5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map and udf_read_inode
23 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
24 * block boundaries (which is not actually allowed)
25 * 12/20/98 added support for strategy 4096
26 * 03/07/99 rewrote udf_block_map (again)
27 * New funcs, inode_bmap, udf_next_aext
28 * 04/19/99 Support for writing device EA's for major/minor #
33 #include <linux/smp_lock.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
43 MODULE_AUTHOR("Ben Fennema");
44 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
45 MODULE_LICENSE("GPL");
47 #define EXTENT_MERGE_SIZE 5
49 static mode_t
udf_convert_permissions(struct fileEntry
*);
50 static int udf_update_inode(struct inode
*, int);
51 static void udf_fill_inode(struct inode
*, struct buffer_head
*);
52 static int udf_alloc_i_data(struct inode
*inode
, size_t size
);
53 static struct buffer_head
*inode_getblk(struct inode
*, sector_t
, int *,
55 static int8_t udf_insert_aext(struct inode
*, struct extent_position
,
56 kernel_lb_addr
, uint32_t);
57 static void udf_split_extents(struct inode
*, int *, int, int,
58 kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
59 static void udf_prealloc_extents(struct inode
*, int, int,
60 kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
61 static void udf_merge_extents(struct inode
*,
62 kernel_long_ad
[EXTENT_MERGE_SIZE
], int *);
63 static void udf_update_extents(struct inode
*,
64 kernel_long_ad
[EXTENT_MERGE_SIZE
], int, int,
65 struct extent_position
*);
66 static int udf_get_block(struct inode
*, sector_t
, struct buffer_head
*, int);
72 * Clean-up before the specified inode is destroyed.
75 * This routine is called when the kernel destroys an inode structure
76 * ie. when iput() finds i_count == 0.
79 * July 1, 1997 - Andrew E. Mileski
80 * Written, tested, and released.
82 * Called at the last iput() if i_nlink is zero.
84 void udf_delete_inode(struct inode
*inode
)
86 truncate_inode_pages(&inode
->i_data
, 0);
88 if (is_bad_inode(inode
))
95 udf_update_inode(inode
, IS_SYNC(inode
));
96 udf_free_inode(inode
);
106 * If we are going to release inode from memory, we discard preallocation and
107 * truncate last inode extent to proper length. We could use drop_inode() but
108 * it's called under inode_lock and thus we cannot mark inode dirty there. We
109 * use clear_inode() but we have to make sure to write inode as it's not written
112 void udf_clear_inode(struct inode
*inode
)
114 if (!(inode
->i_sb
->s_flags
& MS_RDONLY
)) {
116 /* Discard preallocation for directories, symlinks, etc. */
117 udf_discard_prealloc(inode
);
118 udf_truncate_tail_extent(inode
);
120 write_inode_now(inode
, 1);
122 kfree(UDF_I_DATA(inode
));
123 UDF_I_DATA(inode
) = NULL
;
126 static int udf_writepage(struct page
*page
, struct writeback_control
*wbc
)
128 return block_write_full_page(page
, udf_get_block
, wbc
);
131 static int udf_readpage(struct file
*file
, struct page
*page
)
133 return block_read_full_page(page
, udf_get_block
);
136 static int udf_write_begin(struct file
*file
, struct address_space
*mapping
,
137 loff_t pos
, unsigned len
, unsigned flags
,
138 struct page
**pagep
, void **fsdata
)
141 return block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
145 static sector_t
udf_bmap(struct address_space
*mapping
, sector_t block
)
147 return generic_block_bmap(mapping
, block
, udf_get_block
);
150 const struct address_space_operations udf_aops
= {
151 .readpage
= udf_readpage
,
152 .writepage
= udf_writepage
,
153 .sync_page
= block_sync_page
,
154 .write_begin
= udf_write_begin
,
155 .write_end
= generic_write_end
,
159 void udf_expand_file_adinicb(struct inode
*inode
, int newsize
, int *err
)
163 struct writeback_control udf_wbc
= {
164 .sync_mode
= WB_SYNC_NONE
,
168 /* from now on we have normal address_space methods */
169 inode
->i_data
.a_ops
= &udf_aops
;
171 if (!UDF_I_LENALLOC(inode
)) {
172 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
173 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_SHORT
;
175 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_LONG
;
176 mark_inode_dirty(inode
);
180 page
= grab_cache_page(inode
->i_mapping
, 0);
181 BUG_ON(!PageLocked(page
));
183 if (!PageUptodate(page
)) {
185 memset(kaddr
+ UDF_I_LENALLOC(inode
), 0x00,
186 PAGE_CACHE_SIZE
- UDF_I_LENALLOC(inode
));
187 memcpy(kaddr
, UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
),
188 UDF_I_LENALLOC(inode
));
189 flush_dcache_page(page
);
190 SetPageUptodate(page
);
193 memset(UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
), 0x00,
194 UDF_I_LENALLOC(inode
));
195 UDF_I_LENALLOC(inode
) = 0;
196 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
197 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_SHORT
;
199 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_LONG
;
201 inode
->i_data
.a_ops
->writepage(page
, &udf_wbc
);
202 page_cache_release(page
);
204 mark_inode_dirty(inode
);
207 struct buffer_head
*udf_expand_dir_adinicb(struct inode
*inode
, int *block
,
211 struct buffer_head
*dbh
= NULL
;
215 struct extent_position epos
;
217 struct udf_fileident_bh sfibh
, dfibh
;
218 loff_t f_pos
= udf_ext0_offset(inode
) >> 2;
219 int size
= (udf_ext0_offset(inode
) + inode
->i_size
) >> 2;
220 struct fileIdentDesc cfi
, *sfi
, *dfi
;
222 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_USE_SHORT_AD
))
223 alloctype
= ICBTAG_FLAG_AD_SHORT
;
225 alloctype
= ICBTAG_FLAG_AD_LONG
;
227 if (!inode
->i_size
) {
228 UDF_I_ALLOCTYPE(inode
) = alloctype
;
229 mark_inode_dirty(inode
);
233 /* alloc block, and copy data to it */
234 *block
= udf_new_block(inode
->i_sb
, inode
,
235 UDF_I_LOCATION(inode
).partitionReferenceNum
,
236 UDF_I_LOCATION(inode
).logicalBlockNum
, err
);
239 newblock
= udf_get_pblock(inode
->i_sb
, *block
,
240 UDF_I_LOCATION(inode
).partitionReferenceNum
, 0);
243 dbh
= udf_tgetblk(inode
->i_sb
, newblock
);
247 memset(dbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
248 set_buffer_uptodate(dbh
);
250 mark_buffer_dirty_inode(dbh
, inode
);
252 sfibh
.soffset
= sfibh
.eoffset
= (f_pos
& ((inode
->i_sb
->s_blocksize
- 1) >> 2)) << 2;
253 sfibh
.sbh
= sfibh
.ebh
= NULL
;
254 dfibh
.soffset
= dfibh
.eoffset
= 0;
255 dfibh
.sbh
= dfibh
.ebh
= dbh
;
256 while ((f_pos
< size
)) {
257 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_IN_ICB
;
258 sfi
= udf_fileident_read(inode
, &f_pos
, &sfibh
, &cfi
, NULL
, NULL
, NULL
, NULL
);
263 UDF_I_ALLOCTYPE(inode
) = alloctype
;
264 sfi
->descTag
.tagLocation
= cpu_to_le32(*block
);
265 dfibh
.soffset
= dfibh
.eoffset
;
266 dfibh
.eoffset
+= (sfibh
.eoffset
- sfibh
.soffset
);
267 dfi
= (struct fileIdentDesc
*)(dbh
->b_data
+ dfibh
.soffset
);
268 if (udf_write_fi(inode
, sfi
, dfi
, &dfibh
, sfi
->impUse
,
269 sfi
->fileIdent
+ le16_to_cpu(sfi
->lengthOfImpUse
))) {
270 UDF_I_ALLOCTYPE(inode
) = ICBTAG_FLAG_AD_IN_ICB
;
275 mark_buffer_dirty_inode(dbh
, inode
);
277 memset(UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
), 0, UDF_I_LENALLOC(inode
));
278 UDF_I_LENALLOC(inode
) = 0;
279 eloc
.logicalBlockNum
= *block
;
280 eloc
.partitionReferenceNum
= UDF_I_LOCATION(inode
).partitionReferenceNum
;
281 elen
= inode
->i_size
;
282 UDF_I_LENEXTENTS(inode
) = elen
;
284 epos
.block
= UDF_I_LOCATION(inode
);
285 epos
.offset
= udf_file_entry_alloc_offset(inode
);
286 udf_add_aext(inode
, &epos
, eloc
, elen
, 0);
290 mark_inode_dirty(inode
);
294 static int udf_get_block(struct inode
*inode
, sector_t block
,
295 struct buffer_head
*bh_result
, int create
)
298 struct buffer_head
*bh
;
302 phys
= udf_block_map(inode
, block
);
304 map_bh(bh_result
, inode
->i_sb
, phys
);
317 if (block
== UDF_I_NEXT_ALLOC_BLOCK(inode
) + 1) {
318 UDF_I_NEXT_ALLOC_BLOCK(inode
)++;
319 UDF_I_NEXT_ALLOC_GOAL(inode
)++;
324 bh
= inode_getblk(inode
, block
, &err
, &phys
, &new);
331 set_buffer_new(bh_result
);
332 map_bh(bh_result
, inode
->i_sb
, phys
);
339 udf_warning(inode
->i_sb
, "udf_get_block", "block < 0");
343 static struct buffer_head
*udf_getblk(struct inode
*inode
, long block
,
344 int create
, int *err
)
346 struct buffer_head
*bh
;
347 struct buffer_head dummy
;
350 dummy
.b_blocknr
= -1000;
351 *err
= udf_get_block(inode
, block
, &dummy
, create
);
352 if (!*err
&& buffer_mapped(&dummy
)) {
353 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
354 if (buffer_new(&dummy
)) {
356 memset(bh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
357 set_buffer_uptodate(bh
);
359 mark_buffer_dirty_inode(bh
, inode
);
367 /* Extend the file by 'blocks' blocks, return the number of extents added */
368 int udf_extend_file(struct inode
*inode
, struct extent_position
*last_pos
,
369 kernel_long_ad
* last_ext
, sector_t blocks
)
372 int count
= 0, fake
= !(last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
373 struct super_block
*sb
= inode
->i_sb
;
374 kernel_lb_addr prealloc_loc
= {};
375 int prealloc_len
= 0;
377 /* The previous extent is fake and we should not extend by anything
378 * - there's nothing to do... */
382 /* Round the last extent up to a multiple of block size */
383 if (last_ext
->extLength
& (sb
->s_blocksize
- 1)) {
384 last_ext
->extLength
=
385 (last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) |
386 (((last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
) +
387 sb
->s_blocksize
- 1) & ~(sb
->s_blocksize
- 1));
388 UDF_I_LENEXTENTS(inode
) =
389 (UDF_I_LENEXTENTS(inode
) + sb
->s_blocksize
- 1) &
390 ~(sb
->s_blocksize
- 1);
393 /* Last extent are just preallocated blocks? */
394 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) == EXT_NOT_RECORDED_ALLOCATED
) {
395 /* Save the extent so that we can reattach it to the end */
396 prealloc_loc
= last_ext
->extLocation
;
397 prealloc_len
= last_ext
->extLength
;
398 /* Mark the extent as a hole */
399 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
400 (last_ext
->extLength
& UDF_EXTENT_LENGTH_MASK
);
401 last_ext
->extLocation
.logicalBlockNum
= 0;
402 last_ext
->extLocation
.partitionReferenceNum
= 0;
405 /* Can we merge with the previous extent? */
406 if ((last_ext
->extLength
& UDF_EXTENT_FLAG_MASK
) == EXT_NOT_RECORDED_NOT_ALLOCATED
) {
407 add
= ((1 << 30) - sb
->s_blocksize
- (last_ext
->extLength
&
408 UDF_EXTENT_LENGTH_MASK
)) >> sb
->s_blocksize_bits
;
412 last_ext
->extLength
+= add
<< sb
->s_blocksize_bits
;
416 udf_add_aext(inode
, last_pos
, last_ext
->extLocation
,
417 last_ext
->extLength
, 1);
420 udf_write_aext(inode
, last_pos
, last_ext
->extLocation
, last_ext
->extLength
, 1);
423 /* Managed to do everything necessary? */
427 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
428 last_ext
->extLocation
.logicalBlockNum
= 0;
429 last_ext
->extLocation
.partitionReferenceNum
= 0;
430 add
= (1 << (30-sb
->s_blocksize_bits
)) - 1;
431 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
| (add
<< sb
->s_blocksize_bits
);
433 /* Create enough extents to cover the whole hole */
434 while (blocks
> add
) {
436 if (udf_add_aext(inode
, last_pos
, last_ext
->extLocation
,
437 last_ext
->extLength
, 1) == -1)
442 last_ext
->extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
443 (blocks
<< sb
->s_blocksize_bits
);
444 if (udf_add_aext(inode
, last_pos
, last_ext
->extLocation
,
445 last_ext
->extLength
, 1) == -1)
451 /* Do we have some preallocated blocks saved? */
453 if (udf_add_aext(inode
, last_pos
, prealloc_loc
, prealloc_len
, 1) == -1)
455 last_ext
->extLocation
= prealloc_loc
;
456 last_ext
->extLength
= prealloc_len
;
460 /* last_pos should point to the last written extent... */
461 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_SHORT
)
462 last_pos
->offset
-= sizeof(short_ad
);
463 else if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_LONG
)
464 last_pos
->offset
-= sizeof(long_ad
);
471 static struct buffer_head
*inode_getblk(struct inode
*inode
, sector_t block
,
472 int *err
, long *phys
, int *new)
474 static sector_t last_block
;
475 struct buffer_head
*result
= NULL
;
476 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
];
477 struct extent_position prev_epos
, cur_epos
, next_epos
;
478 int count
= 0, startnum
= 0, endnum
= 0;
479 uint32_t elen
= 0, tmpelen
;
480 kernel_lb_addr eloc
, tmpeloc
;
482 loff_t lbcount
= 0, b_off
= 0;
483 uint32_t newblocknum
, newblock
;
486 int goal
= 0, pgoal
= UDF_I_LOCATION(inode
).logicalBlockNum
;
489 prev_epos
.offset
= udf_file_entry_alloc_offset(inode
);
490 prev_epos
.block
= UDF_I_LOCATION(inode
);
492 cur_epos
= next_epos
= prev_epos
;
493 b_off
= (loff_t
)block
<< inode
->i_sb
->s_blocksize_bits
;
495 /* find the extent which contains the block we are looking for.
496 alternate between laarr[0] and laarr[1] for locations of the
497 current extent, and the previous extent */
499 if (prev_epos
.bh
!= cur_epos
.bh
) {
500 brelse(prev_epos
.bh
);
502 prev_epos
.bh
= cur_epos
.bh
;
504 if (cur_epos
.bh
!= next_epos
.bh
) {
506 get_bh(next_epos
.bh
);
507 cur_epos
.bh
= next_epos
.bh
;
512 prev_epos
.block
= cur_epos
.block
;
513 cur_epos
.block
= next_epos
.block
;
515 prev_epos
.offset
= cur_epos
.offset
;
516 cur_epos
.offset
= next_epos
.offset
;
518 if ((etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 1)) == -1)
523 laarr
[c
].extLength
= (etype
<< 30) | elen
;
524 laarr
[c
].extLocation
= eloc
;
526 if (etype
!= (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
527 pgoal
= eloc
.logicalBlockNum
+
528 ((elen
+ inode
->i_sb
->s_blocksize
- 1) >>
529 inode
->i_sb
->s_blocksize_bits
);
532 } while (lbcount
+ elen
<= b_off
);
535 offset
= b_off
>> inode
->i_sb
->s_blocksize_bits
;
537 * Move prev_epos and cur_epos into indirect extent if we are at
540 udf_next_aext(inode
, &prev_epos
, &tmpeloc
, &tmpelen
, 0);
541 udf_next_aext(inode
, &cur_epos
, &tmpeloc
, &tmpelen
, 0);
543 /* if the extent is allocated and recorded, return the block
544 if the extent is not a multiple of the blocksize, round up */
546 if (etype
== (EXT_RECORDED_ALLOCATED
>> 30)) {
547 if (elen
& (inode
->i_sb
->s_blocksize
- 1)) {
548 elen
= EXT_RECORDED_ALLOCATED
|
549 ((elen
+ inode
->i_sb
->s_blocksize
- 1) &
550 ~(inode
->i_sb
->s_blocksize
- 1));
551 etype
= udf_write_aext(inode
, &cur_epos
, eloc
, elen
, 1);
553 brelse(prev_epos
.bh
);
555 brelse(next_epos
.bh
);
556 newblock
= udf_get_lb_pblock(inode
->i_sb
, eloc
, offset
);
562 /* Are we beyond EOF? */
571 /* Create a fake extent when there's not one */
572 memset(&laarr
[0].extLocation
, 0x00, sizeof(kernel_lb_addr
));
573 laarr
[0].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
;
574 /* Will udf_extend_file() create real extent from a fake one? */
575 startnum
= (offset
> 0);
577 /* Create extents for the hole between EOF and offset */
578 ret
= udf_extend_file(inode
, &prev_epos
, laarr
, offset
);
580 brelse(prev_epos
.bh
);
582 brelse(next_epos
.bh
);
583 /* We don't really know the error here so we just make
591 /* We are not covered by a preallocated extent? */
592 if ((laarr
[0].extLength
& UDF_EXTENT_FLAG_MASK
) != EXT_NOT_RECORDED_ALLOCATED
) {
593 /* Is there any real extent? - otherwise we overwrite
597 laarr
[c
].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
598 inode
->i_sb
->s_blocksize
;
599 memset(&laarr
[c
].extLocation
, 0x00, sizeof(kernel_lb_addr
));
606 endnum
= startnum
= ((count
> 2) ? 2 : count
);
608 /* if the current extent is in position 0, swap it with the previous */
609 if (!c
&& count
!= 1) {
616 /* if the current block is located in an extent, read the next extent */
617 if ((etype
= udf_next_aext(inode
, &next_epos
, &eloc
, &elen
, 0)) != -1) {
618 laarr
[c
+ 1].extLength
= (etype
<< 30) | elen
;
619 laarr
[c
+ 1].extLocation
= eloc
;
628 /* if the current extent is not recorded but allocated, get the
629 * block in the extent corresponding to the requested block */
630 if ((laarr
[c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
631 newblocknum
= laarr
[c
].extLocation
.logicalBlockNum
+ offset
;
632 } else { /* otherwise, allocate a new block */
633 if (UDF_I_NEXT_ALLOC_BLOCK(inode
) == block
)
634 goal
= UDF_I_NEXT_ALLOC_GOAL(inode
);
638 goal
= UDF_I_LOCATION(inode
).logicalBlockNum
+ 1;
641 if (!(newblocknum
= udf_new_block(inode
->i_sb
, inode
,
642 UDF_I_LOCATION(inode
).partitionReferenceNum
,
644 brelse(prev_epos
.bh
);
648 UDF_I_LENEXTENTS(inode
) += inode
->i_sb
->s_blocksize
;
651 /* if the extent the requsted block is located in contains multiple blocks,
652 * split the extent into at most three extents. blocks prior to requested
653 * block, requested block, and blocks after requested block */
654 udf_split_extents(inode
, &c
, offset
, newblocknum
, laarr
, &endnum
);
656 #ifdef UDF_PREALLOCATE
657 /* preallocate blocks */
658 udf_prealloc_extents(inode
, c
, lastblock
, laarr
, &endnum
);
661 /* merge any continuous blocks in laarr */
662 udf_merge_extents(inode
, laarr
, &endnum
);
664 /* write back the new extents, inserting new extents if the new number
665 * of extents is greater than the old number, and deleting extents if
666 * the new number of extents is less than the old number */
667 udf_update_extents(inode
, laarr
, startnum
, endnum
, &prev_epos
);
669 brelse(prev_epos
.bh
);
671 if (!(newblock
= udf_get_pblock(inode
->i_sb
, newblocknum
,
672 UDF_I_LOCATION(inode
).partitionReferenceNum
, 0))) {
678 UDF_I_NEXT_ALLOC_BLOCK(inode
) = block
;
679 UDF_I_NEXT_ALLOC_GOAL(inode
) = newblocknum
;
680 inode
->i_ctime
= current_fs_time(inode
->i_sb
);
683 udf_sync_inode(inode
);
685 mark_inode_dirty(inode
);
690 static void udf_split_extents(struct inode
*inode
, int *c
, int offset
,
692 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
695 if ((laarr
[*c
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30) ||
696 (laarr
[*c
].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
698 int blen
= ((laarr
[curr
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
699 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
;
700 int8_t etype
= (laarr
[curr
].extLength
>> 30);
704 } else if (!offset
|| blen
== offset
+ 1) {
705 laarr
[curr
+ 2] = laarr
[curr
+ 1];
706 laarr
[curr
+ 1] = laarr
[curr
];
708 laarr
[curr
+ 3] = laarr
[curr
+ 1];
709 laarr
[curr
+ 2] = laarr
[curr
+ 1] = laarr
[curr
];
713 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
714 udf_free_blocks(inode
->i_sb
, inode
, laarr
[curr
].extLocation
, 0, offset
);
715 laarr
[curr
].extLength
= EXT_NOT_RECORDED_NOT_ALLOCATED
|
716 (offset
<< inode
->i_sb
->s_blocksize_bits
);
717 laarr
[curr
].extLocation
.logicalBlockNum
= 0;
718 laarr
[curr
].extLocation
.partitionReferenceNum
= 0;
720 laarr
[curr
].extLength
= (etype
<< 30) |
721 (offset
<< inode
->i_sb
->s_blocksize_bits
);
728 laarr
[curr
].extLocation
.logicalBlockNum
= newblocknum
;
729 if (etype
== (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))
730 laarr
[curr
].extLocation
.partitionReferenceNum
=
731 UDF_I_LOCATION(inode
).partitionReferenceNum
;
732 laarr
[curr
].extLength
= EXT_RECORDED_ALLOCATED
|
733 inode
->i_sb
->s_blocksize
;
736 if (blen
!= offset
+ 1) {
737 if (etype
== (EXT_NOT_RECORDED_ALLOCATED
>> 30))
738 laarr
[curr
].extLocation
.logicalBlockNum
+= (offset
+ 1);
739 laarr
[curr
].extLength
= (etype
<< 30) |
740 ((blen
- (offset
+ 1)) << inode
->i_sb
->s_blocksize_bits
);
747 static void udf_prealloc_extents(struct inode
*inode
, int c
, int lastblock
,
748 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
751 int start
, length
= 0, currlength
= 0, i
;
753 if (*endnum
>= (c
+ 1)) {
759 if ((laarr
[c
+ 1].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
761 length
= currlength
= (((laarr
[c
+ 1].extLength
& UDF_EXTENT_LENGTH_MASK
) +
762 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
768 for (i
= start
+ 1; i
<= *endnum
; i
++) {
771 length
+= UDF_DEFAULT_PREALLOC_BLOCKS
;
772 } else if ((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) {
773 length
+= (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
774 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
781 int next
= laarr
[start
].extLocation
.logicalBlockNum
+
782 (((laarr
[start
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
783 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
784 int numalloc
= udf_prealloc_blocks(inode
->i_sb
, inode
,
785 laarr
[start
].extLocation
.partitionReferenceNum
,
786 next
, (UDF_DEFAULT_PREALLOC_BLOCKS
> length
? length
:
787 UDF_DEFAULT_PREALLOC_BLOCKS
) - currlength
);
789 if (start
== (c
+ 1)) {
790 laarr
[start
].extLength
+=
791 (numalloc
<< inode
->i_sb
->s_blocksize_bits
);
793 memmove(&laarr
[c
+ 2], &laarr
[c
+ 1],
794 sizeof(long_ad
) * (*endnum
- (c
+ 1)));
796 laarr
[c
+ 1].extLocation
.logicalBlockNum
= next
;
797 laarr
[c
+ 1].extLocation
.partitionReferenceNum
=
798 laarr
[c
].extLocation
.partitionReferenceNum
;
799 laarr
[c
+ 1].extLength
= EXT_NOT_RECORDED_ALLOCATED
|
800 (numalloc
<< inode
->i_sb
->s_blocksize_bits
);
804 for (i
= start
+ 1; numalloc
&& i
< *endnum
; i
++) {
805 int elen
= ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
806 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
;
808 if (elen
> numalloc
) {
809 laarr
[i
].extLength
-=
810 (numalloc
<< inode
->i_sb
->s_blocksize_bits
);
814 if (*endnum
> (i
+ 1))
815 memmove(&laarr
[i
], &laarr
[i
+ 1],
816 sizeof(long_ad
) * (*endnum
- (i
+ 1)));
821 UDF_I_LENEXTENTS(inode
) += numalloc
<< inode
->i_sb
->s_blocksize_bits
;
826 static void udf_merge_extents(struct inode
*inode
,
827 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
832 for (i
= 0; i
< (*endnum
- 1); i
++) {
833 if ((laarr
[i
].extLength
>> 30) == (laarr
[i
+ 1].extLength
>> 30)) {
834 if (((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30)) ||
835 ((laarr
[i
+ 1].extLocation
.logicalBlockNum
- laarr
[i
].extLocation
.logicalBlockNum
) ==
836 (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
837 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
))) {
838 if (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
839 (laarr
[i
+ 1].extLength
& UDF_EXTENT_LENGTH_MASK
) +
840 inode
->i_sb
->s_blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
841 laarr
[i
+ 1].extLength
= (laarr
[i
+ 1].extLength
-
842 (laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
843 UDF_EXTENT_LENGTH_MASK
) & ~(inode
->i_sb
->s_blocksize
- 1);
844 laarr
[i
].extLength
= (laarr
[i
].extLength
& UDF_EXTENT_FLAG_MASK
) +
845 (UDF_EXTENT_LENGTH_MASK
+ 1) - inode
->i_sb
->s_blocksize
;
846 laarr
[i
+ 1].extLocation
.logicalBlockNum
=
847 laarr
[i
].extLocation
.logicalBlockNum
+
848 ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) >>
849 inode
->i_sb
->s_blocksize_bits
);
851 laarr
[i
].extLength
= laarr
[i
+ 1].extLength
+
852 (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
853 inode
->i_sb
->s_blocksize
- 1) & ~(inode
->i_sb
->s_blocksize
- 1));
854 if (*endnum
> (i
+ 2))
855 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
856 sizeof(long_ad
) * (*endnum
- (i
+ 2)));
861 } else if (((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) &&
862 ((laarr
[i
+ 1].extLength
>> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED
>> 30))) {
863 udf_free_blocks(inode
->i_sb
, inode
, laarr
[i
].extLocation
, 0,
864 ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
865 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
866 laarr
[i
].extLocation
.logicalBlockNum
= 0;
867 laarr
[i
].extLocation
.partitionReferenceNum
= 0;
869 if (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
870 (laarr
[i
+ 1].extLength
& UDF_EXTENT_LENGTH_MASK
) +
871 inode
->i_sb
->s_blocksize
- 1) & ~UDF_EXTENT_LENGTH_MASK
) {
872 laarr
[i
+ 1].extLength
= (laarr
[i
+ 1].extLength
-
873 (laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
874 UDF_EXTENT_LENGTH_MASK
) & ~(inode
->i_sb
->s_blocksize
- 1);
875 laarr
[i
].extLength
= (laarr
[i
].extLength
& UDF_EXTENT_FLAG_MASK
) +
876 (UDF_EXTENT_LENGTH_MASK
+ 1) - inode
->i_sb
->s_blocksize
;
878 laarr
[i
].extLength
= laarr
[i
+ 1].extLength
+
879 (((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
880 inode
->i_sb
->s_blocksize
- 1) & ~(inode
->i_sb
->s_blocksize
- 1));
881 if (*endnum
> (i
+ 2))
882 memmove(&laarr
[i
+ 1], &laarr
[i
+ 2],
883 sizeof(long_ad
) * (*endnum
- (i
+ 2)));
887 } else if ((laarr
[i
].extLength
>> 30) == (EXT_NOT_RECORDED_ALLOCATED
>> 30)) {
888 udf_free_blocks(inode
->i_sb
, inode
, laarr
[i
].extLocation
, 0,
889 ((laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) +
890 inode
->i_sb
->s_blocksize
- 1) >> inode
->i_sb
->s_blocksize_bits
);
891 laarr
[i
].extLocation
.logicalBlockNum
= 0;
892 laarr
[i
].extLocation
.partitionReferenceNum
= 0;
893 laarr
[i
].extLength
= (laarr
[i
].extLength
& UDF_EXTENT_LENGTH_MASK
) |
894 EXT_NOT_RECORDED_NOT_ALLOCATED
;
899 static void udf_update_extents(struct inode
*inode
,
900 kernel_long_ad laarr
[EXTENT_MERGE_SIZE
],
901 int startnum
, int endnum
,
902 struct extent_position
*epos
)
905 kernel_lb_addr tmploc
;
908 if (startnum
> endnum
) {
909 for (i
= 0; i
< (startnum
- endnum
); i
++)
910 udf_delete_aext(inode
, *epos
, laarr
[i
].extLocation
,
912 } else if (startnum
< endnum
) {
913 for (i
= 0; i
< (endnum
- startnum
); i
++) {
914 udf_insert_aext(inode
, *epos
, laarr
[i
].extLocation
,
916 udf_next_aext(inode
, epos
, &laarr
[i
].extLocation
,
917 &laarr
[i
].extLength
, 1);
922 for (i
= start
; i
< endnum
; i
++) {
923 udf_next_aext(inode
, epos
, &tmploc
, &tmplen
, 0);
924 udf_write_aext(inode
, epos
, laarr
[i
].extLocation
,
925 laarr
[i
].extLength
, 1);
929 struct buffer_head
*udf_bread(struct inode
*inode
, int block
,
930 int create
, int *err
)
932 struct buffer_head
*bh
= NULL
;
934 bh
= udf_getblk(inode
, block
, create
, err
);
938 if (buffer_uptodate(bh
))
941 ll_rw_block(READ
, 1, &bh
);
944 if (buffer_uptodate(bh
))
952 void udf_truncate(struct inode
*inode
)
957 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
958 S_ISLNK(inode
->i_mode
)))
960 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
964 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_IN_ICB
) {
965 if (inode
->i_sb
->s_blocksize
< (udf_file_entry_alloc_offset(inode
) +
967 udf_expand_file_adinicb(inode
, inode
->i_size
, &err
);
968 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_IN_ICB
) {
969 inode
->i_size
= UDF_I_LENALLOC(inode
);
973 udf_truncate_extents(inode
);
976 offset
= inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1);
977 memset(UDF_I_DATA(inode
) + UDF_I_LENEATTR(inode
) + offset
, 0x00,
978 inode
->i_sb
->s_blocksize
- offset
- udf_file_entry_alloc_offset(inode
));
979 UDF_I_LENALLOC(inode
) = inode
->i_size
;
982 block_truncate_page(inode
->i_mapping
, inode
->i_size
, udf_get_block
);
983 udf_truncate_extents(inode
);
986 inode
->i_mtime
= inode
->i_ctime
= current_fs_time(inode
->i_sb
);
988 udf_sync_inode(inode
);
990 mark_inode_dirty(inode
);
994 static void __udf_read_inode(struct inode
*inode
)
996 struct buffer_head
*bh
= NULL
;
997 struct fileEntry
*fe
;
1001 * Set defaults, but the inode is still incomplete!
1002 * Note: get_new_inode() sets the following on a new inode:
1005 * i_flags = sb->s_flags
1007 * clean_inode(): zero fills and sets
1012 bh
= udf_read_ptagged(inode
->i_sb
, UDF_I_LOCATION(inode
), 0, &ident
);
1014 printk(KERN_ERR
"udf: udf_read_inode(ino %ld) failed !bh\n",
1016 make_bad_inode(inode
);
1020 if (ident
!= TAG_IDENT_FE
&& ident
!= TAG_IDENT_EFE
&&
1021 ident
!= TAG_IDENT_USE
) {
1022 printk(KERN_ERR
"udf: udf_read_inode(ino %ld) failed ident=%d\n",
1023 inode
->i_ino
, ident
);
1025 make_bad_inode(inode
);
1029 fe
= (struct fileEntry
*)bh
->b_data
;
1031 if (le16_to_cpu(fe
->icbTag
.strategyType
) == 4096) {
1032 struct buffer_head
*ibh
= NULL
, *nbh
= NULL
;
1033 struct indirectEntry
*ie
;
1035 ibh
= udf_read_ptagged(inode
->i_sb
, UDF_I_LOCATION(inode
), 1, &ident
);
1036 if (ident
== TAG_IDENT_IE
) {
1039 ie
= (struct indirectEntry
*)ibh
->b_data
;
1041 loc
= lelb_to_cpu(ie
->indirectICB
.extLocation
);
1043 if (ie
->indirectICB
.extLength
&&
1044 (nbh
= udf_read_ptagged(inode
->i_sb
, loc
, 0, &ident
))) {
1045 if (ident
== TAG_IDENT_FE
||
1046 ident
== TAG_IDENT_EFE
) {
1047 memcpy(&UDF_I_LOCATION(inode
), &loc
,
1048 sizeof(kernel_lb_addr
));
1052 __udf_read_inode(inode
);
1065 } else if (le16_to_cpu(fe
->icbTag
.strategyType
) != 4) {
1066 printk(KERN_ERR
"udf: unsupported strategy type: %d\n",
1067 le16_to_cpu(fe
->icbTag
.strategyType
));
1069 make_bad_inode(inode
);
1072 udf_fill_inode(inode
, bh
);
1077 static void udf_fill_inode(struct inode
*inode
, struct buffer_head
*bh
)
1079 struct fileEntry
*fe
;
1080 struct extendedFileEntry
*efe
;
1085 fe
= (struct fileEntry
*)bh
->b_data
;
1086 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1088 if (le16_to_cpu(fe
->icbTag
.strategyType
) == 4)
1089 UDF_I_STRAT4096(inode
) = 0;
1090 else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1091 UDF_I_STRAT4096(inode
) = 1;
1093 UDF_I_ALLOCTYPE(inode
) = le16_to_cpu(fe
->icbTag
.flags
) & ICBTAG_FLAG_AD_MASK
;
1094 UDF_I_UNIQUE(inode
) = 0;
1095 UDF_I_LENEATTR(inode
) = 0;
1096 UDF_I_LENEXTENTS(inode
) = 0;
1097 UDF_I_LENALLOC(inode
) = 0;
1098 UDF_I_NEXT_ALLOC_BLOCK(inode
) = 0;
1099 UDF_I_NEXT_ALLOC_GOAL(inode
) = 0;
1100 if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_EFE
) {
1101 UDF_I_EFE(inode
) = 1;
1102 UDF_I_USE(inode
) = 0;
1103 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
- sizeof(struct extendedFileEntry
))) {
1104 make_bad_inode(inode
);
1107 memcpy(UDF_I_DATA(inode
), bh
->b_data
+ sizeof(struct extendedFileEntry
),
1108 inode
->i_sb
->s_blocksize
- sizeof(struct extendedFileEntry
));
1109 } else if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_FE
) {
1110 UDF_I_EFE(inode
) = 0;
1111 UDF_I_USE(inode
) = 0;
1112 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
))) {
1113 make_bad_inode(inode
);
1116 memcpy(UDF_I_DATA(inode
), bh
->b_data
+ sizeof(struct fileEntry
),
1117 inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
));
1118 } else if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_USE
) {
1119 UDF_I_EFE(inode
) = 0;
1120 UDF_I_USE(inode
) = 1;
1121 UDF_I_LENALLOC(inode
) =
1122 le32_to_cpu(((struct unallocSpaceEntry
*)bh
->b_data
)->lengthAllocDescs
);
1123 if (udf_alloc_i_data(inode
, inode
->i_sb
->s_blocksize
- sizeof(struct unallocSpaceEntry
))) {
1124 make_bad_inode(inode
);
1127 memcpy(UDF_I_DATA(inode
), bh
->b_data
+ sizeof(struct unallocSpaceEntry
),
1128 inode
->i_sb
->s_blocksize
- sizeof(struct unallocSpaceEntry
));
1132 inode
->i_uid
= le32_to_cpu(fe
->uid
);
1133 if (inode
->i_uid
== -1 ||
1134 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_IGNORE
) ||
1135 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_SET
))
1136 inode
->i_uid
= UDF_SB(inode
->i_sb
)->s_uid
;
1138 inode
->i_gid
= le32_to_cpu(fe
->gid
);
1139 if (inode
->i_gid
== -1 ||
1140 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_IGNORE
) ||
1141 UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_SET
))
1142 inode
->i_gid
= UDF_SB(inode
->i_sb
)->s_gid
;
1144 inode
->i_nlink
= le16_to_cpu(fe
->fileLinkCount
);
1145 if (!inode
->i_nlink
)
1148 inode
->i_size
= le64_to_cpu(fe
->informationLength
);
1149 UDF_I_LENEXTENTS(inode
) = inode
->i_size
;
1151 inode
->i_mode
= udf_convert_permissions(fe
);
1152 inode
->i_mode
&= ~UDF_SB(inode
->i_sb
)->s_umask
;
1154 if (UDF_I_EFE(inode
) == 0) {
1155 inode
->i_blocks
= le64_to_cpu(fe
->logicalBlocksRecorded
) <<
1156 (inode
->i_sb
->s_blocksize_bits
- 9);
1158 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1159 lets_to_cpu(fe
->accessTime
))) {
1160 inode
->i_atime
.tv_sec
= convtime
;
1161 inode
->i_atime
.tv_nsec
= convtime_usec
* 1000;
1163 inode
->i_atime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1166 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1167 lets_to_cpu(fe
->modificationTime
))) {
1168 inode
->i_mtime
.tv_sec
= convtime
;
1169 inode
->i_mtime
.tv_nsec
= convtime_usec
* 1000;
1171 inode
->i_mtime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1174 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1175 lets_to_cpu(fe
->attrTime
))) {
1176 inode
->i_ctime
.tv_sec
= convtime
;
1177 inode
->i_ctime
.tv_nsec
= convtime_usec
* 1000;
1179 inode
->i_ctime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1182 UDF_I_UNIQUE(inode
) = le64_to_cpu(fe
->uniqueID
);
1183 UDF_I_LENEATTR(inode
) = le32_to_cpu(fe
->lengthExtendedAttr
);
1184 UDF_I_LENALLOC(inode
) = le32_to_cpu(fe
->lengthAllocDescs
);
1185 offset
= sizeof(struct fileEntry
) + UDF_I_LENEATTR(inode
);
1187 inode
->i_blocks
= le64_to_cpu(efe
->logicalBlocksRecorded
) <<
1188 (inode
->i_sb
->s_blocksize_bits
- 9);
1190 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1191 lets_to_cpu(efe
->accessTime
))) {
1192 inode
->i_atime
.tv_sec
= convtime
;
1193 inode
->i_atime
.tv_nsec
= convtime_usec
* 1000;
1195 inode
->i_atime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1198 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1199 lets_to_cpu(efe
->modificationTime
))) {
1200 inode
->i_mtime
.tv_sec
= convtime
;
1201 inode
->i_mtime
.tv_nsec
= convtime_usec
* 1000;
1203 inode
->i_mtime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1206 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1207 lets_to_cpu(efe
->createTime
))) {
1208 UDF_I_CRTIME(inode
).tv_sec
= convtime
;
1209 UDF_I_CRTIME(inode
).tv_nsec
= convtime_usec
* 1000;
1211 UDF_I_CRTIME(inode
) = UDF_SB_RECORDTIME(inode
->i_sb
);
1214 if (udf_stamp_to_time(&convtime
, &convtime_usec
,
1215 lets_to_cpu(efe
->attrTime
))) {
1216 inode
->i_ctime
.tv_sec
= convtime
;
1217 inode
->i_ctime
.tv_nsec
= convtime_usec
* 1000;
1219 inode
->i_ctime
= UDF_SB_RECORDTIME(inode
->i_sb
);
1222 UDF_I_UNIQUE(inode
) = le64_to_cpu(efe
->uniqueID
);
1223 UDF_I_LENEATTR(inode
) = le32_to_cpu(efe
->lengthExtendedAttr
);
1224 UDF_I_LENALLOC(inode
) = le32_to_cpu(efe
->lengthAllocDescs
);
1225 offset
= sizeof(struct extendedFileEntry
) + UDF_I_LENEATTR(inode
);
1228 switch (fe
->icbTag
.fileType
) {
1229 case ICBTAG_FILE_TYPE_DIRECTORY
:
1230 inode
->i_op
= &udf_dir_inode_operations
;
1231 inode
->i_fop
= &udf_dir_operations
;
1232 inode
->i_mode
|= S_IFDIR
;
1235 case ICBTAG_FILE_TYPE_REALTIME
:
1236 case ICBTAG_FILE_TYPE_REGULAR
:
1237 case ICBTAG_FILE_TYPE_UNDEF
:
1238 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_IN_ICB
)
1239 inode
->i_data
.a_ops
= &udf_adinicb_aops
;
1241 inode
->i_data
.a_ops
= &udf_aops
;
1242 inode
->i_op
= &udf_file_inode_operations
;
1243 inode
->i_fop
= &udf_file_operations
;
1244 inode
->i_mode
|= S_IFREG
;
1246 case ICBTAG_FILE_TYPE_BLOCK
:
1247 inode
->i_mode
|= S_IFBLK
;
1249 case ICBTAG_FILE_TYPE_CHAR
:
1250 inode
->i_mode
|= S_IFCHR
;
1252 case ICBTAG_FILE_TYPE_FIFO
:
1253 init_special_inode(inode
, inode
->i_mode
| S_IFIFO
, 0);
1255 case ICBTAG_FILE_TYPE_SOCKET
:
1256 init_special_inode(inode
, inode
->i_mode
| S_IFSOCK
, 0);
1258 case ICBTAG_FILE_TYPE_SYMLINK
:
1259 inode
->i_data
.a_ops
= &udf_symlink_aops
;
1260 inode
->i_op
= &page_symlink_inode_operations
;
1261 inode
->i_mode
= S_IFLNK
| S_IRWXUGO
;
1264 printk(KERN_ERR
"udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
1265 inode
->i_ino
, fe
->icbTag
.fileType
);
1266 make_bad_inode(inode
);
1269 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1270 struct deviceSpec
*dsea
= (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1272 init_special_inode(inode
, inode
->i_mode
,
1273 MKDEV(le32_to_cpu(dsea
->majorDeviceIdent
),
1274 le32_to_cpu(dsea
->minorDeviceIdent
)));
1275 /* Developer ID ??? */
1277 make_bad_inode(inode
);
1282 static int udf_alloc_i_data(struct inode
*inode
, size_t size
)
1284 UDF_I_DATA(inode
) = kmalloc(size
, GFP_KERNEL
);
1286 if (!UDF_I_DATA(inode
)) {
1287 printk(KERN_ERR
"udf:udf_alloc_i_data (ino %ld) no free memory\n",
1295 static mode_t
udf_convert_permissions(struct fileEntry
*fe
)
1298 uint32_t permissions
;
1301 permissions
= le32_to_cpu(fe
->permissions
);
1302 flags
= le16_to_cpu(fe
->icbTag
.flags
);
1304 mode
= (( permissions
) & S_IRWXO
) |
1305 (( permissions
>> 2 ) & S_IRWXG
) |
1306 (( permissions
>> 4 ) & S_IRWXU
) |
1307 (( flags
& ICBTAG_FLAG_SETUID
) ? S_ISUID
: 0) |
1308 (( flags
& ICBTAG_FLAG_SETGID
) ? S_ISGID
: 0) |
1309 (( flags
& ICBTAG_FLAG_STICKY
) ? S_ISVTX
: 0);
1318 * Write out the specified inode.
1321 * This routine is called whenever an inode is synced.
1322 * Currently this routine is just a placeholder.
1325 * July 1, 1997 - Andrew E. Mileski
1326 * Written, tested, and released.
1329 int udf_write_inode(struct inode
*inode
, int sync
)
1334 ret
= udf_update_inode(inode
, sync
);
1340 int udf_sync_inode(struct inode
*inode
)
1342 return udf_update_inode(inode
, 1);
1345 static int udf_update_inode(struct inode
*inode
, int do_sync
)
1347 struct buffer_head
*bh
= NULL
;
1348 struct fileEntry
*fe
;
1349 struct extendedFileEntry
*efe
;
1354 kernel_timestamp cpu_time
;
1357 bh
= udf_tread(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
, UDF_I_LOCATION(inode
), 0));
1359 udf_debug("bread failure\n");
1363 memset(bh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
1365 fe
= (struct fileEntry
*)bh
->b_data
;
1366 efe
= (struct extendedFileEntry
*)bh
->b_data
;
1368 if (le16_to_cpu(fe
->descTag
.tagIdent
) == TAG_IDENT_USE
) {
1369 struct unallocSpaceEntry
*use
=
1370 (struct unallocSpaceEntry
*)bh
->b_data
;
1372 use
->lengthAllocDescs
= cpu_to_le32(UDF_I_LENALLOC(inode
));
1373 memcpy(bh
->b_data
+ sizeof(struct unallocSpaceEntry
), UDF_I_DATA(inode
),
1374 inode
->i_sb
->s_blocksize
- sizeof(struct unallocSpaceEntry
));
1375 crclen
= sizeof(struct unallocSpaceEntry
) + UDF_I_LENALLOC(inode
) - sizeof(tag
);
1376 use
->descTag
.tagLocation
= cpu_to_le32(UDF_I_LOCATION(inode
).logicalBlockNum
);
1377 use
->descTag
.descCRCLength
= cpu_to_le16(crclen
);
1378 use
->descTag
.descCRC
= cpu_to_le16(udf_crc((char *)use
+ sizeof(tag
), crclen
, 0));
1380 use
->descTag
.tagChecksum
= 0;
1381 for (i
= 0; i
< 16; i
++) {
1383 use
->descTag
.tagChecksum
+= ((uint8_t *)&(use
->descTag
))[i
];
1386 mark_buffer_dirty(bh
);
1391 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_UID_FORGET
))
1392 fe
->uid
= cpu_to_le32(-1);
1394 fe
->uid
= cpu_to_le32(inode
->i_uid
);
1396 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_GID_FORGET
))
1397 fe
->gid
= cpu_to_le32(-1);
1399 fe
->gid
= cpu_to_le32(inode
->i_gid
);
1401 udfperms
= ((inode
->i_mode
& S_IRWXO
) ) |
1402 ((inode
->i_mode
& S_IRWXG
) << 2) |
1403 ((inode
->i_mode
& S_IRWXU
) << 4);
1405 udfperms
|= (le32_to_cpu(fe
->permissions
) &
1406 (FE_PERM_O_DELETE
| FE_PERM_O_CHATTR
|
1407 FE_PERM_G_DELETE
| FE_PERM_G_CHATTR
|
1408 FE_PERM_U_DELETE
| FE_PERM_U_CHATTR
));
1409 fe
->permissions
= cpu_to_le32(udfperms
);
1411 if (S_ISDIR(inode
->i_mode
))
1412 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
- 1);
1414 fe
->fileLinkCount
= cpu_to_le16(inode
->i_nlink
);
1416 fe
->informationLength
= cpu_to_le64(inode
->i_size
);
1418 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1420 struct deviceSpec
*dsea
=
1421 (struct deviceSpec
*)udf_get_extendedattr(inode
, 12, 1);
1423 dsea
= (struct deviceSpec
*)
1424 udf_add_extendedattr(inode
,
1425 sizeof(struct deviceSpec
) +
1426 sizeof(regid
), 12, 0x3);
1427 dsea
->attrType
= cpu_to_le32(12);
1428 dsea
->attrSubtype
= 1;
1429 dsea
->attrLength
= cpu_to_le32(sizeof(struct deviceSpec
) +
1431 dsea
->impUseLength
= cpu_to_le32(sizeof(regid
));
1433 eid
= (regid
*)dsea
->impUse
;
1434 memset(eid
, 0, sizeof(regid
));
1435 strcpy(eid
->ident
, UDF_ID_DEVELOPER
);
1436 eid
->identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1437 eid
->identSuffix
[1] = UDF_OS_ID_LINUX
;
1438 dsea
->majorDeviceIdent
= cpu_to_le32(imajor(inode
));
1439 dsea
->minorDeviceIdent
= cpu_to_le32(iminor(inode
));
1442 if (UDF_I_EFE(inode
) == 0) {
1443 memcpy(bh
->b_data
+ sizeof(struct fileEntry
), UDF_I_DATA(inode
),
1444 inode
->i_sb
->s_blocksize
- sizeof(struct fileEntry
));
1445 fe
->logicalBlocksRecorded
= cpu_to_le64(
1446 (inode
->i_blocks
+ (1 << (inode
->i_sb
->s_blocksize_bits
- 9)) - 1) >>
1447 (inode
->i_sb
->s_blocksize_bits
- 9));
1449 if (udf_time_to_stamp(&cpu_time
, inode
->i_atime
))
1450 fe
->accessTime
= cpu_to_lets(cpu_time
);
1451 if (udf_time_to_stamp(&cpu_time
, inode
->i_mtime
))
1452 fe
->modificationTime
= cpu_to_lets(cpu_time
);
1453 if (udf_time_to_stamp(&cpu_time
, inode
->i_ctime
))
1454 fe
->attrTime
= cpu_to_lets(cpu_time
);
1455 memset(&(fe
->impIdent
), 0, sizeof(regid
));
1456 strcpy(fe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1457 fe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1458 fe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1459 fe
->uniqueID
= cpu_to_le64(UDF_I_UNIQUE(inode
));
1460 fe
->lengthExtendedAttr
= cpu_to_le32(UDF_I_LENEATTR(inode
));
1461 fe
->lengthAllocDescs
= cpu_to_le32(UDF_I_LENALLOC(inode
));
1462 fe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_FE
);
1463 crclen
= sizeof(struct fileEntry
);
1465 memcpy(bh
->b_data
+ sizeof(struct extendedFileEntry
), UDF_I_DATA(inode
),
1466 inode
->i_sb
->s_blocksize
- sizeof(struct extendedFileEntry
));
1467 efe
->objectSize
= cpu_to_le64(inode
->i_size
);
1468 efe
->logicalBlocksRecorded
= cpu_to_le64(
1469 (inode
->i_blocks
+ (1 << (inode
->i_sb
->s_blocksize_bits
- 9)) - 1) >>
1470 (inode
->i_sb
->s_blocksize_bits
- 9));
1472 if (UDF_I_CRTIME(inode
).tv_sec
> inode
->i_atime
.tv_sec
||
1473 (UDF_I_CRTIME(inode
).tv_sec
== inode
->i_atime
.tv_sec
&&
1474 UDF_I_CRTIME(inode
).tv_nsec
> inode
->i_atime
.tv_nsec
)) {
1475 UDF_I_CRTIME(inode
) = inode
->i_atime
;
1477 if (UDF_I_CRTIME(inode
).tv_sec
> inode
->i_mtime
.tv_sec
||
1478 (UDF_I_CRTIME(inode
).tv_sec
== inode
->i_mtime
.tv_sec
&&
1479 UDF_I_CRTIME(inode
).tv_nsec
> inode
->i_mtime
.tv_nsec
)) {
1480 UDF_I_CRTIME(inode
) = inode
->i_mtime
;
1482 if (UDF_I_CRTIME(inode
).tv_sec
> inode
->i_ctime
.tv_sec
||
1483 (UDF_I_CRTIME(inode
).tv_sec
== inode
->i_ctime
.tv_sec
&&
1484 UDF_I_CRTIME(inode
).tv_nsec
> inode
->i_ctime
.tv_nsec
)) {
1485 UDF_I_CRTIME(inode
) = inode
->i_ctime
;
1488 if (udf_time_to_stamp(&cpu_time
, inode
->i_atime
))
1489 efe
->accessTime
= cpu_to_lets(cpu_time
);
1490 if (udf_time_to_stamp(&cpu_time
, inode
->i_mtime
))
1491 efe
->modificationTime
= cpu_to_lets(cpu_time
);
1492 if (udf_time_to_stamp(&cpu_time
, UDF_I_CRTIME(inode
)))
1493 efe
->createTime
= cpu_to_lets(cpu_time
);
1494 if (udf_time_to_stamp(&cpu_time
, inode
->i_ctime
))
1495 efe
->attrTime
= cpu_to_lets(cpu_time
);
1497 memset(&(efe
->impIdent
), 0, sizeof(regid
));
1498 strcpy(efe
->impIdent
.ident
, UDF_ID_DEVELOPER
);
1499 efe
->impIdent
.identSuffix
[0] = UDF_OS_CLASS_UNIX
;
1500 efe
->impIdent
.identSuffix
[1] = UDF_OS_ID_LINUX
;
1501 efe
->uniqueID
= cpu_to_le64(UDF_I_UNIQUE(inode
));
1502 efe
->lengthExtendedAttr
= cpu_to_le32(UDF_I_LENEATTR(inode
));
1503 efe
->lengthAllocDescs
= cpu_to_le32(UDF_I_LENALLOC(inode
));
1504 efe
->descTag
.tagIdent
= cpu_to_le16(TAG_IDENT_EFE
);
1505 crclen
= sizeof(struct extendedFileEntry
);
1507 if (UDF_I_STRAT4096(inode
)) {
1508 fe
->icbTag
.strategyType
= cpu_to_le16(4096);
1509 fe
->icbTag
.strategyParameter
= cpu_to_le16(1);
1510 fe
->icbTag
.numEntries
= cpu_to_le16(2);
1512 fe
->icbTag
.strategyType
= cpu_to_le16(4);
1513 fe
->icbTag
.numEntries
= cpu_to_le16(1);
1516 if (S_ISDIR(inode
->i_mode
))
1517 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_DIRECTORY
;
1518 else if (S_ISREG(inode
->i_mode
))
1519 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_REGULAR
;
1520 else if (S_ISLNK(inode
->i_mode
))
1521 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SYMLINK
;
1522 else if (S_ISBLK(inode
->i_mode
))
1523 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_BLOCK
;
1524 else if (S_ISCHR(inode
->i_mode
))
1525 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_CHAR
;
1526 else if (S_ISFIFO(inode
->i_mode
))
1527 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_FIFO
;
1528 else if (S_ISSOCK(inode
->i_mode
))
1529 fe
->icbTag
.fileType
= ICBTAG_FILE_TYPE_SOCKET
;
1531 icbflags
= UDF_I_ALLOCTYPE(inode
) |
1532 ((inode
->i_mode
& S_ISUID
) ? ICBTAG_FLAG_SETUID
: 0) |
1533 ((inode
->i_mode
& S_ISGID
) ? ICBTAG_FLAG_SETGID
: 0) |
1534 ((inode
->i_mode
& S_ISVTX
) ? ICBTAG_FLAG_STICKY
: 0) |
1535 (le16_to_cpu(fe
->icbTag
.flags
) &
1536 ~(ICBTAG_FLAG_AD_MASK
| ICBTAG_FLAG_SETUID
|
1537 ICBTAG_FLAG_SETGID
| ICBTAG_FLAG_STICKY
));
1539 fe
->icbTag
.flags
= cpu_to_le16(icbflags
);
1540 if (UDF_SB_UDFREV(inode
->i_sb
) >= 0x0200)
1541 fe
->descTag
.descVersion
= cpu_to_le16(3);
1543 fe
->descTag
.descVersion
= cpu_to_le16(2);
1544 fe
->descTag
.tagSerialNum
= cpu_to_le16(UDF_SB_SERIALNUM(inode
->i_sb
));
1545 fe
->descTag
.tagLocation
= cpu_to_le32(UDF_I_LOCATION(inode
).logicalBlockNum
);
1546 crclen
+= UDF_I_LENEATTR(inode
) + UDF_I_LENALLOC(inode
) - sizeof(tag
);
1547 fe
->descTag
.descCRCLength
= cpu_to_le16(crclen
);
1548 fe
->descTag
.descCRC
= cpu_to_le16(udf_crc((char *)fe
+ sizeof(tag
), crclen
, 0));
1550 fe
->descTag
.tagChecksum
= 0;
1551 for (i
= 0; i
< 16; i
++) {
1553 fe
->descTag
.tagChecksum
+= ((uint8_t *)&(fe
->descTag
))[i
];
1556 /* write the data blocks */
1557 mark_buffer_dirty(bh
);
1559 sync_dirty_buffer(bh
);
1560 if (buffer_req(bh
) && !buffer_uptodate(bh
)) {
1561 printk("IO error syncing udf inode [%s:%08lx]\n",
1562 inode
->i_sb
->s_id
, inode
->i_ino
);
1571 struct inode
*udf_iget(struct super_block
*sb
, kernel_lb_addr ino
)
1573 unsigned long block
= udf_get_lb_pblock(sb
, ino
, 0);
1574 struct inode
*inode
= iget_locked(sb
, block
);
1579 if (inode
->i_state
& I_NEW
) {
1580 memcpy(&UDF_I_LOCATION(inode
), &ino
, sizeof(kernel_lb_addr
));
1581 __udf_read_inode(inode
);
1582 unlock_new_inode(inode
);
1585 if (is_bad_inode(inode
))
1588 if (ino
.logicalBlockNum
>= UDF_SB_PARTLEN(sb
, ino
.partitionReferenceNum
)) {
1589 udf_debug("block=%d, partition=%d out of range\n",
1590 ino
.logicalBlockNum
, ino
.partitionReferenceNum
);
1591 make_bad_inode(inode
);
1602 int8_t udf_add_aext(struct inode
* inode
, struct extent_position
* epos
,
1603 kernel_lb_addr eloc
, uint32_t elen
, int inc
)
1606 short_ad
*sad
= NULL
;
1607 long_ad
*lad
= NULL
;
1608 struct allocExtDesc
*aed
;
1613 ptr
= UDF_I_DATA(inode
) + epos
->offset
- udf_file_entry_alloc_offset(inode
) + UDF_I_LENEATTR(inode
);
1615 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1617 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_SHORT
)
1618 adsize
= sizeof(short_ad
);
1619 else if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_LONG
)
1620 adsize
= sizeof(long_ad
);
1624 if (epos
->offset
+ (2 * adsize
) > inode
->i_sb
->s_blocksize
) {
1626 struct buffer_head
*nbh
;
1628 kernel_lb_addr obloc
= epos
->block
;
1630 if (!(epos
->block
.logicalBlockNum
= udf_new_block(inode
->i_sb
, NULL
,
1631 obloc
.partitionReferenceNum
,
1632 obloc
.logicalBlockNum
, &err
))) {
1635 if (!(nbh
= udf_tgetblk(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
,
1636 epos
->block
, 0)))) {
1640 memset(nbh
->b_data
, 0x00, inode
->i_sb
->s_blocksize
);
1641 set_buffer_uptodate(nbh
);
1643 mark_buffer_dirty_inode(nbh
, inode
);
1645 aed
= (struct allocExtDesc
*)(nbh
->b_data
);
1646 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
))
1647 aed
->previousAllocExtLocation
= cpu_to_le32(obloc
.logicalBlockNum
);
1648 if (epos
->offset
+ adsize
> inode
->i_sb
->s_blocksize
) {
1649 loffset
= epos
->offset
;
1650 aed
->lengthAllocDescs
= cpu_to_le32(adsize
);
1651 sptr
= ptr
- adsize
;
1652 dptr
= nbh
->b_data
+ sizeof(struct allocExtDesc
);
1653 memcpy(dptr
, sptr
, adsize
);
1654 epos
->offset
= sizeof(struct allocExtDesc
) + adsize
;
1656 loffset
= epos
->offset
+ adsize
;
1657 aed
->lengthAllocDescs
= cpu_to_le32(0);
1659 epos
->offset
= sizeof(struct allocExtDesc
);
1662 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1663 aed
->lengthAllocDescs
=
1664 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) + adsize
);
1666 UDF_I_LENALLOC(inode
) += adsize
;
1667 mark_inode_dirty(inode
);
1670 if (UDF_SB_UDFREV(inode
->i_sb
) >= 0x0200)
1671 udf_new_tag(nbh
->b_data
, TAG_IDENT_AED
, 3, 1,
1672 epos
->block
.logicalBlockNum
, sizeof(tag
));
1674 udf_new_tag(nbh
->b_data
, TAG_IDENT_AED
, 2, 1,
1675 epos
->block
.logicalBlockNum
, sizeof(tag
));
1676 switch (UDF_I_ALLOCTYPE(inode
)) {
1677 case ICBTAG_FLAG_AD_SHORT
:
1678 sad
= (short_ad
*)sptr
;
1679 sad
->extLength
= cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS
|
1680 inode
->i_sb
->s_blocksize
);
1681 sad
->extPosition
= cpu_to_le32(epos
->block
.logicalBlockNum
);
1683 case ICBTAG_FLAG_AD_LONG
:
1684 lad
= (long_ad
*)sptr
;
1685 lad
->extLength
= cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS
|
1686 inode
->i_sb
->s_blocksize
);
1687 lad
->extLocation
= cpu_to_lelb(epos
->block
);
1688 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
1692 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1693 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1694 udf_update_tag(epos
->bh
->b_data
, loffset
);
1696 udf_update_tag(epos
->bh
->b_data
, sizeof(struct allocExtDesc
));
1697 mark_buffer_dirty_inode(epos
->bh
, inode
);
1700 mark_inode_dirty(inode
);
1705 etype
= udf_write_aext(inode
, epos
, eloc
, elen
, inc
);
1708 UDF_I_LENALLOC(inode
) += adsize
;
1709 mark_inode_dirty(inode
);
1711 aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1712 aed
->lengthAllocDescs
=
1713 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) + adsize
);
1714 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) || UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1715 udf_update_tag(epos
->bh
->b_data
, epos
->offset
+ (inc
? 0 : adsize
));
1717 udf_update_tag(epos
->bh
->b_data
, sizeof(struct allocExtDesc
));
1718 mark_buffer_dirty_inode(epos
->bh
, inode
);
1724 int8_t udf_write_aext(struct inode
* inode
, struct extent_position
* epos
,
1725 kernel_lb_addr eloc
, uint32_t elen
, int inc
)
1733 ptr
= UDF_I_DATA(inode
) + epos
->offset
- udf_file_entry_alloc_offset(inode
) + UDF_I_LENEATTR(inode
);
1735 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1737 switch (UDF_I_ALLOCTYPE(inode
)) {
1738 case ICBTAG_FLAG_AD_SHORT
:
1739 sad
= (short_ad
*)ptr
;
1740 sad
->extLength
= cpu_to_le32(elen
);
1741 sad
->extPosition
= cpu_to_le32(eloc
.logicalBlockNum
);
1742 adsize
= sizeof(short_ad
);
1744 case ICBTAG_FLAG_AD_LONG
:
1745 lad
= (long_ad
*)ptr
;
1746 lad
->extLength
= cpu_to_le32(elen
);
1747 lad
->extLocation
= cpu_to_lelb(eloc
);
1748 memset(lad
->impUse
, 0x00, sizeof(lad
->impUse
));
1749 adsize
= sizeof(long_ad
);
1756 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1757 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201) {
1758 struct allocExtDesc
*aed
= (struct allocExtDesc
*)epos
->bh
->b_data
;
1759 udf_update_tag(epos
->bh
->b_data
,
1760 le32_to_cpu(aed
->lengthAllocDescs
) + sizeof(struct allocExtDesc
));
1762 mark_buffer_dirty_inode(epos
->bh
, inode
);
1764 mark_inode_dirty(inode
);
1768 epos
->offset
+= adsize
;
1770 return (elen
>> 30);
1773 int8_t udf_next_aext(struct inode
* inode
, struct extent_position
* epos
,
1774 kernel_lb_addr
* eloc
, uint32_t * elen
, int inc
)
1778 while ((etype
= udf_current_aext(inode
, epos
, eloc
, elen
, inc
)) ==
1779 (EXT_NEXT_EXTENT_ALLOCDECS
>> 30)) {
1780 epos
->block
= *eloc
;
1781 epos
->offset
= sizeof(struct allocExtDesc
);
1783 if (!(epos
->bh
= udf_tread(inode
->i_sb
, udf_get_lb_pblock(inode
->i_sb
, epos
->block
, 0)))) {
1784 udf_debug("reading block %d failed!\n",
1785 udf_get_lb_pblock(inode
->i_sb
, epos
->block
, 0));
1793 int8_t udf_current_aext(struct inode
* inode
, struct extent_position
* epos
,
1794 kernel_lb_addr
* eloc
, uint32_t * elen
, int inc
)
1805 epos
->offset
= udf_file_entry_alloc_offset(inode
);
1806 ptr
= UDF_I_DATA(inode
) + epos
->offset
- udf_file_entry_alloc_offset(inode
) + UDF_I_LENEATTR(inode
);
1807 alen
= udf_file_entry_alloc_offset(inode
) + UDF_I_LENALLOC(inode
);
1810 epos
->offset
= sizeof(struct allocExtDesc
);
1811 ptr
= epos
->bh
->b_data
+ epos
->offset
;
1812 alen
= sizeof(struct allocExtDesc
) +
1813 le32_to_cpu(((struct allocExtDesc
*)epos
->bh
->b_data
)->lengthAllocDescs
);
1816 switch (UDF_I_ALLOCTYPE(inode
)) {
1817 case ICBTAG_FLAG_AD_SHORT
:
1818 if (!(sad
= udf_get_fileshortad(ptr
, alen
, &epos
->offset
, inc
)))
1820 etype
= le32_to_cpu(sad
->extLength
) >> 30;
1821 eloc
->logicalBlockNum
= le32_to_cpu(sad
->extPosition
);
1822 eloc
->partitionReferenceNum
= UDF_I_LOCATION(inode
).partitionReferenceNum
;
1823 *elen
= le32_to_cpu(sad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
1825 case ICBTAG_FLAG_AD_LONG
:
1826 if (!(lad
= udf_get_filelongad(ptr
, alen
, &epos
->offset
, inc
)))
1828 etype
= le32_to_cpu(lad
->extLength
) >> 30;
1829 *eloc
= lelb_to_cpu(lad
->extLocation
);
1830 *elen
= le32_to_cpu(lad
->extLength
) & UDF_EXTENT_LENGTH_MASK
;
1833 udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode
));
1840 static int8_t udf_insert_aext(struct inode
*inode
, struct extent_position epos
,
1841 kernel_lb_addr neloc
, uint32_t nelen
)
1843 kernel_lb_addr oeloc
;
1850 while ((etype
= udf_next_aext(inode
, &epos
, &oeloc
, &oelen
, 0)) != -1) {
1851 udf_write_aext(inode
, &epos
, neloc
, nelen
, 1);
1853 nelen
= (etype
<< 30) | oelen
;
1855 udf_add_aext(inode
, &epos
, neloc
, nelen
, 1);
1858 return (nelen
>> 30);
1861 int8_t udf_delete_aext(struct inode
* inode
, struct extent_position epos
,
1862 kernel_lb_addr eloc
, uint32_t elen
)
1864 struct extent_position oepos
;
1867 struct allocExtDesc
*aed
;
1874 if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_SHORT
)
1875 adsize
= sizeof(short_ad
);
1876 else if (UDF_I_ALLOCTYPE(inode
) == ICBTAG_FLAG_AD_LONG
)
1877 adsize
= sizeof(long_ad
);
1882 if (udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1) == -1)
1885 while ((etype
= udf_next_aext(inode
, &epos
, &eloc
, &elen
, 1)) != -1) {
1886 udf_write_aext(inode
, &oepos
, eloc
, (etype
<< 30) | elen
, 1);
1887 if (oepos
.bh
!= epos
.bh
) {
1888 oepos
.block
= epos
.block
;
1892 oepos
.offset
= epos
.offset
- adsize
;
1895 memset(&eloc
, 0x00, sizeof(kernel_lb_addr
));
1898 if (epos
.bh
!= oepos
.bh
) {
1899 udf_free_blocks(inode
->i_sb
, inode
, epos
.block
, 0, 1);
1900 udf_write_aext(inode
, &oepos
, eloc
, elen
, 1);
1901 udf_write_aext(inode
, &oepos
, eloc
, elen
, 1);
1903 UDF_I_LENALLOC(inode
) -= (adsize
* 2);
1904 mark_inode_dirty(inode
);
1906 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
1907 aed
->lengthAllocDescs
=
1908 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) - (2 * adsize
));
1909 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1910 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1911 udf_update_tag(oepos
.bh
->b_data
, oepos
.offset
- (2 * adsize
));
1913 udf_update_tag(oepos
.bh
->b_data
, sizeof(struct allocExtDesc
));
1914 mark_buffer_dirty_inode(oepos
.bh
, inode
);
1917 udf_write_aext(inode
, &oepos
, eloc
, elen
, 1);
1919 UDF_I_LENALLOC(inode
) -= adsize
;
1920 mark_inode_dirty(inode
);
1922 aed
= (struct allocExtDesc
*)oepos
.bh
->b_data
;
1923 aed
->lengthAllocDescs
=
1924 cpu_to_le32(le32_to_cpu(aed
->lengthAllocDescs
) - adsize
);
1925 if (!UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_STRICT
) ||
1926 UDF_SB_UDFREV(inode
->i_sb
) >= 0x0201)
1927 udf_update_tag(oepos
.bh
->b_data
, epos
.offset
- adsize
);
1929 udf_update_tag(oepos
.bh
->b_data
, sizeof(struct allocExtDesc
));
1930 mark_buffer_dirty_inode(oepos
.bh
, inode
);
1937 return (elen
>> 30);
1940 int8_t inode_bmap(struct inode
* inode
, sector_t block
,
1941 struct extent_position
* pos
, kernel_lb_addr
* eloc
,
1942 uint32_t * elen
, sector_t
* offset
)
1944 loff_t lbcount
= 0, bcount
=
1945 (loff_t
) block
<< inode
->i_sb
->s_blocksize_bits
;
1949 printk(KERN_ERR
"udf: inode_bmap: block < 0\n");
1954 pos
->block
= UDF_I_LOCATION(inode
);
1959 if ((etype
= udf_next_aext(inode
, pos
, eloc
, elen
, 1)) == -1) {
1960 *offset
= (bcount
- lbcount
) >> inode
->i_sb
->s_blocksize_bits
;
1961 UDF_I_LENEXTENTS(inode
) = lbcount
;
1965 } while (lbcount
<= bcount
);
1967 *offset
= (bcount
+ *elen
- lbcount
) >> inode
->i_sb
->s_blocksize_bits
;
1972 long udf_block_map(struct inode
*inode
, sector_t block
)
1974 kernel_lb_addr eloc
;
1977 struct extent_position epos
= {};
1982 if (inode_bmap(inode
, block
, &epos
, &eloc
, &elen
, &offset
) == (EXT_RECORDED_ALLOCATED
>> 30))
1983 ret
= udf_get_lb_pblock(inode
->i_sb
, eloc
, offset
);
1990 if (UDF_QUERY_FLAG(inode
->i_sb
, UDF_FLAG_VARCONV
))
1991 return udf_fixed_to_variable(ret
);