap_single(sp
->pdev
,
7010 (dma_addr_t
)rxdp3
->Buffer0_ptr
,
7011 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
7012 pci_unmap_single(sp
->pdev
,
7013 (dma_addr_t
)rxdp3
->Buffer2_ptr
,
7015 PCI_DMA_FROMDEVICE
);
7016 goto memalloc_failed
;
7023 stats
->pci_map_fail_cnt
++;
7024 stats
->mem_freed
+= (*skb
)->truesize
;
7025 dev_kfree_skb(*skb
);
7029 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
7032 struct net_device
*dev
= sp
->dev
;
7033 if (sp
->rxd_mode
== RXD_MODE_1
) {
7034 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
7035 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7036 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
7037 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
7038 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
+ 4);
7042 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
7044 int i
, j
, k
, blk_cnt
= 0, size
;
7045 struct config_param
*config
= &sp
->config
;
7046 struct mac_info
*mac_control
= &sp
->mac_control
;
7047 struct net_device
*dev
= sp
->dev
;
7048 struct RxD_t
*rxdp
= NULL
;
7049 struct sk_buff
*skb
= NULL
;
7050 struct buffAdd
*ba
= NULL
;
7051 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
7053 /* Calculate the size based on ring mode */
7054 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
7055 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
7056 if (sp
->rxd_mode
== RXD_MODE_1
)
7057 size
+= NET_IP_ALIGN
;
7058 else if (sp
->rxd_mode
== RXD_MODE_3B
)
7059 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
7061 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7062 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7063 struct ring_info
*ring
= &mac_control
->rings
[i
];
7065 blk_cnt
= rx_cfg
->num_rxd
/ (rxd_count
[sp
->rxd_mode
] + 1);
7067 for (j
= 0; j
< blk_cnt
; j
++) {
7068 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
7069 rxdp
= ring
->rx_blocks
[j
].rxds
[k
].virt_addr
;
7070 if (sp
->rxd_mode
== RXD_MODE_3B
)
7071 ba
= &ring
->ba
[j
][k
];
7072 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
, &skb
,
7080 set_rxd_buffer_size(sp
, rxdp
, size
);
7082 /* flip the Ownership bit to Hardware */
7083 rxdp
->Control_1
|= RXD_OWN_XENA
;
7091 static int s2io_add_isr(struct s2io_nic
*sp
)
7094 struct net_device
*dev
= sp
->dev
;
7097 if (sp
->config
.intr_type
== MSI_X
)
7098 ret
= s2io_enable_msi_x(sp
);
7100 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
7101 sp
->config
.intr_type
= INTA
;
7105 * Store the values of the MSIX table in
7106 * the struct s2io_nic structure
7108 store_xmsi_data(sp
);
7110 /* After proper initialization of H/W, register ISR */
7111 if (sp
->config
.intr_type
== MSI_X
) {
7112 int i
, msix_rx_cnt
= 0;
7114 for (i
= 0; i
< sp
->num_entries
; i
++) {
7115 if (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
) {
7116 if (sp
->s2io_entries
[i
].type
==
7118 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
7120 err
= request_irq(sp
->entries
[i
].vector
,
7121 s2io_msix_ring_handle
,
7124 sp
->s2io_entries
[i
].arg
);
7125 } else if (sp
->s2io_entries
[i
].type
==
7127 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
7129 err
= request_irq(sp
->entries
[i
].vector
,
7130 s2io_msix_fifo_handle
,
7133 sp
->s2io_entries
[i
].arg
);
7136 /* if either data or addr is zero print it. */
7137 if (!(sp
->msix_info
[i
].addr
&&
7138 sp
->msix_info
[i
].data
)) {
7140 "%s @Addr:0x%llx Data:0x%llx\n",
7142 (unsigned long long)
7143 sp
->msix_info
[i
].addr
,
7144 (unsigned long long)
7145 ntohl(sp
->msix_info
[i
].data
));
7149 remove_msix_isr(sp
);
7152 "%s:MSI-X-%d registration "
7153 "failed\n", dev
->name
, i
);
7156 "%s: Defaulting to INTA\n",
7158 sp
->config
.intr_type
= INTA
;
7161 sp
->s2io_entries
[i
].in_use
=
7162 MSIX_REGISTERED_SUCCESS
;
7166 pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt
);
7168 "MSI-X-TX entries enabled through alarm vector\n");
7171 if (sp
->config
.intr_type
== INTA
) {
7172 err
= request_irq((int)sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
7175 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
7183 static void s2io_rem_isr(struct s2io_nic
*sp
)
7185 if (sp
->config
.intr_type
== MSI_X
)
7186 remove_msix_isr(sp
);
7188 remove_inta_isr(sp
);
7191 static void do_s2io_card_down(struct s2io_nic
*sp
, int do_io
)
7194 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
7195 register u64 val64
= 0;
7196 struct config_param
*config
;
7197 config
= &sp
->config
;
7199 if (!is_s2io_card_up(sp
))
7202 del_timer_sync(&sp
->alarm_timer
);
7203 /* If s2io_set_link task is executing, wait till it completes. */
7204 while (test_and_set_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
)))
7206 clear_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7209 if (sp
->config
.napi
) {
7211 if (config
->intr_type
== MSI_X
) {
7212 for (; off
< sp
->config
.rx_ring_num
; off
++)
7213 napi_disable(&sp
->mac_control
.rings
[off
].napi
);
7216 napi_disable(&sp
->napi
);
7219 /* disable Tx and Rx traffic on the NIC */
7225 /* stop the tx queue, indicate link down */
7226 s2io_link(sp
, LINK_DOWN
);
7228 /* Check if the device is Quiescent and then Reset the NIC */
7230 /* As per the HW requirement we need to replenish the
7231 * receive buffer to avoid the ring bump. Since there is
7232 * no intention of processing the Rx frame at this pointwe are
7233 * just settting the ownership bit of rxd in Each Rx
7234 * ring to HW and set the appropriate buffer size
7235 * based on the ring mode
7237 rxd_owner_bit_reset(sp
);
7239 val64
= readq(&bar0
->adapter_status
);
7240 if (verify_xena_quiescence(sp
)) {
7241 if (verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
7248 DBG_PRINT(ERR_DBG
, "Device not Quiescent - "
7249 "adapter status reads 0x%llx\n",
7250 (unsigned long long)val64
);
7257 /* Free all Tx buffers */
7258 free_tx_buffers(sp
);
7260 /* Free all Rx buffers */
7261 free_rx_buffers(sp
);
7263 clear_bit(__S2IO_STATE_LINK_TASK
, &(sp
->state
));
7266 static void s2io_card_down(struct s2io_nic
*sp
)
7268 do_s2io_card_down(sp
, 1);
7271 static int s2io_card_up(struct s2io_nic
*sp
)
7274 struct config_param
*config
;
7275 struct mac_info
*mac_control
;
7276 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7279 /* Initialize the H/W I/O registers */
7282 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
7290 * Initializing the Rx buffers. For now we are considering only 1
7291 * Rx ring and initializing buffers into 30 Rx blocks
7293 config
= &sp
->config
;
7294 mac_control
= &sp
->mac_control
;
7296 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7297 struct ring_info
*ring
= &mac_control
->rings
[i
];
7299 ring
->mtu
= dev
->mtu
;
7300 ring
->lro
= !!(dev
->features
& NETIF_F_LRO
);
7301 ret
= fill_rx_buffers(sp
, ring
, 1);
7303 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
7306 free_rx_buffers(sp
);
7309 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
7310 ring
->rx_bufs_left
);
7313 /* Initialise napi */
7315 if (config
->intr_type
== MSI_X
) {
7316 for (i
= 0; i
< sp
->config
.rx_ring_num
; i
++)
7317 napi_enable(&sp
->mac_control
.rings
[i
].napi
);
7319 napi_enable(&sp
->napi
);
7323 /* Maintain the state prior to the open */
7324 if (sp
->promisc_flg
)
7325 sp
->promisc_flg
= 0;
7326 if (sp
->m_cast_flg
) {
7328 sp
->all_multi_pos
= 0;
7331 /* Setting its receive mode */
7332 s2io_set_multicast(dev
);
7334 if (dev
->features
& NETIF_F_LRO
) {
7335 /* Initialize max aggregatable pkts per session based on MTU */
7336 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
7337 /* Check if we can use (if specified) user provided value */
7338 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
7339 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
7342 /* Enable Rx Traffic and interrupts on the NIC */
7343 if (start_nic(sp
)) {
7344 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
7346 free_rx_buffers(sp
);
7350 /* Add interrupt service routine */
7351 if (s2io_add_isr(sp
) != 0) {
7352 if (sp
->config
.intr_type
== MSI_X
)
7355 free_rx_buffers(sp
);
7359 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
7361 set_bit(__S2IO_STATE_CARD_UP
, &sp
->state
);
7363 /* Enable select interrupts */
7364 en_dis_err_alarms(sp
, ENA_ALL_INTRS
, ENABLE_INTRS
);
7365 if (sp
->config
.intr_type
!= INTA
) {
7366 interruptible
= TX_TRAFFIC_INTR
| TX_PIC_INTR
;
7367 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7369 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
7370 interruptible
|= TX_PIC_INTR
;
7371 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
7378 * s2io_restart_nic - Resets the NIC.
7379 * @data : long pointer to the device private structure
7381 * This function is scheduled to be run by the s2io_tx_watchdog
7382 * function after 0.5 secs to reset the NIC. The idea is to reduce
7383 * the run time of the watch dog routine which is run holding a
7387 static void s2io_restart_nic(struct work_struct
*work
)
7389 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
7390 struct net_device
*dev
= sp
->dev
;
7394 if (!netif_running(dev
))
7398 if (s2io_card_up(sp
)) {
7399 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n", dev
->name
);
7401 s2io_wake_all_tx_queue(sp
);
7402 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n", dev
->name
);
7408 * s2io_tx_watchdog - Watchdog for transmit side.
7409 * @dev : Pointer to net device structure
7411 * This function is triggered if the Tx Queue is stopped
7412 * for a pre-defined amount of time when the Interface is still up.
7413 * If the Interface is jammed in such a situation, the hardware is
7414 * reset (by s2io_close) and restarted again (by s2io_open) to
7415 * overcome any problem that might have been caused in the hardware.
7420 static void s2io_tx_watchdog(struct net_device
*dev
)
7422 struct s2io_nic
*sp
= netdev_priv(dev
);
7423 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7425 if (netif_carrier_ok(dev
)) {
7426 swstats
->watchdog_timer_cnt
++;
7427 schedule_work(&sp
->rst_timer_task
);
7428 swstats
->soft_reset_cnt
++;
7433 * rx_osm_handler - To perform some OS related operations on SKB.
7434 * @sp: private member of the device structure,pointer to s2io_nic structure.
7435 * @skb : the socket buffer pointer.
7436 * @len : length of the packet
7437 * @cksum : FCS checksum of the frame.
7438 * @ring_no : the ring from which this RxD was extracted.
7440 * This function is called by the Rx interrupt serivce routine to perform
7441 * some OS related operations on the SKB before passing it to the upper
7442 * layers. It mainly checks if the checksum is OK, if so adds it to the
7443 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7444 * to the upper layer. If the checksum is wrong, it increments the Rx
7445 * packet error count, frees the SKB and returns error.
7447 * SUCCESS on success and -1 on failure.
7449 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
7451 struct s2io_nic
*sp
= ring_data
->nic
;
7452 struct net_device
*dev
= (struct net_device
*)ring_data
->dev
;
7453 struct sk_buff
*skb
= (struct sk_buff
*)
7454 ((unsigned long)rxdp
->Host_Control
);
7455 int ring_no
= ring_data
->ring_no
;
7456 u16 l3_csum
, l4_csum
;
7457 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
7458 struct lro
*uninitialized_var(lro
);
7460 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7465 /* Check for parity error */
7467 swstats
->parity_err_cnt
++;
7469 err_mask
= err
>> 48;
7472 swstats
->rx_parity_err_cnt
++;
7476 swstats
->rx_abort_cnt
++;
7480 swstats
->rx_parity_abort_cnt
++;
7484 swstats
->rx_rda_fail_cnt
++;
7488 swstats
->rx_unkn_prot_cnt
++;
7492 swstats
->rx_fcs_err_cnt
++;
7496 swstats
->rx_buf_size_err_cnt
++;
7500 swstats
->rx_rxd_corrupt_cnt
++;
7504 swstats
->rx_unkn_err_cnt
++;
7508 * Drop the packet if bad transfer code. Exception being
7509 * 0x5, which could be due to unsupported IPv6 extension header.
7510 * In this case, we let stack handle the packet.
7511 * Note that in this case, since checksum will be incorrect,
7512 * stack will validate the same.
7514 if (err_mask
!= 0x5) {
7515 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
7516 dev
->name
, err_mask
);
7517 dev
->stats
.rx_crc_errors
++;
7521 ring_data
->rx_bufs_left
-= 1;
7522 rxdp
->Host_Control
= 0;
7527 rxdp
->Host_Control
= 0;
7528 if (sp
->rxd_mode
== RXD_MODE_1
) {
7529 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
7532 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
7533 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
7534 int get_off
= ring_data
->rx_curr_get_info
.offset
;
7535 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
7536 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
7537 unsigned char *buff
= skb_push(skb
, buf0_len
);
7539 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
7540 memcpy(buff
, ba
->ba_0
, buf0_len
);
7541 skb_put(skb
, buf2_len
);
7544 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) &&
7545 ((!ring_data
->lro
) ||
7546 (ring_data
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
7548 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
7549 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
7550 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
7552 * NIC verifies if the Checksum of the received
7553 * frame is Ok or not and accordingly returns
7554 * a flag in the RxD.
7556 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
7557 if (ring_data
->lro
) {
7562 ret
= s2io_club_tcp_session(ring_data
,
7567 case 3: /* Begin anew */
7570 case 1: /* Aggregate */
7571 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7573 case 4: /* Flush session */
7574 lro_append_pkt(sp
, lro
, skb
, tcp_len
);
7575 queue_rx_frame(lro
->parent
,
7577 clear_lro_session(lro
);
7578 swstats
->flush_max_pkts
++;
7580 case 2: /* Flush both */
7581 lro
->parent
->data_len
= lro
->frags_len
;
7582 swstats
->sending_both
++;
7583 queue_rx_frame(lro
->parent
,
7585 clear_lro_session(lro
);
7587 case 0: /* sessions exceeded */
7588 case -1: /* non-TCP or not L2 aggregatable */
7590 * First pkt in session not
7591 * L3/L4 aggregatable
7596 "%s: Samadhana!!\n",
7603 * Packet with erroneous checksum, let the
7604 * upper layers deal with it.
7606 skb
->ip_summed
= CHECKSUM_NONE
;
7609 skb
->ip_summed
= CHECKSUM_NONE
;
7611 swstats
->mem_freed
+= skb
->truesize
;
7613 skb_record_rx_queue(skb
, ring_no
);
7614 queue_rx_frame(skb
, RXD_GET_VLAN_TAG(rxdp
->Control_2
));
7616 sp
->mac_control
.rings
[ring_no
].rx_bufs_left
-= 1;
7621 * s2io_link - stops/starts the Tx queue.
7622 * @sp : private member of the device structure, which is a pointer to the
7623 * s2io_nic structure.
7624 * @link : inidicates whether link is UP/DOWN.
7626 * This function stops/starts the Tx queue depending on whether the link
7627 * status of the NIC is is down or up. This is called by the Alarm
7628 * interrupt handler whenever a link change interrupt comes up.
7633 static void s2io_link(struct s2io_nic
*sp
, int link
)
7635 struct net_device
*dev
= (struct net_device
*)sp
->dev
;
7636 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
7638 if (link
!= sp
->last_link_state
) {
7640 if (link
== LINK_DOWN
) {
7641 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
7642 s2io_stop_all_tx_queue(sp
);
7643 netif_carrier_off(dev
);
7644 if (swstats
->link_up_cnt
)
7645 swstats
->link_up_time
=
7646 jiffies
- sp
->start_time
;
7647 swstats
->link_down_cnt
++;
7649 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
7650 if (swstats
->link_down_cnt
)
7651 swstats
->link_down_time
=
7652 jiffies
- sp
->start_time
;
7653 swstats
->link_up_cnt
++;
7654 netif_carrier_on(dev
);
7655 s2io_wake_all_tx_queue(sp
);
7658 sp
->last_link_state
= link
;
7659 sp
->start_time
= jiffies
;
7663 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7664 * @sp : private member of the device structure, which is a pointer to the
7665 * s2io_nic structure.
7667 * This function initializes a few of the PCI and PCI-X configuration registers
7668 * with recommended values.
7673 static void s2io_init_pci(struct s2io_nic
*sp
)
7675 u16 pci_cmd
= 0, pcix_cmd
= 0;
7677 /* Enable Data Parity Error Recovery in PCI-X command register. */
7678 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7680 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7682 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
7685 /* Set the PErr Response bit in PCI command register. */
7686 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7687 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
7688 (pci_cmd
| PCI_COMMAND_PARITY
));
7689 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
7692 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
,
7695 if ((tx_fifo_num
> MAX_TX_FIFOS
) || (tx_fifo_num
< 1)) {
7696 DBG_PRINT(ERR_DBG
, "Requested number of tx fifos "
7697 "(%d) not supported\n", tx_fifo_num
);
7699 if (tx_fifo_num
< 1)
7702 tx_fifo_num
= MAX_TX_FIFOS
;
7704 DBG_PRINT(ERR_DBG
, "Default to %d tx fifos\n", tx_fifo_num
);
7708 *dev_multiq
= multiq
;
7710 if (tx_steering_type
&& (1 == tx_fifo_num
)) {
7711 if (tx_steering_type
!= TX_DEFAULT_STEERING
)
7713 "Tx steering is not supported with "
7714 "one fifo. Disabling Tx steering.\n");
7715 tx_steering_type
= NO_STEERING
;
7718 if ((tx_steering_type
< NO_STEERING
) ||
7719 (tx_steering_type
> TX_DEFAULT_STEERING
)) {
7721 "Requested transmit steering not supported\n");
7722 DBG_PRINT(ERR_DBG
, "Disabling transmit steering\n");
7723 tx_steering_type
= NO_STEERING
;
7726 if (rx_ring_num
> MAX_RX_RINGS
) {
7728 "Requested number of rx rings not supported\n");
7729 DBG_PRINT(ERR_DBG
, "Default to %d rx rings\n",
7731 rx_ring_num
= MAX_RX_RINGS
;
7734 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
7735 DBG_PRINT(ERR_DBG
, "Wrong intr_type requested. "
7736 "Defaulting to INTA\n");
7737 *dev_intr_type
= INTA
;
7740 if ((*dev_intr_type
== MSI_X
) &&
7741 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
7742 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
7743 DBG_PRINT(ERR_DBG
, "Xframe I does not support MSI_X. "
7744 "Defaulting to INTA\n");
7745 *dev_intr_type
= INTA
;
7748 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
7749 DBG_PRINT(ERR_DBG
, "Requested ring mode not supported\n");
7750 DBG_PRINT(ERR_DBG
, "Defaulting to 1-buffer mode\n");
7757 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7758 * or Traffic class respectively.
7759 * @nic: device private variable
7760 * Description: The function configures the receive steering to
7761 * desired receive ring.
7762 * Return Value: SUCCESS on success and
7763 * '-1' on failure (endian settings incorrect).
7765 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
7767 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
7768 register u64 val64
= 0;
7770 if (ds_codepoint
> 63)
7773 val64
= RTS_DS_MEM_DATA(ring
);
7774 writeq(val64
, &bar0
->rts_ds_mem_data
);
7776 val64
= RTS_DS_MEM_CTRL_WE
|
7777 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
7778 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
7780 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
7782 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7783 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7787 static const struct net_device_ops s2io_netdev_ops
= {
7788 .ndo_open
= s2io_open
,
7789 .ndo_stop
= s2io_close
,
7790 .ndo_get_stats
= s2io_get_stats
,
7791 .ndo_start_xmit
= s2io_xmit
,
7792 .ndo_validate_addr
= eth_validate_addr
,
7793 .ndo_set_multicast_list
= s2io_set_multicast
,
7794 .ndo_do_ioctl
= s2io_ioctl
,
7795 .ndo_set_mac_address
= s2io_set_mac_addr
,
7796 .ndo_change_mtu
= s2io_change_mtu
,
7797 .ndo_vlan_rx_register
= s2io_vlan_rx_register
,
7798 .ndo_vlan_rx_kill_vid
= s2io_vlan_rx_kill_vid
,
7799 .ndo_tx_timeout
= s2io_tx_watchdog
,
7800 #ifdef CONFIG_NET_POLL_CONTROLLER
7801 .ndo_poll_controller
= s2io_netpoll
,
7806 * s2io_init_nic - Initialization of the adapter .
7807 * @pdev : structure containing the PCI related information of the device.
7808 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7810 * The function initializes an adapter identified by the pci_dec structure.
7811 * All OS related initialization including memory and device structure and
7812 * initlaization of the device private variable is done. Also the swapper
7813 * control register is initialized to enable read and write into the I/O
7814 * registers of the device.
7816 * returns 0 on success and negative on failure.
7819 static int __devinit
7820 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7822 struct s2io_nic
*sp
;
7823 struct net_device
*dev
;
7825 int dma_flag
= false;
7826 u32 mac_up
, mac_down
;
7827 u64 val64
= 0, tmp64
= 0;
7828 struct XENA_dev_config __iomem
*bar0
= NULL
;
7830 struct config_param
*config
;
7831 struct mac_info
*mac_control
;
7833 u8 dev_intr_type
= intr_type
;
7836 ret
= s2io_verify_parm(pdev
, &dev_intr_type
, &dev_multiq
);
7840 ret
= pci_enable_device(pdev
);
7843 "%s: pci_enable_device failed\n", __func__
);
7847 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7848 DBG_PRINT(INIT_DBG
, "%s: Using 64bit DMA\n", __func__
);
7850 if (pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64))) {
7852 "Unable to obtain 64bit DMA "
7853 "for consistent allocations\n");
7854 pci_disable_device(pdev
);
7857 } else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) {
7858 DBG_PRINT(INIT_DBG
, "%s: Using 32bit DMA\n", __func__
);
7860 pci_disable_device(pdev
);
7863 ret
= pci_request_regions(pdev
, s2io_driver_name
);
7865 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x\n",
7867 pci_disable_device(pdev
);
7871 dev
= alloc_etherdev_mq(sizeof(struct s2io_nic
), tx_fifo_num
);
7873 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7875 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7876 pci_disable_device(pdev
);
7877 pci_release_regions(pdev
);
7881 pci_set_master(pdev
);
7882 pci_set_drvdata(pdev
, dev
);
7883 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7885 /* Private member variable initialized to s2io NIC structure */
7886 sp
= netdev_priv(dev
);
7889 sp
->high_dma_flag
= dma_flag
;
7890 sp
->device_enabled_once
= false;
7891 if (rx_ring_mode
== 1)
7892 sp
->rxd_mode
= RXD_MODE_1
;
7893 if (rx_ring_mode
== 2)
7894 sp
->rxd_mode
= RXD_MODE_3B
;
7896 sp
->config
.intr_type
= dev_intr_type
;
7898 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7899 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7900 sp
->device_type
= XFRAME_II_DEVICE
;
7902 sp
->device_type
= XFRAME_I_DEVICE
;
7905 /* Initialize some PCI/PCI-X fields of the NIC. */
7909 * Setting the device configuration parameters.
7910 * Most of these parameters can be specified by the user during
7911 * module insertion as they are module loadable parameters. If
7912 * these parameters are not not specified during load time, they
7913 * are initialized with default values.
7915 config
= &sp
->config
;
7916 mac_control
= &sp
->mac_control
;
7918 config
->napi
= napi
;
7919 config
->tx_steering_type
= tx_steering_type
;
7921 /* Tx side parameters. */
7922 if (config
->tx_steering_type
== TX_PRIORITY_STEERING
)
7923 config
->tx_fifo_num
= MAX_TX_FIFOS
;
7925 config
->tx_fifo_num
= tx_fifo_num
;
7927 /* Initialize the fifos used for tx steering */
7928 if (config
->tx_fifo_num
< 5) {
7929 if (config
->tx_fifo_num
== 1)
7930 sp
->total_tcp_fifos
= 1;
7932 sp
->total_tcp_fifos
= config
->tx_fifo_num
- 1;
7933 sp
->udp_fifo_idx
= config
->tx_fifo_num
- 1;
7934 sp
->total_udp_fifos
= 1;
7935 sp
->other_fifo_idx
= sp
->total_tcp_fifos
- 1;
7937 sp
->total_tcp_fifos
= (tx_fifo_num
- FIFO_UDP_MAX_NUM
-
7938 FIFO_OTHER_MAX_NUM
);
7939 sp
->udp_fifo_idx
= sp
->total_tcp_fifos
;
7940 sp
->total_udp_fifos
= FIFO_UDP_MAX_NUM
;
7941 sp
->other_fifo_idx
= sp
->udp_fifo_idx
+ FIFO_UDP_MAX_NUM
;
7944 config
->multiq
= dev_multiq
;
7945 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7946 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7948 tx_cfg
->fifo_len
= tx_fifo_len
[i
];
7949 tx_cfg
->fifo_priority
= i
;
7952 /* mapping the QoS priority to the configured fifos */
7953 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7954 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
- 1][i
];
7956 /* map the hashing selector table to the configured fifos */
7957 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
7958 sp
->fifo_selector
[i
] = fifo_selector
[i
];
7961 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7962 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7963 struct tx_fifo_config
*tx_cfg
= &config
->tx_cfg
[i
];
7965 tx_cfg
->f_no_snoop
= (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7966 if (tx_cfg
->fifo_len
< 65) {
7967 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7971 /* + 2 because one Txd for skb->data and one Txd for UFO */
7972 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7974 /* Rx side parameters. */
7975 config
->rx_ring_num
= rx_ring_num
;
7976 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
7977 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7978 struct ring_info
*ring
= &mac_control
->rings
[i
];
7980 rx_cfg
->num_rxd
= rx_ring_sz
[i
] * (rxd_count
[sp
->rxd_mode
] + 1);
7981 rx_cfg
->ring_priority
= i
;
7982 ring
->rx_bufs_left
= 0;
7983 ring
->rxd_mode
= sp
->rxd_mode
;
7984 ring
->rxd_count
= rxd_count
[sp
->rxd_mode
];
7985 ring
->pdev
= sp
->pdev
;
7986 ring
->dev
= sp
->dev
;
7989 for (i
= 0; i
< rx_ring_num
; i
++) {
7990 struct rx_ring_config
*rx_cfg
= &config
->rx_cfg
[i
];
7992 rx_cfg
->ring_org
= RING_ORG_BUFF1
;
7993 rx_cfg
->f_no_snoop
= (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7996 /* Setting Mac Control parameters */
7997 mac_control
->rmac_pause_time
= rmac_pause_time
;
7998 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7999 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
8002 /* initialize the shared memory used by the NIC and the host */
8003 if (init_shared_mem(sp
)) {
8004 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", dev
->name
);
8006 goto mem_alloc_failed
;
8009 sp
->bar0
= pci_ioremap_bar(pdev
, 0);
8011 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
8014 goto bar0_remap_failed
;
8017 sp
->bar1
= pci_ioremap_bar(pdev
, 2);
8019 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
8022 goto bar1_remap_failed
;
8025 dev
->irq
= pdev
->irq
;
8026 dev
->base_addr
= (unsigned long)sp
->bar0
;
8028 /* Initializing the BAR1 address as the start of the FIFO pointer. */
8029 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
8030 mac_control
->tx_FIFO_start
[j
] =
8031 (struct TxFIFO_element __iomem
*)
8032 (sp
->bar1
+ (j
* 0x00020000));
8035 /* Driver entry points */
8036 dev
->netdev_ops
= &s2io_netdev_ops
;
8037 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
8038 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8039 dev
->features
|= NETIF_F_LRO
;
8040 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
8041 if (sp
->high_dma_flag
== true)
8042 dev
->features
|= NETIF_F_HIGHDMA
;
8043 dev
->features
|= NETIF_F_TSO
;
8044 dev
->features
|= NETIF_F_TSO6
;
8045 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
8046 dev
->features
|= NETIF_F_UFO
;
8047 dev
->features
|= NETIF_F_HW_CSUM
;
8049 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
8050 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
8051 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
8053 pci_save_state(sp
->pdev
);
8055 /* Setting swapper control on the NIC, for proper reset operation */
8056 if (s2io_set_swapper(sp
)) {
8057 DBG_PRINT(ERR_DBG
, "%s: swapper settings are wrong\n",
8060 goto set_swap_failed
;
8063 /* Verify if the Herc works on the slot its placed into */
8064 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8065 mode
= s2io_verify_pci_mode(sp
);
8067 DBG_PRINT(ERR_DBG
, "%s: Unsupported PCI bus mode\n",
8070 goto set_swap_failed
;
8074 if (sp
->config
.intr_type
== MSI_X
) {
8075 sp
->num_entries
= config
->rx_ring_num
+ 1;
8076 ret
= s2io_enable_msi_x(sp
);
8079 ret
= s2io_test_msi(sp
);
8080 /* rollback MSI-X, will re-enable during add_isr() */
8081 remove_msix_isr(sp
);
8086 "MSI-X requested but failed to enable\n");
8087 sp
->config
.intr_type
= INTA
;
8091 if (config
->intr_type
== MSI_X
) {
8092 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
8093 struct ring_info
*ring
= &mac_control
->rings
[i
];
8095 netif_napi_add(dev
, &ring
->napi
, s2io_poll_msix
, 64);
8098 netif_napi_add(dev
, &sp
->napi
, s2io_poll_inta
, 64);
8101 /* Not needed for Herc */
8102 if (sp
->device_type
& XFRAME_I_DEVICE
) {
8104 * Fix for all "FFs" MAC address problems observed on
8107 fix_mac_address(sp
);
8112 * MAC address initialization.
8113 * For now only one mac address will be read and used.
8116 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
8117 RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET
);
8118 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
8119 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
8120 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
8122 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
8123 mac_down
= (u32
)tmp64
;
8124 mac_up
= (u32
) (tmp64
>> 32);
8126 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
8127 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
8128 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
8129 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
8130 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
8131 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
8133 /* Set the factory defined MAC address initially */
8134 dev
->addr_len
= ETH_ALEN
;
8135 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
8136 memcpy(dev
->perm_addr
, dev
->dev_addr
, ETH_ALEN
);
8138 /* initialize number of multicast & unicast MAC entries variables */
8139 if (sp
->device_type
== XFRAME_I_DEVICE
) {
8140 config
->max_mc_addr
= S2IO_XENA_MAX_MC_ADDRESSES
;
8141 config
->max_mac_addr
= S2IO_XENA_MAX_MAC_ADDRESSES
;
8142 config
->mc_start_offset
= S2IO_XENA_MC_ADDR_START_OFFSET
;
8143 } else if (sp
->device_type
== XFRAME_II_DEVICE
) {
8144 config
->max_mc_addr
= S2IO_HERC_MAX_MC_ADDRESSES
;
8145 config
->max_mac_addr
= S2IO_HERC_MAX_MAC_ADDRESSES
;
8146 config
->mc_start_offset
= S2IO_HERC_MC_ADDR_START_OFFSET
;
8149 /* store mac addresses from CAM to s2io_nic structure */
8150 do_s2io_store_unicast_mc(sp
);
8152 /* Configure MSIX vector for number of rings configured plus one */
8153 if ((sp
->device_type
== XFRAME_II_DEVICE
) &&
8154 (config
->intr_type
== MSI_X
))
8155 sp
->num_entries
= config
->rx_ring_num
+ 1;
8157 /* Store the values of the MSIX table in the s2io_nic structure */
8158 store_xmsi_data(sp
);
8159 /* reset Nic and bring it to known state */
8163 * Initialize link state flags
8164 * and the card state parameter
8168 /* Initialize spinlocks */
8169 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8170 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8172 spin_lock_init(&fifo
->tx_lock
);
8176 * SXE-002: Configure link and activity LED to init state
8179 subid
= sp
->pdev
->subsystem_device
;
8180 if ((subid
& 0xFF) >= 0x07) {
8181 val64
= readq(&bar0
->gpio_control
);
8182 val64
|= 0x0000800000000000ULL
;
8183 writeq(val64
, &bar0
->gpio_control
);
8184 val64
= 0x0411040400000000ULL
;
8185 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
8186 val64
= readq(&bar0
->gpio_control
);
8189 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
8191 if (register_netdev(dev
)) {
8192 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
8194 goto register_failed
;
8197 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2010 Exar Corp.\n");
8198 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n", dev
->name
,
8199 sp
->product_name
, pdev
->revision
);
8200 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
8201 s2io_driver_version
);
8202 DBG_PRINT(ERR_DBG
, "%s: MAC Address: %pM\n", dev
->name
, dev
->dev_addr
);
8203 DBG_PRINT(ERR_DBG
, "Serial number: %s\n", sp
->serial_num
);
8204 if (sp
->device_type
& XFRAME_II_DEVICE
) {
8205 mode
= s2io_print_pci_mode(sp
);
8208 unregister_netdev(dev
);
8209 goto set_swap_failed
;
8212 switch (sp
->rxd_mode
) {
8214 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
8218 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
8223 switch (sp
->config
.napi
) {
8225 DBG_PRINT(ERR_DBG
, "%s: NAPI disabled\n", dev
->name
);
8228 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
8232 DBG_PRINT(ERR_DBG
, "%s: Using %d Tx fifo(s)\n", dev
->name
,
8233 sp
->config
.tx_fifo_num
);
8235 DBG_PRINT(ERR_DBG
, "%s: Using %d Rx ring(s)\n", dev
->name
,
8236 sp
->config
.rx_ring_num
);
8238 switch (sp
->config
.intr_type
) {
8240 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
8243 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
8246 if (sp
->config
.multiq
) {
8247 for (i
= 0; i
< sp
->config
.tx_fifo_num
; i
++) {
8248 struct fifo_info
*fifo
= &mac_control
->fifos
[i
];
8250 fifo
->multiq
= config
->multiq
;
8252 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support enabled\n",
8255 DBG_PRINT(ERR_DBG
, "%s: Multiqueue support disabled\n",
8258 switch (sp
->config
.tx_steering_type
) {
8260 DBG_PRINT(ERR_DBG
, "%s: No steering enabled for transmit\n",
8263 case TX_PRIORITY_STEERING
:
8265 "%s: Priority steering enabled for transmit\n",
8268 case TX_DEFAULT_STEERING
:
8270 "%s: Default steering enabled for transmit\n",
8274 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
8278 "%s: UDP Fragmentation Offload(UFO) enabled\n",
8280 /* Initialize device name */
8281 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
8284 sp
->vlan_strip_flag
= 1;
8286 sp
->vlan_strip_flag
= 0;
8289 * Make Link state as off at this point, when the Link change
8290 * interrupt comes the state will be automatically changed to
8293 netif_carrier_off(dev
);
8304 free_shared_mem(sp
);
8305 pci_disable_device(pdev
);
8306 pci_release_regions(pdev
);
8307 pci_set_drvdata(pdev
, NULL
);
8314 * s2io_rem_nic - Free the PCI device
8315 * @pdev: structure containing the PCI related information of the device.
8316 * Description: This function is called by the Pci subsystem to release a
8317 * PCI device and free up all resource held up by the device. This could
8318 * be in response to a Hot plug event or when the driver is to be removed
8322 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
8324 struct net_device
*dev
=
8325 (struct net_device
*)pci_get_drvdata(pdev
);
8326 struct s2io_nic
*sp
;
8329 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
8333 flush_scheduled_work();
8335 sp
= netdev_priv(dev
);
8336 unregister_netdev(dev
);
8338 free_shared_mem(sp
);
8341 pci_release_regions(pdev
);
8342 pci_set_drvdata(pdev
, NULL
);
8344 pci_disable_device(pdev
);
8348 * s2io_starter - Entry point for the driver
8349 * Description: This function is the entry point for the driver. It verifies
8350 * the module loadable parameters and initializes PCI configuration space.
8353 static int __init
s2io_starter(void)
8355 return pci_register_driver(&s2io_driver
);
8359 * s2io_closer - Cleanup routine for the driver
8360 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8363 static __exit
void s2io_closer(void)
8365 pci_unregister_driver(&s2io_driver
);
8366 DBG_PRINT(INIT_DBG
, "cleanup done\n");
8369 module_init(s2io_starter
);
8370 module_exit(s2io_closer
);
8372 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
8373 struct tcphdr
**tcp
, struct RxD_t
*rxdp
,
8374 struct s2io_nic
*sp
)
8377 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
8379 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
8381 "%s: Non-TCP frames not supported for LRO\n",
8386 /* Checking for DIX type or DIX type with VLAN */
8387 if ((l2_type
== 0) || (l2_type
== 4)) {
8388 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
8390 * If vlan stripping is disabled and the frame is VLAN tagged,
8391 * shift the offset by the VLAN header size bytes.
8393 if ((!sp
->vlan_strip_flag
) &&
8394 (rxdp
->Control_1
& RXD_FRAME_VLAN_TAG
))
8395 ip_off
+= HEADER_VLAN_SIZE
;
8397 /* LLC, SNAP etc are considered non-mergeable */
8401 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
8402 ip_len
= (u8
)((*ip
)->ihl
);
8404 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
8409 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
8412 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8413 if ((lro
->iph
->saddr
!= ip
->saddr
) ||
8414 (lro
->iph
->daddr
!= ip
->daddr
) ||
8415 (lro
->tcph
->source
!= tcp
->source
) ||
8416 (lro
->tcph
->dest
!= tcp
->dest
))
8421 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
8423 return ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2);
8426 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
8427 struct iphdr
*ip
, struct tcphdr
*tcp
,
8428 u32 tcp_pyld_len
, u16 vlan_tag
)
8430 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8434 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
8435 lro
->tcp_ack
= tcp
->ack_seq
;
8437 lro
->total_len
= ntohs(ip
->tot_len
);
8439 lro
->vlan_tag
= vlan_tag
;
8441 * Check if we saw TCP timestamp.
8442 * Other consistency checks have already been done.
8444 if (tcp
->doff
== 8) {
8446 ptr
= (__be32
*)(tcp
+1);
8448 lro
->cur_tsval
= ntohl(*(ptr
+1));
8449 lro
->cur_tsecr
= *(ptr
+2);
8454 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
8456 struct iphdr
*ip
= lro
->iph
;
8457 struct tcphdr
*tcp
= lro
->tcph
;
8459 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8461 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8463 /* Update L3 header */
8464 ip
->tot_len
= htons(lro
->total_len
);
8466 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
8469 /* Update L4 header */
8470 tcp
->ack_seq
= lro
->tcp_ack
;
8471 tcp
->window
= lro
->window
;
8473 /* Update tsecr field if this session has timestamps enabled */
8475 __be32
*ptr
= (__be32
*)(tcp
+ 1);
8476 *(ptr
+2) = lro
->cur_tsecr
;
8479 /* Update counters required for calculation of
8480 * average no. of packets aggregated.
8482 swstats
->sum_avg_pkts_aggregated
+= lro
->sg_num
;
8483 swstats
->num_aggregations
++;
8486 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
8487 struct tcphdr
*tcp
, u32 l4_pyld
)
8489 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8490 lro
->total_len
+= l4_pyld
;
8491 lro
->frags_len
+= l4_pyld
;
8492 lro
->tcp_next_seq
+= l4_pyld
;
8495 /* Update ack seq no. and window ad(from this pkt) in LRO object */
8496 lro
->tcp_ack
= tcp
->ack_seq
;
8497 lro
->window
= tcp
->window
;
8501 /* Update tsecr and tsval from this packet */
8502 ptr
= (__be32
*)(tcp
+1);
8503 lro
->cur_tsval
= ntohl(*(ptr
+1));
8504 lro
->cur_tsecr
= *(ptr
+ 2);
8508 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
8509 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
8513 DBG_PRINT(INFO_DBG
, "%s: Been here...\n", __func__
);
8515 if (!tcp_pyld_len
) {
8516 /* Runt frame or a pure ack */
8520 if (ip
->ihl
!= 5) /* IP has options */
8523 /* If we see CE codepoint in IP header, packet is not mergeable */
8524 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
8527 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8528 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
||
8529 tcp
->syn
|| tcp
->fin
||
8530 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
8532 * Currently recognize only the ack control word and
8533 * any other control field being set would result in
8534 * flushing the LRO session
8540 * Allow only one TCP timestamp option. Don't aggregate if
8541 * any other options are detected.
8543 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
8546 if (tcp
->doff
== 8) {
8547 ptr
= (u8
*)(tcp
+ 1);
8548 while (*ptr
== TCPOPT_NOP
)
8550 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
8553 /* Ensure timestamp value increases monotonically */
8555 if (l_lro
->cur_tsval
> ntohl(*((__be32
*)(ptr
+2))))
8558 /* timestamp echo reply should be non-zero */
8559 if (*((__be32
*)(ptr
+6)) == 0)
8566 static int s2io_club_tcp_session(struct ring_info
*ring_data
, u8
*buffer
,
8567 u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
8568 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
8571 struct tcphdr
*tcph
;
8574 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8576 ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
8581 DBG_PRINT(INFO_DBG
, "IP Saddr: %x Daddr: %x\n", ip
->saddr
, ip
->daddr
);
8583 vlan_tag
= RXD_GET_VLAN_TAG(rxdp
->Control_2
);
8584 tcph
= (struct tcphdr
*)*tcp
;
8585 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
8586 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8587 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8588 if (l_lro
->in_use
) {
8589 if (check_for_socket_match(l_lro
, ip
, tcph
))
8591 /* Sock pair matched */
8594 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
8595 DBG_PRINT(INFO_DBG
, "%s: Out of sequence. "
8596 "expected 0x%x, actual 0x%x\n",
8598 (*lro
)->tcp_next_seq
,
8601 swstats
->outof_sequence_pkts
++;
8606 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,
8608 ret
= 1; /* Aggregate */
8610 ret
= 2; /* Flush both */
8616 /* Before searching for available LRO objects,
8617 * check if the pkt is L3/L4 aggregatable. If not
8618 * don't create new LRO session. Just send this
8621 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
))
8624 for (i
= 0; i
< MAX_LRO_SESSIONS
; i
++) {
8625 struct lro
*l_lro
= &ring_data
->lro0_n
[i
];
8626 if (!(l_lro
->in_use
)) {
8628 ret
= 3; /* Begin anew */
8634 if (ret
== 0) { /* sessions exceeded */
8635 DBG_PRINT(INFO_DBG
, "%s: All LRO sessions already in use\n",
8643 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
,
8647 update_L3L4_header(sp
, *lro
);
8650 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
8651 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
8652 update_L3L4_header(sp
, *lro
);
8653 ret
= 4; /* Flush the LRO */
8657 DBG_PRINT(ERR_DBG
, "%s: Don't know, can't say!!\n", __func__
);
8664 static void clear_lro_session(struct lro
*lro
)
8666 static u16 lro_struct_size
= sizeof(struct lro
);
8668 memset(lro
, 0, lro_struct_size
);
8671 static void queue_rx_frame(struct sk_buff
*skb
, u16 vlan_tag
)
8673 struct net_device
*dev
= skb
->dev
;
8674 struct s2io_nic
*sp
= netdev_priv(dev
);
8676 skb
->protocol
= eth_type_trans(skb
, dev
);
8677 if (sp
->vlgrp
&& vlan_tag
&& (sp
->vlan_strip_flag
)) {
8678 /* Queueing the vlan frame to the upper layer */
8679 if (sp
->config
.napi
)
8680 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
, vlan_tag
);
8682 vlan_hwaccel_rx(skb
, sp
->vlgrp
, vlan_tag
);
8684 if (sp
->config
.napi
)
8685 netif_receive_skb(skb
);
8691 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
8692 struct sk_buff
*skb
, u32 tcp_len
)
8694 struct sk_buff
*first
= lro
->parent
;
8695 struct swStat
*swstats
= &sp
->mac_control
.stats_info
->sw_stat
;
8697 first
->len
+= tcp_len
;
8698 first
->data_len
= lro
->frags_len
;
8699 skb_pull(skb
, (skb
->len
- tcp_len
));
8700 if (skb_shinfo(first
)->frag_list
)
8701 lro
->last_frag
->next
= skb
;
8703 skb_shinfo(first
)->frag_list
= skb
;
8704 first
->truesize
+= skb
->truesize
;
8705 lro
->last_frag
= skb
;
8706 swstats
->clubbed_frms_cnt
++;
8710 * s2io_io_error_detected - called when PCI error is detected
8711 * @pdev: Pointer to PCI device
8712 * @state: The current pci connection state
8714 * This function is called after a PCI bus error affecting
8715 * this device has been detected.
8717 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
8718 pci_channel_state_t state
)
8720 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8721 struct s2io_nic
*sp
= netdev_priv(netdev
);
8723 netif_device_detach(netdev
);
8725 if (state
== pci_channel_io_perm_failure
)
8726 return PCI_ERS_RESULT_DISCONNECT
;
8728 if (netif_running(netdev
)) {
8729 /* Bring down the card, while avoiding PCI I/O */
8730 do_s2io_card_down(sp
, 0);
8732 pci_disable_device(pdev
);
8734 return PCI_ERS_RESULT_NEED_RESET
;
8738 * s2io_io_slot_reset - called after the pci bus has been reset.
8739 * @pdev: Pointer to PCI device
8741 * Restart the card from scratch, as if from a cold-boot.
8742 * At this point, the card has exprienced a hard reset,
8743 * followed by fixups by BIOS, and has its config space
8744 * set up identically to what it was at cold boot.
8746 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
8748 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8749 struct s2io_nic
*sp
= netdev_priv(netdev
);
8751 if (pci_enable_device(pdev
)) {
8752 pr_err("Cannot re-enable PCI device after reset.\n");
8753 return PCI_ERS_RESULT_DISCONNECT
;
8756 pci_set_master(pdev
);
8759 return PCI_ERS_RESULT_RECOVERED
;
8763 * s2io_io_resume - called when traffic can start flowing again.
8764 * @pdev: Pointer to PCI device
8766 * This callback is called when the error recovery driver tells
8767 * us that its OK to resume normal operation.
8769 static void s2io_io_resume(struct pci_dev
*pdev
)
8771 struct net_device
*netdev
= pci_get_drvdata(pdev
);
8772 struct s2io_nic
*sp
= netdev_priv(netdev
);
8774 if (netif_running(netdev
)) {
8775 if (s2io_card_up(sp
)) {
8776 pr_err("Can't bring device back up after reset.\n");
8780 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
8782 pr_err("Can't restore mac addr after reset.\n");
8787 netif_device_attach(netdev
);
8788 netif_tx_wake_all_queues(netdev
);