rcu: Switch to this_cpu() primitives
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / rcutree.c
blob27304bc15eca835f9efd93171b4f4f11fb1fc3b9
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <asm/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
53 #include "rcutree.h"
55 /* Data structures. */
57 static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
59 #define RCU_STATE_INITIALIZER(structname) { \
60 .level = { &structname.node[0] }, \
61 .levelcnt = { \
62 NUM_RCU_LVL_0, /* root of hierarchy. */ \
63 NUM_RCU_LVL_1, \
64 NUM_RCU_LVL_2, \
65 NUM_RCU_LVL_3, \
66 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
67 }, \
68 .signaled = RCU_GP_IDLE, \
69 .gpnum = -300, \
70 .completed = -300, \
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
72 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
73 .n_force_qs = 0, \
74 .n_force_qs_ngp = 0, \
75 .name = #structname, \
78 struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched_state);
79 DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
81 struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh_state);
82 DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
84 static struct rcu_state *rcu_state;
86 int rcu_scheduler_active __read_mostly;
87 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
90 * Control variables for per-CPU and per-rcu_node kthreads. These
91 * handle all flavors of RCU.
93 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
94 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
95 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
96 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
97 static DEFINE_PER_CPU(wait_queue_head_t, rcu_cpu_wq);
98 DEFINE_PER_CPU(char, rcu_cpu_has_work);
99 static char rcu_kthreads_spawnable;
101 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
102 static void invoke_rcu_cpu_kthread(void);
104 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
107 * Track the rcutorture test sequence number and the update version
108 * number within a given test. The rcutorture_testseq is incremented
109 * on every rcutorture module load and unload, so has an odd value
110 * when a test is running. The rcutorture_vernum is set to zero
111 * when rcutorture starts and is incremented on each rcutorture update.
112 * These variables enable correlating rcutorture output with the
113 * RCU tracing information.
115 unsigned long rcutorture_testseq;
116 unsigned long rcutorture_vernum;
119 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
120 * permit this function to be invoked without holding the root rcu_node
121 * structure's ->lock, but of course results can be subject to change.
123 static int rcu_gp_in_progress(struct rcu_state *rsp)
125 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
129 * Note a quiescent state. Because we do not need to know
130 * how many quiescent states passed, just if there was at least
131 * one since the start of the grace period, this just sets a flag.
133 void rcu_sched_qs(int cpu)
135 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
137 rdp->passed_quiesc_completed = rdp->gpnum - 1;
138 barrier();
139 rdp->passed_quiesc = 1;
142 void rcu_bh_qs(int cpu)
144 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
146 rdp->passed_quiesc_completed = rdp->gpnum - 1;
147 barrier();
148 rdp->passed_quiesc = 1;
152 * Note a context switch. This is a quiescent state for RCU-sched,
153 * and requires special handling for preemptible RCU.
155 void rcu_note_context_switch(int cpu)
157 rcu_sched_qs(cpu);
158 rcu_preempt_note_context_switch(cpu);
161 #ifdef CONFIG_NO_HZ
162 DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
163 .dynticks_nesting = 1,
164 .dynticks = ATOMIC_INIT(1),
166 #endif /* #ifdef CONFIG_NO_HZ */
168 static int blimit = 10; /* Maximum callbacks per softirq. */
169 static int qhimark = 10000; /* If this many pending, ignore blimit. */
170 static int qlowmark = 100; /* Once only this many pending, use blimit. */
172 module_param(blimit, int, 0);
173 module_param(qhimark, int, 0);
174 module_param(qlowmark, int, 0);
176 int rcu_cpu_stall_suppress __read_mostly;
177 module_param(rcu_cpu_stall_suppress, int, 0644);
179 static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
180 static int rcu_pending(int cpu);
183 * Return the number of RCU-sched batches processed thus far for debug & stats.
185 long rcu_batches_completed_sched(void)
187 return rcu_sched_state.completed;
189 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
192 * Return the number of RCU BH batches processed thus far for debug & stats.
194 long rcu_batches_completed_bh(void)
196 return rcu_bh_state.completed;
198 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
201 * Force a quiescent state for RCU BH.
203 void rcu_bh_force_quiescent_state(void)
205 force_quiescent_state(&rcu_bh_state, 0);
207 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
210 * Record the number of times rcutorture tests have been initiated and
211 * terminated. This information allows the debugfs tracing stats to be
212 * correlated to the rcutorture messages, even when the rcutorture module
213 * is being repeatedly loaded and unloaded. In other words, we cannot
214 * store this state in rcutorture itself.
216 void rcutorture_record_test_transition(void)
218 rcutorture_testseq++;
219 rcutorture_vernum = 0;
221 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
224 * Record the number of writer passes through the current rcutorture test.
225 * This is also used to correlate debugfs tracing stats with the rcutorture
226 * messages.
228 void rcutorture_record_progress(unsigned long vernum)
230 rcutorture_vernum++;
232 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
235 * Force a quiescent state for RCU-sched.
237 void rcu_sched_force_quiescent_state(void)
239 force_quiescent_state(&rcu_sched_state, 0);
241 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
244 * Does the CPU have callbacks ready to be invoked?
246 static int
247 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
249 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
253 * Does the current CPU require a yet-as-unscheduled grace period?
255 static int
256 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
258 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
262 * Return the root node of the specified rcu_state structure.
264 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
266 return &rsp->node[0];
269 #ifdef CONFIG_SMP
272 * If the specified CPU is offline, tell the caller that it is in
273 * a quiescent state. Otherwise, whack it with a reschedule IPI.
274 * Grace periods can end up waiting on an offline CPU when that
275 * CPU is in the process of coming online -- it will be added to the
276 * rcu_node bitmasks before it actually makes it online. The same thing
277 * can happen while a CPU is in the process of coming online. Because this
278 * race is quite rare, we check for it after detecting that the grace
279 * period has been delayed rather than checking each and every CPU
280 * each and every time we start a new grace period.
282 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
285 * If the CPU is offline, it is in a quiescent state. We can
286 * trust its state not to change because interrupts are disabled.
288 if (cpu_is_offline(rdp->cpu)) {
289 rdp->offline_fqs++;
290 return 1;
293 /* If preemptable RCU, no point in sending reschedule IPI. */
294 if (rdp->preemptable)
295 return 0;
297 /* The CPU is online, so send it a reschedule IPI. */
298 if (rdp->cpu != smp_processor_id())
299 smp_send_reschedule(rdp->cpu);
300 else
301 set_need_resched();
302 rdp->resched_ipi++;
303 return 0;
306 #endif /* #ifdef CONFIG_SMP */
308 #ifdef CONFIG_NO_HZ
311 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
313 * Enter nohz mode, in other words, -leave- the mode in which RCU
314 * read-side critical sections can occur. (Though RCU read-side
315 * critical sections can occur in irq handlers in nohz mode, a possibility
316 * handled by rcu_irq_enter() and rcu_irq_exit()).
318 void rcu_enter_nohz(void)
320 unsigned long flags;
321 struct rcu_dynticks *rdtp;
323 local_irq_save(flags);
324 rdtp = &__get_cpu_var(rcu_dynticks);
325 if (--rdtp->dynticks_nesting) {
326 local_irq_restore(flags);
327 return;
329 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
330 smp_mb__before_atomic_inc(); /* See above. */
331 atomic_inc(&rdtp->dynticks);
332 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
333 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
334 local_irq_restore(flags);
336 /* If the interrupt queued a callback, get out of dyntick mode. */
337 if (in_irq() &&
338 (__get_cpu_var(rcu_sched_data).nxtlist ||
339 __get_cpu_var(rcu_bh_data).nxtlist ||
340 rcu_preempt_needs_cpu(smp_processor_id())))
341 set_need_resched();
345 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
347 * Exit nohz mode, in other words, -enter- the mode in which RCU
348 * read-side critical sections normally occur.
350 void rcu_exit_nohz(void)
352 unsigned long flags;
353 struct rcu_dynticks *rdtp;
355 local_irq_save(flags);
356 rdtp = &__get_cpu_var(rcu_dynticks);
357 if (rdtp->dynticks_nesting++) {
358 local_irq_restore(flags);
359 return;
361 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
362 atomic_inc(&rdtp->dynticks);
363 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
364 smp_mb__after_atomic_inc(); /* See above. */
365 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
366 local_irq_restore(flags);
370 * rcu_nmi_enter - inform RCU of entry to NMI context
372 * If the CPU was idle with dynamic ticks active, and there is no
373 * irq handler running, this updates rdtp->dynticks_nmi to let the
374 * RCU grace-period handling know that the CPU is active.
376 void rcu_nmi_enter(void)
378 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
380 if (rdtp->dynticks_nmi_nesting == 0 &&
381 (atomic_read(&rdtp->dynticks) & 0x1))
382 return;
383 rdtp->dynticks_nmi_nesting++;
384 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
385 atomic_inc(&rdtp->dynticks);
386 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
387 smp_mb__after_atomic_inc(); /* See above. */
388 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
392 * rcu_nmi_exit - inform RCU of exit from NMI context
394 * If the CPU was idle with dynamic ticks active, and there is no
395 * irq handler running, this updates rdtp->dynticks_nmi to let the
396 * RCU grace-period handling know that the CPU is no longer active.
398 void rcu_nmi_exit(void)
400 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
402 if (rdtp->dynticks_nmi_nesting == 0 ||
403 --rdtp->dynticks_nmi_nesting != 0)
404 return;
405 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
406 smp_mb__before_atomic_inc(); /* See above. */
407 atomic_inc(&rdtp->dynticks);
408 smp_mb__after_atomic_inc(); /* Force delay to next write. */
409 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
413 * rcu_irq_enter - inform RCU of entry to hard irq context
415 * If the CPU was idle with dynamic ticks active, this updates the
416 * rdtp->dynticks to let the RCU handling know that the CPU is active.
418 void rcu_irq_enter(void)
420 rcu_exit_nohz();
424 * rcu_irq_exit - inform RCU of exit from hard irq context
426 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
427 * to put let the RCU handling be aware that the CPU is going back to idle
428 * with no ticks.
430 void rcu_irq_exit(void)
432 rcu_enter_nohz();
435 #ifdef CONFIG_SMP
438 * Snapshot the specified CPU's dynticks counter so that we can later
439 * credit them with an implicit quiescent state. Return 1 if this CPU
440 * is in dynticks idle mode, which is an extended quiescent state.
442 static int dyntick_save_progress_counter(struct rcu_data *rdp)
444 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
445 return 0;
449 * Return true if the specified CPU has passed through a quiescent
450 * state by virtue of being in or having passed through an dynticks
451 * idle state since the last call to dyntick_save_progress_counter()
452 * for this same CPU.
454 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
456 unsigned long curr;
457 unsigned long snap;
459 curr = (unsigned long)atomic_add_return(0, &rdp->dynticks->dynticks);
460 snap = (unsigned long)rdp->dynticks_snap;
463 * If the CPU passed through or entered a dynticks idle phase with
464 * no active irq/NMI handlers, then we can safely pretend that the CPU
465 * already acknowledged the request to pass through a quiescent
466 * state. Either way, that CPU cannot possibly be in an RCU
467 * read-side critical section that started before the beginning
468 * of the current RCU grace period.
470 if ((curr & 0x1) == 0 || ULONG_CMP_GE(curr, snap + 2)) {
471 rdp->dynticks_fqs++;
472 return 1;
475 /* Go check for the CPU being offline. */
476 return rcu_implicit_offline_qs(rdp);
479 #endif /* #ifdef CONFIG_SMP */
481 #else /* #ifdef CONFIG_NO_HZ */
483 #ifdef CONFIG_SMP
485 static int dyntick_save_progress_counter(struct rcu_data *rdp)
487 return 0;
490 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
492 return rcu_implicit_offline_qs(rdp);
495 #endif /* #ifdef CONFIG_SMP */
497 #endif /* #else #ifdef CONFIG_NO_HZ */
499 int rcu_cpu_stall_suppress __read_mostly;
501 static void record_gp_stall_check_time(struct rcu_state *rsp)
503 rsp->gp_start = jiffies;
504 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_CHECK;
507 static void print_other_cpu_stall(struct rcu_state *rsp)
509 int cpu;
510 long delta;
511 unsigned long flags;
512 struct rcu_node *rnp = rcu_get_root(rsp);
514 /* Only let one CPU complain about others per time interval. */
516 raw_spin_lock_irqsave(&rnp->lock, flags);
517 delta = jiffies - rsp->jiffies_stall;
518 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
519 raw_spin_unlock_irqrestore(&rnp->lock, flags);
520 return;
522 rsp->jiffies_stall = jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
525 * Now rat on any tasks that got kicked up to the root rcu_node
526 * due to CPU offlining.
528 rcu_print_task_stall(rnp);
529 raw_spin_unlock_irqrestore(&rnp->lock, flags);
532 * OK, time to rat on our buddy...
533 * See Documentation/RCU/stallwarn.txt for info on how to debug
534 * RCU CPU stall warnings.
536 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks: {",
537 rsp->name);
538 rcu_for_each_leaf_node(rsp, rnp) {
539 raw_spin_lock_irqsave(&rnp->lock, flags);
540 rcu_print_task_stall(rnp);
541 raw_spin_unlock_irqrestore(&rnp->lock, flags);
542 if (rnp->qsmask == 0)
543 continue;
544 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
545 if (rnp->qsmask & (1UL << cpu))
546 printk(" %d", rnp->grplo + cpu);
548 printk("} (detected by %d, t=%ld jiffies)\n",
549 smp_processor_id(), (long)(jiffies - rsp->gp_start));
550 trigger_all_cpu_backtrace();
552 /* If so configured, complain about tasks blocking the grace period. */
554 rcu_print_detail_task_stall(rsp);
556 force_quiescent_state(rsp, 0); /* Kick them all. */
559 static void print_cpu_stall(struct rcu_state *rsp)
561 unsigned long flags;
562 struct rcu_node *rnp = rcu_get_root(rsp);
565 * OK, time to rat on ourselves...
566 * See Documentation/RCU/stallwarn.txt for info on how to debug
567 * RCU CPU stall warnings.
569 printk(KERN_ERR "INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
570 rsp->name, smp_processor_id(), jiffies - rsp->gp_start);
571 trigger_all_cpu_backtrace();
573 raw_spin_lock_irqsave(&rnp->lock, flags);
574 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
575 rsp->jiffies_stall =
576 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
577 raw_spin_unlock_irqrestore(&rnp->lock, flags);
579 set_need_resched(); /* kick ourselves to get things going. */
582 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
584 long delta;
585 struct rcu_node *rnp;
587 if (rcu_cpu_stall_suppress)
588 return;
589 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
590 rnp = rdp->mynode;
591 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && delta >= 0) {
593 /* We haven't checked in, so go dump stack. */
594 print_cpu_stall(rsp);
596 } else if (rcu_gp_in_progress(rsp) && delta >= RCU_STALL_RAT_DELAY) {
598 /* They had two time units to dump stack, so complain. */
599 print_other_cpu_stall(rsp);
603 static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
605 rcu_cpu_stall_suppress = 1;
606 return NOTIFY_DONE;
610 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
612 * Set the stall-warning timeout way off into the future, thus preventing
613 * any RCU CPU stall-warning messages from appearing in the current set of
614 * RCU grace periods.
616 * The caller must disable hard irqs.
618 void rcu_cpu_stall_reset(void)
620 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
621 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
622 rcu_preempt_stall_reset();
625 static struct notifier_block rcu_panic_block = {
626 .notifier_call = rcu_panic,
629 static void __init check_cpu_stall_init(void)
631 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
635 * Update CPU-local rcu_data state to record the newly noticed grace period.
636 * This is used both when we started the grace period and when we notice
637 * that someone else started the grace period. The caller must hold the
638 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
639 * and must have irqs disabled.
641 static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
643 if (rdp->gpnum != rnp->gpnum) {
645 * If the current grace period is waiting for this CPU,
646 * set up to detect a quiescent state, otherwise don't
647 * go looking for one.
649 rdp->gpnum = rnp->gpnum;
650 if (rnp->qsmask & rdp->grpmask) {
651 rdp->qs_pending = 1;
652 rdp->passed_quiesc = 0;
653 } else
654 rdp->qs_pending = 0;
658 static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
660 unsigned long flags;
661 struct rcu_node *rnp;
663 local_irq_save(flags);
664 rnp = rdp->mynode;
665 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
666 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
667 local_irq_restore(flags);
668 return;
670 __note_new_gpnum(rsp, rnp, rdp);
671 raw_spin_unlock_irqrestore(&rnp->lock, flags);
675 * Did someone else start a new RCU grace period start since we last
676 * checked? Update local state appropriately if so. Must be called
677 * on the CPU corresponding to rdp.
679 static int
680 check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
682 unsigned long flags;
683 int ret = 0;
685 local_irq_save(flags);
686 if (rdp->gpnum != rsp->gpnum) {
687 note_new_gpnum(rsp, rdp);
688 ret = 1;
690 local_irq_restore(flags);
691 return ret;
695 * Advance this CPU's callbacks, but only if the current grace period
696 * has ended. This may be called only from the CPU to whom the rdp
697 * belongs. In addition, the corresponding leaf rcu_node structure's
698 * ->lock must be held by the caller, with irqs disabled.
700 static void
701 __rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
703 /* Did another grace period end? */
704 if (rdp->completed != rnp->completed) {
706 /* Advance callbacks. No harm if list empty. */
707 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
708 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
709 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
711 /* Remember that we saw this grace-period completion. */
712 rdp->completed = rnp->completed;
715 * If we were in an extended quiescent state, we may have
716 * missed some grace periods that others CPUs handled on
717 * our behalf. Catch up with this state to avoid noting
718 * spurious new grace periods. If another grace period
719 * has started, then rnp->gpnum will have advanced, so
720 * we will detect this later on.
722 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
723 rdp->gpnum = rdp->completed;
726 * If RCU does not need a quiescent state from this CPU,
727 * then make sure that this CPU doesn't go looking for one.
729 if ((rnp->qsmask & rdp->grpmask) == 0)
730 rdp->qs_pending = 0;
735 * Advance this CPU's callbacks, but only if the current grace period
736 * has ended. This may be called only from the CPU to whom the rdp
737 * belongs.
739 static void
740 rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
742 unsigned long flags;
743 struct rcu_node *rnp;
745 local_irq_save(flags);
746 rnp = rdp->mynode;
747 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
748 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
749 local_irq_restore(flags);
750 return;
752 __rcu_process_gp_end(rsp, rnp, rdp);
753 raw_spin_unlock_irqrestore(&rnp->lock, flags);
757 * Do per-CPU grace-period initialization for running CPU. The caller
758 * must hold the lock of the leaf rcu_node structure corresponding to
759 * this CPU.
761 static void
762 rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
764 /* Prior grace period ended, so advance callbacks for current CPU. */
765 __rcu_process_gp_end(rsp, rnp, rdp);
768 * Because this CPU just now started the new grace period, we know
769 * that all of its callbacks will be covered by this upcoming grace
770 * period, even the ones that were registered arbitrarily recently.
771 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
773 * Other CPUs cannot be sure exactly when the grace period started.
774 * Therefore, their recently registered callbacks must pass through
775 * an additional RCU_NEXT_READY stage, so that they will be handled
776 * by the next RCU grace period.
778 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
779 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
781 /* Set state so that this CPU will detect the next quiescent state. */
782 __note_new_gpnum(rsp, rnp, rdp);
786 * Start a new RCU grace period if warranted, re-initializing the hierarchy
787 * in preparation for detecting the next grace period. The caller must hold
788 * the root node's ->lock, which is released before return. Hard irqs must
789 * be disabled.
791 static void
792 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
793 __releases(rcu_get_root(rsp)->lock)
795 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
796 struct rcu_node *rnp = rcu_get_root(rsp);
798 if (!cpu_needs_another_gp(rsp, rdp) || rsp->fqs_active) {
799 if (cpu_needs_another_gp(rsp, rdp))
800 rsp->fqs_need_gp = 1;
801 if (rnp->completed == rsp->completed) {
802 raw_spin_unlock_irqrestore(&rnp->lock, flags);
803 return;
805 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
808 * Propagate new ->completed value to rcu_node structures
809 * so that other CPUs don't have to wait until the start
810 * of the next grace period to process their callbacks.
812 rcu_for_each_node_breadth_first(rsp, rnp) {
813 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
814 rnp->completed = rsp->completed;
815 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
817 local_irq_restore(flags);
818 return;
821 /* Advance to a new grace period and initialize state. */
822 rsp->gpnum++;
823 WARN_ON_ONCE(rsp->signaled == RCU_GP_INIT);
824 rsp->signaled = RCU_GP_INIT; /* Hold off force_quiescent_state. */
825 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
826 record_gp_stall_check_time(rsp);
828 /* Special-case the common single-level case. */
829 if (NUM_RCU_NODES == 1) {
830 rcu_preempt_check_blocked_tasks(rnp);
831 rnp->qsmask = rnp->qsmaskinit;
832 rnp->gpnum = rsp->gpnum;
833 rnp->completed = rsp->completed;
834 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state OK. */
835 rcu_start_gp_per_cpu(rsp, rnp, rdp);
836 rcu_preempt_boost_start_gp(rnp);
837 raw_spin_unlock_irqrestore(&rnp->lock, flags);
838 return;
841 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
844 /* Exclude any concurrent CPU-hotplug operations. */
845 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
848 * Set the quiescent-state-needed bits in all the rcu_node
849 * structures for all currently online CPUs in breadth-first
850 * order, starting from the root rcu_node structure. This
851 * operation relies on the layout of the hierarchy within the
852 * rsp->node[] array. Note that other CPUs will access only
853 * the leaves of the hierarchy, which still indicate that no
854 * grace period is in progress, at least until the corresponding
855 * leaf node has been initialized. In addition, we have excluded
856 * CPU-hotplug operations.
858 * Note that the grace period cannot complete until we finish
859 * the initialization process, as there will be at least one
860 * qsmask bit set in the root node until that time, namely the
861 * one corresponding to this CPU, due to the fact that we have
862 * irqs disabled.
864 rcu_for_each_node_breadth_first(rsp, rnp) {
865 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
866 rcu_preempt_check_blocked_tasks(rnp);
867 rnp->qsmask = rnp->qsmaskinit;
868 rnp->gpnum = rsp->gpnum;
869 rnp->completed = rsp->completed;
870 if (rnp == rdp->mynode)
871 rcu_start_gp_per_cpu(rsp, rnp, rdp);
872 rcu_preempt_boost_start_gp(rnp);
873 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
876 rnp = rcu_get_root(rsp);
877 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
878 rsp->signaled = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
879 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
880 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
884 * Report a full set of quiescent states to the specified rcu_state
885 * data structure. This involves cleaning up after the prior grace
886 * period and letting rcu_start_gp() start up the next grace period
887 * if one is needed. Note that the caller must hold rnp->lock, as
888 * required by rcu_start_gp(), which will release it.
890 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
891 __releases(rcu_get_root(rsp)->lock)
893 unsigned long gp_duration;
895 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
898 * Ensure that all grace-period and pre-grace-period activity
899 * is seen before the assignment to rsp->completed.
901 smp_mb(); /* See above block comment. */
902 gp_duration = jiffies - rsp->gp_start;
903 if (gp_duration > rsp->gp_max)
904 rsp->gp_max = gp_duration;
905 rsp->completed = rsp->gpnum;
906 rsp->signaled = RCU_GP_IDLE;
907 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
911 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
912 * Allows quiescent states for a group of CPUs to be reported at one go
913 * to the specified rcu_node structure, though all the CPUs in the group
914 * must be represented by the same rcu_node structure (which need not be
915 * a leaf rcu_node structure, though it often will be). That structure's
916 * lock must be held upon entry, and it is released before return.
918 static void
919 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
920 struct rcu_node *rnp, unsigned long flags)
921 __releases(rnp->lock)
923 struct rcu_node *rnp_c;
925 /* Walk up the rcu_node hierarchy. */
926 for (;;) {
927 if (!(rnp->qsmask & mask)) {
929 /* Our bit has already been cleared, so done. */
930 raw_spin_unlock_irqrestore(&rnp->lock, flags);
931 return;
933 rnp->qsmask &= ~mask;
934 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
936 /* Other bits still set at this level, so done. */
937 raw_spin_unlock_irqrestore(&rnp->lock, flags);
938 return;
940 mask = rnp->grpmask;
941 if (rnp->parent == NULL) {
943 /* No more levels. Exit loop holding root lock. */
945 break;
947 raw_spin_unlock_irqrestore(&rnp->lock, flags);
948 rnp_c = rnp;
949 rnp = rnp->parent;
950 raw_spin_lock_irqsave(&rnp->lock, flags);
951 WARN_ON_ONCE(rnp_c->qsmask);
955 * Get here if we are the last CPU to pass through a quiescent
956 * state for this grace period. Invoke rcu_report_qs_rsp()
957 * to clean up and start the next grace period if one is needed.
959 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
963 * Record a quiescent state for the specified CPU to that CPU's rcu_data
964 * structure. This must be either called from the specified CPU, or
965 * called when the specified CPU is known to be offline (and when it is
966 * also known that no other CPU is concurrently trying to help the offline
967 * CPU). The lastcomp argument is used to make sure we are still in the
968 * grace period of interest. We don't want to end the current grace period
969 * based on quiescent states detected in an earlier grace period!
971 static void
972 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastcomp)
974 unsigned long flags;
975 unsigned long mask;
976 struct rcu_node *rnp;
978 rnp = rdp->mynode;
979 raw_spin_lock_irqsave(&rnp->lock, flags);
980 if (lastcomp != rnp->completed) {
983 * Someone beat us to it for this grace period, so leave.
984 * The race with GP start is resolved by the fact that we
985 * hold the leaf rcu_node lock, so that the per-CPU bits
986 * cannot yet be initialized -- so we would simply find our
987 * CPU's bit already cleared in rcu_report_qs_rnp() if this
988 * race occurred.
990 rdp->passed_quiesc = 0; /* try again later! */
991 raw_spin_unlock_irqrestore(&rnp->lock, flags);
992 return;
994 mask = rdp->grpmask;
995 if ((rnp->qsmask & mask) == 0) {
996 raw_spin_unlock_irqrestore(&rnp->lock, flags);
997 } else {
998 rdp->qs_pending = 0;
1001 * This GP can't end until cpu checks in, so all of our
1002 * callbacks can be processed during the next GP.
1004 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1006 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
1011 * Check to see if there is a new grace period of which this CPU
1012 * is not yet aware, and if so, set up local rcu_data state for it.
1013 * Otherwise, see if this CPU has just passed through its first
1014 * quiescent state for this grace period, and record that fact if so.
1016 static void
1017 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1019 /* If there is now a new grace period, record and return. */
1020 if (check_for_new_grace_period(rsp, rdp))
1021 return;
1024 * Does this CPU still need to do its part for current grace period?
1025 * If no, return and let the other CPUs do their part as well.
1027 if (!rdp->qs_pending)
1028 return;
1031 * Was there a quiescent state since the beginning of the grace
1032 * period? If no, then exit and wait for the next call.
1034 if (!rdp->passed_quiesc)
1035 return;
1038 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1039 * judge of that).
1041 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesc_completed);
1044 #ifdef CONFIG_HOTPLUG_CPU
1047 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1048 * Synchronization is not required because this function executes
1049 * in stop_machine() context.
1051 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1053 int i;
1054 /* current DYING CPU is cleared in the cpu_online_mask */
1055 int receive_cpu = cpumask_any(cpu_online_mask);
1056 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1057 struct rcu_data *receive_rdp = per_cpu_ptr(rsp->rda, receive_cpu);
1059 if (rdp->nxtlist == NULL)
1060 return; /* irqs disabled, so comparison is stable. */
1062 *receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
1063 receive_rdp->nxttail[RCU_NEXT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1064 receive_rdp->qlen += rdp->qlen;
1065 receive_rdp->n_cbs_adopted += rdp->qlen;
1066 rdp->n_cbs_orphaned += rdp->qlen;
1068 rdp->nxtlist = NULL;
1069 for (i = 0; i < RCU_NEXT_SIZE; i++)
1070 rdp->nxttail[i] = &rdp->nxtlist;
1071 rdp->qlen = 0;
1075 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1076 * and move all callbacks from the outgoing CPU to the current one.
1077 * There can only be one CPU hotplug operation at a time, so no other
1078 * CPU can be attempting to update rcu_cpu_kthread_task.
1080 static void __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
1082 unsigned long flags;
1083 unsigned long mask;
1084 int need_report = 0;
1085 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1086 struct rcu_node *rnp;
1087 struct task_struct *t;
1089 /* Stop the CPU's kthread. */
1090 t = per_cpu(rcu_cpu_kthread_task, cpu);
1091 if (t != NULL) {
1092 per_cpu(rcu_cpu_kthread_task, cpu) = NULL;
1093 kthread_stop(t);
1096 /* Exclude any attempts to start a new grace period. */
1097 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1099 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1100 rnp = rdp->mynode; /* this is the outgoing CPU's rnp. */
1101 mask = rdp->grpmask; /* rnp->grplo is constant. */
1102 do {
1103 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1104 rnp->qsmaskinit &= ~mask;
1105 if (rnp->qsmaskinit != 0) {
1106 if (rnp != rdp->mynode)
1107 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1108 break;
1110 if (rnp == rdp->mynode)
1111 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1112 else
1113 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1114 mask = rnp->grpmask;
1115 rnp = rnp->parent;
1116 } while (rnp != NULL);
1119 * We still hold the leaf rcu_node structure lock here, and
1120 * irqs are still disabled. The reason for this subterfuge is
1121 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1122 * held leads to deadlock.
1124 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1125 rnp = rdp->mynode;
1126 if (need_report & RCU_OFL_TASKS_NORM_GP)
1127 rcu_report_unblock_qs_rnp(rnp, flags);
1128 else
1129 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1130 if (need_report & RCU_OFL_TASKS_EXP_GP)
1131 rcu_report_exp_rnp(rsp, rnp);
1134 * If there are no more online CPUs for this rcu_node structure,
1135 * kill the rcu_node structure's kthread. Otherwise, adjust its
1136 * affinity.
1138 t = rnp->node_kthread_task;
1139 if (t != NULL &&
1140 rnp->qsmaskinit == 0) {
1141 raw_spin_lock_irqsave(&rnp->lock, flags);
1142 rnp->node_kthread_task = NULL;
1143 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1144 kthread_stop(t);
1145 rcu_stop_boost_kthread(rnp);
1146 } else
1147 rcu_node_kthread_setaffinity(rnp, -1);
1151 * Remove the specified CPU from the RCU hierarchy and move any pending
1152 * callbacks that it might have to the current CPU. This code assumes
1153 * that at least one CPU in the system will remain running at all times.
1154 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1156 static void rcu_offline_cpu(int cpu)
1158 __rcu_offline_cpu(cpu, &rcu_sched_state);
1159 __rcu_offline_cpu(cpu, &rcu_bh_state);
1160 rcu_preempt_offline_cpu(cpu);
1163 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1165 static void rcu_send_cbs_to_online(struct rcu_state *rsp)
1169 static void rcu_offline_cpu(int cpu)
1173 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1176 * Invoke any RCU callbacks that have made it to the end of their grace
1177 * period. Thottle as specified by rdp->blimit.
1179 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
1181 unsigned long flags;
1182 struct rcu_head *next, *list, **tail;
1183 int count;
1185 /* If no callbacks are ready, just return.*/
1186 if (!cpu_has_callbacks_ready_to_invoke(rdp))
1187 return;
1190 * Extract the list of ready callbacks, disabling to prevent
1191 * races with call_rcu() from interrupt handlers.
1193 local_irq_save(flags);
1194 list = rdp->nxtlist;
1195 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1196 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1197 tail = rdp->nxttail[RCU_DONE_TAIL];
1198 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
1199 if (rdp->nxttail[count] == rdp->nxttail[RCU_DONE_TAIL])
1200 rdp->nxttail[count] = &rdp->nxtlist;
1201 local_irq_restore(flags);
1203 /* Invoke callbacks. */
1204 count = 0;
1205 while (list) {
1206 next = list->next;
1207 prefetch(next);
1208 debug_rcu_head_unqueue(list);
1209 list->func(list);
1210 list = next;
1211 if (++count >= rdp->blimit)
1212 break;
1215 local_irq_save(flags);
1217 /* Update count, and requeue any remaining callbacks. */
1218 rdp->qlen -= count;
1219 rdp->n_cbs_invoked += count;
1220 if (list != NULL) {
1221 *tail = rdp->nxtlist;
1222 rdp->nxtlist = list;
1223 for (count = 0; count < RCU_NEXT_SIZE; count++)
1224 if (&rdp->nxtlist == rdp->nxttail[count])
1225 rdp->nxttail[count] = tail;
1226 else
1227 break;
1230 /* Reinstate batch limit if we have worked down the excess. */
1231 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1232 rdp->blimit = blimit;
1234 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1235 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1236 rdp->qlen_last_fqs_check = 0;
1237 rdp->n_force_qs_snap = rsp->n_force_qs;
1238 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1239 rdp->qlen_last_fqs_check = rdp->qlen;
1241 local_irq_restore(flags);
1243 /* Re-raise the RCU softirq if there are callbacks remaining. */
1244 if (cpu_has_callbacks_ready_to_invoke(rdp))
1245 invoke_rcu_cpu_kthread();
1249 * Check to see if this CPU is in a non-context-switch quiescent state
1250 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1251 * Also schedule the RCU softirq handler.
1253 * This function must be called with hardirqs disabled. It is normally
1254 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1255 * false, there is no point in invoking rcu_check_callbacks().
1257 void rcu_check_callbacks(int cpu, int user)
1259 if (user ||
1260 (idle_cpu(cpu) && rcu_scheduler_active &&
1261 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
1264 * Get here if this CPU took its interrupt from user
1265 * mode or from the idle loop, and if this is not a
1266 * nested interrupt. In this case, the CPU is in
1267 * a quiescent state, so note it.
1269 * No memory barrier is required here because both
1270 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1271 * variables that other CPUs neither access nor modify,
1272 * at least not while the corresponding CPU is online.
1275 rcu_sched_qs(cpu);
1276 rcu_bh_qs(cpu);
1278 } else if (!in_softirq()) {
1281 * Get here if this CPU did not take its interrupt from
1282 * softirq, in other words, if it is not interrupting
1283 * a rcu_bh read-side critical section. This is an _bh
1284 * critical section, so note it.
1287 rcu_bh_qs(cpu);
1289 rcu_preempt_check_callbacks(cpu);
1290 if (rcu_pending(cpu))
1291 invoke_rcu_cpu_kthread();
1294 #ifdef CONFIG_SMP
1297 * Scan the leaf rcu_node structures, processing dyntick state for any that
1298 * have not yet encountered a quiescent state, using the function specified.
1299 * Also initiate boosting for any threads blocked on the root rcu_node.
1301 * The caller must have suppressed start of new grace periods.
1303 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
1305 unsigned long bit;
1306 int cpu;
1307 unsigned long flags;
1308 unsigned long mask;
1309 struct rcu_node *rnp;
1311 rcu_for_each_leaf_node(rsp, rnp) {
1312 mask = 0;
1313 raw_spin_lock_irqsave(&rnp->lock, flags);
1314 if (!rcu_gp_in_progress(rsp)) {
1315 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1316 return;
1318 if (rnp->qsmask == 0) {
1319 rcu_initiate_boost(rnp);
1320 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1321 continue;
1323 cpu = rnp->grplo;
1324 bit = 1;
1325 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
1326 if ((rnp->qsmask & bit) != 0 &&
1327 f(per_cpu_ptr(rsp->rda, cpu)))
1328 mask |= bit;
1330 if (mask != 0) {
1332 /* rcu_report_qs_rnp() releases rnp->lock. */
1333 rcu_report_qs_rnp(mask, rsp, rnp, flags);
1334 continue;
1336 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1338 rnp = rcu_get_root(rsp);
1339 raw_spin_lock_irqsave(&rnp->lock, flags);
1340 if (rnp->qsmask == 0)
1341 rcu_initiate_boost(rnp);
1342 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1346 * Force quiescent states on reluctant CPUs, and also detect which
1347 * CPUs are in dyntick-idle mode.
1349 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1351 unsigned long flags;
1352 struct rcu_node *rnp = rcu_get_root(rsp);
1354 if (!rcu_gp_in_progress(rsp))
1355 return; /* No grace period in progress, nothing to force. */
1356 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
1357 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
1358 return; /* Someone else is already on the job. */
1360 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
1361 goto unlock_fqs_ret; /* no emergency and done recently. */
1362 rsp->n_force_qs++;
1363 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1364 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
1365 if(!rcu_gp_in_progress(rsp)) {
1366 rsp->n_force_qs_ngp++;
1367 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1368 goto unlock_fqs_ret; /* no GP in progress, time updated. */
1370 rsp->fqs_active = 1;
1371 switch (rsp->signaled) {
1372 case RCU_GP_IDLE:
1373 case RCU_GP_INIT:
1375 break; /* grace period idle or initializing, ignore. */
1377 case RCU_SAVE_DYNTICK:
1378 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1379 break; /* So gcc recognizes the dead code. */
1381 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1383 /* Record dyntick-idle state. */
1384 force_qs_rnp(rsp, dyntick_save_progress_counter);
1385 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1386 if (rcu_gp_in_progress(rsp))
1387 rsp->signaled = RCU_FORCE_QS;
1388 break;
1390 case RCU_FORCE_QS:
1392 /* Check dyntick-idle state, send IPI to laggarts. */
1393 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1394 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
1396 /* Leave state in case more forcing is required. */
1398 raw_spin_lock(&rnp->lock); /* irqs already disabled */
1399 break;
1401 rsp->fqs_active = 0;
1402 if (rsp->fqs_need_gp) {
1403 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
1404 rsp->fqs_need_gp = 0;
1405 rcu_start_gp(rsp, flags); /* releases rnp->lock */
1406 return;
1408 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1409 unlock_fqs_ret:
1410 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
1413 #else /* #ifdef CONFIG_SMP */
1415 static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1417 set_need_resched();
1420 #endif /* #else #ifdef CONFIG_SMP */
1423 * This does the RCU processing work from softirq context for the
1424 * specified rcu_state and rcu_data structures. This may be called
1425 * only from the CPU to whom the rdp belongs.
1427 static void
1428 __rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1430 unsigned long flags;
1432 WARN_ON_ONCE(rdp->beenonline == 0);
1435 * If an RCU GP has gone long enough, go check for dyntick
1436 * idle CPUs and, if needed, send resched IPIs.
1438 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1439 force_quiescent_state(rsp, 1);
1442 * Advance callbacks in response to end of earlier grace
1443 * period that some other CPU ended.
1445 rcu_process_gp_end(rsp, rdp);
1447 /* Update RCU state based on any recent quiescent states. */
1448 rcu_check_quiescent_state(rsp, rdp);
1450 /* Does this CPU require a not-yet-started grace period? */
1451 if (cpu_needs_another_gp(rsp, rdp)) {
1452 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
1453 rcu_start_gp(rsp, flags); /* releases above lock */
1456 /* If there are callbacks ready, invoke them. */
1457 rcu_do_batch(rsp, rdp);
1461 * Do softirq processing for the current CPU.
1463 static void rcu_process_callbacks(void)
1465 __rcu_process_callbacks(&rcu_sched_state,
1466 &__get_cpu_var(rcu_sched_data));
1467 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
1468 rcu_preempt_process_callbacks();
1470 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1471 rcu_needs_cpu_flush();
1475 * Wake up the current CPU's kthread. This replaces raise_softirq()
1476 * in earlier versions of RCU. Note that because we are running on
1477 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1478 * cannot disappear out from under us.
1480 static void invoke_rcu_cpu_kthread(void)
1482 unsigned long flags;
1484 local_irq_save(flags);
1485 __this_cpu_write(rcu_cpu_has_work, 1);
1486 if (__this_cpu_read(rcu_cpu_kthread_task) == NULL) {
1487 local_irq_restore(flags);
1488 return;
1490 wake_up(&__get_cpu_var(rcu_cpu_wq));
1491 local_irq_restore(flags);
1495 * Wake up the specified per-rcu_node-structure kthread.
1496 * The caller must hold ->lock.
1498 static void invoke_rcu_node_kthread(struct rcu_node *rnp)
1500 struct task_struct *t;
1502 t = rnp->node_kthread_task;
1503 if (t != NULL)
1504 wake_up_process(t);
1508 * Set the specified CPU's kthread to run RT or not, as specified by
1509 * the to_rt argument. The CPU-hotplug locks are held, so the task
1510 * is not going away.
1512 static void rcu_cpu_kthread_setrt(int cpu, int to_rt)
1514 int policy;
1515 struct sched_param sp;
1516 struct task_struct *t;
1518 t = per_cpu(rcu_cpu_kthread_task, cpu);
1519 if (t == NULL)
1520 return;
1521 if (to_rt) {
1522 policy = SCHED_FIFO;
1523 sp.sched_priority = RCU_KTHREAD_PRIO;
1524 } else {
1525 policy = SCHED_NORMAL;
1526 sp.sched_priority = 0;
1528 sched_setscheduler_nocheck(t, policy, &sp);
1532 * Timer handler to initiate the waking up of per-CPU kthreads that
1533 * have yielded the CPU due to excess numbers of RCU callbacks.
1534 * We wake up the per-rcu_node kthread, which in turn will wake up
1535 * the booster kthread.
1537 static void rcu_cpu_kthread_timer(unsigned long arg)
1539 unsigned long flags;
1540 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, arg);
1541 struct rcu_node *rnp = rdp->mynode;
1543 raw_spin_lock_irqsave(&rnp->lock, flags);
1544 rnp->wakemask |= rdp->grpmask;
1545 invoke_rcu_node_kthread(rnp);
1546 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1550 * Drop to non-real-time priority and yield, but only after posting a
1551 * timer that will cause us to regain our real-time priority if we
1552 * remain preempted. Either way, we restore our real-time priority
1553 * before returning.
1555 static void rcu_yield(void (*f)(unsigned long), unsigned long arg)
1557 struct sched_param sp;
1558 struct timer_list yield_timer;
1560 setup_timer_on_stack(&yield_timer, f, arg);
1561 mod_timer(&yield_timer, jiffies + 2);
1562 sp.sched_priority = 0;
1563 sched_setscheduler_nocheck(current, SCHED_NORMAL, &sp);
1564 schedule();
1565 sp.sched_priority = RCU_KTHREAD_PRIO;
1566 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1567 del_timer(&yield_timer);
1571 * Handle cases where the rcu_cpu_kthread() ends up on the wrong CPU.
1572 * This can happen while the corresponding CPU is either coming online
1573 * or going offline. We cannot wait until the CPU is fully online
1574 * before starting the kthread, because the various notifier functions
1575 * can wait for RCU grace periods. So we park rcu_cpu_kthread() until
1576 * the corresponding CPU is online.
1578 * Return 1 if the kthread needs to stop, 0 otherwise.
1580 * Caller must disable bh. This function can momentarily enable it.
1582 static int rcu_cpu_kthread_should_stop(int cpu)
1584 while (cpu_is_offline(cpu) ||
1585 !cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)) ||
1586 smp_processor_id() != cpu) {
1587 if (kthread_should_stop())
1588 return 1;
1589 per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1590 per_cpu(rcu_cpu_kthread_cpu, cpu) = raw_smp_processor_id();
1591 local_bh_enable();
1592 schedule_timeout_uninterruptible(1);
1593 if (!cpumask_equal(&current->cpus_allowed, cpumask_of(cpu)))
1594 set_cpus_allowed_ptr(current, cpumask_of(cpu));
1595 local_bh_disable();
1597 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1598 return 0;
1602 * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
1603 * earlier RCU softirq.
1605 static int rcu_cpu_kthread(void *arg)
1607 int cpu = (int)(long)arg;
1608 unsigned long flags;
1609 int spincnt = 0;
1610 unsigned int *statusp = &per_cpu(rcu_cpu_kthread_status, cpu);
1611 wait_queue_head_t *wqp = &per_cpu(rcu_cpu_wq, cpu);
1612 char work;
1613 char *workp = &per_cpu(rcu_cpu_has_work, cpu);
1615 for (;;) {
1616 *statusp = RCU_KTHREAD_WAITING;
1617 wait_event_interruptible(*wqp,
1618 *workp != 0 || kthread_should_stop());
1619 local_bh_disable();
1620 if (rcu_cpu_kthread_should_stop(cpu)) {
1621 local_bh_enable();
1622 break;
1624 *statusp = RCU_KTHREAD_RUNNING;
1625 per_cpu(rcu_cpu_kthread_loops, cpu)++;
1626 local_irq_save(flags);
1627 work = *workp;
1628 *workp = 0;
1629 local_irq_restore(flags);
1630 if (work)
1631 rcu_process_callbacks();
1632 local_bh_enable();
1633 if (*workp != 0)
1634 spincnt++;
1635 else
1636 spincnt = 0;
1637 if (spincnt > 10) {
1638 *statusp = RCU_KTHREAD_YIELDING;
1639 rcu_yield(rcu_cpu_kthread_timer, (unsigned long)cpu);
1640 spincnt = 0;
1643 *statusp = RCU_KTHREAD_STOPPED;
1644 return 0;
1648 * Spawn a per-CPU kthread, setting up affinity and priority.
1649 * Because the CPU hotplug lock is held, no other CPU will be attempting
1650 * to manipulate rcu_cpu_kthread_task. There might be another CPU
1651 * attempting to access it during boot, but the locking in kthread_bind()
1652 * will enforce sufficient ordering.
1654 static int __cpuinit rcu_spawn_one_cpu_kthread(int cpu)
1656 struct sched_param sp;
1657 struct task_struct *t;
1659 if (!rcu_kthreads_spawnable ||
1660 per_cpu(rcu_cpu_kthread_task, cpu) != NULL)
1661 return 0;
1662 t = kthread_create(rcu_cpu_kthread, (void *)(long)cpu, "rcuc%d", cpu);
1663 if (IS_ERR(t))
1664 return PTR_ERR(t);
1665 kthread_bind(t, cpu);
1666 per_cpu(rcu_cpu_kthread_cpu, cpu) = cpu;
1667 WARN_ON_ONCE(per_cpu(rcu_cpu_kthread_task, cpu) != NULL);
1668 per_cpu(rcu_cpu_kthread_task, cpu) = t;
1669 wake_up_process(t);
1670 sp.sched_priority = RCU_KTHREAD_PRIO;
1671 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1672 return 0;
1676 * Per-rcu_node kthread, which is in charge of waking up the per-CPU
1677 * kthreads when needed. We ignore requests to wake up kthreads
1678 * for offline CPUs, which is OK because force_quiescent_state()
1679 * takes care of this case.
1681 static int rcu_node_kthread(void *arg)
1683 int cpu;
1684 unsigned long flags;
1685 unsigned long mask;
1686 struct rcu_node *rnp = (struct rcu_node *)arg;
1687 struct sched_param sp;
1688 struct task_struct *t;
1690 for (;;) {
1691 rnp->node_kthread_status = RCU_KTHREAD_WAITING;
1692 wait_event_interruptible(rnp->node_wq, rnp->wakemask != 0 ||
1693 kthread_should_stop());
1694 if (kthread_should_stop())
1695 break;
1696 rnp->node_kthread_status = RCU_KTHREAD_RUNNING;
1697 raw_spin_lock_irqsave(&rnp->lock, flags);
1698 mask = rnp->wakemask;
1699 rnp->wakemask = 0;
1700 rcu_initiate_boost(rnp);
1701 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1702 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1) {
1703 if ((mask & 0x1) == 0)
1704 continue;
1705 preempt_disable();
1706 t = per_cpu(rcu_cpu_kthread_task, cpu);
1707 if (!cpu_online(cpu) || t == NULL) {
1708 preempt_enable();
1709 continue;
1711 per_cpu(rcu_cpu_has_work, cpu) = 1;
1712 sp.sched_priority = RCU_KTHREAD_PRIO;
1713 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1714 preempt_enable();
1717 rnp->node_kthread_status = RCU_KTHREAD_STOPPED;
1718 return 0;
1722 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1723 * served by the rcu_node in question. The CPU hotplug lock is still
1724 * held, so the value of rnp->qsmaskinit will be stable.
1726 * We don't include outgoingcpu in the affinity set, use -1 if there is
1727 * no outgoing CPU. If there are no CPUs left in the affinity set,
1728 * this function allows the kthread to execute on any CPU.
1730 static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1732 cpumask_var_t cm;
1733 int cpu;
1734 unsigned long mask = rnp->qsmaskinit;
1736 if (rnp->node_kthread_task == NULL || mask == 0)
1737 return;
1738 if (!alloc_cpumask_var(&cm, GFP_KERNEL))
1739 return;
1740 cpumask_clear(cm);
1741 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
1742 if ((mask & 0x1) && cpu != outgoingcpu)
1743 cpumask_set_cpu(cpu, cm);
1744 if (cpumask_weight(cm) == 0) {
1745 cpumask_setall(cm);
1746 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
1747 cpumask_clear_cpu(cpu, cm);
1748 WARN_ON_ONCE(cpumask_weight(cm) == 0);
1750 set_cpus_allowed_ptr(rnp->node_kthread_task, cm);
1751 rcu_boost_kthread_setaffinity(rnp, cm);
1752 free_cpumask_var(cm);
1756 * Spawn a per-rcu_node kthread, setting priority and affinity.
1757 * Called during boot before online/offline can happen, or, if
1758 * during runtime, with the main CPU-hotplug locks held. So only
1759 * one of these can be executing at a time.
1761 static int __cpuinit rcu_spawn_one_node_kthread(struct rcu_state *rsp,
1762 struct rcu_node *rnp)
1764 unsigned long flags;
1765 int rnp_index = rnp - &rsp->node[0];
1766 struct sched_param sp;
1767 struct task_struct *t;
1769 if (!rcu_kthreads_spawnable ||
1770 rnp->qsmaskinit == 0)
1771 return 0;
1772 if (rnp->node_kthread_task == NULL) {
1773 t = kthread_create(rcu_node_kthread, (void *)rnp,
1774 "rcun%d", rnp_index);
1775 if (IS_ERR(t))
1776 return PTR_ERR(t);
1777 raw_spin_lock_irqsave(&rnp->lock, flags);
1778 rnp->node_kthread_task = t;
1779 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1780 wake_up_process(t);
1781 sp.sched_priority = 99;
1782 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1784 return rcu_spawn_one_boost_kthread(rsp, rnp, rnp_index);
1788 * Spawn all kthreads -- called as soon as the scheduler is running.
1790 static int __init rcu_spawn_kthreads(void)
1792 int cpu;
1793 struct rcu_node *rnp;
1795 rcu_kthreads_spawnable = 1;
1796 for_each_possible_cpu(cpu) {
1797 init_waitqueue_head(&per_cpu(rcu_cpu_wq, cpu));
1798 per_cpu(rcu_cpu_has_work, cpu) = 0;
1799 if (cpu_online(cpu))
1800 (void)rcu_spawn_one_cpu_kthread(cpu);
1802 rnp = rcu_get_root(rcu_state);
1803 init_waitqueue_head(&rnp->node_wq);
1804 rcu_init_boost_waitqueue(rnp);
1805 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1806 if (NUM_RCU_NODES > 1)
1807 rcu_for_each_leaf_node(rcu_state, rnp) {
1808 init_waitqueue_head(&rnp->node_wq);
1809 rcu_init_boost_waitqueue(rnp);
1810 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
1812 return 0;
1814 early_initcall(rcu_spawn_kthreads);
1816 static void
1817 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1818 struct rcu_state *rsp)
1820 unsigned long flags;
1821 struct rcu_data *rdp;
1823 debug_rcu_head_queue(head);
1824 head->func = func;
1825 head->next = NULL;
1827 smp_mb(); /* Ensure RCU update seen before callback registry. */
1830 * Opportunistically note grace-period endings and beginnings.
1831 * Note that we might see a beginning right after we see an
1832 * end, but never vice versa, since this CPU has to pass through
1833 * a quiescent state betweentimes.
1835 local_irq_save(flags);
1836 rdp = this_cpu_ptr(rsp->rda);
1838 /* Add the callback to our list. */
1839 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1840 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1843 * Force the grace period if too many callbacks or too long waiting.
1844 * Enforce hysteresis, and don't invoke force_quiescent_state()
1845 * if some other CPU has recently done so. Also, don't bother
1846 * invoking force_quiescent_state() if the newly enqueued callback
1847 * is the only one waiting for a grace period to complete.
1849 if (unlikely(++rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
1851 /* Are we ignoring a completed grace period? */
1852 rcu_process_gp_end(rsp, rdp);
1853 check_for_new_grace_period(rsp, rdp);
1855 /* Start a new grace period if one not already started. */
1856 if (!rcu_gp_in_progress(rsp)) {
1857 unsigned long nestflag;
1858 struct rcu_node *rnp_root = rcu_get_root(rsp);
1860 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1861 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1862 } else {
1863 /* Give the grace period a kick. */
1864 rdp->blimit = LONG_MAX;
1865 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1866 *rdp->nxttail[RCU_DONE_TAIL] != head)
1867 force_quiescent_state(rsp, 0);
1868 rdp->n_force_qs_snap = rsp->n_force_qs;
1869 rdp->qlen_last_fqs_check = rdp->qlen;
1871 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
1872 force_quiescent_state(rsp, 1);
1873 local_irq_restore(flags);
1877 * Queue an RCU-sched callback for invocation after a grace period.
1879 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1881 __call_rcu(head, func, &rcu_sched_state);
1883 EXPORT_SYMBOL_GPL(call_rcu_sched);
1886 * Queue an RCU for invocation after a quicker grace period.
1888 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1890 __call_rcu(head, func, &rcu_bh_state);
1892 EXPORT_SYMBOL_GPL(call_rcu_bh);
1895 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1897 * Control will return to the caller some time after a full rcu-sched
1898 * grace period has elapsed, in other words after all currently executing
1899 * rcu-sched read-side critical sections have completed. These read-side
1900 * critical sections are delimited by rcu_read_lock_sched() and
1901 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1902 * local_irq_disable(), and so on may be used in place of
1903 * rcu_read_lock_sched().
1905 * This means that all preempt_disable code sequences, including NMI and
1906 * hardware-interrupt handlers, in progress on entry will have completed
1907 * before this primitive returns. However, this does not guarantee that
1908 * softirq handlers will have completed, since in some kernels, these
1909 * handlers can run in process context, and can block.
1911 * This primitive provides the guarantees made by the (now removed)
1912 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1913 * guarantees that rcu_read_lock() sections will have completed.
1914 * In "classic RCU", these two guarantees happen to be one and
1915 * the same, but can differ in realtime RCU implementations.
1917 void synchronize_sched(void)
1919 struct rcu_synchronize rcu;
1921 if (rcu_blocking_is_gp())
1922 return;
1924 init_rcu_head_on_stack(&rcu.head);
1925 init_completion(&rcu.completion);
1926 /* Will wake me after RCU finished. */
1927 call_rcu_sched(&rcu.head, wakeme_after_rcu);
1928 /* Wait for it. */
1929 wait_for_completion(&rcu.completion);
1930 destroy_rcu_head_on_stack(&rcu.head);
1932 EXPORT_SYMBOL_GPL(synchronize_sched);
1935 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1937 * Control will return to the caller some time after a full rcu_bh grace
1938 * period has elapsed, in other words after all currently executing rcu_bh
1939 * read-side critical sections have completed. RCU read-side critical
1940 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1941 * and may be nested.
1943 void synchronize_rcu_bh(void)
1945 struct rcu_synchronize rcu;
1947 if (rcu_blocking_is_gp())
1948 return;
1950 init_rcu_head_on_stack(&rcu.head);
1951 init_completion(&rcu.completion);
1952 /* Will wake me after RCU finished. */
1953 call_rcu_bh(&rcu.head, wakeme_after_rcu);
1954 /* Wait for it. */
1955 wait_for_completion(&rcu.completion);
1956 destroy_rcu_head_on_stack(&rcu.head);
1958 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
1961 * Check to see if there is any immediate RCU-related work to be done
1962 * by the current CPU, for the specified type of RCU, returning 1 if so.
1963 * The checks are in order of increasing expense: checks that can be
1964 * carried out against CPU-local state are performed first. However,
1965 * we must check for CPU stalls first, else we might not get a chance.
1967 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
1969 struct rcu_node *rnp = rdp->mynode;
1971 rdp->n_rcu_pending++;
1973 /* Check for CPU stalls, if enabled. */
1974 check_cpu_stall(rsp, rdp);
1976 /* Is the RCU core waiting for a quiescent state from this CPU? */
1977 if (rdp->qs_pending && !rdp->passed_quiesc) {
1980 * If force_quiescent_state() coming soon and this CPU
1981 * needs a quiescent state, and this is either RCU-sched
1982 * or RCU-bh, force a local reschedule.
1984 rdp->n_rp_qs_pending++;
1985 if (!rdp->preemptable &&
1986 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
1987 jiffies))
1988 set_need_resched();
1989 } else if (rdp->qs_pending && rdp->passed_quiesc) {
1990 rdp->n_rp_report_qs++;
1991 return 1;
1994 /* Does this CPU have callbacks ready to invoke? */
1995 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
1996 rdp->n_rp_cb_ready++;
1997 return 1;
2000 /* Has RCU gone idle with this CPU needing another grace period? */
2001 if (cpu_needs_another_gp(rsp, rdp)) {
2002 rdp->n_rp_cpu_needs_gp++;
2003 return 1;
2006 /* Has another RCU grace period completed? */
2007 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2008 rdp->n_rp_gp_completed++;
2009 return 1;
2012 /* Has a new RCU grace period started? */
2013 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2014 rdp->n_rp_gp_started++;
2015 return 1;
2018 /* Has an RCU GP gone long enough to send resched IPIs &c? */
2019 if (rcu_gp_in_progress(rsp) &&
2020 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
2021 rdp->n_rp_need_fqs++;
2022 return 1;
2025 /* nothing to do */
2026 rdp->n_rp_need_nothing++;
2027 return 0;
2031 * Check to see if there is any immediate RCU-related work to be done
2032 * by the current CPU, returning 1 if so. This function is part of the
2033 * RCU implementation; it is -not- an exported member of the RCU API.
2035 static int rcu_pending(int cpu)
2037 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
2038 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2039 rcu_preempt_pending(cpu);
2043 * Check to see if any future RCU-related work will need to be done
2044 * by the current CPU, even if none need be done immediately, returning
2045 * 1 if so.
2047 static int rcu_needs_cpu_quick_check(int cpu)
2049 /* RCU callbacks either ready or pending? */
2050 return per_cpu(rcu_sched_data, cpu).nxtlist ||
2051 per_cpu(rcu_bh_data, cpu).nxtlist ||
2052 rcu_preempt_needs_cpu(cpu);
2055 static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
2056 static atomic_t rcu_barrier_cpu_count;
2057 static DEFINE_MUTEX(rcu_barrier_mutex);
2058 static struct completion rcu_barrier_completion;
2060 static void rcu_barrier_callback(struct rcu_head *notused)
2062 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2063 complete(&rcu_barrier_completion);
2067 * Called with preemption disabled, and from cross-cpu IRQ context.
2069 static void rcu_barrier_func(void *type)
2071 int cpu = smp_processor_id();
2072 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2073 void (*call_rcu_func)(struct rcu_head *head,
2074 void (*func)(struct rcu_head *head));
2076 atomic_inc(&rcu_barrier_cpu_count);
2077 call_rcu_func = type;
2078 call_rcu_func(head, rcu_barrier_callback);
2082 * Orchestrate the specified type of RCU barrier, waiting for all
2083 * RCU callbacks of the specified type to complete.
2085 static void _rcu_barrier(struct rcu_state *rsp,
2086 void (*call_rcu_func)(struct rcu_head *head,
2087 void (*func)(struct rcu_head *head)))
2089 BUG_ON(in_interrupt());
2090 /* Take mutex to serialize concurrent rcu_barrier() requests. */
2091 mutex_lock(&rcu_barrier_mutex);
2092 init_completion(&rcu_barrier_completion);
2094 * Initialize rcu_barrier_cpu_count to 1, then invoke
2095 * rcu_barrier_func() on each CPU, so that each CPU also has
2096 * incremented rcu_barrier_cpu_count. Only then is it safe to
2097 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
2098 * might complete its grace period before all of the other CPUs
2099 * did their increment, causing this function to return too
2100 * early. Note that on_each_cpu() disables irqs, which prevents
2101 * any CPUs from coming online or going offline until each online
2102 * CPU has queued its RCU-barrier callback.
2104 atomic_set(&rcu_barrier_cpu_count, 1);
2105 on_each_cpu(rcu_barrier_func, (void *)call_rcu_func, 1);
2106 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2107 complete(&rcu_barrier_completion);
2108 wait_for_completion(&rcu_barrier_completion);
2109 mutex_unlock(&rcu_barrier_mutex);
2113 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2115 void rcu_barrier_bh(void)
2117 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
2119 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2122 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2124 void rcu_barrier_sched(void)
2126 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
2128 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2131 * Do boot-time initialization of a CPU's per-CPU RCU data.
2133 static void __init
2134 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
2136 unsigned long flags;
2137 int i;
2138 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2139 struct rcu_node *rnp = rcu_get_root(rsp);
2141 /* Set up local state, ensuring consistent view of global state. */
2142 raw_spin_lock_irqsave(&rnp->lock, flags);
2143 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2144 rdp->nxtlist = NULL;
2145 for (i = 0; i < RCU_NEXT_SIZE; i++)
2146 rdp->nxttail[i] = &rdp->nxtlist;
2147 rdp->qlen = 0;
2148 #ifdef CONFIG_NO_HZ
2149 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
2150 #endif /* #ifdef CONFIG_NO_HZ */
2151 rdp->cpu = cpu;
2152 raw_spin_unlock_irqrestore(&rnp->lock, flags);
2156 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2157 * offline event can be happening at a given time. Note also that we
2158 * can accept some slop in the rsp->completed access due to the fact
2159 * that this CPU cannot possibly have any RCU callbacks in flight yet.
2161 static void __cpuinit
2162 rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptable)
2164 unsigned long flags;
2165 unsigned long mask;
2166 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2167 struct rcu_node *rnp = rcu_get_root(rsp);
2169 /* Set up local state, ensuring consistent view of global state. */
2170 raw_spin_lock_irqsave(&rnp->lock, flags);
2171 rdp->passed_quiesc = 0; /* We could be racing with new GP, */
2172 rdp->qs_pending = 1; /* so set up to respond to current GP. */
2173 rdp->beenonline = 1; /* We have now been online. */
2174 rdp->preemptable = preemptable;
2175 rdp->qlen_last_fqs_check = 0;
2176 rdp->n_force_qs_snap = rsp->n_force_qs;
2177 rdp->blimit = blimit;
2178 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2181 * A new grace period might start here. If so, we won't be part
2182 * of it, but that is OK, as we are currently in a quiescent state.
2185 /* Exclude any attempts to start a new GP on large systems. */
2186 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
2188 /* Add CPU to rcu_node bitmasks. */
2189 rnp = rdp->mynode;
2190 mask = rdp->grpmask;
2191 do {
2192 /* Exclude any attempts to start a new GP on small systems. */
2193 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
2194 rnp->qsmaskinit |= mask;
2195 mask = rnp->grpmask;
2196 if (rnp == rdp->mynode) {
2197 rdp->gpnum = rnp->completed; /* if GP in progress... */
2198 rdp->completed = rnp->completed;
2199 rdp->passed_quiesc_completed = rnp->completed - 1;
2201 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
2202 rnp = rnp->parent;
2203 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2205 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2208 static void __cpuinit rcu_online_cpu(int cpu)
2210 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2211 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2212 rcu_preempt_init_percpu_data(cpu);
2215 static void __cpuinit rcu_online_kthreads(int cpu)
2217 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2218 struct rcu_node *rnp = rdp->mynode;
2220 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
2221 if (rcu_kthreads_spawnable) {
2222 (void)rcu_spawn_one_cpu_kthread(cpu);
2223 if (rnp->node_kthread_task == NULL)
2224 (void)rcu_spawn_one_node_kthread(rcu_state, rnp);
2229 * Handle CPU online/offline notification events.
2231 static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2232 unsigned long action, void *hcpu)
2234 long cpu = (long)hcpu;
2235 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
2236 struct rcu_node *rnp = rdp->mynode;
2238 switch (action) {
2239 case CPU_UP_PREPARE:
2240 case CPU_UP_PREPARE_FROZEN:
2241 rcu_online_cpu(cpu);
2242 rcu_online_kthreads(cpu);
2243 break;
2244 case CPU_ONLINE:
2245 case CPU_DOWN_FAILED:
2246 rcu_node_kthread_setaffinity(rnp, -1);
2247 rcu_cpu_kthread_setrt(cpu, 1);
2248 break;
2249 case CPU_DOWN_PREPARE:
2250 rcu_node_kthread_setaffinity(rnp, cpu);
2251 rcu_cpu_kthread_setrt(cpu, 0);
2252 break;
2253 case CPU_DYING:
2254 case CPU_DYING_FROZEN:
2256 * The whole machine is "stopped" except this CPU, so we can
2257 * touch any data without introducing corruption. We send the
2258 * dying CPU's callbacks to an arbitrarily chosen online CPU.
2260 rcu_send_cbs_to_online(&rcu_bh_state);
2261 rcu_send_cbs_to_online(&rcu_sched_state);
2262 rcu_preempt_send_cbs_to_online();
2263 break;
2264 case CPU_DEAD:
2265 case CPU_DEAD_FROZEN:
2266 case CPU_UP_CANCELED:
2267 case CPU_UP_CANCELED_FROZEN:
2268 rcu_offline_cpu(cpu);
2269 break;
2270 default:
2271 break;
2273 return NOTIFY_OK;
2277 * This function is invoked towards the end of the scheduler's initialization
2278 * process. Before this is called, the idle task might contain
2279 * RCU read-side critical sections (during which time, this idle
2280 * task is booting the system). After this function is called, the
2281 * idle tasks are prohibited from containing RCU read-side critical
2282 * sections. This function also enables RCU lockdep checking.
2284 void rcu_scheduler_starting(void)
2286 WARN_ON(num_online_cpus() != 1);
2287 WARN_ON(nr_context_switches() > 0);
2288 rcu_scheduler_active = 1;
2292 * Compute the per-level fanout, either using the exact fanout specified
2293 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2295 #ifdef CONFIG_RCU_FANOUT_EXACT
2296 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2298 int i;
2300 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
2301 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
2302 rsp->levelspread[0] = RCU_FANOUT_LEAF;
2304 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2305 static void __init rcu_init_levelspread(struct rcu_state *rsp)
2307 int ccur;
2308 int cprv;
2309 int i;
2311 cprv = NR_CPUS;
2312 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2313 ccur = rsp->levelcnt[i];
2314 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2315 cprv = ccur;
2318 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2321 * Helper function for rcu_init() that initializes one rcu_state structure.
2323 static void __init rcu_init_one(struct rcu_state *rsp,
2324 struct rcu_data __percpu *rda)
2326 static char *buf[] = { "rcu_node_level_0",
2327 "rcu_node_level_1",
2328 "rcu_node_level_2",
2329 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2330 int cpustride = 1;
2331 int i;
2332 int j;
2333 struct rcu_node *rnp;
2335 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2337 /* Initialize the level-tracking arrays. */
2339 for (i = 1; i < NUM_RCU_LVLS; i++)
2340 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2341 rcu_init_levelspread(rsp);
2343 /* Initialize the elements themselves, starting from the leaves. */
2345 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2346 cpustride *= rsp->levelspread[i];
2347 rnp = rsp->level[i];
2348 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
2349 raw_spin_lock_init(&rnp->lock);
2350 lockdep_set_class_and_name(&rnp->lock,
2351 &rcu_node_class[i], buf[i]);
2352 rnp->gpnum = 0;
2353 rnp->qsmask = 0;
2354 rnp->qsmaskinit = 0;
2355 rnp->grplo = j * cpustride;
2356 rnp->grphi = (j + 1) * cpustride - 1;
2357 if (rnp->grphi >= NR_CPUS)
2358 rnp->grphi = NR_CPUS - 1;
2359 if (i == 0) {
2360 rnp->grpnum = 0;
2361 rnp->grpmask = 0;
2362 rnp->parent = NULL;
2363 } else {
2364 rnp->grpnum = j % rsp->levelspread[i - 1];
2365 rnp->grpmask = 1UL << rnp->grpnum;
2366 rnp->parent = rsp->level[i - 1] +
2367 j / rsp->levelspread[i - 1];
2369 rnp->level = i;
2370 INIT_LIST_HEAD(&rnp->blkd_tasks);
2374 rsp->rda = rda;
2375 rnp = rsp->level[NUM_RCU_LVLS - 1];
2376 for_each_possible_cpu(i) {
2377 while (i > rnp->grphi)
2378 rnp++;
2379 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
2380 rcu_boot_init_percpu_data(i, rsp);
2384 void __init rcu_init(void)
2386 int cpu;
2388 rcu_bootup_announce();
2389 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2390 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
2391 __rcu_init_preempt();
2394 * We don't need protection against CPU-hotplug here because
2395 * this is called early in boot, before either interrupts
2396 * or the scheduler are operational.
2398 cpu_notifier(rcu_cpu_notify, 0);
2399 for_each_online_cpu(cpu)
2400 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
2401 check_cpu_stall_init();
2404 #include "rcutree_plugin.h"