x86, amd: Check X86_FEATURE_OSVW bit before accessing OSVW MSRs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / neighbour.c
blobbff37908bd55683012353bde62015722f8c515e9
1 /*
2 * Generic address resolution entity
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
40 #define NEIGH_DEBUG 1
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK0 NEIGH_PRINTK
45 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
46 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
48 #if NEIGH_DEBUG >= 1
49 #undef NEIGH_PRINTK1
50 #define NEIGH_PRINTK1 NEIGH_PRINTK
51 #endif
52 #if NEIGH_DEBUG >= 2
53 #undef NEIGH_PRINTK2
54 #define NEIGH_PRINTK2 NEIGH_PRINTK
55 #endif
57 #define PNEIGH_HASHMASK 0xF
59 static void neigh_timer_handler(unsigned long arg);
60 static void __neigh_notify(struct neighbour *n, int type, int flags);
61 static void neigh_update_notify(struct neighbour *neigh);
62 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
64 static struct neigh_table *neigh_tables;
65 #ifdef CONFIG_PROC_FS
66 static const struct file_operations neigh_stat_seq_fops;
67 #endif
70 Neighbour hash table buckets are protected with rwlock tbl->lock.
72 - All the scans/updates to hash buckets MUST be made under this lock.
73 - NOTHING clever should be made under this lock: no callbacks
74 to protocol backends, no attempts to send something to network.
75 It will result in deadlocks, if backend/driver wants to use neighbour
76 cache.
77 - If the entry requires some non-trivial actions, increase
78 its reference count and release table lock.
80 Neighbour entries are protected:
81 - with reference count.
82 - with rwlock neigh->lock
84 Reference count prevents destruction.
86 neigh->lock mainly serializes ll address data and its validity state.
87 However, the same lock is used to protect another entry fields:
88 - timer
89 - resolution queue
91 Again, nothing clever shall be made under neigh->lock,
92 the most complicated procedure, which we allow is dev->hard_header.
93 It is supposed, that dev->hard_header is simplistic and does
94 not make callbacks to neighbour tables.
96 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
97 list of neighbour tables. This list is used only in process context,
100 static DEFINE_RWLOCK(neigh_tbl_lock);
102 static int neigh_blackhole(struct sk_buff *skb)
104 kfree_skb(skb);
105 return -ENETDOWN;
108 static void neigh_cleanup_and_release(struct neighbour *neigh)
110 if (neigh->parms->neigh_cleanup)
111 neigh->parms->neigh_cleanup(neigh);
113 __neigh_notify(neigh, RTM_DELNEIGH, 0);
114 neigh_release(neigh);
118 * It is random distribution in the interval (1/2)*base...(3/2)*base.
119 * It corresponds to default IPv6 settings and is not overridable,
120 * because it is really reasonable choice.
123 unsigned long neigh_rand_reach_time(unsigned long base)
125 return (base ? (net_random() % base) + (base >> 1) : 0);
127 EXPORT_SYMBOL(neigh_rand_reach_time);
130 static int neigh_forced_gc(struct neigh_table *tbl)
132 int shrunk = 0;
133 int i;
135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
137 write_lock_bh(&tbl->lock);
138 for (i = 0; i <= tbl->hash_mask; i++) {
139 struct neighbour *n, **np;
141 np = &tbl->hash_buckets[i];
142 while ((n = *np) != NULL) {
143 /* Neighbour record may be discarded if:
144 * - nobody refers to it.
145 * - it is not permanent
147 write_lock(&n->lock);
148 if (atomic_read(&n->refcnt) == 1 &&
149 !(n->nud_state & NUD_PERMANENT)) {
150 *np = n->next;
151 n->dead = 1;
152 shrunk = 1;
153 write_unlock(&n->lock);
154 neigh_cleanup_and_release(n);
155 continue;
157 write_unlock(&n->lock);
158 np = &n->next;
162 tbl->last_flush = jiffies;
164 write_unlock_bh(&tbl->lock);
166 return shrunk;
169 static void neigh_add_timer(struct neighbour *n, unsigned long when)
171 neigh_hold(n);
172 if (unlikely(mod_timer(&n->timer, when))) {
173 printk("NEIGH: BUG, double timer add, state is %x\n",
174 n->nud_state);
175 dump_stack();
179 static int neigh_del_timer(struct neighbour *n)
181 if ((n->nud_state & NUD_IN_TIMER) &&
182 del_timer(&n->timer)) {
183 neigh_release(n);
184 return 1;
186 return 0;
189 static void pneigh_queue_purge(struct sk_buff_head *list)
191 struct sk_buff *skb;
193 while ((skb = skb_dequeue(list)) != NULL) {
194 dev_put(skb->dev);
195 kfree_skb(skb);
199 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
201 int i;
203 for (i = 0; i <= tbl->hash_mask; i++) {
204 struct neighbour *n, **np = &tbl->hash_buckets[i];
206 while ((n = *np) != NULL) {
207 if (dev && n->dev != dev) {
208 np = &n->next;
209 continue;
211 *np = n->next;
212 write_lock(&n->lock);
213 neigh_del_timer(n);
214 n->dead = 1;
216 if (atomic_read(&n->refcnt) != 1) {
217 /* The most unpleasant situation.
218 We must destroy neighbour entry,
219 but someone still uses it.
221 The destroy will be delayed until
222 the last user releases us, but
223 we must kill timers etc. and move
224 it to safe state.
226 skb_queue_purge(&n->arp_queue);
227 n->output = neigh_blackhole;
228 if (n->nud_state & NUD_VALID)
229 n->nud_state = NUD_NOARP;
230 else
231 n->nud_state = NUD_NONE;
232 NEIGH_PRINTK2("neigh %p is stray.\n", n);
234 write_unlock(&n->lock);
235 neigh_cleanup_and_release(n);
240 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
242 write_lock_bh(&tbl->lock);
243 neigh_flush_dev(tbl, dev);
244 write_unlock_bh(&tbl->lock);
246 EXPORT_SYMBOL(neigh_changeaddr);
248 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
250 write_lock_bh(&tbl->lock);
251 neigh_flush_dev(tbl, dev);
252 pneigh_ifdown(tbl, dev);
253 write_unlock_bh(&tbl->lock);
255 del_timer_sync(&tbl->proxy_timer);
256 pneigh_queue_purge(&tbl->proxy_queue);
257 return 0;
259 EXPORT_SYMBOL(neigh_ifdown);
261 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
263 struct neighbour *n = NULL;
264 unsigned long now = jiffies;
265 int entries;
267 entries = atomic_inc_return(&tbl->entries) - 1;
268 if (entries >= tbl->gc_thresh3 ||
269 (entries >= tbl->gc_thresh2 &&
270 time_after(now, tbl->last_flush + 5 * HZ))) {
271 if (!neigh_forced_gc(tbl) &&
272 entries >= tbl->gc_thresh3)
273 goto out_entries;
276 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
277 if (!n)
278 goto out_entries;
280 skb_queue_head_init(&n->arp_queue);
281 rwlock_init(&n->lock);
282 n->updated = n->used = now;
283 n->nud_state = NUD_NONE;
284 n->output = neigh_blackhole;
285 n->parms = neigh_parms_clone(&tbl->parms);
286 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
288 NEIGH_CACHE_STAT_INC(tbl, allocs);
289 n->tbl = tbl;
290 atomic_set(&n->refcnt, 1);
291 n->dead = 1;
292 out:
293 return n;
295 out_entries:
296 atomic_dec(&tbl->entries);
297 goto out;
300 static struct neighbour **neigh_hash_alloc(unsigned int entries)
302 unsigned long size = entries * sizeof(struct neighbour *);
303 struct neighbour **ret;
305 if (size <= PAGE_SIZE) {
306 ret = kzalloc(size, GFP_ATOMIC);
307 } else {
308 ret = (struct neighbour **)
309 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size));
311 return ret;
314 static void neigh_hash_free(struct neighbour **hash, unsigned int entries)
316 unsigned long size = entries * sizeof(struct neighbour *);
318 if (size <= PAGE_SIZE)
319 kfree(hash);
320 else
321 free_pages((unsigned long)hash, get_order(size));
324 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries)
326 struct neighbour **new_hash, **old_hash;
327 unsigned int i, new_hash_mask, old_entries;
329 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
331 BUG_ON(!is_power_of_2(new_entries));
332 new_hash = neigh_hash_alloc(new_entries);
333 if (!new_hash)
334 return;
336 old_entries = tbl->hash_mask + 1;
337 new_hash_mask = new_entries - 1;
338 old_hash = tbl->hash_buckets;
340 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
341 for (i = 0; i < old_entries; i++) {
342 struct neighbour *n, *next;
344 for (n = old_hash[i]; n; n = next) {
345 unsigned int hash_val = tbl->hash(n->primary_key, n->dev);
347 hash_val &= new_hash_mask;
348 next = n->next;
350 n->next = new_hash[hash_val];
351 new_hash[hash_val] = n;
354 tbl->hash_buckets = new_hash;
355 tbl->hash_mask = new_hash_mask;
357 neigh_hash_free(old_hash, old_entries);
360 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
361 struct net_device *dev)
363 struct neighbour *n;
364 int key_len = tbl->key_len;
365 u32 hash_val;
367 NEIGH_CACHE_STAT_INC(tbl, lookups);
369 read_lock_bh(&tbl->lock);
370 hash_val = tbl->hash(pkey, dev);
371 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
372 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
373 neigh_hold(n);
374 NEIGH_CACHE_STAT_INC(tbl, hits);
375 break;
378 read_unlock_bh(&tbl->lock);
379 return n;
381 EXPORT_SYMBOL(neigh_lookup);
383 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
384 const void *pkey)
386 struct neighbour *n;
387 int key_len = tbl->key_len;
388 u32 hash_val;
390 NEIGH_CACHE_STAT_INC(tbl, lookups);
392 read_lock_bh(&tbl->lock);
393 hash_val = tbl->hash(pkey, NULL);
394 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) {
395 if (!memcmp(n->primary_key, pkey, key_len) &&
396 net_eq(dev_net(n->dev), net)) {
397 neigh_hold(n);
398 NEIGH_CACHE_STAT_INC(tbl, hits);
399 break;
402 read_unlock_bh(&tbl->lock);
403 return n;
405 EXPORT_SYMBOL(neigh_lookup_nodev);
407 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
408 struct net_device *dev)
410 u32 hash_val;
411 int key_len = tbl->key_len;
412 int error;
413 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
415 if (!n) {
416 rc = ERR_PTR(-ENOBUFS);
417 goto out;
420 memcpy(n->primary_key, pkey, key_len);
421 n->dev = dev;
422 dev_hold(dev);
424 /* Protocol specific setup. */
425 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
426 rc = ERR_PTR(error);
427 goto out_neigh_release;
430 /* Device specific setup. */
431 if (n->parms->neigh_setup &&
432 (error = n->parms->neigh_setup(n)) < 0) {
433 rc = ERR_PTR(error);
434 goto out_neigh_release;
437 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
439 write_lock_bh(&tbl->lock);
441 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1))
442 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1);
444 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask;
446 if (n->parms->dead) {
447 rc = ERR_PTR(-EINVAL);
448 goto out_tbl_unlock;
451 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) {
452 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
453 neigh_hold(n1);
454 rc = n1;
455 goto out_tbl_unlock;
459 n->next = tbl->hash_buckets[hash_val];
460 tbl->hash_buckets[hash_val] = n;
461 n->dead = 0;
462 neigh_hold(n);
463 write_unlock_bh(&tbl->lock);
464 NEIGH_PRINTK2("neigh %p is created.\n", n);
465 rc = n;
466 out:
467 return rc;
468 out_tbl_unlock:
469 write_unlock_bh(&tbl->lock);
470 out_neigh_release:
471 neigh_release(n);
472 goto out;
474 EXPORT_SYMBOL(neigh_create);
476 static u32 pneigh_hash(const void *pkey, int key_len)
478 u32 hash_val = *(u32 *)(pkey + key_len - 4);
479 hash_val ^= (hash_val >> 16);
480 hash_val ^= hash_val >> 8;
481 hash_val ^= hash_val >> 4;
482 hash_val &= PNEIGH_HASHMASK;
483 return hash_val;
486 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
487 struct net *net,
488 const void *pkey,
489 int key_len,
490 struct net_device *dev)
492 while (n) {
493 if (!memcmp(n->key, pkey, key_len) &&
494 net_eq(pneigh_net(n), net) &&
495 (n->dev == dev || !n->dev))
496 return n;
497 n = n->next;
499 return NULL;
502 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
503 struct net *net, const void *pkey, struct net_device *dev)
505 int key_len = tbl->key_len;
506 u32 hash_val = pneigh_hash(pkey, key_len);
508 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
509 net, pkey, key_len, dev);
511 EXPORT_SYMBOL_GPL(__pneigh_lookup);
513 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
514 struct net *net, const void *pkey,
515 struct net_device *dev, int creat)
517 struct pneigh_entry *n;
518 int key_len = tbl->key_len;
519 u32 hash_val = pneigh_hash(pkey, key_len);
521 read_lock_bh(&tbl->lock);
522 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
523 net, pkey, key_len, dev);
524 read_unlock_bh(&tbl->lock);
526 if (n || !creat)
527 goto out;
529 ASSERT_RTNL();
531 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
532 if (!n)
533 goto out;
535 write_pnet(&n->net, hold_net(net));
536 memcpy(n->key, pkey, key_len);
537 n->dev = dev;
538 if (dev)
539 dev_hold(dev);
541 if (tbl->pconstructor && tbl->pconstructor(n)) {
542 if (dev)
543 dev_put(dev);
544 release_net(net);
545 kfree(n);
546 n = NULL;
547 goto out;
550 write_lock_bh(&tbl->lock);
551 n->next = tbl->phash_buckets[hash_val];
552 tbl->phash_buckets[hash_val] = n;
553 write_unlock_bh(&tbl->lock);
554 out:
555 return n;
557 EXPORT_SYMBOL(pneigh_lookup);
560 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
561 struct net_device *dev)
563 struct pneigh_entry *n, **np;
564 int key_len = tbl->key_len;
565 u32 hash_val = pneigh_hash(pkey, key_len);
567 write_lock_bh(&tbl->lock);
568 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
569 np = &n->next) {
570 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
571 net_eq(pneigh_net(n), net)) {
572 *np = n->next;
573 write_unlock_bh(&tbl->lock);
574 if (tbl->pdestructor)
575 tbl->pdestructor(n);
576 if (n->dev)
577 dev_put(n->dev);
578 release_net(pneigh_net(n));
579 kfree(n);
580 return 0;
583 write_unlock_bh(&tbl->lock);
584 return -ENOENT;
587 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
589 struct pneigh_entry *n, **np;
590 u32 h;
592 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
593 np = &tbl->phash_buckets[h];
594 while ((n = *np) != NULL) {
595 if (!dev || n->dev == dev) {
596 *np = n->next;
597 if (tbl->pdestructor)
598 tbl->pdestructor(n);
599 if (n->dev)
600 dev_put(n->dev);
601 release_net(pneigh_net(n));
602 kfree(n);
603 continue;
605 np = &n->next;
608 return -ENOENT;
611 static void neigh_parms_destroy(struct neigh_parms *parms);
613 static inline void neigh_parms_put(struct neigh_parms *parms)
615 if (atomic_dec_and_test(&parms->refcnt))
616 neigh_parms_destroy(parms);
620 * neighbour must already be out of the table;
623 void neigh_destroy(struct neighbour *neigh)
625 struct hh_cache *hh;
627 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
629 if (!neigh->dead) {
630 printk(KERN_WARNING
631 "Destroying alive neighbour %p\n", neigh);
632 dump_stack();
633 return;
636 if (neigh_del_timer(neigh))
637 printk(KERN_WARNING "Impossible event.\n");
639 while ((hh = neigh->hh) != NULL) {
640 neigh->hh = hh->hh_next;
641 hh->hh_next = NULL;
643 write_seqlock_bh(&hh->hh_lock);
644 hh->hh_output = neigh_blackhole;
645 write_sequnlock_bh(&hh->hh_lock);
646 if (atomic_dec_and_test(&hh->hh_refcnt))
647 kfree(hh);
650 skb_queue_purge(&neigh->arp_queue);
652 dev_put(neigh->dev);
653 neigh_parms_put(neigh->parms);
655 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
657 atomic_dec(&neigh->tbl->entries);
658 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
660 EXPORT_SYMBOL(neigh_destroy);
662 /* Neighbour state is suspicious;
663 disable fast path.
665 Called with write_locked neigh.
667 static void neigh_suspect(struct neighbour *neigh)
669 struct hh_cache *hh;
671 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
673 neigh->output = neigh->ops->output;
675 for (hh = neigh->hh; hh; hh = hh->hh_next)
676 hh->hh_output = neigh->ops->output;
679 /* Neighbour state is OK;
680 enable fast path.
682 Called with write_locked neigh.
684 static void neigh_connect(struct neighbour *neigh)
686 struct hh_cache *hh;
688 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
690 neigh->output = neigh->ops->connected_output;
692 for (hh = neigh->hh; hh; hh = hh->hh_next)
693 hh->hh_output = neigh->ops->hh_output;
696 static void neigh_periodic_work(struct work_struct *work)
698 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
699 struct neighbour *n, **np;
700 unsigned int i;
702 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
704 write_lock_bh(&tbl->lock);
707 * periodically recompute ReachableTime from random function
710 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
711 struct neigh_parms *p;
712 tbl->last_rand = jiffies;
713 for (p = &tbl->parms; p; p = p->next)
714 p->reachable_time =
715 neigh_rand_reach_time(p->base_reachable_time);
718 for (i = 0 ; i <= tbl->hash_mask; i++) {
719 np = &tbl->hash_buckets[i];
721 while ((n = *np) != NULL) {
722 unsigned int state;
724 write_lock(&n->lock);
726 state = n->nud_state;
727 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
728 write_unlock(&n->lock);
729 goto next_elt;
732 if (time_before(n->used, n->confirmed))
733 n->used = n->confirmed;
735 if (atomic_read(&n->refcnt) == 1 &&
736 (state == NUD_FAILED ||
737 time_after(jiffies, n->used + n->parms->gc_staletime))) {
738 *np = n->next;
739 n->dead = 1;
740 write_unlock(&n->lock);
741 neigh_cleanup_and_release(n);
742 continue;
744 write_unlock(&n->lock);
746 next_elt:
747 np = &n->next;
750 * It's fine to release lock here, even if hash table
751 * grows while we are preempted.
753 write_unlock_bh(&tbl->lock);
754 cond_resched();
755 write_lock_bh(&tbl->lock);
757 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
758 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
759 * base_reachable_time.
761 schedule_delayed_work(&tbl->gc_work,
762 tbl->parms.base_reachable_time >> 1);
763 write_unlock_bh(&tbl->lock);
766 static __inline__ int neigh_max_probes(struct neighbour *n)
768 struct neigh_parms *p = n->parms;
769 return (n->nud_state & NUD_PROBE ?
770 p->ucast_probes :
771 p->ucast_probes + p->app_probes + p->mcast_probes);
774 static void neigh_invalidate(struct neighbour *neigh)
775 __releases(neigh->lock)
776 __acquires(neigh->lock)
778 struct sk_buff *skb;
780 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
781 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
782 neigh->updated = jiffies;
784 /* It is very thin place. report_unreachable is very complicated
785 routine. Particularly, it can hit the same neighbour entry!
787 So that, we try to be accurate and avoid dead loop. --ANK
789 while (neigh->nud_state == NUD_FAILED &&
790 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
791 write_unlock(&neigh->lock);
792 neigh->ops->error_report(neigh, skb);
793 write_lock(&neigh->lock);
795 skb_queue_purge(&neigh->arp_queue);
798 /* Called when a timer expires for a neighbour entry. */
800 static void neigh_timer_handler(unsigned long arg)
802 unsigned long now, next;
803 struct neighbour *neigh = (struct neighbour *)arg;
804 unsigned state;
805 int notify = 0;
807 write_lock(&neigh->lock);
809 state = neigh->nud_state;
810 now = jiffies;
811 next = now + HZ;
813 if (!(state & NUD_IN_TIMER)) {
814 #ifndef CONFIG_SMP
815 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
816 #endif
817 goto out;
820 if (state & NUD_REACHABLE) {
821 if (time_before_eq(now,
822 neigh->confirmed + neigh->parms->reachable_time)) {
823 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
824 next = neigh->confirmed + neigh->parms->reachable_time;
825 } else if (time_before_eq(now,
826 neigh->used + neigh->parms->delay_probe_time)) {
827 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
828 neigh->nud_state = NUD_DELAY;
829 neigh->updated = jiffies;
830 neigh_suspect(neigh);
831 next = now + neigh->parms->delay_probe_time;
832 } else {
833 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
834 neigh->nud_state = NUD_STALE;
835 neigh->updated = jiffies;
836 neigh_suspect(neigh);
837 notify = 1;
839 } else if (state & NUD_DELAY) {
840 if (time_before_eq(now,
841 neigh->confirmed + neigh->parms->delay_probe_time)) {
842 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
843 neigh->nud_state = NUD_REACHABLE;
844 neigh->updated = jiffies;
845 neigh_connect(neigh);
846 notify = 1;
847 next = neigh->confirmed + neigh->parms->reachable_time;
848 } else {
849 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
850 neigh->nud_state = NUD_PROBE;
851 neigh->updated = jiffies;
852 atomic_set(&neigh->probes, 0);
853 next = now + neigh->parms->retrans_time;
855 } else {
856 /* NUD_PROBE|NUD_INCOMPLETE */
857 next = now + neigh->parms->retrans_time;
860 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
861 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
862 neigh->nud_state = NUD_FAILED;
863 notify = 1;
864 neigh_invalidate(neigh);
867 if (neigh->nud_state & NUD_IN_TIMER) {
868 if (time_before(next, jiffies + HZ/2))
869 next = jiffies + HZ/2;
870 if (!mod_timer(&neigh->timer, next))
871 neigh_hold(neigh);
873 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
874 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
875 /* keep skb alive even if arp_queue overflows */
876 if (skb)
877 skb = skb_copy(skb, GFP_ATOMIC);
878 write_unlock(&neigh->lock);
879 neigh->ops->solicit(neigh, skb);
880 atomic_inc(&neigh->probes);
881 kfree_skb(skb);
882 } else {
883 out:
884 write_unlock(&neigh->lock);
887 if (notify)
888 neigh_update_notify(neigh);
890 neigh_release(neigh);
893 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
895 int rc;
896 unsigned long now;
898 write_lock_bh(&neigh->lock);
900 rc = 0;
901 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
902 goto out_unlock_bh;
904 now = jiffies;
906 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
907 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
908 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
909 neigh->nud_state = NUD_INCOMPLETE;
910 neigh->updated = jiffies;
911 neigh_add_timer(neigh, now + 1);
912 } else {
913 neigh->nud_state = NUD_FAILED;
914 neigh->updated = jiffies;
915 write_unlock_bh(&neigh->lock);
917 kfree_skb(skb);
918 return 1;
920 } else if (neigh->nud_state & NUD_STALE) {
921 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
922 neigh->nud_state = NUD_DELAY;
923 neigh->updated = jiffies;
924 neigh_add_timer(neigh,
925 jiffies + neigh->parms->delay_probe_time);
928 if (neigh->nud_state == NUD_INCOMPLETE) {
929 if (skb) {
930 if (skb_queue_len(&neigh->arp_queue) >=
931 neigh->parms->queue_len) {
932 struct sk_buff *buff;
933 buff = __skb_dequeue(&neigh->arp_queue);
934 kfree_skb(buff);
935 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
937 __skb_queue_tail(&neigh->arp_queue, skb);
939 rc = 1;
941 out_unlock_bh:
942 write_unlock_bh(&neigh->lock);
943 return rc;
945 EXPORT_SYMBOL(__neigh_event_send);
947 static void neigh_update_hhs(struct neighbour *neigh)
949 struct hh_cache *hh;
950 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
951 = neigh->dev->header_ops->cache_update;
953 if (update) {
954 for (hh = neigh->hh; hh; hh = hh->hh_next) {
955 write_seqlock_bh(&hh->hh_lock);
956 update(hh, neigh->dev, neigh->ha);
957 write_sequnlock_bh(&hh->hh_lock);
964 /* Generic update routine.
965 -- lladdr is new lladdr or NULL, if it is not supplied.
966 -- new is new state.
967 -- flags
968 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
969 if it is different.
970 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
971 lladdr instead of overriding it
972 if it is different.
973 It also allows to retain current state
974 if lladdr is unchanged.
975 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
977 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
978 NTF_ROUTER flag.
979 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
980 a router.
982 Caller MUST hold reference count on the entry.
985 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
986 u32 flags)
988 u8 old;
989 int err;
990 int notify = 0;
991 struct net_device *dev;
992 int update_isrouter = 0;
994 write_lock_bh(&neigh->lock);
996 dev = neigh->dev;
997 old = neigh->nud_state;
998 err = -EPERM;
1000 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1001 (old & (NUD_NOARP | NUD_PERMANENT)))
1002 goto out;
1004 if (!(new & NUD_VALID)) {
1005 neigh_del_timer(neigh);
1006 if (old & NUD_CONNECTED)
1007 neigh_suspect(neigh);
1008 neigh->nud_state = new;
1009 err = 0;
1010 notify = old & NUD_VALID;
1011 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1012 (new & NUD_FAILED)) {
1013 neigh_invalidate(neigh);
1014 notify = 1;
1016 goto out;
1019 /* Compare new lladdr with cached one */
1020 if (!dev->addr_len) {
1021 /* First case: device needs no address. */
1022 lladdr = neigh->ha;
1023 } else if (lladdr) {
1024 /* The second case: if something is already cached
1025 and a new address is proposed:
1026 - compare new & old
1027 - if they are different, check override flag
1029 if ((old & NUD_VALID) &&
1030 !memcmp(lladdr, neigh->ha, dev->addr_len))
1031 lladdr = neigh->ha;
1032 } else {
1033 /* No address is supplied; if we know something,
1034 use it, otherwise discard the request.
1036 err = -EINVAL;
1037 if (!(old & NUD_VALID))
1038 goto out;
1039 lladdr = neigh->ha;
1042 if (new & NUD_CONNECTED)
1043 neigh->confirmed = jiffies;
1044 neigh->updated = jiffies;
1046 /* If entry was valid and address is not changed,
1047 do not change entry state, if new one is STALE.
1049 err = 0;
1050 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1051 if (old & NUD_VALID) {
1052 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1053 update_isrouter = 0;
1054 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1055 (old & NUD_CONNECTED)) {
1056 lladdr = neigh->ha;
1057 new = NUD_STALE;
1058 } else
1059 goto out;
1060 } else {
1061 if (lladdr == neigh->ha && new == NUD_STALE &&
1062 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1063 (old & NUD_CONNECTED))
1065 new = old;
1069 if (new != old) {
1070 neigh_del_timer(neigh);
1071 if (new & NUD_IN_TIMER)
1072 neigh_add_timer(neigh, (jiffies +
1073 ((new & NUD_REACHABLE) ?
1074 neigh->parms->reachable_time :
1075 0)));
1076 neigh->nud_state = new;
1079 if (lladdr != neigh->ha) {
1080 memcpy(&neigh->ha, lladdr, dev->addr_len);
1081 neigh_update_hhs(neigh);
1082 if (!(new & NUD_CONNECTED))
1083 neigh->confirmed = jiffies -
1084 (neigh->parms->base_reachable_time << 1);
1085 notify = 1;
1087 if (new == old)
1088 goto out;
1089 if (new & NUD_CONNECTED)
1090 neigh_connect(neigh);
1091 else
1092 neigh_suspect(neigh);
1093 if (!(old & NUD_VALID)) {
1094 struct sk_buff *skb;
1096 /* Again: avoid dead loop if something went wrong */
1098 while (neigh->nud_state & NUD_VALID &&
1099 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1100 struct neighbour *n1 = neigh;
1101 write_unlock_bh(&neigh->lock);
1102 /* On shaper/eql skb->dst->neighbour != neigh :( */
1103 if (skb_dst(skb) && skb_dst(skb)->neighbour)
1104 n1 = skb_dst(skb)->neighbour;
1105 n1->output(skb);
1106 write_lock_bh(&neigh->lock);
1108 skb_queue_purge(&neigh->arp_queue);
1110 out:
1111 if (update_isrouter) {
1112 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1113 (neigh->flags | NTF_ROUTER) :
1114 (neigh->flags & ~NTF_ROUTER);
1116 write_unlock_bh(&neigh->lock);
1118 if (notify)
1119 neigh_update_notify(neigh);
1121 return err;
1123 EXPORT_SYMBOL(neigh_update);
1125 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1126 u8 *lladdr, void *saddr,
1127 struct net_device *dev)
1129 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1130 lladdr || !dev->addr_len);
1131 if (neigh)
1132 neigh_update(neigh, lladdr, NUD_STALE,
1133 NEIGH_UPDATE_F_OVERRIDE);
1134 return neigh;
1136 EXPORT_SYMBOL(neigh_event_ns);
1138 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst,
1139 __be16 protocol)
1141 struct hh_cache *hh;
1142 struct net_device *dev = dst->dev;
1144 for (hh = n->hh; hh; hh = hh->hh_next)
1145 if (hh->hh_type == protocol)
1146 break;
1148 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) {
1149 seqlock_init(&hh->hh_lock);
1150 hh->hh_type = protocol;
1151 atomic_set(&hh->hh_refcnt, 0);
1152 hh->hh_next = NULL;
1154 if (dev->header_ops->cache(n, hh)) {
1155 kfree(hh);
1156 hh = NULL;
1157 } else {
1158 atomic_inc(&hh->hh_refcnt);
1159 hh->hh_next = n->hh;
1160 n->hh = hh;
1161 if (n->nud_state & NUD_CONNECTED)
1162 hh->hh_output = n->ops->hh_output;
1163 else
1164 hh->hh_output = n->ops->output;
1167 if (hh) {
1168 atomic_inc(&hh->hh_refcnt);
1169 dst->hh = hh;
1173 /* This function can be used in contexts, where only old dev_queue_xmit
1174 worked, f.e. if you want to override normal output path (eql, shaper),
1175 but resolution is not made yet.
1178 int neigh_compat_output(struct sk_buff *skb)
1180 struct net_device *dev = skb->dev;
1182 __skb_pull(skb, skb_network_offset(skb));
1184 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1185 skb->len) < 0 &&
1186 dev->header_ops->rebuild(skb))
1187 return 0;
1189 return dev_queue_xmit(skb);
1191 EXPORT_SYMBOL(neigh_compat_output);
1193 /* Slow and careful. */
1195 int neigh_resolve_output(struct sk_buff *skb)
1197 struct dst_entry *dst = skb_dst(skb);
1198 struct neighbour *neigh;
1199 int rc = 0;
1201 if (!dst || !(neigh = dst->neighbour))
1202 goto discard;
1204 __skb_pull(skb, skb_network_offset(skb));
1206 if (!neigh_event_send(neigh, skb)) {
1207 int err;
1208 struct net_device *dev = neigh->dev;
1209 if (dev->header_ops->cache && !dst->hh) {
1210 write_lock_bh(&neigh->lock);
1211 if (!dst->hh)
1212 neigh_hh_init(neigh, dst, dst->ops->protocol);
1213 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1214 neigh->ha, NULL, skb->len);
1215 write_unlock_bh(&neigh->lock);
1216 } else {
1217 read_lock_bh(&neigh->lock);
1218 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1219 neigh->ha, NULL, skb->len);
1220 read_unlock_bh(&neigh->lock);
1222 if (err >= 0)
1223 rc = neigh->ops->queue_xmit(skb);
1224 else
1225 goto out_kfree_skb;
1227 out:
1228 return rc;
1229 discard:
1230 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1231 dst, dst ? dst->neighbour : NULL);
1232 out_kfree_skb:
1233 rc = -EINVAL;
1234 kfree_skb(skb);
1235 goto out;
1237 EXPORT_SYMBOL(neigh_resolve_output);
1239 /* As fast as possible without hh cache */
1241 int neigh_connected_output(struct sk_buff *skb)
1243 int err;
1244 struct dst_entry *dst = skb_dst(skb);
1245 struct neighbour *neigh = dst->neighbour;
1246 struct net_device *dev = neigh->dev;
1248 __skb_pull(skb, skb_network_offset(skb));
1250 read_lock_bh(&neigh->lock);
1251 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1252 neigh->ha, NULL, skb->len);
1253 read_unlock_bh(&neigh->lock);
1254 if (err >= 0)
1255 err = neigh->ops->queue_xmit(skb);
1256 else {
1257 err = -EINVAL;
1258 kfree_skb(skb);
1260 return err;
1262 EXPORT_SYMBOL(neigh_connected_output);
1264 static void neigh_proxy_process(unsigned long arg)
1266 struct neigh_table *tbl = (struct neigh_table *)arg;
1267 long sched_next = 0;
1268 unsigned long now = jiffies;
1269 struct sk_buff *skb, *n;
1271 spin_lock(&tbl->proxy_queue.lock);
1273 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1274 long tdif = NEIGH_CB(skb)->sched_next - now;
1276 if (tdif <= 0) {
1277 struct net_device *dev = skb->dev;
1278 __skb_unlink(skb, &tbl->proxy_queue);
1279 if (tbl->proxy_redo && netif_running(dev))
1280 tbl->proxy_redo(skb);
1281 else
1282 kfree_skb(skb);
1284 dev_put(dev);
1285 } else if (!sched_next || tdif < sched_next)
1286 sched_next = tdif;
1288 del_timer(&tbl->proxy_timer);
1289 if (sched_next)
1290 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1291 spin_unlock(&tbl->proxy_queue.lock);
1294 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1295 struct sk_buff *skb)
1297 unsigned long now = jiffies;
1298 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1300 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1301 kfree_skb(skb);
1302 return;
1305 NEIGH_CB(skb)->sched_next = sched_next;
1306 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1308 spin_lock(&tbl->proxy_queue.lock);
1309 if (del_timer(&tbl->proxy_timer)) {
1310 if (time_before(tbl->proxy_timer.expires, sched_next))
1311 sched_next = tbl->proxy_timer.expires;
1313 skb_dst_drop(skb);
1314 dev_hold(skb->dev);
1315 __skb_queue_tail(&tbl->proxy_queue, skb);
1316 mod_timer(&tbl->proxy_timer, sched_next);
1317 spin_unlock(&tbl->proxy_queue.lock);
1319 EXPORT_SYMBOL(pneigh_enqueue);
1321 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1322 struct net *net, int ifindex)
1324 struct neigh_parms *p;
1326 for (p = &tbl->parms; p; p = p->next) {
1327 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1328 (!p->dev && !ifindex))
1329 return p;
1332 return NULL;
1335 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1336 struct neigh_table *tbl)
1338 struct neigh_parms *p, *ref;
1339 struct net *net = dev_net(dev);
1340 const struct net_device_ops *ops = dev->netdev_ops;
1342 ref = lookup_neigh_parms(tbl, net, 0);
1343 if (!ref)
1344 return NULL;
1346 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1347 if (p) {
1348 p->tbl = tbl;
1349 atomic_set(&p->refcnt, 1);
1350 p->reachable_time =
1351 neigh_rand_reach_time(p->base_reachable_time);
1353 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1354 kfree(p);
1355 return NULL;
1358 dev_hold(dev);
1359 p->dev = dev;
1360 write_pnet(&p->net, hold_net(net));
1361 p->sysctl_table = NULL;
1362 write_lock_bh(&tbl->lock);
1363 p->next = tbl->parms.next;
1364 tbl->parms.next = p;
1365 write_unlock_bh(&tbl->lock);
1367 return p;
1369 EXPORT_SYMBOL(neigh_parms_alloc);
1371 static void neigh_rcu_free_parms(struct rcu_head *head)
1373 struct neigh_parms *parms =
1374 container_of(head, struct neigh_parms, rcu_head);
1376 neigh_parms_put(parms);
1379 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1381 struct neigh_parms **p;
1383 if (!parms || parms == &tbl->parms)
1384 return;
1385 write_lock_bh(&tbl->lock);
1386 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1387 if (*p == parms) {
1388 *p = parms->next;
1389 parms->dead = 1;
1390 write_unlock_bh(&tbl->lock);
1391 if (parms->dev)
1392 dev_put(parms->dev);
1393 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1394 return;
1397 write_unlock_bh(&tbl->lock);
1398 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1400 EXPORT_SYMBOL(neigh_parms_release);
1402 static void neigh_parms_destroy(struct neigh_parms *parms)
1404 release_net(neigh_parms_net(parms));
1405 kfree(parms);
1408 static struct lock_class_key neigh_table_proxy_queue_class;
1410 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1412 unsigned long now = jiffies;
1413 unsigned long phsize;
1415 write_pnet(&tbl->parms.net, &init_net);
1416 atomic_set(&tbl->parms.refcnt, 1);
1417 tbl->parms.reachable_time =
1418 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1420 if (!tbl->kmem_cachep)
1421 tbl->kmem_cachep =
1422 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1423 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1424 NULL);
1425 tbl->stats = alloc_percpu(struct neigh_statistics);
1426 if (!tbl->stats)
1427 panic("cannot create neighbour cache statistics");
1429 #ifdef CONFIG_PROC_FS
1430 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1431 &neigh_stat_seq_fops, tbl))
1432 panic("cannot create neighbour proc dir entry");
1433 #endif
1435 tbl->hash_mask = 1;
1436 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1);
1438 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1439 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1441 if (!tbl->hash_buckets || !tbl->phash_buckets)
1442 panic("cannot allocate neighbour cache hashes");
1444 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
1446 rwlock_init(&tbl->lock);
1447 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1448 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1449 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1450 skb_queue_head_init_class(&tbl->proxy_queue,
1451 &neigh_table_proxy_queue_class);
1453 tbl->last_flush = now;
1454 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1456 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1458 void neigh_table_init(struct neigh_table *tbl)
1460 struct neigh_table *tmp;
1462 neigh_table_init_no_netlink(tbl);
1463 write_lock(&neigh_tbl_lock);
1464 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1465 if (tmp->family == tbl->family)
1466 break;
1468 tbl->next = neigh_tables;
1469 neigh_tables = tbl;
1470 write_unlock(&neigh_tbl_lock);
1472 if (unlikely(tmp)) {
1473 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1474 "family %d\n", tbl->family);
1475 dump_stack();
1478 EXPORT_SYMBOL(neigh_table_init);
1480 int neigh_table_clear(struct neigh_table *tbl)
1482 struct neigh_table **tp;
1484 /* It is not clean... Fix it to unload IPv6 module safely */
1485 cancel_delayed_work(&tbl->gc_work);
1486 flush_scheduled_work();
1487 del_timer_sync(&tbl->proxy_timer);
1488 pneigh_queue_purge(&tbl->proxy_queue);
1489 neigh_ifdown(tbl, NULL);
1490 if (atomic_read(&tbl->entries))
1491 printk(KERN_CRIT "neighbour leakage\n");
1492 write_lock(&neigh_tbl_lock);
1493 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1494 if (*tp == tbl) {
1495 *tp = tbl->next;
1496 break;
1499 write_unlock(&neigh_tbl_lock);
1501 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1);
1502 tbl->hash_buckets = NULL;
1504 kfree(tbl->phash_buckets);
1505 tbl->phash_buckets = NULL;
1507 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1509 free_percpu(tbl->stats);
1510 tbl->stats = NULL;
1512 kmem_cache_destroy(tbl->kmem_cachep);
1513 tbl->kmem_cachep = NULL;
1515 return 0;
1517 EXPORT_SYMBOL(neigh_table_clear);
1519 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1521 struct net *net = sock_net(skb->sk);
1522 struct ndmsg *ndm;
1523 struct nlattr *dst_attr;
1524 struct neigh_table *tbl;
1525 struct net_device *dev = NULL;
1526 int err = -EINVAL;
1528 if (nlmsg_len(nlh) < sizeof(*ndm))
1529 goto out;
1531 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1532 if (dst_attr == NULL)
1533 goto out;
1535 ndm = nlmsg_data(nlh);
1536 if (ndm->ndm_ifindex) {
1537 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1538 if (dev == NULL) {
1539 err = -ENODEV;
1540 goto out;
1544 read_lock(&neigh_tbl_lock);
1545 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1546 struct neighbour *neigh;
1548 if (tbl->family != ndm->ndm_family)
1549 continue;
1550 read_unlock(&neigh_tbl_lock);
1552 if (nla_len(dst_attr) < tbl->key_len)
1553 goto out_dev_put;
1555 if (ndm->ndm_flags & NTF_PROXY) {
1556 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1557 goto out_dev_put;
1560 if (dev == NULL)
1561 goto out_dev_put;
1563 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1564 if (neigh == NULL) {
1565 err = -ENOENT;
1566 goto out_dev_put;
1569 err = neigh_update(neigh, NULL, NUD_FAILED,
1570 NEIGH_UPDATE_F_OVERRIDE |
1571 NEIGH_UPDATE_F_ADMIN);
1572 neigh_release(neigh);
1573 goto out_dev_put;
1575 read_unlock(&neigh_tbl_lock);
1576 err = -EAFNOSUPPORT;
1578 out_dev_put:
1579 if (dev)
1580 dev_put(dev);
1581 out:
1582 return err;
1585 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1587 struct net *net = sock_net(skb->sk);
1588 struct ndmsg *ndm;
1589 struct nlattr *tb[NDA_MAX+1];
1590 struct neigh_table *tbl;
1591 struct net_device *dev = NULL;
1592 int err;
1594 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1595 if (err < 0)
1596 goto out;
1598 err = -EINVAL;
1599 if (tb[NDA_DST] == NULL)
1600 goto out;
1602 ndm = nlmsg_data(nlh);
1603 if (ndm->ndm_ifindex) {
1604 dev = dev_get_by_index(net, ndm->ndm_ifindex);
1605 if (dev == NULL) {
1606 err = -ENODEV;
1607 goto out;
1610 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1611 goto out_dev_put;
1614 read_lock(&neigh_tbl_lock);
1615 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1616 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1617 struct neighbour *neigh;
1618 void *dst, *lladdr;
1620 if (tbl->family != ndm->ndm_family)
1621 continue;
1622 read_unlock(&neigh_tbl_lock);
1624 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1625 goto out_dev_put;
1626 dst = nla_data(tb[NDA_DST]);
1627 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1629 if (ndm->ndm_flags & NTF_PROXY) {
1630 struct pneigh_entry *pn;
1632 err = -ENOBUFS;
1633 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1634 if (pn) {
1635 pn->flags = ndm->ndm_flags;
1636 err = 0;
1638 goto out_dev_put;
1641 if (dev == NULL)
1642 goto out_dev_put;
1644 neigh = neigh_lookup(tbl, dst, dev);
1645 if (neigh == NULL) {
1646 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1647 err = -ENOENT;
1648 goto out_dev_put;
1651 neigh = __neigh_lookup_errno(tbl, dst, dev);
1652 if (IS_ERR(neigh)) {
1653 err = PTR_ERR(neigh);
1654 goto out_dev_put;
1656 } else {
1657 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1658 err = -EEXIST;
1659 neigh_release(neigh);
1660 goto out_dev_put;
1663 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1664 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1667 if (ndm->ndm_flags & NTF_USE) {
1668 neigh_event_send(neigh, NULL);
1669 err = 0;
1670 } else
1671 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1672 neigh_release(neigh);
1673 goto out_dev_put;
1676 read_unlock(&neigh_tbl_lock);
1677 err = -EAFNOSUPPORT;
1679 out_dev_put:
1680 if (dev)
1681 dev_put(dev);
1682 out:
1683 return err;
1686 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1688 struct nlattr *nest;
1690 nest = nla_nest_start(skb, NDTA_PARMS);
1691 if (nest == NULL)
1692 return -ENOBUFS;
1694 if (parms->dev)
1695 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1697 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1698 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1699 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1700 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1701 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1702 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1703 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1704 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1705 parms->base_reachable_time);
1706 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1707 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1708 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1709 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1710 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1711 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1713 return nla_nest_end(skb, nest);
1715 nla_put_failure:
1716 nla_nest_cancel(skb, nest);
1717 return -EMSGSIZE;
1720 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1721 u32 pid, u32 seq, int type, int flags)
1723 struct nlmsghdr *nlh;
1724 struct ndtmsg *ndtmsg;
1726 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1727 if (nlh == NULL)
1728 return -EMSGSIZE;
1730 ndtmsg = nlmsg_data(nlh);
1732 read_lock_bh(&tbl->lock);
1733 ndtmsg->ndtm_family = tbl->family;
1734 ndtmsg->ndtm_pad1 = 0;
1735 ndtmsg->ndtm_pad2 = 0;
1737 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1738 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1739 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1740 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1741 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1744 unsigned long now = jiffies;
1745 unsigned int flush_delta = now - tbl->last_flush;
1746 unsigned int rand_delta = now - tbl->last_rand;
1748 struct ndt_config ndc = {
1749 .ndtc_key_len = tbl->key_len,
1750 .ndtc_entry_size = tbl->entry_size,
1751 .ndtc_entries = atomic_read(&tbl->entries),
1752 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1753 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1754 .ndtc_hash_rnd = tbl->hash_rnd,
1755 .ndtc_hash_mask = tbl->hash_mask,
1756 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1759 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1763 int cpu;
1764 struct ndt_stats ndst;
1766 memset(&ndst, 0, sizeof(ndst));
1768 for_each_possible_cpu(cpu) {
1769 struct neigh_statistics *st;
1771 st = per_cpu_ptr(tbl->stats, cpu);
1772 ndst.ndts_allocs += st->allocs;
1773 ndst.ndts_destroys += st->destroys;
1774 ndst.ndts_hash_grows += st->hash_grows;
1775 ndst.ndts_res_failed += st->res_failed;
1776 ndst.ndts_lookups += st->lookups;
1777 ndst.ndts_hits += st->hits;
1778 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1779 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1780 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1781 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1784 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1787 BUG_ON(tbl->parms.dev);
1788 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1789 goto nla_put_failure;
1791 read_unlock_bh(&tbl->lock);
1792 return nlmsg_end(skb, nlh);
1794 nla_put_failure:
1795 read_unlock_bh(&tbl->lock);
1796 nlmsg_cancel(skb, nlh);
1797 return -EMSGSIZE;
1800 static int neightbl_fill_param_info(struct sk_buff *skb,
1801 struct neigh_table *tbl,
1802 struct neigh_parms *parms,
1803 u32 pid, u32 seq, int type,
1804 unsigned int flags)
1806 struct ndtmsg *ndtmsg;
1807 struct nlmsghdr *nlh;
1809 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1810 if (nlh == NULL)
1811 return -EMSGSIZE;
1813 ndtmsg = nlmsg_data(nlh);
1815 read_lock_bh(&tbl->lock);
1816 ndtmsg->ndtm_family = tbl->family;
1817 ndtmsg->ndtm_pad1 = 0;
1818 ndtmsg->ndtm_pad2 = 0;
1820 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1821 neightbl_fill_parms(skb, parms) < 0)
1822 goto errout;
1824 read_unlock_bh(&tbl->lock);
1825 return nlmsg_end(skb, nlh);
1826 errout:
1827 read_unlock_bh(&tbl->lock);
1828 nlmsg_cancel(skb, nlh);
1829 return -EMSGSIZE;
1832 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1833 [NDTA_NAME] = { .type = NLA_STRING },
1834 [NDTA_THRESH1] = { .type = NLA_U32 },
1835 [NDTA_THRESH2] = { .type = NLA_U32 },
1836 [NDTA_THRESH3] = { .type = NLA_U32 },
1837 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1838 [NDTA_PARMS] = { .type = NLA_NESTED },
1841 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1842 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1843 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1844 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1845 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1846 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1847 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1848 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1849 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1850 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1851 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1852 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1853 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1854 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1857 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1859 struct net *net = sock_net(skb->sk);
1860 struct neigh_table *tbl;
1861 struct ndtmsg *ndtmsg;
1862 struct nlattr *tb[NDTA_MAX+1];
1863 int err;
1865 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1866 nl_neightbl_policy);
1867 if (err < 0)
1868 goto errout;
1870 if (tb[NDTA_NAME] == NULL) {
1871 err = -EINVAL;
1872 goto errout;
1875 ndtmsg = nlmsg_data(nlh);
1876 read_lock(&neigh_tbl_lock);
1877 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1878 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1879 continue;
1881 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1882 break;
1885 if (tbl == NULL) {
1886 err = -ENOENT;
1887 goto errout_locked;
1891 * We acquire tbl->lock to be nice to the periodic timers and
1892 * make sure they always see a consistent set of values.
1894 write_lock_bh(&tbl->lock);
1896 if (tb[NDTA_PARMS]) {
1897 struct nlattr *tbp[NDTPA_MAX+1];
1898 struct neigh_parms *p;
1899 int i, ifindex = 0;
1901 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1902 nl_ntbl_parm_policy);
1903 if (err < 0)
1904 goto errout_tbl_lock;
1906 if (tbp[NDTPA_IFINDEX])
1907 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1909 p = lookup_neigh_parms(tbl, net, ifindex);
1910 if (p == NULL) {
1911 err = -ENOENT;
1912 goto errout_tbl_lock;
1915 for (i = 1; i <= NDTPA_MAX; i++) {
1916 if (tbp[i] == NULL)
1917 continue;
1919 switch (i) {
1920 case NDTPA_QUEUE_LEN:
1921 p->queue_len = nla_get_u32(tbp[i]);
1922 break;
1923 case NDTPA_PROXY_QLEN:
1924 p->proxy_qlen = nla_get_u32(tbp[i]);
1925 break;
1926 case NDTPA_APP_PROBES:
1927 p->app_probes = nla_get_u32(tbp[i]);
1928 break;
1929 case NDTPA_UCAST_PROBES:
1930 p->ucast_probes = nla_get_u32(tbp[i]);
1931 break;
1932 case NDTPA_MCAST_PROBES:
1933 p->mcast_probes = nla_get_u32(tbp[i]);
1934 break;
1935 case NDTPA_BASE_REACHABLE_TIME:
1936 p->base_reachable_time = nla_get_msecs(tbp[i]);
1937 break;
1938 case NDTPA_GC_STALETIME:
1939 p->gc_staletime = nla_get_msecs(tbp[i]);
1940 break;
1941 case NDTPA_DELAY_PROBE_TIME:
1942 p->delay_probe_time = nla_get_msecs(tbp[i]);
1943 break;
1944 case NDTPA_RETRANS_TIME:
1945 p->retrans_time = nla_get_msecs(tbp[i]);
1946 break;
1947 case NDTPA_ANYCAST_DELAY:
1948 p->anycast_delay = nla_get_msecs(tbp[i]);
1949 break;
1950 case NDTPA_PROXY_DELAY:
1951 p->proxy_delay = nla_get_msecs(tbp[i]);
1952 break;
1953 case NDTPA_LOCKTIME:
1954 p->locktime = nla_get_msecs(tbp[i]);
1955 break;
1960 if (tb[NDTA_THRESH1])
1961 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
1963 if (tb[NDTA_THRESH2])
1964 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
1966 if (tb[NDTA_THRESH3])
1967 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
1969 if (tb[NDTA_GC_INTERVAL])
1970 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
1972 err = 0;
1974 errout_tbl_lock:
1975 write_unlock_bh(&tbl->lock);
1976 errout_locked:
1977 read_unlock(&neigh_tbl_lock);
1978 errout:
1979 return err;
1982 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
1984 struct net *net = sock_net(skb->sk);
1985 int family, tidx, nidx = 0;
1986 int tbl_skip = cb->args[0];
1987 int neigh_skip = cb->args[1];
1988 struct neigh_table *tbl;
1990 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
1992 read_lock(&neigh_tbl_lock);
1993 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
1994 struct neigh_parms *p;
1996 if (tidx < tbl_skip || (family && tbl->family != family))
1997 continue;
1999 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2000 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2001 NLM_F_MULTI) <= 0)
2002 break;
2004 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2005 if (!net_eq(neigh_parms_net(p), net))
2006 continue;
2008 if (nidx < neigh_skip)
2009 goto next;
2011 if (neightbl_fill_param_info(skb, tbl, p,
2012 NETLINK_CB(cb->skb).pid,
2013 cb->nlh->nlmsg_seq,
2014 RTM_NEWNEIGHTBL,
2015 NLM_F_MULTI) <= 0)
2016 goto out;
2017 next:
2018 nidx++;
2021 neigh_skip = 0;
2023 out:
2024 read_unlock(&neigh_tbl_lock);
2025 cb->args[0] = tidx;
2026 cb->args[1] = nidx;
2028 return skb->len;
2031 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2032 u32 pid, u32 seq, int type, unsigned int flags)
2034 unsigned long now = jiffies;
2035 struct nda_cacheinfo ci;
2036 struct nlmsghdr *nlh;
2037 struct ndmsg *ndm;
2039 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2040 if (nlh == NULL)
2041 return -EMSGSIZE;
2043 ndm = nlmsg_data(nlh);
2044 ndm->ndm_family = neigh->ops->family;
2045 ndm->ndm_pad1 = 0;
2046 ndm->ndm_pad2 = 0;
2047 ndm->ndm_flags = neigh->flags;
2048 ndm->ndm_type = neigh->type;
2049 ndm->ndm_ifindex = neigh->dev->ifindex;
2051 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2053 read_lock_bh(&neigh->lock);
2054 ndm->ndm_state = neigh->nud_state;
2055 if ((neigh->nud_state & NUD_VALID) &&
2056 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) {
2057 read_unlock_bh(&neigh->lock);
2058 goto nla_put_failure;
2061 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2062 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2063 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2064 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2065 read_unlock_bh(&neigh->lock);
2067 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2068 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2070 return nlmsg_end(skb, nlh);
2072 nla_put_failure:
2073 nlmsg_cancel(skb, nlh);
2074 return -EMSGSIZE;
2077 static void neigh_update_notify(struct neighbour *neigh)
2079 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2080 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2083 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2084 struct netlink_callback *cb)
2086 struct net * net = sock_net(skb->sk);
2087 struct neighbour *n;
2088 int rc, h, s_h = cb->args[1];
2089 int idx, s_idx = idx = cb->args[2];
2091 read_lock_bh(&tbl->lock);
2092 for (h = 0; h <= tbl->hash_mask; h++) {
2093 if (h < s_h)
2094 continue;
2095 if (h > s_h)
2096 s_idx = 0;
2097 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) {
2098 if (!net_eq(dev_net(n->dev), net))
2099 continue;
2100 if (idx < s_idx)
2101 goto next;
2102 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2103 cb->nlh->nlmsg_seq,
2104 RTM_NEWNEIGH,
2105 NLM_F_MULTI) <= 0) {
2106 read_unlock_bh(&tbl->lock);
2107 rc = -1;
2108 goto out;
2110 next:
2111 idx++;
2114 read_unlock_bh(&tbl->lock);
2115 rc = skb->len;
2116 out:
2117 cb->args[1] = h;
2118 cb->args[2] = idx;
2119 return rc;
2122 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2124 struct neigh_table *tbl;
2125 int t, family, s_t;
2127 read_lock(&neigh_tbl_lock);
2128 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2129 s_t = cb->args[0];
2131 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2132 if (t < s_t || (family && tbl->family != family))
2133 continue;
2134 if (t > s_t)
2135 memset(&cb->args[1], 0, sizeof(cb->args) -
2136 sizeof(cb->args[0]));
2137 if (neigh_dump_table(tbl, skb, cb) < 0)
2138 break;
2140 read_unlock(&neigh_tbl_lock);
2142 cb->args[0] = t;
2143 return skb->len;
2146 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2148 int chain;
2150 read_lock_bh(&tbl->lock);
2151 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2152 struct neighbour *n;
2154 for (n = tbl->hash_buckets[chain]; n; n = n->next)
2155 cb(n, cookie);
2157 read_unlock_bh(&tbl->lock);
2159 EXPORT_SYMBOL(neigh_for_each);
2161 /* The tbl->lock must be held as a writer and BH disabled. */
2162 void __neigh_for_each_release(struct neigh_table *tbl,
2163 int (*cb)(struct neighbour *))
2165 int chain;
2167 for (chain = 0; chain <= tbl->hash_mask; chain++) {
2168 struct neighbour *n, **np;
2170 np = &tbl->hash_buckets[chain];
2171 while ((n = *np) != NULL) {
2172 int release;
2174 write_lock(&n->lock);
2175 release = cb(n);
2176 if (release) {
2177 *np = n->next;
2178 n->dead = 1;
2179 } else
2180 np = &n->next;
2181 write_unlock(&n->lock);
2182 if (release)
2183 neigh_cleanup_and_release(n);
2187 EXPORT_SYMBOL(__neigh_for_each_release);
2189 #ifdef CONFIG_PROC_FS
2191 static struct neighbour *neigh_get_first(struct seq_file *seq)
2193 struct neigh_seq_state *state = seq->private;
2194 struct net *net = seq_file_net(seq);
2195 struct neigh_table *tbl = state->tbl;
2196 struct neighbour *n = NULL;
2197 int bucket = state->bucket;
2199 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2200 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) {
2201 n = tbl->hash_buckets[bucket];
2203 while (n) {
2204 if (!net_eq(dev_net(n->dev), net))
2205 goto next;
2206 if (state->neigh_sub_iter) {
2207 loff_t fakep = 0;
2208 void *v;
2210 v = state->neigh_sub_iter(state, n, &fakep);
2211 if (!v)
2212 goto next;
2214 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2215 break;
2216 if (n->nud_state & ~NUD_NOARP)
2217 break;
2218 next:
2219 n = n->next;
2222 if (n)
2223 break;
2225 state->bucket = bucket;
2227 return n;
2230 static struct neighbour *neigh_get_next(struct seq_file *seq,
2231 struct neighbour *n,
2232 loff_t *pos)
2234 struct neigh_seq_state *state = seq->private;
2235 struct net *net = seq_file_net(seq);
2236 struct neigh_table *tbl = state->tbl;
2238 if (state->neigh_sub_iter) {
2239 void *v = state->neigh_sub_iter(state, n, pos);
2240 if (v)
2241 return n;
2243 n = n->next;
2245 while (1) {
2246 while (n) {
2247 if (!net_eq(dev_net(n->dev), net))
2248 goto next;
2249 if (state->neigh_sub_iter) {
2250 void *v = state->neigh_sub_iter(state, n, pos);
2251 if (v)
2252 return n;
2253 goto next;
2255 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2256 break;
2258 if (n->nud_state & ~NUD_NOARP)
2259 break;
2260 next:
2261 n = n->next;
2264 if (n)
2265 break;
2267 if (++state->bucket > tbl->hash_mask)
2268 break;
2270 n = tbl->hash_buckets[state->bucket];
2273 if (n && pos)
2274 --(*pos);
2275 return n;
2278 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2280 struct neighbour *n = neigh_get_first(seq);
2282 if (n) {
2283 --(*pos);
2284 while (*pos) {
2285 n = neigh_get_next(seq, n, pos);
2286 if (!n)
2287 break;
2290 return *pos ? NULL : n;
2293 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2295 struct neigh_seq_state *state = seq->private;
2296 struct net *net = seq_file_net(seq);
2297 struct neigh_table *tbl = state->tbl;
2298 struct pneigh_entry *pn = NULL;
2299 int bucket = state->bucket;
2301 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2302 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2303 pn = tbl->phash_buckets[bucket];
2304 while (pn && !net_eq(pneigh_net(pn), net))
2305 pn = pn->next;
2306 if (pn)
2307 break;
2309 state->bucket = bucket;
2311 return pn;
2314 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2315 struct pneigh_entry *pn,
2316 loff_t *pos)
2318 struct neigh_seq_state *state = seq->private;
2319 struct net *net = seq_file_net(seq);
2320 struct neigh_table *tbl = state->tbl;
2322 pn = pn->next;
2323 while (!pn) {
2324 if (++state->bucket > PNEIGH_HASHMASK)
2325 break;
2326 pn = tbl->phash_buckets[state->bucket];
2327 while (pn && !net_eq(pneigh_net(pn), net))
2328 pn = pn->next;
2329 if (pn)
2330 break;
2333 if (pn && pos)
2334 --(*pos);
2336 return pn;
2339 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2341 struct pneigh_entry *pn = pneigh_get_first(seq);
2343 if (pn) {
2344 --(*pos);
2345 while (*pos) {
2346 pn = pneigh_get_next(seq, pn, pos);
2347 if (!pn)
2348 break;
2351 return *pos ? NULL : pn;
2354 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2356 struct neigh_seq_state *state = seq->private;
2357 void *rc;
2358 loff_t idxpos = *pos;
2360 rc = neigh_get_idx(seq, &idxpos);
2361 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2362 rc = pneigh_get_idx(seq, &idxpos);
2364 return rc;
2367 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2368 __acquires(tbl->lock)
2370 struct neigh_seq_state *state = seq->private;
2372 state->tbl = tbl;
2373 state->bucket = 0;
2374 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2376 read_lock_bh(&tbl->lock);
2378 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2380 EXPORT_SYMBOL(neigh_seq_start);
2382 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2384 struct neigh_seq_state *state;
2385 void *rc;
2387 if (v == SEQ_START_TOKEN) {
2388 rc = neigh_get_first(seq);
2389 goto out;
2392 state = seq->private;
2393 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2394 rc = neigh_get_next(seq, v, NULL);
2395 if (rc)
2396 goto out;
2397 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2398 rc = pneigh_get_first(seq);
2399 } else {
2400 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2401 rc = pneigh_get_next(seq, v, NULL);
2403 out:
2404 ++(*pos);
2405 return rc;
2407 EXPORT_SYMBOL(neigh_seq_next);
2409 void neigh_seq_stop(struct seq_file *seq, void *v)
2410 __releases(tbl->lock)
2412 struct neigh_seq_state *state = seq->private;
2413 struct neigh_table *tbl = state->tbl;
2415 read_unlock_bh(&tbl->lock);
2417 EXPORT_SYMBOL(neigh_seq_stop);
2419 /* statistics via seq_file */
2421 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2423 struct neigh_table *tbl = seq->private;
2424 int cpu;
2426 if (*pos == 0)
2427 return SEQ_START_TOKEN;
2429 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2430 if (!cpu_possible(cpu))
2431 continue;
2432 *pos = cpu+1;
2433 return per_cpu_ptr(tbl->stats, cpu);
2435 return NULL;
2438 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2440 struct neigh_table *tbl = seq->private;
2441 int cpu;
2443 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2444 if (!cpu_possible(cpu))
2445 continue;
2446 *pos = cpu+1;
2447 return per_cpu_ptr(tbl->stats, cpu);
2449 return NULL;
2452 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2457 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2459 struct neigh_table *tbl = seq->private;
2460 struct neigh_statistics *st = v;
2462 if (v == SEQ_START_TOKEN) {
2463 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2464 return 0;
2467 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2468 "%08lx %08lx %08lx %08lx %08lx\n",
2469 atomic_read(&tbl->entries),
2471 st->allocs,
2472 st->destroys,
2473 st->hash_grows,
2475 st->lookups,
2476 st->hits,
2478 st->res_failed,
2480 st->rcv_probes_mcast,
2481 st->rcv_probes_ucast,
2483 st->periodic_gc_runs,
2484 st->forced_gc_runs,
2485 st->unres_discards
2488 return 0;
2491 static const struct seq_operations neigh_stat_seq_ops = {
2492 .start = neigh_stat_seq_start,
2493 .next = neigh_stat_seq_next,
2494 .stop = neigh_stat_seq_stop,
2495 .show = neigh_stat_seq_show,
2498 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2500 int ret = seq_open(file, &neigh_stat_seq_ops);
2502 if (!ret) {
2503 struct seq_file *sf = file->private_data;
2504 sf->private = PDE(inode)->data;
2506 return ret;
2509 static const struct file_operations neigh_stat_seq_fops = {
2510 .owner = THIS_MODULE,
2511 .open = neigh_stat_seq_open,
2512 .read = seq_read,
2513 .llseek = seq_lseek,
2514 .release = seq_release,
2517 #endif /* CONFIG_PROC_FS */
2519 static inline size_t neigh_nlmsg_size(void)
2521 return NLMSG_ALIGN(sizeof(struct ndmsg))
2522 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2523 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2524 + nla_total_size(sizeof(struct nda_cacheinfo))
2525 + nla_total_size(4); /* NDA_PROBES */
2528 static void __neigh_notify(struct neighbour *n, int type, int flags)
2530 struct net *net = dev_net(n->dev);
2531 struct sk_buff *skb;
2532 int err = -ENOBUFS;
2534 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2535 if (skb == NULL)
2536 goto errout;
2538 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2539 if (err < 0) {
2540 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2541 WARN_ON(err == -EMSGSIZE);
2542 kfree_skb(skb);
2543 goto errout;
2545 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2546 return;
2547 errout:
2548 if (err < 0)
2549 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2552 #ifdef CONFIG_ARPD
2553 void neigh_app_ns(struct neighbour *n)
2555 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2557 EXPORT_SYMBOL(neigh_app_ns);
2558 #endif /* CONFIG_ARPD */
2560 #ifdef CONFIG_SYSCTL
2562 #define NEIGH_VARS_MAX 19
2564 static struct neigh_sysctl_table {
2565 struct ctl_table_header *sysctl_header;
2566 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2567 char *dev_name;
2568 } neigh_sysctl_template __read_mostly = {
2569 .neigh_vars = {
2571 .procname = "mcast_solicit",
2572 .maxlen = sizeof(int),
2573 .mode = 0644,
2574 .proc_handler = proc_dointvec,
2577 .procname = "ucast_solicit",
2578 .maxlen = sizeof(int),
2579 .mode = 0644,
2580 .proc_handler = proc_dointvec,
2583 .procname = "app_solicit",
2584 .maxlen = sizeof(int),
2585 .mode = 0644,
2586 .proc_handler = proc_dointvec,
2589 .procname = "retrans_time",
2590 .maxlen = sizeof(int),
2591 .mode = 0644,
2592 .proc_handler = proc_dointvec_userhz_jiffies,
2595 .procname = "base_reachable_time",
2596 .maxlen = sizeof(int),
2597 .mode = 0644,
2598 .proc_handler = proc_dointvec_jiffies,
2601 .procname = "delay_first_probe_time",
2602 .maxlen = sizeof(int),
2603 .mode = 0644,
2604 .proc_handler = proc_dointvec_jiffies,
2607 .procname = "gc_stale_time",
2608 .maxlen = sizeof(int),
2609 .mode = 0644,
2610 .proc_handler = proc_dointvec_jiffies,
2613 .procname = "unres_qlen",
2614 .maxlen = sizeof(int),
2615 .mode = 0644,
2616 .proc_handler = proc_dointvec,
2619 .procname = "proxy_qlen",
2620 .maxlen = sizeof(int),
2621 .mode = 0644,
2622 .proc_handler = proc_dointvec,
2625 .procname = "anycast_delay",
2626 .maxlen = sizeof(int),
2627 .mode = 0644,
2628 .proc_handler = proc_dointvec_userhz_jiffies,
2631 .procname = "proxy_delay",
2632 .maxlen = sizeof(int),
2633 .mode = 0644,
2634 .proc_handler = proc_dointvec_userhz_jiffies,
2637 .procname = "locktime",
2638 .maxlen = sizeof(int),
2639 .mode = 0644,
2640 .proc_handler = proc_dointvec_userhz_jiffies,
2643 .procname = "retrans_time_ms",
2644 .maxlen = sizeof(int),
2645 .mode = 0644,
2646 .proc_handler = proc_dointvec_ms_jiffies,
2649 .procname = "base_reachable_time_ms",
2650 .maxlen = sizeof(int),
2651 .mode = 0644,
2652 .proc_handler = proc_dointvec_ms_jiffies,
2655 .procname = "gc_interval",
2656 .maxlen = sizeof(int),
2657 .mode = 0644,
2658 .proc_handler = proc_dointvec_jiffies,
2661 .procname = "gc_thresh1",
2662 .maxlen = sizeof(int),
2663 .mode = 0644,
2664 .proc_handler = proc_dointvec,
2667 .procname = "gc_thresh2",
2668 .maxlen = sizeof(int),
2669 .mode = 0644,
2670 .proc_handler = proc_dointvec,
2673 .procname = "gc_thresh3",
2674 .maxlen = sizeof(int),
2675 .mode = 0644,
2676 .proc_handler = proc_dointvec,
2682 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2683 char *p_name, proc_handler *handler)
2685 struct neigh_sysctl_table *t;
2686 const char *dev_name_source = NULL;
2688 #define NEIGH_CTL_PATH_ROOT 0
2689 #define NEIGH_CTL_PATH_PROTO 1
2690 #define NEIGH_CTL_PATH_NEIGH 2
2691 #define NEIGH_CTL_PATH_DEV 3
2693 struct ctl_path neigh_path[] = {
2694 { .procname = "net", },
2695 { .procname = "proto", },
2696 { .procname = "neigh", },
2697 { .procname = "default", },
2698 { },
2701 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2702 if (!t)
2703 goto err;
2705 t->neigh_vars[0].data = &p->mcast_probes;
2706 t->neigh_vars[1].data = &p->ucast_probes;
2707 t->neigh_vars[2].data = &p->app_probes;
2708 t->neigh_vars[3].data = &p->retrans_time;
2709 t->neigh_vars[4].data = &p->base_reachable_time;
2710 t->neigh_vars[5].data = &p->delay_probe_time;
2711 t->neigh_vars[6].data = &p->gc_staletime;
2712 t->neigh_vars[7].data = &p->queue_len;
2713 t->neigh_vars[8].data = &p->proxy_qlen;
2714 t->neigh_vars[9].data = &p->anycast_delay;
2715 t->neigh_vars[10].data = &p->proxy_delay;
2716 t->neigh_vars[11].data = &p->locktime;
2717 t->neigh_vars[12].data = &p->retrans_time;
2718 t->neigh_vars[13].data = &p->base_reachable_time;
2720 if (dev) {
2721 dev_name_source = dev->name;
2722 /* Terminate the table early */
2723 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2724 } else {
2725 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2726 t->neigh_vars[14].data = (int *)(p + 1);
2727 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2728 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2729 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2733 if (handler) {
2734 /* RetransTime */
2735 t->neigh_vars[3].proc_handler = handler;
2736 t->neigh_vars[3].extra1 = dev;
2737 /* ReachableTime */
2738 t->neigh_vars[4].proc_handler = handler;
2739 t->neigh_vars[4].extra1 = dev;
2740 /* RetransTime (in milliseconds)*/
2741 t->neigh_vars[12].proc_handler = handler;
2742 t->neigh_vars[12].extra1 = dev;
2743 /* ReachableTime (in milliseconds) */
2744 t->neigh_vars[13].proc_handler = handler;
2745 t->neigh_vars[13].extra1 = dev;
2748 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2749 if (!t->dev_name)
2750 goto free;
2752 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2753 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2755 t->sysctl_header =
2756 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2757 if (!t->sysctl_header)
2758 goto free_procname;
2760 p->sysctl_table = t;
2761 return 0;
2763 free_procname:
2764 kfree(t->dev_name);
2765 free:
2766 kfree(t);
2767 err:
2768 return -ENOBUFS;
2770 EXPORT_SYMBOL(neigh_sysctl_register);
2772 void neigh_sysctl_unregister(struct neigh_parms *p)
2774 if (p->sysctl_table) {
2775 struct neigh_sysctl_table *t = p->sysctl_table;
2776 p->sysctl_table = NULL;
2777 unregister_sysctl_table(t->sysctl_header);
2778 kfree(t->dev_name);
2779 kfree(t);
2782 EXPORT_SYMBOL(neigh_sysctl_unregister);
2784 #endif /* CONFIG_SYSCTL */
2786 static int __init neigh_init(void)
2788 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL);
2789 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL);
2790 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info);
2792 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info);
2793 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL);
2795 return 0;
2798 subsys_initcall(neigh_init);