4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99 * Helpers for converting nanosecond timing to jiffy resolution
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
103 #define NICE_0_LOAD SCHED_LOAD_SCALE
104 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107 * These are the 'tuning knobs' of the scheduler:
109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
110 * Timeslices get refilled after they expire.
112 #define DEF_TIMESLICE (100 * HZ / 1000)
115 * single value that denotes runtime == period, ie unlimited time.
117 #define RUNTIME_INF ((u64)~0ULL)
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
124 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
126 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
133 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
135 sg
->__cpu_power
+= val
;
136 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
140 static inline int rt_policy(int policy
)
142 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
147 static inline int task_has_rt_policy(struct task_struct
*p
)
149 return rt_policy(p
->policy
);
153 * This is the priority-queue data structure of the RT scheduling class:
155 struct rt_prio_array
{
156 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
157 struct list_head queue
[MAX_RT_PRIO
];
160 struct rt_bandwidth
{
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock
;
165 struct hrtimer rt_period_timer
;
168 static struct rt_bandwidth def_rt_bandwidth
;
170 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
172 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
174 struct rt_bandwidth
*rt_b
=
175 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
181 now
= hrtimer_cb_get_time(timer
);
182 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
187 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
190 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
194 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
196 rt_b
->rt_period
= ns_to_ktime(period
);
197 rt_b
->rt_runtime
= runtime
;
199 spin_lock_init(&rt_b
->rt_runtime_lock
);
201 hrtimer_init(&rt_b
->rt_period_timer
,
202 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
203 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
204 rt_b
->rt_period_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
207 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
211 if (rt_b
->rt_runtime
== RUNTIME_INF
)
214 if (hrtimer_active(&rt_b
->rt_period_timer
))
217 spin_lock(&rt_b
->rt_runtime_lock
);
219 if (hrtimer_active(&rt_b
->rt_period_timer
))
222 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
223 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
224 hrtimer_start(&rt_b
->rt_period_timer
,
225 rt_b
->rt_period_timer
.expires
,
228 spin_unlock(&rt_b
->rt_runtime_lock
);
231 #ifdef CONFIG_RT_GROUP_SCHED
232 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
234 hrtimer_cancel(&rt_b
->rt_period_timer
);
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
242 static DEFINE_MUTEX(sched_domains_mutex
);
244 #ifdef CONFIG_GROUP_SCHED
246 #include <linux/cgroup.h>
250 static LIST_HEAD(task_groups
);
252 /* task group related information */
254 #ifdef CONFIG_CGROUP_SCHED
255 struct cgroup_subsys_state css
;
258 #ifdef CONFIG_FAIR_GROUP_SCHED
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity
**se
;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq
**cfs_rq
;
263 unsigned long shares
;
266 #ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity
**rt_se
;
268 struct rt_rq
**rt_rq
;
270 struct rt_bandwidth rt_bandwidth
;
274 struct list_head list
;
276 struct task_group
*parent
;
277 struct list_head siblings
;
278 struct list_head children
;
281 #ifdef CONFIG_USER_SCHED
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
288 struct task_group root_task_group
;
290 #ifdef CONFIG_FAIR_GROUP_SCHED
291 /* Default task group's sched entity on each cpu */
292 static DEFINE_PER_CPU(struct sched_entity
, init_sched_entity
);
293 /* Default task group's cfs_rq on each cpu */
294 static DEFINE_PER_CPU(struct cfs_rq
, init_cfs_rq
) ____cacheline_aligned_in_smp
;
295 #endif /* CONFIG_FAIR_GROUP_SCHED */
297 #ifdef CONFIG_RT_GROUP_SCHED
298 static DEFINE_PER_CPU(struct sched_rt_entity
, init_sched_rt_entity
);
299 static DEFINE_PER_CPU(struct rt_rq
, init_rt_rq
) ____cacheline_aligned_in_smp
;
300 #endif /* CONFIG_RT_GROUP_SCHED */
301 #else /* !CONFIG_FAIR_GROUP_SCHED */
302 #define root_task_group init_task_group
303 #endif /* CONFIG_FAIR_GROUP_SCHED */
305 /* task_group_lock serializes add/remove of task groups and also changes to
306 * a task group's cpu shares.
308 static DEFINE_SPINLOCK(task_group_lock
);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311 #ifdef CONFIG_USER_SCHED
312 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
313 #else /* !CONFIG_USER_SCHED */
314 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
315 #endif /* CONFIG_USER_SCHED */
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
326 #define MAX_SHARES (1UL << 18)
328 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
331 /* Default task group.
332 * Every task in system belong to this group at bootup.
334 struct task_group init_task_group
;
336 /* return group to which a task belongs */
337 static inline struct task_group
*task_group(struct task_struct
*p
)
339 struct task_group
*tg
;
341 #ifdef CONFIG_USER_SCHED
343 #elif defined(CONFIG_CGROUP_SCHED)
344 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
345 struct task_group
, css
);
347 tg
= &init_task_group
;
352 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
353 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
355 #ifdef CONFIG_FAIR_GROUP_SCHED
356 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
357 p
->se
.parent
= task_group(p
)->se
[cpu
];
360 #ifdef CONFIG_RT_GROUP_SCHED
361 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
362 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
368 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
369 static inline struct task_group
*task_group(struct task_struct
*p
)
374 #endif /* CONFIG_GROUP_SCHED */
376 /* CFS-related fields in a runqueue */
378 struct load_weight load
;
379 unsigned long nr_running
;
385 struct rb_root tasks_timeline
;
386 struct rb_node
*rb_leftmost
;
388 struct list_head tasks
;
389 struct list_head
*balance_iterator
;
392 * 'curr' points to currently running entity on this cfs_rq.
393 * It is set to NULL otherwise (i.e when none are currently running).
395 struct sched_entity
*curr
, *next
;
397 unsigned long nr_spread_over
;
399 #ifdef CONFIG_FAIR_GROUP_SCHED
400 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
410 struct list_head leaf_cfs_rq_list
;
411 struct task_group
*tg
; /* group that "owns" this runqueue */
415 * the part of load.weight contributed by tasks
417 unsigned long task_weight
;
420 * h_load = weight * f(tg)
422 * Where f(tg) is the recursive weight fraction assigned to
425 unsigned long h_load
;
428 * this cpu's part of tg->shares
430 unsigned long shares
;
433 * load.weight at the time we set shares
435 unsigned long rq_weight
;
440 /* Real-Time classes' related field in a runqueue: */
442 struct rt_prio_array active
;
443 unsigned long rt_nr_running
;
444 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
445 int highest_prio
; /* highest queued rt task prio */
448 unsigned long rt_nr_migratory
;
454 /* Nests inside the rq lock: */
455 spinlock_t rt_runtime_lock
;
457 #ifdef CONFIG_RT_GROUP_SCHED
458 unsigned long rt_nr_boosted
;
461 struct list_head leaf_rt_rq_list
;
462 struct task_group
*tg
;
463 struct sched_rt_entity
*rt_se
;
470 * We add the notion of a root-domain which will be used to define per-domain
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
473 * exclusive cpuset is created, we also create and attach a new root-domain
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
489 struct cpupri cpupri
;
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
497 static struct root_domain def_root_domain
;
502 * This is the main, per-CPU runqueue data structure.
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
516 unsigned long nr_running
;
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
519 unsigned char idle_at_tick
;
521 unsigned long last_tick_seen
;
522 unsigned char in_nohz_recently
;
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load
;
526 unsigned long nr_load_updates
;
532 #ifdef CONFIG_FAIR_GROUP_SCHED
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list
;
536 #ifdef CONFIG_RT_GROUP_SCHED
537 struct list_head leaf_rt_rq_list
;
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
546 unsigned long nr_uninterruptible
;
548 struct task_struct
*curr
, *idle
;
549 unsigned long next_balance
;
550 struct mm_struct
*prev_mm
;
557 struct root_domain
*rd
;
558 struct sched_domain
*sd
;
560 /* For active balancing */
563 /* cpu of this runqueue: */
567 unsigned long avg_load_per_task
;
569 struct task_struct
*migration_thread
;
570 struct list_head migration_queue
;
573 #ifdef CONFIG_SCHED_HRTICK
574 unsigned long hrtick_flags
;
575 ktime_t hrtick_expire
;
576 struct hrtimer hrtick_timer
;
579 #ifdef CONFIG_SCHEDSTATS
581 struct sched_info rq_sched_info
;
583 /* sys_sched_yield() stats */
584 unsigned int yld_exp_empty
;
585 unsigned int yld_act_empty
;
586 unsigned int yld_both_empty
;
587 unsigned int yld_count
;
589 /* schedule() stats */
590 unsigned int sched_switch
;
591 unsigned int sched_count
;
592 unsigned int sched_goidle
;
594 /* try_to_wake_up() stats */
595 unsigned int ttwu_count
;
596 unsigned int ttwu_local
;
599 unsigned int bkl_count
;
601 struct lock_class_key rq_lock_key
;
604 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
606 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
608 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
611 static inline int cpu_of(struct rq
*rq
)
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622 * See detach_destroy_domains: synchronize_sched for details.
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
627 #define for_each_domain(cpu, __sd) \
628 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
630 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631 #define this_rq() (&__get_cpu_var(runqueues))
632 #define task_rq(p) cpu_rq(task_cpu(p))
633 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
635 static inline void update_rq_clock(struct rq
*rq
)
637 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
641 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
643 #ifdef CONFIG_SCHED_DEBUG
644 # define const_debug __read_mostly
646 # define const_debug static const
652 * Returns true if the current cpu runqueue is locked.
653 * This interface allows printk to be called with the runqueue lock
654 * held and know whether or not it is OK to wake up the klogd.
656 int runqueue_is_locked(void)
659 struct rq
*rq
= cpu_rq(cpu
);
662 ret
= spin_is_locked(&rq
->lock
);
668 * Debugging: various feature bits
671 #define SCHED_FEAT(name, enabled) \
672 __SCHED_FEAT_##name ,
675 #include "sched_features.h"
680 #define SCHED_FEAT(name, enabled) \
681 (1UL << __SCHED_FEAT_##name) * enabled |
683 const_debug
unsigned int sysctl_sched_features
=
684 #include "sched_features.h"
689 #ifdef CONFIG_SCHED_DEBUG
690 #define SCHED_FEAT(name, enabled) \
693 static __read_mostly
char *sched_feat_names
[] = {
694 #include "sched_features.h"
700 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
702 filp
->private_data
= inode
->i_private
;
707 sched_feat_read(struct file
*filp
, char __user
*ubuf
,
708 size_t cnt
, loff_t
*ppos
)
715 for (i
= 0; sched_feat_names
[i
]; i
++) {
716 len
+= strlen(sched_feat_names
[i
]);
720 buf
= kmalloc(len
+ 2, GFP_KERNEL
);
724 for (i
= 0; sched_feat_names
[i
]; i
++) {
725 if (sysctl_sched_features
& (1UL << i
))
726 r
+= sprintf(buf
+ r
, "%s ", sched_feat_names
[i
]);
728 r
+= sprintf(buf
+ r
, "NO_%s ", sched_feat_names
[i
]);
731 r
+= sprintf(buf
+ r
, "\n");
732 WARN_ON(r
>= len
+ 2);
734 r
= simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
742 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
743 size_t cnt
, loff_t
*ppos
)
753 if (copy_from_user(&buf
, ubuf
, cnt
))
758 if (strncmp(buf
, "NO_", 3) == 0) {
763 for (i
= 0; sched_feat_names
[i
]; i
++) {
764 int len
= strlen(sched_feat_names
[i
]);
766 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
768 sysctl_sched_features
&= ~(1UL << i
);
770 sysctl_sched_features
|= (1UL << i
);
775 if (!sched_feat_names
[i
])
783 static struct file_operations sched_feat_fops
= {
784 .open
= sched_feat_open
,
785 .read
= sched_feat_read
,
786 .write
= sched_feat_write
,
789 static __init
int sched_init_debug(void)
791 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
796 late_initcall(sched_init_debug
);
800 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
803 * Number of tasks to iterate in a single balance run.
804 * Limited because this is done with IRQs disabled.
806 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
809 * ratelimit for updating the group shares.
812 const_debug
unsigned int sysctl_sched_shares_ratelimit
= 500000;
815 * period over which we measure -rt task cpu usage in us.
818 unsigned int sysctl_sched_rt_period
= 1000000;
820 static __read_mostly
int scheduler_running
;
823 * part of the period that we allow rt tasks to run in us.
826 int sysctl_sched_rt_runtime
= 950000;
828 static inline u64
global_rt_period(void)
830 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
833 static inline u64
global_rt_runtime(void)
835 if (sysctl_sched_rt_period
< 0)
838 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
841 #ifndef prepare_arch_switch
842 # define prepare_arch_switch(next) do { } while (0)
844 #ifndef finish_arch_switch
845 # define finish_arch_switch(prev) do { } while (0)
848 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
850 return rq
->curr
== p
;
853 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
854 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
856 return task_current(rq
, p
);
859 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
863 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
865 #ifdef CONFIG_DEBUG_SPINLOCK
866 /* this is a valid case when another task releases the spinlock */
867 rq
->lock
.owner
= current
;
870 * If we are tracking spinlock dependencies then we have to
871 * fix up the runqueue lock - which gets 'carried over' from
874 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
876 spin_unlock_irq(&rq
->lock
);
879 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
880 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
885 return task_current(rq
, p
);
889 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
899 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 spin_unlock_irq(&rq
->lock
);
902 spin_unlock(&rq
->lock
);
906 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
910 * After ->oncpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
917 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
921 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
924 * __task_rq_lock - lock the runqueue a given task resides on.
925 * Must be called interrupts disabled.
927 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
931 struct rq
*rq
= task_rq(p
);
932 spin_lock(&rq
->lock
);
933 if (likely(rq
== task_rq(p
)))
935 spin_unlock(&rq
->lock
);
940 * task_rq_lock - lock the runqueue a given task resides on and disable
941 * interrupts. Note the ordering: we can safely lookup the task_rq without
942 * explicitly disabling preemption.
944 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
950 local_irq_save(*flags
);
952 spin_lock(&rq
->lock
);
953 if (likely(rq
== task_rq(p
)))
955 spin_unlock_irqrestore(&rq
->lock
, *flags
);
959 static void __task_rq_unlock(struct rq
*rq
)
962 spin_unlock(&rq
->lock
);
965 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
968 spin_unlock_irqrestore(&rq
->lock
, *flags
);
972 * this_rq_lock - lock this runqueue and disable interrupts.
974 static struct rq
*this_rq_lock(void)
981 spin_lock(&rq
->lock
);
986 static void __resched_task(struct task_struct
*p
, int tif_bit
);
988 static inline void resched_task(struct task_struct
*p
)
990 __resched_task(p
, TIF_NEED_RESCHED
);
993 #ifdef CONFIG_SCHED_HRTICK
995 * Use HR-timers to deliver accurate preemption points.
997 * Its all a bit involved since we cannot program an hrt while holding the
998 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1001 * When we get rescheduled we reprogram the hrtick_timer outside of the
1004 static inline void resched_hrt(struct task_struct
*p
)
1006 __resched_task(p
, TIF_HRTICK_RESCHED
);
1009 static inline void resched_rq(struct rq
*rq
)
1011 unsigned long flags
;
1013 spin_lock_irqsave(&rq
->lock
, flags
);
1014 resched_task(rq
->curr
);
1015 spin_unlock_irqrestore(&rq
->lock
, flags
);
1019 HRTICK_SET
, /* re-programm hrtick_timer */
1020 HRTICK_RESET
, /* not a new slice */
1021 HRTICK_BLOCK
, /* stop hrtick operations */
1026 * - enabled by features
1027 * - hrtimer is actually high res
1029 static inline int hrtick_enabled(struct rq
*rq
)
1031 if (!sched_feat(HRTICK
))
1033 if (unlikely(test_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
)))
1035 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1039 * Called to set the hrtick timer state.
1041 * called with rq->lock held and irqs disabled
1043 static void hrtick_start(struct rq
*rq
, u64 delay
, int reset
)
1045 assert_spin_locked(&rq
->lock
);
1048 * preempt at: now + delay
1051 ktime_add_ns(rq
->hrtick_timer
.base
->get_time(), delay
);
1053 * indicate we need to program the timer
1055 __set_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1057 __set_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1060 * New slices are called from the schedule path and don't need a
1061 * forced reschedule.
1064 resched_hrt(rq
->curr
);
1067 static void hrtick_clear(struct rq
*rq
)
1069 if (hrtimer_active(&rq
->hrtick_timer
))
1070 hrtimer_cancel(&rq
->hrtick_timer
);
1074 * Update the timer from the possible pending state.
1076 static void hrtick_set(struct rq
*rq
)
1080 unsigned long flags
;
1082 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1084 spin_lock_irqsave(&rq
->lock
, flags
);
1085 set
= __test_and_clear_bit(HRTICK_SET
, &rq
->hrtick_flags
);
1086 reset
= __test_and_clear_bit(HRTICK_RESET
, &rq
->hrtick_flags
);
1087 time
= rq
->hrtick_expire
;
1088 clear_thread_flag(TIF_HRTICK_RESCHED
);
1089 spin_unlock_irqrestore(&rq
->lock
, flags
);
1092 hrtimer_start(&rq
->hrtick_timer
, time
, HRTIMER_MODE_ABS
);
1093 if (reset
&& !hrtimer_active(&rq
->hrtick_timer
))
1100 * High-resolution timer tick.
1101 * Runs from hardirq context with interrupts disabled.
1103 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1105 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1107 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1109 spin_lock(&rq
->lock
);
1110 update_rq_clock(rq
);
1111 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1112 spin_unlock(&rq
->lock
);
1114 return HRTIMER_NORESTART
;
1118 static void hotplug_hrtick_disable(int cpu
)
1120 struct rq
*rq
= cpu_rq(cpu
);
1121 unsigned long flags
;
1123 spin_lock_irqsave(&rq
->lock
, flags
);
1124 rq
->hrtick_flags
= 0;
1125 __set_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
);
1126 spin_unlock_irqrestore(&rq
->lock
, flags
);
1131 static void hotplug_hrtick_enable(int cpu
)
1133 struct rq
*rq
= cpu_rq(cpu
);
1134 unsigned long flags
;
1136 spin_lock_irqsave(&rq
->lock
, flags
);
1137 __clear_bit(HRTICK_BLOCK
, &rq
->hrtick_flags
);
1138 spin_unlock_irqrestore(&rq
->lock
, flags
);
1142 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1144 int cpu
= (int)(long)hcpu
;
1147 case CPU_UP_CANCELED
:
1148 case CPU_UP_CANCELED_FROZEN
:
1149 case CPU_DOWN_PREPARE
:
1150 case CPU_DOWN_PREPARE_FROZEN
:
1152 case CPU_DEAD_FROZEN
:
1153 hotplug_hrtick_disable(cpu
);
1156 case CPU_UP_PREPARE
:
1157 case CPU_UP_PREPARE_FROZEN
:
1158 case CPU_DOWN_FAILED
:
1159 case CPU_DOWN_FAILED_FROZEN
:
1161 case CPU_ONLINE_FROZEN
:
1162 hotplug_hrtick_enable(cpu
);
1169 static void init_hrtick(void)
1171 hotcpu_notifier(hotplug_hrtick
, 0);
1173 #endif /* CONFIG_SMP */
1175 static void init_rq_hrtick(struct rq
*rq
)
1177 rq
->hrtick_flags
= 0;
1178 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1179 rq
->hrtick_timer
.function
= hrtick
;
1180 rq
->hrtick_timer
.cb_mode
= HRTIMER_CB_IRQSAFE_NO_SOFTIRQ
;
1183 void hrtick_resched(void)
1186 unsigned long flags
;
1188 if (!test_thread_flag(TIF_HRTICK_RESCHED
))
1191 local_irq_save(flags
);
1192 rq
= cpu_rq(smp_processor_id());
1194 local_irq_restore(flags
);
1197 static inline void hrtick_clear(struct rq
*rq
)
1201 static inline void hrtick_set(struct rq
*rq
)
1205 static inline void init_rq_hrtick(struct rq
*rq
)
1209 void hrtick_resched(void)
1213 static inline void init_hrtick(void)
1219 * resched_task - mark a task 'to be rescheduled now'.
1221 * On UP this means the setting of the need_resched flag, on SMP it
1222 * might also involve a cross-CPU call to trigger the scheduler on
1227 #ifndef tsk_is_polling
1228 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1231 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1235 assert_spin_locked(&task_rq(p
)->lock
);
1237 if (unlikely(test_tsk_thread_flag(p
, tif_bit
)))
1240 set_tsk_thread_flag(p
, tif_bit
);
1243 if (cpu
== smp_processor_id())
1246 /* NEED_RESCHED must be visible before we test polling */
1248 if (!tsk_is_polling(p
))
1249 smp_send_reschedule(cpu
);
1252 static void resched_cpu(int cpu
)
1254 struct rq
*rq
= cpu_rq(cpu
);
1255 unsigned long flags
;
1257 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
1259 resched_task(cpu_curr(cpu
));
1260 spin_unlock_irqrestore(&rq
->lock
, flags
);
1265 * When add_timer_on() enqueues a timer into the timer wheel of an
1266 * idle CPU then this timer might expire before the next timer event
1267 * which is scheduled to wake up that CPU. In case of a completely
1268 * idle system the next event might even be infinite time into the
1269 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1270 * leaves the inner idle loop so the newly added timer is taken into
1271 * account when the CPU goes back to idle and evaluates the timer
1272 * wheel for the next timer event.
1274 void wake_up_idle_cpu(int cpu
)
1276 struct rq
*rq
= cpu_rq(cpu
);
1278 if (cpu
== smp_processor_id())
1282 * This is safe, as this function is called with the timer
1283 * wheel base lock of (cpu) held. When the CPU is on the way
1284 * to idle and has not yet set rq->curr to idle then it will
1285 * be serialized on the timer wheel base lock and take the new
1286 * timer into account automatically.
1288 if (rq
->curr
!= rq
->idle
)
1292 * We can set TIF_RESCHED on the idle task of the other CPU
1293 * lockless. The worst case is that the other CPU runs the
1294 * idle task through an additional NOOP schedule()
1296 set_tsk_thread_flag(rq
->idle
, TIF_NEED_RESCHED
);
1298 /* NEED_RESCHED must be visible before we test polling */
1300 if (!tsk_is_polling(rq
->idle
))
1301 smp_send_reschedule(cpu
);
1303 #endif /* CONFIG_NO_HZ */
1305 #else /* !CONFIG_SMP */
1306 static void __resched_task(struct task_struct
*p
, int tif_bit
)
1308 assert_spin_locked(&task_rq(p
)->lock
);
1309 set_tsk_thread_flag(p
, tif_bit
);
1311 #endif /* CONFIG_SMP */
1313 #if BITS_PER_LONG == 32
1314 # define WMULT_CONST (~0UL)
1316 # define WMULT_CONST (1UL << 32)
1319 #define WMULT_SHIFT 32
1322 * Shift right and round:
1324 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1327 * delta *= weight / lw
1329 static unsigned long
1330 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1331 struct load_weight
*lw
)
1335 if (!lw
->inv_weight
) {
1336 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1339 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1343 tmp
= (u64
)delta_exec
* weight
;
1345 * Check whether we'd overflow the 64-bit multiplication:
1347 if (unlikely(tmp
> WMULT_CONST
))
1348 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1351 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1353 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1356 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1362 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1369 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1370 * of tasks with abnormal "nice" values across CPUs the contribution that
1371 * each task makes to its run queue's load is weighted according to its
1372 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1373 * scaled version of the new time slice allocation that they receive on time
1377 #define WEIGHT_IDLEPRIO 2
1378 #define WMULT_IDLEPRIO (1 << 31)
1381 * Nice levels are multiplicative, with a gentle 10% change for every
1382 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1383 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1384 * that remained on nice 0.
1386 * The "10% effect" is relative and cumulative: from _any_ nice level,
1387 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1388 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1389 * If a task goes up by ~10% and another task goes down by ~10% then
1390 * the relative distance between them is ~25%.)
1392 static const int prio_to_weight
[40] = {
1393 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1394 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1395 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1396 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1397 /* 0 */ 1024, 820, 655, 526, 423,
1398 /* 5 */ 335, 272, 215, 172, 137,
1399 /* 10 */ 110, 87, 70, 56, 45,
1400 /* 15 */ 36, 29, 23, 18, 15,
1404 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1406 * In cases where the weight does not change often, we can use the
1407 * precalculated inverse to speed up arithmetics by turning divisions
1408 * into multiplications:
1410 static const u32 prio_to_wmult
[40] = {
1411 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1412 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1413 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1414 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1415 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1416 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1417 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1418 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1421 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
1424 * runqueue iterator, to support SMP load-balancing between different
1425 * scheduling classes, without having to expose their internal data
1426 * structures to the load-balancing proper:
1428 struct rq_iterator
{
1430 struct task_struct
*(*start
)(void *);
1431 struct task_struct
*(*next
)(void *);
1435 static unsigned long
1436 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1437 unsigned long max_load_move
, struct sched_domain
*sd
,
1438 enum cpu_idle_type idle
, int *all_pinned
,
1439 int *this_best_prio
, struct rq_iterator
*iterator
);
1442 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1443 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1444 struct rq_iterator
*iterator
);
1447 #ifdef CONFIG_CGROUP_CPUACCT
1448 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1450 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1453 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1455 update_load_add(&rq
->load
, load
);
1458 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1460 update_load_sub(&rq
->load
, load
);
1464 static unsigned long source_load(int cpu
, int type
);
1465 static unsigned long target_load(int cpu
, int type
);
1466 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1468 static unsigned long cpu_avg_load_per_task(int cpu
)
1470 struct rq
*rq
= cpu_rq(cpu
);
1473 rq
->avg_load_per_task
= rq
->load
.weight
/ rq
->nr_running
;
1475 return rq
->avg_load_per_task
;
1478 #ifdef CONFIG_FAIR_GROUP_SCHED
1480 typedef void (*tg_visitor
)(struct task_group
*, int, struct sched_domain
*);
1483 * Iterate the full tree, calling @down when first entering a node and @up when
1484 * leaving it for the final time.
1487 walk_tg_tree(tg_visitor down
, tg_visitor up
, int cpu
, struct sched_domain
*sd
)
1489 struct task_group
*parent
, *child
;
1492 parent
= &root_task_group
;
1494 (*down
)(parent
, cpu
, sd
);
1495 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1502 (*up
)(parent
, cpu
, sd
);
1505 parent
= parent
->parent
;
1511 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1514 * Calculate and set the cpu's group shares.
1517 __update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1518 unsigned long sd_shares
, unsigned long sd_rq_weight
)
1521 unsigned long shares
;
1522 unsigned long rq_weight
;
1527 rq_weight
= tg
->cfs_rq
[cpu
]->load
.weight
;
1530 * If there are currently no tasks on the cpu pretend there is one of
1531 * average load so that when a new task gets to run here it will not
1532 * get delayed by group starvation.
1536 rq_weight
= NICE_0_LOAD
;
1539 if (unlikely(rq_weight
> sd_rq_weight
))
1540 rq_weight
= sd_rq_weight
;
1543 * \Sum shares * rq_weight
1544 * shares = -----------------------
1548 shares
= (sd_shares
* rq_weight
) / (sd_rq_weight
+ 1);
1551 * record the actual number of shares, not the boosted amount.
1553 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1554 tg
->cfs_rq
[cpu
]->rq_weight
= rq_weight
;
1556 if (shares
< MIN_SHARES
)
1557 shares
= MIN_SHARES
;
1558 else if (shares
> MAX_SHARES
)
1559 shares
= MAX_SHARES
;
1561 __set_se_shares(tg
->se
[cpu
], shares
);
1565 * Re-compute the task group their per cpu shares over the given domain.
1566 * This needs to be done in a bottom-up fashion because the rq weight of a
1567 * parent group depends on the shares of its child groups.
1570 tg_shares_up(struct task_group
*tg
, int cpu
, struct sched_domain
*sd
)
1572 unsigned long rq_weight
= 0;
1573 unsigned long shares
= 0;
1576 for_each_cpu_mask(i
, sd
->span
) {
1577 rq_weight
+= tg
->cfs_rq
[i
]->load
.weight
;
1578 shares
+= tg
->cfs_rq
[i
]->shares
;
1581 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1582 shares
= tg
->shares
;
1584 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1585 shares
= tg
->shares
;
1588 rq_weight
= cpus_weight(sd
->span
) * NICE_0_LOAD
;
1590 for_each_cpu_mask(i
, sd
->span
) {
1591 struct rq
*rq
= cpu_rq(i
);
1592 unsigned long flags
;
1594 spin_lock_irqsave(&rq
->lock
, flags
);
1595 __update_group_shares_cpu(tg
, i
, shares
, rq_weight
);
1596 spin_unlock_irqrestore(&rq
->lock
, flags
);
1601 * Compute the cpu's hierarchical load factor for each task group.
1602 * This needs to be done in a top-down fashion because the load of a child
1603 * group is a fraction of its parents load.
1606 tg_load_down(struct task_group
*tg
, int cpu
, struct sched_domain
*sd
)
1611 load
= cpu_rq(cpu
)->load
.weight
;
1613 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1614 load
*= tg
->cfs_rq
[cpu
]->shares
;
1615 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1618 tg
->cfs_rq
[cpu
]->h_load
= load
;
1622 tg_nop(struct task_group
*tg
, int cpu
, struct sched_domain
*sd
)
1626 static void update_shares(struct sched_domain
*sd
)
1628 u64 now
= cpu_clock(raw_smp_processor_id());
1629 s64 elapsed
= now
- sd
->last_update
;
1631 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1632 sd
->last_update
= now
;
1633 walk_tg_tree(tg_nop
, tg_shares_up
, 0, sd
);
1637 static void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1639 spin_unlock(&rq
->lock
);
1641 spin_lock(&rq
->lock
);
1644 static void update_h_load(int cpu
)
1646 walk_tg_tree(tg_load_down
, tg_nop
, cpu
, NULL
);
1651 static inline void update_shares(struct sched_domain
*sd
)
1655 static inline void update_shares_locked(struct rq
*rq
, struct sched_domain
*sd
)
1663 #ifdef CONFIG_FAIR_GROUP_SCHED
1664 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1667 cfs_rq
->shares
= shares
;
1672 #include "sched_stats.h"
1673 #include "sched_idletask.c"
1674 #include "sched_fair.c"
1675 #include "sched_rt.c"
1676 #ifdef CONFIG_SCHED_DEBUG
1677 # include "sched_debug.c"
1680 #define sched_class_highest (&rt_sched_class)
1681 #define for_each_class(class) \
1682 for (class = sched_class_highest; class; class = class->next)
1684 static void inc_nr_running(struct rq
*rq
)
1689 static void dec_nr_running(struct rq
*rq
)
1694 static void set_load_weight(struct task_struct
*p
)
1696 if (task_has_rt_policy(p
)) {
1697 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1698 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1703 * SCHED_IDLE tasks get minimal weight:
1705 if (p
->policy
== SCHED_IDLE
) {
1706 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1707 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1711 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1712 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1715 static void update_avg(u64
*avg
, u64 sample
)
1717 s64 diff
= sample
- *avg
;
1721 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1723 sched_info_queued(p
);
1724 p
->sched_class
->enqueue_task(rq
, p
, wakeup
);
1728 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1730 if (sleep
&& p
->se
.last_wakeup
) {
1731 update_avg(&p
->se
.avg_overlap
,
1732 p
->se
.sum_exec_runtime
- p
->se
.last_wakeup
);
1733 p
->se
.last_wakeup
= 0;
1736 sched_info_dequeued(p
);
1737 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1742 * __normal_prio - return the priority that is based on the static prio
1744 static inline int __normal_prio(struct task_struct
*p
)
1746 return p
->static_prio
;
1750 * Calculate the expected normal priority: i.e. priority
1751 * without taking RT-inheritance into account. Might be
1752 * boosted by interactivity modifiers. Changes upon fork,
1753 * setprio syscalls, and whenever the interactivity
1754 * estimator recalculates.
1756 static inline int normal_prio(struct task_struct
*p
)
1760 if (task_has_rt_policy(p
))
1761 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1763 prio
= __normal_prio(p
);
1768 * Calculate the current priority, i.e. the priority
1769 * taken into account by the scheduler. This value might
1770 * be boosted by RT tasks, or might be boosted by
1771 * interactivity modifiers. Will be RT if the task got
1772 * RT-boosted. If not then it returns p->normal_prio.
1774 static int effective_prio(struct task_struct
*p
)
1776 p
->normal_prio
= normal_prio(p
);
1778 * If we are RT tasks or we were boosted to RT priority,
1779 * keep the priority unchanged. Otherwise, update priority
1780 * to the normal priority:
1782 if (!rt_prio(p
->prio
))
1783 return p
->normal_prio
;
1788 * activate_task - move a task to the runqueue.
1790 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1792 if (task_contributes_to_load(p
))
1793 rq
->nr_uninterruptible
--;
1795 enqueue_task(rq
, p
, wakeup
);
1800 * deactivate_task - remove a task from the runqueue.
1802 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1804 if (task_contributes_to_load(p
))
1805 rq
->nr_uninterruptible
++;
1807 dequeue_task(rq
, p
, sleep
);
1812 * task_curr - is this task currently executing on a CPU?
1813 * @p: the task in question.
1815 inline int task_curr(const struct task_struct
*p
)
1817 return cpu_curr(task_cpu(p
)) == p
;
1820 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1822 set_task_rq(p
, cpu
);
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1830 task_thread_info(p
)->cpu
= cpu
;
1834 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1835 const struct sched_class
*prev_class
,
1836 int oldprio
, int running
)
1838 if (prev_class
!= p
->sched_class
) {
1839 if (prev_class
->switched_from
)
1840 prev_class
->switched_from(rq
, p
, running
);
1841 p
->sched_class
->switched_to(rq
, p
, running
);
1843 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1848 /* Used instead of source_load when we know the type == 0 */
1849 static unsigned long weighted_cpuload(const int cpu
)
1851 return cpu_rq(cpu
)->load
.weight
;
1855 * Is this task likely cache-hot:
1858 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1863 * Buddy candidates are cache hot:
1865 if (sched_feat(CACHE_HOT_BUDDY
) && (&p
->se
== cfs_rq_of(&p
->se
)->next
))
1868 if (p
->sched_class
!= &fair_sched_class
)
1871 if (sysctl_sched_migration_cost
== -1)
1873 if (sysctl_sched_migration_cost
== 0)
1876 delta
= now
- p
->se
.exec_start
;
1878 return delta
< (s64
)sysctl_sched_migration_cost
;
1882 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1884 int old_cpu
= task_cpu(p
);
1885 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
1886 struct cfs_rq
*old_cfsrq
= task_cfs_rq(p
),
1887 *new_cfsrq
= cpu_cfs_rq(old_cfsrq
, new_cpu
);
1890 clock_offset
= old_rq
->clock
- new_rq
->clock
;
1892 #ifdef CONFIG_SCHEDSTATS
1893 if (p
->se
.wait_start
)
1894 p
->se
.wait_start
-= clock_offset
;
1895 if (p
->se
.sleep_start
)
1896 p
->se
.sleep_start
-= clock_offset
;
1897 if (p
->se
.block_start
)
1898 p
->se
.block_start
-= clock_offset
;
1899 if (old_cpu
!= new_cpu
) {
1900 schedstat_inc(p
, se
.nr_migrations
);
1901 if (task_hot(p
, old_rq
->clock
, NULL
))
1902 schedstat_inc(p
, se
.nr_forced2_migrations
);
1905 p
->se
.vruntime
-= old_cfsrq
->min_vruntime
-
1906 new_cfsrq
->min_vruntime
;
1908 __set_task_cpu(p
, new_cpu
);
1911 struct migration_req
{
1912 struct list_head list
;
1914 struct task_struct
*task
;
1917 struct completion done
;
1921 * The task's runqueue lock must be held.
1922 * Returns true if you have to wait for migration thread.
1925 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1927 struct rq
*rq
= task_rq(p
);
1930 * If the task is not on a runqueue (and not running), then
1931 * it is sufficient to simply update the task's cpu field.
1933 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1934 set_task_cpu(p
, dest_cpu
);
1938 init_completion(&req
->done
);
1940 req
->dest_cpu
= dest_cpu
;
1941 list_add(&req
->list
, &rq
->migration_queue
);
1947 * wait_task_inactive - wait for a thread to unschedule.
1949 * The caller must ensure that the task *will* unschedule sometime soon,
1950 * else this function might spin for a *long* time. This function can't
1951 * be called with interrupts off, or it may introduce deadlock with
1952 * smp_call_function() if an IPI is sent by the same process we are
1953 * waiting to become inactive.
1955 void wait_task_inactive(struct task_struct
*p
)
1957 unsigned long flags
;
1963 * We do the initial early heuristics without holding
1964 * any task-queue locks at all. We'll only try to get
1965 * the runqueue lock when things look like they will
1971 * If the task is actively running on another CPU
1972 * still, just relax and busy-wait without holding
1975 * NOTE! Since we don't hold any locks, it's not
1976 * even sure that "rq" stays as the right runqueue!
1977 * But we don't care, since "task_running()" will
1978 * return false if the runqueue has changed and p
1979 * is actually now running somewhere else!
1981 while (task_running(rq
, p
))
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1989 rq
= task_rq_lock(p
, &flags
);
1990 running
= task_running(rq
, p
);
1991 on_rq
= p
->se
.on_rq
;
1992 task_rq_unlock(rq
, &flags
);
1995 * Was it really running after all now that we
1996 * checked with the proper locks actually held?
1998 * Oops. Go back and try again..
2000 if (unlikely(running
)) {
2006 * It's not enough that it's not actively running,
2007 * it must be off the runqueue _entirely_, and not
2010 * So if it wa still runnable (but just not actively
2011 * running right now), it's preempted, and we should
2012 * yield - it could be a while.
2014 if (unlikely(on_rq
)) {
2015 schedule_timeout_uninterruptible(1);
2020 * Ahh, all good. It wasn't running, and it wasn't
2021 * runnable, which means that it will never become
2022 * running in the future either. We're all done!
2029 * kick_process - kick a running thread to enter/exit the kernel
2030 * @p: the to-be-kicked thread
2032 * Cause a process which is running on another CPU to enter
2033 * kernel-mode, without any delay. (to get signals handled.)
2035 * NOTE: this function doesnt have to take the runqueue lock,
2036 * because all it wants to ensure is that the remote task enters
2037 * the kernel. If the IPI races and the task has been migrated
2038 * to another CPU then no harm is done and the purpose has been
2041 void kick_process(struct task_struct
*p
)
2047 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2048 smp_send_reschedule(cpu
);
2053 * Return a low guess at the load of a migration-source cpu weighted
2054 * according to the scheduling class and "nice" value.
2056 * We want to under-estimate the load of migration sources, to
2057 * balance conservatively.
2059 static unsigned long source_load(int cpu
, int type
)
2061 struct rq
*rq
= cpu_rq(cpu
);
2062 unsigned long total
= weighted_cpuload(cpu
);
2064 if (type
== 0 || !sched_feat(LB_BIAS
))
2067 return min(rq
->cpu_load
[type
-1], total
);
2071 * Return a high guess at the load of a migration-target cpu weighted
2072 * according to the scheduling class and "nice" value.
2074 static unsigned long target_load(int cpu
, int type
)
2076 struct rq
*rq
= cpu_rq(cpu
);
2077 unsigned long total
= weighted_cpuload(cpu
);
2079 if (type
== 0 || !sched_feat(LB_BIAS
))
2082 return max(rq
->cpu_load
[type
-1], total
);
2086 * find_idlest_group finds and returns the least busy CPU group within the
2089 static struct sched_group
*
2090 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
2092 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2093 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
2094 int load_idx
= sd
->forkexec_idx
;
2095 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
2098 unsigned long load
, avg_load
;
2102 /* Skip over this group if it has no CPUs allowed */
2103 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
2106 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2108 /* Tally up the load of all CPUs in the group */
2111 for_each_cpu_mask(i
, group
->cpumask
) {
2112 /* Bias balancing toward cpus of our domain */
2114 load
= source_load(i
, load_idx
);
2116 load
= target_load(i
, load_idx
);
2121 /* Adjust by relative CPU power of the group */
2122 avg_load
= sg_div_cpu_power(group
,
2123 avg_load
* SCHED_LOAD_SCALE
);
2126 this_load
= avg_load
;
2128 } else if (avg_load
< min_load
) {
2129 min_load
= avg_load
;
2132 } while (group
= group
->next
, group
!= sd
->groups
);
2134 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
2140 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2143 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
,
2146 unsigned long load
, min_load
= ULONG_MAX
;
2150 /* Traverse only the allowed CPUs */
2151 cpus_and(*tmp
, group
->cpumask
, p
->cpus_allowed
);
2153 for_each_cpu_mask(i
, *tmp
) {
2154 load
= weighted_cpuload(i
);
2156 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
2166 * sched_balance_self: balance the current task (running on cpu) in domains
2167 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2170 * Balance, ie. select the least loaded group.
2172 * Returns the target CPU number, or the same CPU if no balancing is needed.
2174 * preempt must be disabled.
2176 static int sched_balance_self(int cpu
, int flag
)
2178 struct task_struct
*t
= current
;
2179 struct sched_domain
*tmp
, *sd
= NULL
;
2181 for_each_domain(cpu
, tmp
) {
2183 * If power savings logic is enabled for a domain, stop there.
2185 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
2187 if (tmp
->flags
& flag
)
2195 cpumask_t span
, tmpmask
;
2196 struct sched_group
*group
;
2197 int new_cpu
, weight
;
2199 if (!(sd
->flags
& flag
)) {
2205 group
= find_idlest_group(sd
, t
, cpu
);
2211 new_cpu
= find_idlest_cpu(group
, t
, cpu
, &tmpmask
);
2212 if (new_cpu
== -1 || new_cpu
== cpu
) {
2213 /* Now try balancing at a lower domain level of cpu */
2218 /* Now try balancing at a lower domain level of new_cpu */
2221 weight
= cpus_weight(span
);
2222 for_each_domain(cpu
, tmp
) {
2223 if (weight
<= cpus_weight(tmp
->span
))
2225 if (tmp
->flags
& flag
)
2228 /* while loop will break here if sd == NULL */
2234 #endif /* CONFIG_SMP */
2237 * try_to_wake_up - wake up a thread
2238 * @p: the to-be-woken-up thread
2239 * @state: the mask of task states that can be woken
2240 * @sync: do a synchronous wakeup?
2242 * Put it on the run-queue if it's not already there. The "current"
2243 * thread is always on the run-queue (except when the actual
2244 * re-schedule is in progress), and as such you're allowed to do
2245 * the simpler "current->state = TASK_RUNNING" to mark yourself
2246 * runnable without the overhead of this.
2248 * returns failure only if the task is already active.
2250 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
2252 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2253 unsigned long flags
;
2257 if (!sched_feat(SYNC_WAKEUPS
))
2261 if (sched_feat(LB_WAKEUP_UPDATE
)) {
2262 struct sched_domain
*sd
;
2264 this_cpu
= raw_smp_processor_id();
2267 for_each_domain(this_cpu
, sd
) {
2268 if (cpu_isset(cpu
, sd
->span
)) {
2277 rq
= task_rq_lock(p
, &flags
);
2278 old_state
= p
->state
;
2279 if (!(old_state
& state
))
2287 this_cpu
= smp_processor_id();
2290 if (unlikely(task_running(rq
, p
)))
2293 cpu
= p
->sched_class
->select_task_rq(p
, sync
);
2294 if (cpu
!= orig_cpu
) {
2295 set_task_cpu(p
, cpu
);
2296 task_rq_unlock(rq
, &flags
);
2297 /* might preempt at this point */
2298 rq
= task_rq_lock(p
, &flags
);
2299 old_state
= p
->state
;
2300 if (!(old_state
& state
))
2305 this_cpu
= smp_processor_id();
2309 #ifdef CONFIG_SCHEDSTATS
2310 schedstat_inc(rq
, ttwu_count
);
2311 if (cpu
== this_cpu
)
2312 schedstat_inc(rq
, ttwu_local
);
2314 struct sched_domain
*sd
;
2315 for_each_domain(this_cpu
, sd
) {
2316 if (cpu_isset(cpu
, sd
->span
)) {
2317 schedstat_inc(sd
, ttwu_wake_remote
);
2322 #endif /* CONFIG_SCHEDSTATS */
2325 #endif /* CONFIG_SMP */
2326 schedstat_inc(p
, se
.nr_wakeups
);
2328 schedstat_inc(p
, se
.nr_wakeups_sync
);
2329 if (orig_cpu
!= cpu
)
2330 schedstat_inc(p
, se
.nr_wakeups_migrate
);
2331 if (cpu
== this_cpu
)
2332 schedstat_inc(p
, se
.nr_wakeups_local
);
2334 schedstat_inc(p
, se
.nr_wakeups_remote
);
2335 update_rq_clock(rq
);
2336 activate_task(rq
, p
, 1);
2340 trace_mark(kernel_sched_wakeup
,
2341 "pid %d state %ld ## rq %p task %p rq->curr %p",
2342 p
->pid
, p
->state
, rq
, p
, rq
->curr
);
2343 check_preempt_curr(rq
, p
);
2345 p
->state
= TASK_RUNNING
;
2347 if (p
->sched_class
->task_wake_up
)
2348 p
->sched_class
->task_wake_up(rq
, p
);
2351 current
->se
.last_wakeup
= current
->se
.sum_exec_runtime
;
2353 task_rq_unlock(rq
, &flags
);
2358 int wake_up_process(struct task_struct
*p
)
2360 return try_to_wake_up(p
, TASK_ALL
, 0);
2362 EXPORT_SYMBOL(wake_up_process
);
2364 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2366 return try_to_wake_up(p
, state
, 0);
2370 * Perform scheduler related setup for a newly forked process p.
2371 * p is forked by current.
2373 * __sched_fork() is basic setup used by init_idle() too:
2375 static void __sched_fork(struct task_struct
*p
)
2377 p
->se
.exec_start
= 0;
2378 p
->se
.sum_exec_runtime
= 0;
2379 p
->se
.prev_sum_exec_runtime
= 0;
2380 p
->se
.last_wakeup
= 0;
2381 p
->se
.avg_overlap
= 0;
2383 #ifdef CONFIG_SCHEDSTATS
2384 p
->se
.wait_start
= 0;
2385 p
->se
.sum_sleep_runtime
= 0;
2386 p
->se
.sleep_start
= 0;
2387 p
->se
.block_start
= 0;
2388 p
->se
.sleep_max
= 0;
2389 p
->se
.block_max
= 0;
2391 p
->se
.slice_max
= 0;
2395 INIT_LIST_HEAD(&p
->rt
.run_list
);
2397 INIT_LIST_HEAD(&p
->se
.group_node
);
2399 #ifdef CONFIG_PREEMPT_NOTIFIERS
2400 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2404 * We mark the process as running here, but have not actually
2405 * inserted it onto the runqueue yet. This guarantees that
2406 * nobody will actually run it, and a signal or other external
2407 * event cannot wake it up and insert it on the runqueue either.
2409 p
->state
= TASK_RUNNING
;
2413 * fork()/clone()-time setup:
2415 void sched_fork(struct task_struct
*p
, int clone_flags
)
2417 int cpu
= get_cpu();
2422 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
2424 set_task_cpu(p
, cpu
);
2427 * Make sure we do not leak PI boosting priority to the child:
2429 p
->prio
= current
->normal_prio
;
2430 if (!rt_prio(p
->prio
))
2431 p
->sched_class
= &fair_sched_class
;
2433 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2434 if (likely(sched_info_on()))
2435 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2437 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2440 #ifdef CONFIG_PREEMPT
2441 /* Want to start with kernel preemption disabled. */
2442 task_thread_info(p
)->preempt_count
= 1;
2448 * wake_up_new_task - wake up a newly created task for the first time.
2450 * This function will do some initial scheduler statistics housekeeping
2451 * that must be done for every newly created context, then puts the task
2452 * on the runqueue and wakes it.
2454 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2456 unsigned long flags
;
2459 rq
= task_rq_lock(p
, &flags
);
2460 BUG_ON(p
->state
!= TASK_RUNNING
);
2461 update_rq_clock(rq
);
2463 p
->prio
= effective_prio(p
);
2465 if (!p
->sched_class
->task_new
|| !current
->se
.on_rq
) {
2466 activate_task(rq
, p
, 0);
2469 * Let the scheduling class do new task startup
2470 * management (if any):
2472 p
->sched_class
->task_new(rq
, p
);
2475 trace_mark(kernel_sched_wakeup_new
,
2476 "pid %d state %ld ## rq %p task %p rq->curr %p",
2477 p
->pid
, p
->state
, rq
, p
, rq
->curr
);
2478 check_preempt_curr(rq
, p
);
2480 if (p
->sched_class
->task_wake_up
)
2481 p
->sched_class
->task_wake_up(rq
, p
);
2483 task_rq_unlock(rq
, &flags
);
2486 #ifdef CONFIG_PREEMPT_NOTIFIERS
2489 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2490 * @notifier: notifier struct to register
2492 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2494 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2496 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2499 * preempt_notifier_unregister - no longer interested in preemption notifications
2500 * @notifier: notifier struct to unregister
2502 * This is safe to call from within a preemption notifier.
2504 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2506 hlist_del(¬ifier
->link
);
2508 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2510 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2512 struct preempt_notifier
*notifier
;
2513 struct hlist_node
*node
;
2515 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2516 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2520 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2521 struct task_struct
*next
)
2523 struct preempt_notifier
*notifier
;
2524 struct hlist_node
*node
;
2526 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2527 notifier
->ops
->sched_out(notifier
, next
);
2530 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2532 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2537 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2538 struct task_struct
*next
)
2542 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2545 * prepare_task_switch - prepare to switch tasks
2546 * @rq: the runqueue preparing to switch
2547 * @prev: the current task that is being switched out
2548 * @next: the task we are going to switch to.
2550 * This is called with the rq lock held and interrupts off. It must
2551 * be paired with a subsequent finish_task_switch after the context
2554 * prepare_task_switch sets up locking and calls architecture specific
2558 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2559 struct task_struct
*next
)
2561 fire_sched_out_preempt_notifiers(prev
, next
);
2562 prepare_lock_switch(rq
, next
);
2563 prepare_arch_switch(next
);
2567 * finish_task_switch - clean up after a task-switch
2568 * @rq: runqueue associated with task-switch
2569 * @prev: the thread we just switched away from.
2571 * finish_task_switch must be called after the context switch, paired
2572 * with a prepare_task_switch call before the context switch.
2573 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2574 * and do any other architecture-specific cleanup actions.
2576 * Note that we may have delayed dropping an mm in context_switch(). If
2577 * so, we finish that here outside of the runqueue lock. (Doing it
2578 * with the lock held can cause deadlocks; see schedule() for
2581 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2582 __releases(rq
->lock
)
2584 struct mm_struct
*mm
= rq
->prev_mm
;
2590 * A task struct has one reference for the use as "current".
2591 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2592 * schedule one last time. The schedule call will never return, and
2593 * the scheduled task must drop that reference.
2594 * The test for TASK_DEAD must occur while the runqueue locks are
2595 * still held, otherwise prev could be scheduled on another cpu, die
2596 * there before we look at prev->state, and then the reference would
2598 * Manfred Spraul <manfred@colorfullife.com>
2600 prev_state
= prev
->state
;
2601 finish_arch_switch(prev
);
2602 finish_lock_switch(rq
, prev
);
2604 if (current
->sched_class
->post_schedule
)
2605 current
->sched_class
->post_schedule(rq
);
2608 fire_sched_in_preempt_notifiers(current
);
2611 if (unlikely(prev_state
== TASK_DEAD
)) {
2613 * Remove function-return probe instances associated with this
2614 * task and put them back on the free list.
2616 kprobe_flush_task(prev
);
2617 put_task_struct(prev
);
2622 * schedule_tail - first thing a freshly forked thread must call.
2623 * @prev: the thread we just switched away from.
2625 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2626 __releases(rq
->lock
)
2628 struct rq
*rq
= this_rq();
2630 finish_task_switch(rq
, prev
);
2631 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2632 /* In this case, finish_task_switch does not reenable preemption */
2635 if (current
->set_child_tid
)
2636 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2640 * context_switch - switch to the new MM and the new
2641 * thread's register state.
2644 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2645 struct task_struct
*next
)
2647 struct mm_struct
*mm
, *oldmm
;
2649 prepare_task_switch(rq
, prev
, next
);
2650 trace_mark(kernel_sched_schedule
,
2651 "prev_pid %d next_pid %d prev_state %ld "
2652 "## rq %p prev %p next %p",
2653 prev
->pid
, next
->pid
, prev
->state
,
2656 oldmm
= prev
->active_mm
;
2658 * For paravirt, this is coupled with an exit in switch_to to
2659 * combine the page table reload and the switch backend into
2662 arch_enter_lazy_cpu_mode();
2664 if (unlikely(!mm
)) {
2665 next
->active_mm
= oldmm
;
2666 atomic_inc(&oldmm
->mm_count
);
2667 enter_lazy_tlb(oldmm
, next
);
2669 switch_mm(oldmm
, mm
, next
);
2671 if (unlikely(!prev
->mm
)) {
2672 prev
->active_mm
= NULL
;
2673 rq
->prev_mm
= oldmm
;
2676 * Since the runqueue lock will be released by the next
2677 * task (which is an invalid locking op but in the case
2678 * of the scheduler it's an obvious special-case), so we
2679 * do an early lockdep release here:
2681 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2682 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2685 /* Here we just switch the register state and the stack. */
2686 switch_to(prev
, next
, prev
);
2690 * this_rq must be evaluated again because prev may have moved
2691 * CPUs since it called schedule(), thus the 'rq' on its stack
2692 * frame will be invalid.
2694 finish_task_switch(this_rq(), prev
);
2698 * nr_running, nr_uninterruptible and nr_context_switches:
2700 * externally visible scheduler statistics: current number of runnable
2701 * threads, current number of uninterruptible-sleeping threads, total
2702 * number of context switches performed since bootup.
2704 unsigned long nr_running(void)
2706 unsigned long i
, sum
= 0;
2708 for_each_online_cpu(i
)
2709 sum
+= cpu_rq(i
)->nr_running
;
2714 unsigned long nr_uninterruptible(void)
2716 unsigned long i
, sum
= 0;
2718 for_each_possible_cpu(i
)
2719 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2722 * Since we read the counters lockless, it might be slightly
2723 * inaccurate. Do not allow it to go below zero though:
2725 if (unlikely((long)sum
< 0))
2731 unsigned long long nr_context_switches(void)
2734 unsigned long long sum
= 0;
2736 for_each_possible_cpu(i
)
2737 sum
+= cpu_rq(i
)->nr_switches
;
2742 unsigned long nr_iowait(void)
2744 unsigned long i
, sum
= 0;
2746 for_each_possible_cpu(i
)
2747 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2752 unsigned long nr_active(void)
2754 unsigned long i
, running
= 0, uninterruptible
= 0;
2756 for_each_online_cpu(i
) {
2757 running
+= cpu_rq(i
)->nr_running
;
2758 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
2761 if (unlikely((long)uninterruptible
< 0))
2762 uninterruptible
= 0;
2764 return running
+ uninterruptible
;
2768 * Update rq->cpu_load[] statistics. This function is usually called every
2769 * scheduler tick (TICK_NSEC).
2771 static void update_cpu_load(struct rq
*this_rq
)
2773 unsigned long this_load
= this_rq
->load
.weight
;
2776 this_rq
->nr_load_updates
++;
2778 /* Update our load: */
2779 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
2780 unsigned long old_load
, new_load
;
2782 /* scale is effectively 1 << i now, and >> i divides by scale */
2784 old_load
= this_rq
->cpu_load
[i
];
2785 new_load
= this_load
;
2787 * Round up the averaging division if load is increasing. This
2788 * prevents us from getting stuck on 9 if the load is 10, for
2791 if (new_load
> old_load
)
2792 new_load
+= scale
-1;
2793 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2800 * double_rq_lock - safely lock two runqueues
2802 * Note this does not disable interrupts like task_rq_lock,
2803 * you need to do so manually before calling.
2805 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2806 __acquires(rq1
->lock
)
2807 __acquires(rq2
->lock
)
2809 BUG_ON(!irqs_disabled());
2811 spin_lock(&rq1
->lock
);
2812 __acquire(rq2
->lock
); /* Fake it out ;) */
2815 spin_lock(&rq1
->lock
);
2816 spin_lock(&rq2
->lock
);
2818 spin_lock(&rq2
->lock
);
2819 spin_lock(&rq1
->lock
);
2822 update_rq_clock(rq1
);
2823 update_rq_clock(rq2
);
2827 * double_rq_unlock - safely unlock two runqueues
2829 * Note this does not restore interrupts like task_rq_unlock,
2830 * you need to do so manually after calling.
2832 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2833 __releases(rq1
->lock
)
2834 __releases(rq2
->lock
)
2836 spin_unlock(&rq1
->lock
);
2838 spin_unlock(&rq2
->lock
);
2840 __release(rq2
->lock
);
2844 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2846 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2847 __releases(this_rq
->lock
)
2848 __acquires(busiest
->lock
)
2849 __acquires(this_rq
->lock
)
2853 if (unlikely(!irqs_disabled())) {
2854 /* printk() doesn't work good under rq->lock */
2855 spin_unlock(&this_rq
->lock
);
2858 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2859 if (busiest
< this_rq
) {
2860 spin_unlock(&this_rq
->lock
);
2861 spin_lock(&busiest
->lock
);
2862 spin_lock(&this_rq
->lock
);
2865 spin_lock(&busiest
->lock
);
2871 * If dest_cpu is allowed for this process, migrate the task to it.
2872 * This is accomplished by forcing the cpu_allowed mask to only
2873 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2874 * the cpu_allowed mask is restored.
2876 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2878 struct migration_req req
;
2879 unsigned long flags
;
2882 rq
= task_rq_lock(p
, &flags
);
2883 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2884 || unlikely(cpu_is_offline(dest_cpu
)))
2887 /* force the process onto the specified CPU */
2888 if (migrate_task(p
, dest_cpu
, &req
)) {
2889 /* Need to wait for migration thread (might exit: take ref). */
2890 struct task_struct
*mt
= rq
->migration_thread
;
2892 get_task_struct(mt
);
2893 task_rq_unlock(rq
, &flags
);
2894 wake_up_process(mt
);
2895 put_task_struct(mt
);
2896 wait_for_completion(&req
.done
);
2901 task_rq_unlock(rq
, &flags
);
2905 * sched_exec - execve() is a valuable balancing opportunity, because at
2906 * this point the task has the smallest effective memory and cache footprint.
2908 void sched_exec(void)
2910 int new_cpu
, this_cpu
= get_cpu();
2911 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2913 if (new_cpu
!= this_cpu
)
2914 sched_migrate_task(current
, new_cpu
);
2918 * pull_task - move a task from a remote runqueue to the local runqueue.
2919 * Both runqueues must be locked.
2921 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2922 struct rq
*this_rq
, int this_cpu
)
2924 deactivate_task(src_rq
, p
, 0);
2925 set_task_cpu(p
, this_cpu
);
2926 activate_task(this_rq
, p
, 0);
2928 * Note that idle threads have a prio of MAX_PRIO, for this test
2929 * to be always true for them.
2931 check_preempt_curr(this_rq
, p
);
2935 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2938 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2939 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2943 * We do not migrate tasks that are:
2944 * 1) running (obviously), or
2945 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2946 * 3) are cache-hot on their current CPU.
2948 if (!cpu_isset(this_cpu
, p
->cpus_allowed
)) {
2949 schedstat_inc(p
, se
.nr_failed_migrations_affine
);
2954 if (task_running(rq
, p
)) {
2955 schedstat_inc(p
, se
.nr_failed_migrations_running
);
2960 * Aggressive migration if:
2961 * 1) task is cache cold, or
2962 * 2) too many balance attempts have failed.
2965 if (!task_hot(p
, rq
->clock
, sd
) ||
2966 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2967 #ifdef CONFIG_SCHEDSTATS
2968 if (task_hot(p
, rq
->clock
, sd
)) {
2969 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2970 schedstat_inc(p
, se
.nr_forced_migrations
);
2976 if (task_hot(p
, rq
->clock
, sd
)) {
2977 schedstat_inc(p
, se
.nr_failed_migrations_hot
);
2983 static unsigned long
2984 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2985 unsigned long max_load_move
, struct sched_domain
*sd
,
2986 enum cpu_idle_type idle
, int *all_pinned
,
2987 int *this_best_prio
, struct rq_iterator
*iterator
)
2989 int loops
= 0, pulled
= 0, pinned
= 0;
2990 struct task_struct
*p
;
2991 long rem_load_move
= max_load_move
;
2993 if (max_load_move
== 0)
2999 * Start the load-balancing iterator:
3001 p
= iterator
->start(iterator
->arg
);
3003 if (!p
|| loops
++ > sysctl_sched_nr_migrate
)
3006 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
3007 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3008 p
= iterator
->next(iterator
->arg
);
3012 pull_task(busiest
, p
, this_rq
, this_cpu
);
3014 rem_load_move
-= p
->se
.load
.weight
;
3017 * We only want to steal up to the prescribed amount of weighted load.
3019 if (rem_load_move
> 0) {
3020 if (p
->prio
< *this_best_prio
)
3021 *this_best_prio
= p
->prio
;
3022 p
= iterator
->next(iterator
->arg
);
3027 * Right now, this is one of only two places pull_task() is called,
3028 * so we can safely collect pull_task() stats here rather than
3029 * inside pull_task().
3031 schedstat_add(sd
, lb_gained
[idle
], pulled
);
3034 *all_pinned
= pinned
;
3036 return max_load_move
- rem_load_move
;
3040 * move_tasks tries to move up to max_load_move weighted load from busiest to
3041 * this_rq, as part of a balancing operation within domain "sd".
3042 * Returns 1 if successful and 0 otherwise.
3044 * Called with both runqueues locked.
3046 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3047 unsigned long max_load_move
,
3048 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3051 const struct sched_class
*class = sched_class_highest
;
3052 unsigned long total_load_moved
= 0;
3053 int this_best_prio
= this_rq
->curr
->prio
;
3057 class->load_balance(this_rq
, this_cpu
, busiest
,
3058 max_load_move
- total_load_moved
,
3059 sd
, idle
, all_pinned
, &this_best_prio
);
3060 class = class->next
;
3062 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
3065 } while (class && max_load_move
> total_load_moved
);
3067 return total_load_moved
> 0;
3071 iter_move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3072 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3073 struct rq_iterator
*iterator
)
3075 struct task_struct
*p
= iterator
->start(iterator
->arg
);
3079 if (can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
3080 pull_task(busiest
, p
, this_rq
, this_cpu
);
3082 * Right now, this is only the second place pull_task()
3083 * is called, so we can safely collect pull_task()
3084 * stats here rather than inside pull_task().
3086 schedstat_inc(sd
, lb_gained
[idle
]);
3090 p
= iterator
->next(iterator
->arg
);
3097 * move_one_task tries to move exactly one task from busiest to this_rq, as
3098 * part of active balancing operations within "domain".
3099 * Returns 1 if successful and 0 otherwise.
3101 * Called with both runqueues locked.
3103 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3104 struct sched_domain
*sd
, enum cpu_idle_type idle
)
3106 const struct sched_class
*class;
3108 for (class = sched_class_highest
; class; class = class->next
)
3109 if (class->move_one_task(this_rq
, this_cpu
, busiest
, sd
, idle
))
3116 * find_busiest_group finds and returns the busiest CPU group within the
3117 * domain. It calculates and returns the amount of weighted load which
3118 * should be moved to restore balance via the imbalance parameter.
3120 static struct sched_group
*
3121 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3122 unsigned long *imbalance
, enum cpu_idle_type idle
,
3123 int *sd_idle
, const cpumask_t
*cpus
, int *balance
)
3125 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
3126 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
3127 unsigned long max_pull
;
3128 unsigned long busiest_load_per_task
, busiest_nr_running
;
3129 unsigned long this_load_per_task
, this_nr_running
;
3130 int load_idx
, group_imb
= 0;
3131 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3132 int power_savings_balance
= 1;
3133 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
3134 unsigned long min_nr_running
= ULONG_MAX
;
3135 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
3138 max_load
= this_load
= total_load
= total_pwr
= 0;
3139 busiest_load_per_task
= busiest_nr_running
= 0;
3140 this_load_per_task
= this_nr_running
= 0;
3142 if (idle
== CPU_NOT_IDLE
)
3143 load_idx
= sd
->busy_idx
;
3144 else if (idle
== CPU_NEWLY_IDLE
)
3145 load_idx
= sd
->newidle_idx
;
3147 load_idx
= sd
->idle_idx
;
3150 unsigned long load
, group_capacity
, max_cpu_load
, min_cpu_load
;
3153 int __group_imb
= 0;
3154 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
3155 unsigned long sum_nr_running
, sum_weighted_load
;
3156 unsigned long sum_avg_load_per_task
;
3157 unsigned long avg_load_per_task
;
3159 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
3162 balance_cpu
= first_cpu(group
->cpumask
);
3164 /* Tally up the load of all CPUs in the group */
3165 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
3166 sum_avg_load_per_task
= avg_load_per_task
= 0;
3169 min_cpu_load
= ~0UL;
3171 for_each_cpu_mask(i
, group
->cpumask
) {
3174 if (!cpu_isset(i
, *cpus
))
3179 if (*sd_idle
&& rq
->nr_running
)
3182 /* Bias balancing toward cpus of our domain */
3184 if (idle_cpu(i
) && !first_idle_cpu
) {
3189 load
= target_load(i
, load_idx
);
3191 load
= source_load(i
, load_idx
);
3192 if (load
> max_cpu_load
)
3193 max_cpu_load
= load
;
3194 if (min_cpu_load
> load
)
3195 min_cpu_load
= load
;
3199 sum_nr_running
+= rq
->nr_running
;
3200 sum_weighted_load
+= weighted_cpuload(i
);
3202 sum_avg_load_per_task
+= cpu_avg_load_per_task(i
);
3206 * First idle cpu or the first cpu(busiest) in this sched group
3207 * is eligible for doing load balancing at this and above
3208 * domains. In the newly idle case, we will allow all the cpu's
3209 * to do the newly idle load balance.
3211 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
3212 balance_cpu
!= this_cpu
&& balance
) {
3217 total_load
+= avg_load
;
3218 total_pwr
+= group
->__cpu_power
;
3220 /* Adjust by relative CPU power of the group */
3221 avg_load
= sg_div_cpu_power(group
,
3222 avg_load
* SCHED_LOAD_SCALE
);
3226 * Consider the group unbalanced when the imbalance is larger
3227 * than the average weight of two tasks.
3229 * APZ: with cgroup the avg task weight can vary wildly and
3230 * might not be a suitable number - should we keep a
3231 * normalized nr_running number somewhere that negates
3234 avg_load_per_task
= sg_div_cpu_power(group
,
3235 sum_avg_load_per_task
* SCHED_LOAD_SCALE
);
3237 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
3240 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
3243 this_load
= avg_load
;
3245 this_nr_running
= sum_nr_running
;
3246 this_load_per_task
= sum_weighted_load
;
3247 } else if (avg_load
> max_load
&&
3248 (sum_nr_running
> group_capacity
|| __group_imb
)) {
3249 max_load
= avg_load
;
3251 busiest_nr_running
= sum_nr_running
;
3252 busiest_load_per_task
= sum_weighted_load
;
3253 group_imb
= __group_imb
;
3256 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3258 * Busy processors will not participate in power savings
3261 if (idle
== CPU_NOT_IDLE
||
3262 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3266 * If the local group is idle or completely loaded
3267 * no need to do power savings balance at this domain
3269 if (local_group
&& (this_nr_running
>= group_capacity
||
3271 power_savings_balance
= 0;
3274 * If a group is already running at full capacity or idle,
3275 * don't include that group in power savings calculations
3277 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
3282 * Calculate the group which has the least non-idle load.
3283 * This is the group from where we need to pick up the load
3286 if ((sum_nr_running
< min_nr_running
) ||
3287 (sum_nr_running
== min_nr_running
&&
3288 first_cpu(group
->cpumask
) <
3289 first_cpu(group_min
->cpumask
))) {
3291 min_nr_running
= sum_nr_running
;
3292 min_load_per_task
= sum_weighted_load
/
3297 * Calculate the group which is almost near its
3298 * capacity but still has some space to pick up some load
3299 * from other group and save more power
3301 if (sum_nr_running
<= group_capacity
- 1) {
3302 if (sum_nr_running
> leader_nr_running
||
3303 (sum_nr_running
== leader_nr_running
&&
3304 first_cpu(group
->cpumask
) >
3305 first_cpu(group_leader
->cpumask
))) {
3306 group_leader
= group
;
3307 leader_nr_running
= sum_nr_running
;
3312 group
= group
->next
;
3313 } while (group
!= sd
->groups
);
3315 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
3318 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
3320 if (this_load
>= avg_load
||
3321 100*max_load
<= sd
->imbalance_pct
*this_load
)
3324 busiest_load_per_task
/= busiest_nr_running
;
3326 busiest_load_per_task
= min(busiest_load_per_task
, avg_load
);
3329 * We're trying to get all the cpus to the average_load, so we don't
3330 * want to push ourselves above the average load, nor do we wish to
3331 * reduce the max loaded cpu below the average load, as either of these
3332 * actions would just result in more rebalancing later, and ping-pong
3333 * tasks around. Thus we look for the minimum possible imbalance.
3334 * Negative imbalances (*we* are more loaded than anyone else) will
3335 * be counted as no imbalance for these purposes -- we can't fix that
3336 * by pulling tasks to us. Be careful of negative numbers as they'll
3337 * appear as very large values with unsigned longs.
3339 if (max_load
<= busiest_load_per_task
)
3343 * In the presence of smp nice balancing, certain scenarios can have
3344 * max load less than avg load(as we skip the groups at or below
3345 * its cpu_power, while calculating max_load..)
3347 if (max_load
< avg_load
) {
3349 goto small_imbalance
;
3352 /* Don't want to pull so many tasks that a group would go idle */
3353 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
3355 /* How much load to actually move to equalise the imbalance */
3356 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
3357 (avg_load
- this_load
) * this->__cpu_power
)
3361 * if *imbalance is less than the average load per runnable task
3362 * there is no gaurantee that any tasks will be moved so we'll have
3363 * a think about bumping its value to force at least one task to be
3366 if (*imbalance
< busiest_load_per_task
) {
3367 unsigned long tmp
, pwr_now
, pwr_move
;
3371 pwr_move
= pwr_now
= 0;
3373 if (this_nr_running
) {
3374 this_load_per_task
/= this_nr_running
;
3375 if (busiest_load_per_task
> this_load_per_task
)
3378 this_load_per_task
= cpu_avg_load_per_task(this_cpu
);
3380 if (max_load
- this_load
+ 2*busiest_load_per_task
>=
3381 busiest_load_per_task
* imbn
) {
3382 *imbalance
= busiest_load_per_task
;
3387 * OK, we don't have enough imbalance to justify moving tasks,
3388 * however we may be able to increase total CPU power used by
3392 pwr_now
+= busiest
->__cpu_power
*
3393 min(busiest_load_per_task
, max_load
);
3394 pwr_now
+= this->__cpu_power
*
3395 min(this_load_per_task
, this_load
);
3396 pwr_now
/= SCHED_LOAD_SCALE
;
3398 /* Amount of load we'd subtract */
3399 tmp
= sg_div_cpu_power(busiest
,
3400 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3402 pwr_move
+= busiest
->__cpu_power
*
3403 min(busiest_load_per_task
, max_load
- tmp
);
3405 /* Amount of load we'd add */
3406 if (max_load
* busiest
->__cpu_power
<
3407 busiest_load_per_task
* SCHED_LOAD_SCALE
)
3408 tmp
= sg_div_cpu_power(this,
3409 max_load
* busiest
->__cpu_power
);
3411 tmp
= sg_div_cpu_power(this,
3412 busiest_load_per_task
* SCHED_LOAD_SCALE
);
3413 pwr_move
+= this->__cpu_power
*
3414 min(this_load_per_task
, this_load
+ tmp
);
3415 pwr_move
/= SCHED_LOAD_SCALE
;
3417 /* Move if we gain throughput */
3418 if (pwr_move
> pwr_now
)
3419 *imbalance
= busiest_load_per_task
;
3425 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3426 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
3429 if (this == group_leader
&& group_leader
!= group_min
) {
3430 *imbalance
= min_load_per_task
;
3440 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3443 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
3444 unsigned long imbalance
, const cpumask_t
*cpus
)
3446 struct rq
*busiest
= NULL
, *rq
;
3447 unsigned long max_load
= 0;
3450 for_each_cpu_mask(i
, group
->cpumask
) {
3453 if (!cpu_isset(i
, *cpus
))
3457 wl
= weighted_cpuload(i
);
3459 if (rq
->nr_running
== 1 && wl
> imbalance
)
3462 if (wl
> max_load
) {
3472 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3473 * so long as it is large enough.
3475 #define MAX_PINNED_INTERVAL 512
3478 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3479 * tasks if there is an imbalance.
3481 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3482 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3483 int *balance
, cpumask_t
*cpus
)
3485 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
3486 struct sched_group
*group
;
3487 unsigned long imbalance
;
3489 unsigned long flags
;
3494 * When power savings policy is enabled for the parent domain, idle
3495 * sibling can pick up load irrespective of busy siblings. In this case,
3496 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3497 * portraying it as CPU_NOT_IDLE.
3499 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3500 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3503 schedstat_inc(sd
, lb_count
[idle
]);
3507 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
3514 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3518 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
3520 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3524 BUG_ON(busiest
== this_rq
);
3526 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3529 if (busiest
->nr_running
> 1) {
3531 * Attempt to move tasks. If find_busiest_group has found
3532 * an imbalance but busiest->nr_running <= 1, the group is
3533 * still unbalanced. ld_moved simply stays zero, so it is
3534 * correctly treated as an imbalance.
3536 local_irq_save(flags
);
3537 double_rq_lock(this_rq
, busiest
);
3538 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3539 imbalance
, sd
, idle
, &all_pinned
);
3540 double_rq_unlock(this_rq
, busiest
);
3541 local_irq_restore(flags
);
3544 * some other cpu did the load balance for us.
3546 if (ld_moved
&& this_cpu
!= smp_processor_id())
3547 resched_cpu(this_cpu
);
3549 /* All tasks on this runqueue were pinned by CPU affinity */
3550 if (unlikely(all_pinned
)) {
3551 cpu_clear(cpu_of(busiest
), *cpus
);
3552 if (!cpus_empty(*cpus
))
3559 schedstat_inc(sd
, lb_failed
[idle
]);
3560 sd
->nr_balance_failed
++;
3562 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
3564 spin_lock_irqsave(&busiest
->lock
, flags
);
3566 /* don't kick the migration_thread, if the curr
3567 * task on busiest cpu can't be moved to this_cpu
3569 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
3570 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3572 goto out_one_pinned
;
3575 if (!busiest
->active_balance
) {
3576 busiest
->active_balance
= 1;
3577 busiest
->push_cpu
= this_cpu
;
3580 spin_unlock_irqrestore(&busiest
->lock
, flags
);
3582 wake_up_process(busiest
->migration_thread
);
3585 * We've kicked active balancing, reset the failure
3588 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3591 sd
->nr_balance_failed
= 0;
3593 if (likely(!active_balance
)) {
3594 /* We were unbalanced, so reset the balancing interval */
3595 sd
->balance_interval
= sd
->min_interval
;
3598 * If we've begun active balancing, start to back off. This
3599 * case may not be covered by the all_pinned logic if there
3600 * is only 1 task on the busy runqueue (because we don't call
3603 if (sd
->balance_interval
< sd
->max_interval
)
3604 sd
->balance_interval
*= 2;
3607 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3608 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3614 schedstat_inc(sd
, lb_balanced
[idle
]);
3616 sd
->nr_balance_failed
= 0;
3619 /* tune up the balancing interval */
3620 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3621 (sd
->balance_interval
< sd
->max_interval
))
3622 sd
->balance_interval
*= 2;
3624 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3625 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3636 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3637 * tasks if there is an imbalance.
3639 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3640 * this_rq is locked.
3643 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
,
3646 struct sched_group
*group
;
3647 struct rq
*busiest
= NULL
;
3648 unsigned long imbalance
;
3656 * When power savings policy is enabled for the parent domain, idle
3657 * sibling can pick up load irrespective of busy siblings. In this case,
3658 * let the state of idle sibling percolate up as IDLE, instead of
3659 * portraying it as CPU_NOT_IDLE.
3661 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
3662 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3665 schedstat_inc(sd
, lb_count
[CPU_NEWLY_IDLE
]);
3667 update_shares_locked(this_rq
, sd
);
3668 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
3669 &sd_idle
, cpus
, NULL
);
3671 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
3675 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
, cpus
);
3677 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
3681 BUG_ON(busiest
== this_rq
);
3683 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
3686 if (busiest
->nr_running
> 1) {
3687 /* Attempt to move tasks */
3688 double_lock_balance(this_rq
, busiest
);
3689 /* this_rq->clock is already updated */
3690 update_rq_clock(busiest
);
3691 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3692 imbalance
, sd
, CPU_NEWLY_IDLE
,
3694 spin_unlock(&busiest
->lock
);
3696 if (unlikely(all_pinned
)) {
3697 cpu_clear(cpu_of(busiest
), *cpus
);
3698 if (!cpus_empty(*cpus
))
3704 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
3705 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3706 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3709 sd
->nr_balance_failed
= 0;
3711 update_shares_locked(this_rq
, sd
);
3715 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
3716 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
3717 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
3719 sd
->nr_balance_failed
= 0;
3725 * idle_balance is called by schedule() if this_cpu is about to become
3726 * idle. Attempts to pull tasks from other CPUs.
3728 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3730 struct sched_domain
*sd
;
3731 int pulled_task
= -1;
3732 unsigned long next_balance
= jiffies
+ HZ
;
3735 for_each_domain(this_cpu
, sd
) {
3736 unsigned long interval
;
3738 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3741 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
3742 /* If we've pulled tasks over stop searching: */
3743 pulled_task
= load_balance_newidle(this_cpu
, this_rq
,
3746 interval
= msecs_to_jiffies(sd
->balance_interval
);
3747 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3748 next_balance
= sd
->last_balance
+ interval
;
3752 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3754 * We are going idle. next_balance may be set based on
3755 * a busy processor. So reset next_balance.
3757 this_rq
->next_balance
= next_balance
;
3762 * active_load_balance is run by migration threads. It pushes running tasks
3763 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3764 * running on each physical CPU where possible, and avoids physical /
3765 * logical imbalances.
3767 * Called with busiest_rq locked.
3769 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
3771 int target_cpu
= busiest_rq
->push_cpu
;
3772 struct sched_domain
*sd
;
3773 struct rq
*target_rq
;
3775 /* Is there any task to move? */
3776 if (busiest_rq
->nr_running
<= 1)
3779 target_rq
= cpu_rq(target_cpu
);
3782 * This condition is "impossible", if it occurs
3783 * we need to fix it. Originally reported by
3784 * Bjorn Helgaas on a 128-cpu setup.
3786 BUG_ON(busiest_rq
== target_rq
);
3788 /* move a task from busiest_rq to target_rq */
3789 double_lock_balance(busiest_rq
, target_rq
);
3790 update_rq_clock(busiest_rq
);
3791 update_rq_clock(target_rq
);
3793 /* Search for an sd spanning us and the target CPU. */
3794 for_each_domain(target_cpu
, sd
) {
3795 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3796 cpu_isset(busiest_cpu
, sd
->span
))
3801 schedstat_inc(sd
, alb_count
);
3803 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3805 schedstat_inc(sd
, alb_pushed
);
3807 schedstat_inc(sd
, alb_failed
);
3809 spin_unlock(&target_rq
->lock
);
3814 atomic_t load_balancer
;
3816 } nohz ____cacheline_aligned
= {
3817 .load_balancer
= ATOMIC_INIT(-1),
3818 .cpu_mask
= CPU_MASK_NONE
,
3822 * This routine will try to nominate the ilb (idle load balancing)
3823 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3824 * load balancing on behalf of all those cpus. If all the cpus in the system
3825 * go into this tickless mode, then there will be no ilb owner (as there is
3826 * no need for one) and all the cpus will sleep till the next wakeup event
3829 * For the ilb owner, tick is not stopped. And this tick will be used
3830 * for idle load balancing. ilb owner will still be part of
3833 * While stopping the tick, this cpu will become the ilb owner if there
3834 * is no other owner. And will be the owner till that cpu becomes busy
3835 * or if all cpus in the system stop their ticks at which point
3836 * there is no need for ilb owner.
3838 * When the ilb owner becomes busy, it nominates another owner, during the
3839 * next busy scheduler_tick()
3841 int select_nohz_load_balancer(int stop_tick
)
3843 int cpu
= smp_processor_id();
3846 cpu_set(cpu
, nohz
.cpu_mask
);
3847 cpu_rq(cpu
)->in_nohz_recently
= 1;
3850 * If we are going offline and still the leader, give up!
3852 if (cpu_is_offline(cpu
) &&
3853 atomic_read(&nohz
.load_balancer
) == cpu
) {
3854 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3859 /* time for ilb owner also to sleep */
3860 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3861 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3862 atomic_set(&nohz
.load_balancer
, -1);
3866 if (atomic_read(&nohz
.load_balancer
) == -1) {
3867 /* make me the ilb owner */
3868 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3870 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
3873 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
3876 cpu_clear(cpu
, nohz
.cpu_mask
);
3878 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3879 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3886 static DEFINE_SPINLOCK(balancing
);
3889 * It checks each scheduling domain to see if it is due to be balanced,
3890 * and initiates a balancing operation if so.
3892 * Balancing parameters are set up in arch_init_sched_domains.
3894 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3897 struct rq
*rq
= cpu_rq(cpu
);
3898 unsigned long interval
;
3899 struct sched_domain
*sd
;
3900 /* Earliest time when we have to do rebalance again */
3901 unsigned long next_balance
= jiffies
+ 60*HZ
;
3902 int update_next_balance
= 0;
3906 for_each_domain(cpu
, sd
) {
3907 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3910 interval
= sd
->balance_interval
;
3911 if (idle
!= CPU_IDLE
)
3912 interval
*= sd
->busy_factor
;
3914 /* scale ms to jiffies */
3915 interval
= msecs_to_jiffies(interval
);
3916 if (unlikely(!interval
))
3918 if (interval
> HZ
*NR_CPUS
/10)
3919 interval
= HZ
*NR_CPUS
/10;
3921 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3923 if (need_serialize
) {
3924 if (!spin_trylock(&balancing
))
3928 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3929 if (load_balance(cpu
, rq
, sd
, idle
, &balance
, &tmp
)) {
3931 * We've pulled tasks over so either we're no
3932 * longer idle, or one of our SMT siblings is
3935 idle
= CPU_NOT_IDLE
;
3937 sd
->last_balance
= jiffies
;
3940 spin_unlock(&balancing
);
3942 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3943 next_balance
= sd
->last_balance
+ interval
;
3944 update_next_balance
= 1;
3948 * Stop the load balance at this level. There is another
3949 * CPU in our sched group which is doing load balancing more
3957 * next_balance will be updated only when there is a need.
3958 * When the cpu is attached to null domain for ex, it will not be
3961 if (likely(update_next_balance
))
3962 rq
->next_balance
= next_balance
;
3966 * run_rebalance_domains is triggered when needed from the scheduler tick.
3967 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3968 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3970 static void run_rebalance_domains(struct softirq_action
*h
)
3972 int this_cpu
= smp_processor_id();
3973 struct rq
*this_rq
= cpu_rq(this_cpu
);
3974 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3975 CPU_IDLE
: CPU_NOT_IDLE
;
3977 rebalance_domains(this_cpu
, idle
);
3981 * If this cpu is the owner for idle load balancing, then do the
3982 * balancing on behalf of the other idle cpus whose ticks are
3985 if (this_rq
->idle_at_tick
&&
3986 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3987 cpumask_t cpus
= nohz
.cpu_mask
;
3991 cpu_clear(this_cpu
, cpus
);
3992 for_each_cpu_mask(balance_cpu
, cpus
) {
3994 * If this cpu gets work to do, stop the load balancing
3995 * work being done for other cpus. Next load
3996 * balancing owner will pick it up.
4001 rebalance_domains(balance_cpu
, CPU_IDLE
);
4003 rq
= cpu_rq(balance_cpu
);
4004 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
4005 this_rq
->next_balance
= rq
->next_balance
;
4012 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4014 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4015 * idle load balancing owner or decide to stop the periodic load balancing,
4016 * if the whole system is idle.
4018 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4022 * If we were in the nohz mode recently and busy at the current
4023 * scheduler tick, then check if we need to nominate new idle
4026 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
4027 rq
->in_nohz_recently
= 0;
4029 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
4030 cpu_clear(cpu
, nohz
.cpu_mask
);
4031 atomic_set(&nohz
.load_balancer
, -1);
4034 if (atomic_read(&nohz
.load_balancer
) == -1) {
4036 * simple selection for now: Nominate the
4037 * first cpu in the nohz list to be the next
4040 * TBD: Traverse the sched domains and nominate
4041 * the nearest cpu in the nohz.cpu_mask.
4043 int ilb
= first_cpu(nohz
.cpu_mask
);
4045 if (ilb
< nr_cpu_ids
)
4051 * If this cpu is idle and doing idle load balancing for all the
4052 * cpus with ticks stopped, is it time for that to stop?
4054 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
4055 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
4061 * If this cpu is idle and the idle load balancing is done by
4062 * someone else, then no need raise the SCHED_SOFTIRQ
4064 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
4065 cpu_isset(cpu
, nohz
.cpu_mask
))
4068 if (time_after_eq(jiffies
, rq
->next_balance
))
4069 raise_softirq(SCHED_SOFTIRQ
);
4072 #else /* CONFIG_SMP */
4075 * on UP we do not need to balance between CPUs:
4077 static inline void idle_balance(int cpu
, struct rq
*rq
)
4083 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
4085 EXPORT_PER_CPU_SYMBOL(kstat
);
4088 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4089 * that have not yet been banked in case the task is currently running.
4091 unsigned long long task_sched_runtime(struct task_struct
*p
)
4093 unsigned long flags
;
4097 rq
= task_rq_lock(p
, &flags
);
4098 ns
= p
->se
.sum_exec_runtime
;
4099 if (task_current(rq
, p
)) {
4100 update_rq_clock(rq
);
4101 delta_exec
= rq
->clock
- p
->se
.exec_start
;
4102 if ((s64
)delta_exec
> 0)
4105 task_rq_unlock(rq
, &flags
);
4111 * Account user cpu time to a process.
4112 * @p: the process that the cpu time gets accounted to
4113 * @cputime: the cpu time spent in user space since the last update
4115 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
4117 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4120 p
->utime
= cputime_add(p
->utime
, cputime
);
4122 /* Add user time to cpustat. */
4123 tmp
= cputime_to_cputime64(cputime
);
4124 if (TASK_NICE(p
) > 0)
4125 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
4127 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4131 * Account guest cpu time to a process.
4132 * @p: the process that the cpu time gets accounted to
4133 * @cputime: the cpu time spent in virtual machine since the last update
4135 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
)
4138 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4140 tmp
= cputime_to_cputime64(cputime
);
4142 p
->utime
= cputime_add(p
->utime
, cputime
);
4143 p
->gtime
= cputime_add(p
->gtime
, cputime
);
4145 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
4146 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
4150 * Account scaled user cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @cputime: the cpu time spent in user space since the last update
4154 void account_user_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4156 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime
);
4160 * Account system cpu time to a process.
4161 * @p: the process that the cpu time gets accounted to
4162 * @hardirq_offset: the offset to subtract from hardirq_count()
4163 * @cputime: the cpu time spent in kernel space since the last update
4165 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
4168 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4169 struct rq
*rq
= this_rq();
4172 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
4173 account_guest_time(p
, cputime
);
4177 p
->stime
= cputime_add(p
->stime
, cputime
);
4179 /* Add system time to cpustat. */
4180 tmp
= cputime_to_cputime64(cputime
);
4181 if (hardirq_count() - hardirq_offset
)
4182 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
4183 else if (softirq_count())
4184 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
4185 else if (p
!= rq
->idle
)
4186 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
4187 else if (atomic_read(&rq
->nr_iowait
) > 0)
4188 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4190 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4191 /* Account for system time used */
4192 acct_update_integrals(p
);
4196 * Account scaled system cpu time to a process.
4197 * @p: the process that the cpu time gets accounted to
4198 * @hardirq_offset: the offset to subtract from hardirq_count()
4199 * @cputime: the cpu time spent in kernel space since the last update
4201 void account_system_time_scaled(struct task_struct
*p
, cputime_t cputime
)
4203 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime
);
4207 * Account for involuntary wait time.
4208 * @p: the process from which the cpu time has been stolen
4209 * @steal: the cpu time spent in involuntary wait
4211 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
4213 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
4214 cputime64_t tmp
= cputime_to_cputime64(steal
);
4215 struct rq
*rq
= this_rq();
4217 if (p
== rq
->idle
) {
4218 p
->stime
= cputime_add(p
->stime
, steal
);
4219 if (atomic_read(&rq
->nr_iowait
) > 0)
4220 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
4222 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
4224 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
4228 * This function gets called by the timer code, with HZ frequency.
4229 * We call it with interrupts disabled.
4231 * It also gets called by the fork code, when changing the parent's
4234 void scheduler_tick(void)
4236 int cpu
= smp_processor_id();
4237 struct rq
*rq
= cpu_rq(cpu
);
4238 struct task_struct
*curr
= rq
->curr
;
4242 spin_lock(&rq
->lock
);
4243 update_rq_clock(rq
);
4244 update_cpu_load(rq
);
4245 curr
->sched_class
->task_tick(rq
, curr
, 0);
4246 spin_unlock(&rq
->lock
);
4249 rq
->idle_at_tick
= idle_cpu(cpu
);
4250 trigger_load_balance(rq
, cpu
);
4254 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4255 defined(CONFIG_PREEMPT_TRACER))
4257 static inline unsigned long get_parent_ip(unsigned long addr
)
4259 if (in_lock_functions(addr
)) {
4260 addr
= CALLER_ADDR2
;
4261 if (in_lock_functions(addr
))
4262 addr
= CALLER_ADDR3
;
4267 void __kprobes
add_preempt_count(int val
)
4269 #ifdef CONFIG_DEBUG_PREEMPT
4273 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4276 preempt_count() += val
;
4277 #ifdef CONFIG_DEBUG_PREEMPT
4279 * Spinlock count overflowing soon?
4281 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4284 if (preempt_count() == val
)
4285 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4287 EXPORT_SYMBOL(add_preempt_count
);
4289 void __kprobes
sub_preempt_count(int val
)
4291 #ifdef CONFIG_DEBUG_PREEMPT
4295 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4298 * Is the spinlock portion underflowing?
4300 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4301 !(preempt_count() & PREEMPT_MASK
)))
4305 if (preempt_count() == val
)
4306 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4307 preempt_count() -= val
;
4309 EXPORT_SYMBOL(sub_preempt_count
);
4314 * Print scheduling while atomic bug:
4316 static noinline
void __schedule_bug(struct task_struct
*prev
)
4318 struct pt_regs
*regs
= get_irq_regs();
4320 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4321 prev
->comm
, prev
->pid
, preempt_count());
4323 debug_show_held_locks(prev
);
4325 if (irqs_disabled())
4326 print_irqtrace_events(prev
);
4335 * Various schedule()-time debugging checks and statistics:
4337 static inline void schedule_debug(struct task_struct
*prev
)
4340 * Test if we are atomic. Since do_exit() needs to call into
4341 * schedule() atomically, we ignore that path for now.
4342 * Otherwise, whine if we are scheduling when we should not be.
4344 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4345 __schedule_bug(prev
);
4347 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4349 schedstat_inc(this_rq(), sched_count
);
4350 #ifdef CONFIG_SCHEDSTATS
4351 if (unlikely(prev
->lock_depth
>= 0)) {
4352 schedstat_inc(this_rq(), bkl_count
);
4353 schedstat_inc(prev
, sched_info
.bkl_count
);
4359 * Pick up the highest-prio task:
4361 static inline struct task_struct
*
4362 pick_next_task(struct rq
*rq
, struct task_struct
*prev
)
4364 const struct sched_class
*class;
4365 struct task_struct
*p
;
4368 * Optimization: we know that if all tasks are in
4369 * the fair class we can call that function directly:
4371 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4372 p
= fair_sched_class
.pick_next_task(rq
);
4377 class = sched_class_highest
;
4379 p
= class->pick_next_task(rq
);
4383 * Will never be NULL as the idle class always
4384 * returns a non-NULL p:
4386 class = class->next
;
4391 * schedule() is the main scheduler function.
4393 asmlinkage
void __sched
schedule(void)
4395 struct task_struct
*prev
, *next
;
4396 unsigned long *switch_count
;
4398 int cpu
, hrtick
= sched_feat(HRTICK
);
4402 cpu
= smp_processor_id();
4406 switch_count
= &prev
->nivcsw
;
4408 release_kernel_lock(prev
);
4409 need_resched_nonpreemptible
:
4411 schedule_debug(prev
);
4417 * Do the rq-clock update outside the rq lock:
4419 local_irq_disable();
4420 update_rq_clock(rq
);
4421 spin_lock(&rq
->lock
);
4422 clear_tsk_need_resched(prev
);
4424 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4425 if (unlikely(signal_pending_state(prev
->state
, prev
)))
4426 prev
->state
= TASK_RUNNING
;
4428 deactivate_task(rq
, prev
, 1);
4429 switch_count
= &prev
->nvcsw
;
4433 if (prev
->sched_class
->pre_schedule
)
4434 prev
->sched_class
->pre_schedule(rq
, prev
);
4437 if (unlikely(!rq
->nr_running
))
4438 idle_balance(cpu
, rq
);
4440 prev
->sched_class
->put_prev_task(rq
, prev
);
4441 next
= pick_next_task(rq
, prev
);
4443 if (likely(prev
!= next
)) {
4444 sched_info_switch(prev
, next
);
4450 context_switch(rq
, prev
, next
); /* unlocks the rq */
4452 * the context switch might have flipped the stack from under
4453 * us, hence refresh the local variables.
4455 cpu
= smp_processor_id();
4458 spin_unlock_irq(&rq
->lock
);
4463 if (unlikely(reacquire_kernel_lock(current
) < 0))
4464 goto need_resched_nonpreemptible
;
4466 preempt_enable_no_resched();
4467 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
4470 EXPORT_SYMBOL(schedule
);
4472 #ifdef CONFIG_PREEMPT
4474 * this is the entry point to schedule() from in-kernel preemption
4475 * off of preempt_enable. Kernel preemptions off return from interrupt
4476 * occur there and call schedule directly.
4478 asmlinkage
void __sched
preempt_schedule(void)
4480 struct thread_info
*ti
= current_thread_info();
4483 * If there is a non-zero preempt_count or interrupts are disabled,
4484 * we do not want to preempt the current task. Just return..
4486 if (likely(ti
->preempt_count
|| irqs_disabled()))
4490 add_preempt_count(PREEMPT_ACTIVE
);
4492 sub_preempt_count(PREEMPT_ACTIVE
);
4495 * Check again in case we missed a preemption opportunity
4496 * between schedule and now.
4499 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4501 EXPORT_SYMBOL(preempt_schedule
);
4504 * this is the entry point to schedule() from kernel preemption
4505 * off of irq context.
4506 * Note, that this is called and return with irqs disabled. This will
4507 * protect us against recursive calling from irq.
4509 asmlinkage
void __sched
preempt_schedule_irq(void)
4511 struct thread_info
*ti
= current_thread_info();
4513 /* Catch callers which need to be fixed */
4514 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4517 add_preempt_count(PREEMPT_ACTIVE
);
4520 local_irq_disable();
4521 sub_preempt_count(PREEMPT_ACTIVE
);
4524 * Check again in case we missed a preemption opportunity
4525 * between schedule and now.
4528 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED
)));
4531 #endif /* CONFIG_PREEMPT */
4533 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
4536 return try_to_wake_up(curr
->private, mode
, sync
);
4538 EXPORT_SYMBOL(default_wake_function
);
4541 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4542 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4543 * number) then we wake all the non-exclusive tasks and one exclusive task.
4545 * There are circumstances in which we can try to wake a task which has already
4546 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4547 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4549 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4550 int nr_exclusive
, int sync
, void *key
)
4552 wait_queue_t
*curr
, *next
;
4554 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4555 unsigned flags
= curr
->flags
;
4557 if (curr
->func(curr
, mode
, sync
, key
) &&
4558 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4564 * __wake_up - wake up threads blocked on a waitqueue.
4566 * @mode: which threads
4567 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4568 * @key: is directly passed to the wakeup function
4570 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4571 int nr_exclusive
, void *key
)
4573 unsigned long flags
;
4575 spin_lock_irqsave(&q
->lock
, flags
);
4576 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4577 spin_unlock_irqrestore(&q
->lock
, flags
);
4579 EXPORT_SYMBOL(__wake_up
);
4582 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4584 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4586 __wake_up_common(q
, mode
, 1, 0, NULL
);
4590 * __wake_up_sync - wake up threads blocked on a waitqueue.
4592 * @mode: which threads
4593 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4595 * The sync wakeup differs that the waker knows that it will schedule
4596 * away soon, so while the target thread will be woken up, it will not
4597 * be migrated to another CPU - ie. the two threads are 'synchronized'
4598 * with each other. This can prevent needless bouncing between CPUs.
4600 * On UP it can prevent extra preemption.
4603 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4605 unsigned long flags
;
4611 if (unlikely(!nr_exclusive
))
4614 spin_lock_irqsave(&q
->lock
, flags
);
4615 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
4616 spin_unlock_irqrestore(&q
->lock
, flags
);
4618 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4620 void complete(struct completion
*x
)
4622 unsigned long flags
;
4624 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4626 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4627 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4629 EXPORT_SYMBOL(complete
);
4631 void complete_all(struct completion
*x
)
4633 unsigned long flags
;
4635 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4636 x
->done
+= UINT_MAX
/2;
4637 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4638 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4640 EXPORT_SYMBOL(complete_all
);
4642 static inline long __sched
4643 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4646 DECLARE_WAITQUEUE(wait
, current
);
4648 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
4649 __add_wait_queue_tail(&x
->wait
, &wait
);
4651 if ((state
== TASK_INTERRUPTIBLE
&&
4652 signal_pending(current
)) ||
4653 (state
== TASK_KILLABLE
&&
4654 fatal_signal_pending(current
))) {
4655 timeout
= -ERESTARTSYS
;
4658 __set_current_state(state
);
4659 spin_unlock_irq(&x
->wait
.lock
);
4660 timeout
= schedule_timeout(timeout
);
4661 spin_lock_irq(&x
->wait
.lock
);
4662 } while (!x
->done
&& timeout
);
4663 __remove_wait_queue(&x
->wait
, &wait
);
4668 return timeout
?: 1;
4672 wait_for_common(struct completion
*x
, long timeout
, int state
)
4676 spin_lock_irq(&x
->wait
.lock
);
4677 timeout
= do_wait_for_common(x
, timeout
, state
);
4678 spin_unlock_irq(&x
->wait
.lock
);
4682 void __sched
wait_for_completion(struct completion
*x
)
4684 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4686 EXPORT_SYMBOL(wait_for_completion
);
4688 unsigned long __sched
4689 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4691 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4693 EXPORT_SYMBOL(wait_for_completion_timeout
);
4695 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4697 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4698 if (t
== -ERESTARTSYS
)
4702 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4704 unsigned long __sched
4705 wait_for_completion_interruptible_timeout(struct completion
*x
,
4706 unsigned long timeout
)
4708 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4710 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4712 int __sched
wait_for_completion_killable(struct completion
*x
)
4714 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4715 if (t
== -ERESTARTSYS
)
4719 EXPORT_SYMBOL(wait_for_completion_killable
);
4722 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4724 unsigned long flags
;
4727 init_waitqueue_entry(&wait
, current
);
4729 __set_current_state(state
);
4731 spin_lock_irqsave(&q
->lock
, flags
);
4732 __add_wait_queue(q
, &wait
);
4733 spin_unlock(&q
->lock
);
4734 timeout
= schedule_timeout(timeout
);
4735 spin_lock_irq(&q
->lock
);
4736 __remove_wait_queue(q
, &wait
);
4737 spin_unlock_irqrestore(&q
->lock
, flags
);
4742 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4744 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4746 EXPORT_SYMBOL(interruptible_sleep_on
);
4749 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4751 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4753 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4755 void __sched
sleep_on(wait_queue_head_t
*q
)
4757 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4759 EXPORT_SYMBOL(sleep_on
);
4761 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4763 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4765 EXPORT_SYMBOL(sleep_on_timeout
);
4767 #ifdef CONFIG_RT_MUTEXES
4770 * rt_mutex_setprio - set the current priority of a task
4772 * @prio: prio value (kernel-internal form)
4774 * This function changes the 'effective' priority of a task. It does
4775 * not touch ->normal_prio like __setscheduler().
4777 * Used by the rt_mutex code to implement priority inheritance logic.
4779 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4781 unsigned long flags
;
4782 int oldprio
, on_rq
, running
;
4784 const struct sched_class
*prev_class
= p
->sched_class
;
4786 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4788 rq
= task_rq_lock(p
, &flags
);
4789 update_rq_clock(rq
);
4792 on_rq
= p
->se
.on_rq
;
4793 running
= task_current(rq
, p
);
4795 dequeue_task(rq
, p
, 0);
4797 p
->sched_class
->put_prev_task(rq
, p
);
4800 p
->sched_class
= &rt_sched_class
;
4802 p
->sched_class
= &fair_sched_class
;
4807 p
->sched_class
->set_curr_task(rq
);
4809 enqueue_task(rq
, p
, 0);
4811 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4813 task_rq_unlock(rq
, &flags
);
4818 void set_user_nice(struct task_struct
*p
, long nice
)
4820 int old_prio
, delta
, on_rq
;
4821 unsigned long flags
;
4824 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4827 * We have to be careful, if called from sys_setpriority(),
4828 * the task might be in the middle of scheduling on another CPU.
4830 rq
= task_rq_lock(p
, &flags
);
4831 update_rq_clock(rq
);
4833 * The RT priorities are set via sched_setscheduler(), but we still
4834 * allow the 'normal' nice value to be set - but as expected
4835 * it wont have any effect on scheduling until the task is
4836 * SCHED_FIFO/SCHED_RR:
4838 if (task_has_rt_policy(p
)) {
4839 p
->static_prio
= NICE_TO_PRIO(nice
);
4842 on_rq
= p
->se
.on_rq
;
4844 dequeue_task(rq
, p
, 0);
4846 p
->static_prio
= NICE_TO_PRIO(nice
);
4849 p
->prio
= effective_prio(p
);
4850 delta
= p
->prio
- old_prio
;
4853 enqueue_task(rq
, p
, 0);
4855 * If the task increased its priority or is running and
4856 * lowered its priority, then reschedule its CPU:
4858 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4859 resched_task(rq
->curr
);
4862 task_rq_unlock(rq
, &flags
);
4864 EXPORT_SYMBOL(set_user_nice
);
4867 * can_nice - check if a task can reduce its nice value
4871 int can_nice(const struct task_struct
*p
, const int nice
)
4873 /* convert nice value [19,-20] to rlimit style value [1,40] */
4874 int nice_rlim
= 20 - nice
;
4876 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4877 capable(CAP_SYS_NICE
));
4880 #ifdef __ARCH_WANT_SYS_NICE
4883 * sys_nice - change the priority of the current process.
4884 * @increment: priority increment
4886 * sys_setpriority is a more generic, but much slower function that
4887 * does similar things.
4889 asmlinkage
long sys_nice(int increment
)
4894 * Setpriority might change our priority at the same moment.
4895 * We don't have to worry. Conceptually one call occurs first
4896 * and we have a single winner.
4898 if (increment
< -40)
4903 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4909 if (increment
< 0 && !can_nice(current
, nice
))
4912 retval
= security_task_setnice(current
, nice
);
4916 set_user_nice(current
, nice
);
4923 * task_prio - return the priority value of a given task.
4924 * @p: the task in question.
4926 * This is the priority value as seen by users in /proc.
4927 * RT tasks are offset by -200. Normal tasks are centered
4928 * around 0, value goes from -16 to +15.
4930 int task_prio(const struct task_struct
*p
)
4932 return p
->prio
- MAX_RT_PRIO
;
4936 * task_nice - return the nice value of a given task.
4937 * @p: the task in question.
4939 int task_nice(const struct task_struct
*p
)
4941 return TASK_NICE(p
);
4943 EXPORT_SYMBOL(task_nice
);
4946 * idle_cpu - is a given cpu idle currently?
4947 * @cpu: the processor in question.
4949 int idle_cpu(int cpu
)
4951 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4955 * idle_task - return the idle task for a given cpu.
4956 * @cpu: the processor in question.
4958 struct task_struct
*idle_task(int cpu
)
4960 return cpu_rq(cpu
)->idle
;
4964 * find_process_by_pid - find a process with a matching PID value.
4965 * @pid: the pid in question.
4967 static struct task_struct
*find_process_by_pid(pid_t pid
)
4969 return pid
? find_task_by_vpid(pid
) : current
;
4972 /* Actually do priority change: must hold rq lock. */
4974 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4976 BUG_ON(p
->se
.on_rq
);
4979 switch (p
->policy
) {
4983 p
->sched_class
= &fair_sched_class
;
4987 p
->sched_class
= &rt_sched_class
;
4991 p
->rt_priority
= prio
;
4992 p
->normal_prio
= normal_prio(p
);
4993 /* we are holding p->pi_lock already */
4994 p
->prio
= rt_mutex_getprio(p
);
4998 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4999 struct sched_param
*param
, bool user
)
5001 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5002 unsigned long flags
;
5003 const struct sched_class
*prev_class
= p
->sched_class
;
5006 /* may grab non-irq protected spin_locks */
5007 BUG_ON(in_interrupt());
5009 /* double check policy once rq lock held */
5011 policy
= oldpolicy
= p
->policy
;
5012 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5013 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5014 policy
!= SCHED_IDLE
)
5017 * Valid priorities for SCHED_FIFO and SCHED_RR are
5018 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5019 * SCHED_BATCH and SCHED_IDLE is 0.
5021 if (param
->sched_priority
< 0 ||
5022 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5023 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5025 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5029 * Allow unprivileged RT tasks to decrease priority:
5031 if (user
&& !capable(CAP_SYS_NICE
)) {
5032 if (rt_policy(policy
)) {
5033 unsigned long rlim_rtprio
;
5035 if (!lock_task_sighand(p
, &flags
))
5037 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
5038 unlock_task_sighand(p
, &flags
);
5040 /* can't set/change the rt policy */
5041 if (policy
!= p
->policy
&& !rlim_rtprio
)
5044 /* can't increase priority */
5045 if (param
->sched_priority
> p
->rt_priority
&&
5046 param
->sched_priority
> rlim_rtprio
)
5050 * Like positive nice levels, dont allow tasks to
5051 * move out of SCHED_IDLE either:
5053 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
5056 /* can't change other user's priorities */
5057 if ((current
->euid
!= p
->euid
) &&
5058 (current
->euid
!= p
->uid
))
5062 #ifdef CONFIG_RT_GROUP_SCHED
5064 * Do not allow realtime tasks into groups that have no runtime
5068 && rt_policy(policy
) && task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
5072 retval
= security_task_setscheduler(p
, policy
, param
);
5076 * make sure no PI-waiters arrive (or leave) while we are
5077 * changing the priority of the task:
5079 spin_lock_irqsave(&p
->pi_lock
, flags
);
5081 * To be able to change p->policy safely, the apropriate
5082 * runqueue lock must be held.
5084 rq
= __task_rq_lock(p
);
5085 /* recheck policy now with rq lock held */
5086 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5087 policy
= oldpolicy
= -1;
5088 __task_rq_unlock(rq
);
5089 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5092 update_rq_clock(rq
);
5093 on_rq
= p
->se
.on_rq
;
5094 running
= task_current(rq
, p
);
5096 deactivate_task(rq
, p
, 0);
5098 p
->sched_class
->put_prev_task(rq
, p
);
5101 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5104 p
->sched_class
->set_curr_task(rq
);
5106 activate_task(rq
, p
, 0);
5108 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
5110 __task_rq_unlock(rq
);
5111 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5113 rt_mutex_adjust_pi(p
);
5119 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5120 * @p: the task in question.
5121 * @policy: new policy.
5122 * @param: structure containing the new RT priority.
5124 * NOTE that the task may be already dead.
5126 int sched_setscheduler(struct task_struct
*p
, int policy
,
5127 struct sched_param
*param
)
5129 return __sched_setscheduler(p
, policy
, param
, true);
5131 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5134 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5135 * @p: the task in question.
5136 * @policy: new policy.
5137 * @param: structure containing the new RT priority.
5139 * Just like sched_setscheduler, only don't bother checking if the
5140 * current context has permission. For example, this is needed in
5141 * stop_machine(): we create temporary high priority worker threads,
5142 * but our caller might not have that capability.
5144 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5145 struct sched_param
*param
)
5147 return __sched_setscheduler(p
, policy
, param
, false);
5151 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5153 struct sched_param lparam
;
5154 struct task_struct
*p
;
5157 if (!param
|| pid
< 0)
5159 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5164 p
= find_process_by_pid(pid
);
5166 retval
= sched_setscheduler(p
, policy
, &lparam
);
5173 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5174 * @pid: the pid in question.
5175 * @policy: new policy.
5176 * @param: structure containing the new RT priority.
5179 sys_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5181 /* negative values for policy are not valid */
5185 return do_sched_setscheduler(pid
, policy
, param
);
5189 * sys_sched_setparam - set/change the RT priority of a thread
5190 * @pid: the pid in question.
5191 * @param: structure containing the new RT priority.
5193 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
5195 return do_sched_setscheduler(pid
, -1, param
);
5199 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5200 * @pid: the pid in question.
5202 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
5204 struct task_struct
*p
;
5211 read_lock(&tasklist_lock
);
5212 p
= find_process_by_pid(pid
);
5214 retval
= security_task_getscheduler(p
);
5218 read_unlock(&tasklist_lock
);
5223 * sys_sched_getscheduler - get the RT priority of a thread
5224 * @pid: the pid in question.
5225 * @param: structure containing the RT priority.
5227 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
5229 struct sched_param lp
;
5230 struct task_struct
*p
;
5233 if (!param
|| pid
< 0)
5236 read_lock(&tasklist_lock
);
5237 p
= find_process_by_pid(pid
);
5242 retval
= security_task_getscheduler(p
);
5246 lp
.sched_priority
= p
->rt_priority
;
5247 read_unlock(&tasklist_lock
);
5250 * This one might sleep, we cannot do it with a spinlock held ...
5252 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5257 read_unlock(&tasklist_lock
);
5261 long sched_setaffinity(pid_t pid
, const cpumask_t
*in_mask
)
5263 cpumask_t cpus_allowed
;
5264 cpumask_t new_mask
= *in_mask
;
5265 struct task_struct
*p
;
5269 read_lock(&tasklist_lock
);
5271 p
= find_process_by_pid(pid
);
5273 read_unlock(&tasklist_lock
);
5279 * It is not safe to call set_cpus_allowed with the
5280 * tasklist_lock held. We will bump the task_struct's
5281 * usage count and then drop tasklist_lock.
5284 read_unlock(&tasklist_lock
);
5287 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
5288 !capable(CAP_SYS_NICE
))
5291 retval
= security_task_setscheduler(p
, 0, NULL
);
5295 cpuset_cpus_allowed(p
, &cpus_allowed
);
5296 cpus_and(new_mask
, new_mask
, cpus_allowed
);
5298 retval
= set_cpus_allowed_ptr(p
, &new_mask
);
5301 cpuset_cpus_allowed(p
, &cpus_allowed
);
5302 if (!cpus_subset(new_mask
, cpus_allowed
)) {
5304 * We must have raced with a concurrent cpuset
5305 * update. Just reset the cpus_allowed to the
5306 * cpuset's cpus_allowed
5308 new_mask
= cpus_allowed
;
5318 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5319 cpumask_t
*new_mask
)
5321 if (len
< sizeof(cpumask_t
)) {
5322 memset(new_mask
, 0, sizeof(cpumask_t
));
5323 } else if (len
> sizeof(cpumask_t
)) {
5324 len
= sizeof(cpumask_t
);
5326 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5330 * sys_sched_setaffinity - set the cpu affinity of a process
5331 * @pid: pid of the process
5332 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5333 * @user_mask_ptr: user-space pointer to the new cpu mask
5335 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
5336 unsigned long __user
*user_mask_ptr
)
5341 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
5345 return sched_setaffinity(pid
, &new_mask
);
5348 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
5350 struct task_struct
*p
;
5354 read_lock(&tasklist_lock
);
5357 p
= find_process_by_pid(pid
);
5361 retval
= security_task_getscheduler(p
);
5365 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
5368 read_unlock(&tasklist_lock
);
5375 * sys_sched_getaffinity - get the cpu affinity of a process
5376 * @pid: pid of the process
5377 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5378 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5380 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
5381 unsigned long __user
*user_mask_ptr
)
5386 if (len
< sizeof(cpumask_t
))
5389 ret
= sched_getaffinity(pid
, &mask
);
5393 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
5396 return sizeof(cpumask_t
);
5400 * sys_sched_yield - yield the current processor to other threads.
5402 * This function yields the current CPU to other tasks. If there are no
5403 * other threads running on this CPU then this function will return.
5405 asmlinkage
long sys_sched_yield(void)
5407 struct rq
*rq
= this_rq_lock();
5409 schedstat_inc(rq
, yld_count
);
5410 current
->sched_class
->yield_task(rq
);
5413 * Since we are going to call schedule() anyway, there's
5414 * no need to preempt or enable interrupts:
5416 __release(rq
->lock
);
5417 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5418 _raw_spin_unlock(&rq
->lock
);
5419 preempt_enable_no_resched();
5426 static void __cond_resched(void)
5428 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5429 __might_sleep(__FILE__
, __LINE__
);
5432 * The BKS might be reacquired before we have dropped
5433 * PREEMPT_ACTIVE, which could trigger a second
5434 * cond_resched() call.
5437 add_preempt_count(PREEMPT_ACTIVE
);
5439 sub_preempt_count(PREEMPT_ACTIVE
);
5440 } while (need_resched());
5443 int __sched
_cond_resched(void)
5445 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
5446 system_state
== SYSTEM_RUNNING
) {
5452 EXPORT_SYMBOL(_cond_resched
);
5455 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5456 * call schedule, and on return reacquire the lock.
5458 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5459 * operations here to prevent schedule() from being called twice (once via
5460 * spin_unlock(), once by hand).
5462 int cond_resched_lock(spinlock_t
*lock
)
5464 int resched
= need_resched() && system_state
== SYSTEM_RUNNING
;
5467 if (spin_needbreak(lock
) || resched
) {
5469 if (resched
&& need_resched())
5478 EXPORT_SYMBOL(cond_resched_lock
);
5480 int __sched
cond_resched_softirq(void)
5482 BUG_ON(!in_softirq());
5484 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
5492 EXPORT_SYMBOL(cond_resched_softirq
);
5495 * yield - yield the current processor to other threads.
5497 * This is a shortcut for kernel-space yielding - it marks the
5498 * thread runnable and calls sys_sched_yield().
5500 void __sched
yield(void)
5502 set_current_state(TASK_RUNNING
);
5505 EXPORT_SYMBOL(yield
);
5508 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5509 * that process accounting knows that this is a task in IO wait state.
5511 * But don't do that if it is a deliberate, throttling IO wait (this task
5512 * has set its backing_dev_info: the queue against which it should throttle)
5514 void __sched
io_schedule(void)
5516 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5518 delayacct_blkio_start();
5519 atomic_inc(&rq
->nr_iowait
);
5521 atomic_dec(&rq
->nr_iowait
);
5522 delayacct_blkio_end();
5524 EXPORT_SYMBOL(io_schedule
);
5526 long __sched
io_schedule_timeout(long timeout
)
5528 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
5531 delayacct_blkio_start();
5532 atomic_inc(&rq
->nr_iowait
);
5533 ret
= schedule_timeout(timeout
);
5534 atomic_dec(&rq
->nr_iowait
);
5535 delayacct_blkio_end();
5540 * sys_sched_get_priority_max - return maximum RT priority.
5541 * @policy: scheduling class.
5543 * this syscall returns the maximum rt_priority that can be used
5544 * by a given scheduling class.
5546 asmlinkage
long sys_sched_get_priority_max(int policy
)
5553 ret
= MAX_USER_RT_PRIO
-1;
5565 * sys_sched_get_priority_min - return minimum RT priority.
5566 * @policy: scheduling class.
5568 * this syscall returns the minimum rt_priority that can be used
5569 * by a given scheduling class.
5571 asmlinkage
long sys_sched_get_priority_min(int policy
)
5589 * sys_sched_rr_get_interval - return the default timeslice of a process.
5590 * @pid: pid of the process.
5591 * @interval: userspace pointer to the timeslice value.
5593 * this syscall writes the default timeslice value of a given process
5594 * into the user-space timespec buffer. A value of '0' means infinity.
5597 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
5599 struct task_struct
*p
;
5600 unsigned int time_slice
;
5608 read_lock(&tasklist_lock
);
5609 p
= find_process_by_pid(pid
);
5613 retval
= security_task_getscheduler(p
);
5618 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5619 * tasks that are on an otherwise idle runqueue:
5622 if (p
->policy
== SCHED_RR
) {
5623 time_slice
= DEF_TIMESLICE
;
5624 } else if (p
->policy
!= SCHED_FIFO
) {
5625 struct sched_entity
*se
= &p
->se
;
5626 unsigned long flags
;
5629 rq
= task_rq_lock(p
, &flags
);
5630 if (rq
->cfs
.load
.weight
)
5631 time_slice
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
5632 task_rq_unlock(rq
, &flags
);
5634 read_unlock(&tasklist_lock
);
5635 jiffies_to_timespec(time_slice
, &t
);
5636 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5640 read_unlock(&tasklist_lock
);
5644 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5646 void sched_show_task(struct task_struct
*p
)
5648 unsigned long free
= 0;
5651 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5652 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5653 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5654 #if BITS_PER_LONG == 32
5655 if (state
== TASK_RUNNING
)
5656 printk(KERN_CONT
" running ");
5658 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5660 if (state
== TASK_RUNNING
)
5661 printk(KERN_CONT
" running task ");
5663 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5665 #ifdef CONFIG_DEBUG_STACK_USAGE
5667 unsigned long *n
= end_of_stack(p
);
5670 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
5673 printk(KERN_CONT
"%5lu %5d %6d\n", free
,
5674 task_pid_nr(p
), task_pid_nr(p
->real_parent
));
5676 show_stack(p
, NULL
);
5679 void show_state_filter(unsigned long state_filter
)
5681 struct task_struct
*g
, *p
;
5683 #if BITS_PER_LONG == 32
5685 " task PC stack pid father\n");
5688 " task PC stack pid father\n");
5690 read_lock(&tasklist_lock
);
5691 do_each_thread(g
, p
) {
5693 * reset the NMI-timeout, listing all files on a slow
5694 * console might take alot of time:
5696 touch_nmi_watchdog();
5697 if (!state_filter
|| (p
->state
& state_filter
))
5699 } while_each_thread(g
, p
);
5701 touch_all_softlockup_watchdogs();
5703 #ifdef CONFIG_SCHED_DEBUG
5704 sysrq_sched_debug_show();
5706 read_unlock(&tasklist_lock
);
5708 * Only show locks if all tasks are dumped:
5710 if (state_filter
== -1)
5711 debug_show_all_locks();
5714 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5716 idle
->sched_class
= &idle_sched_class
;
5720 * init_idle - set up an idle thread for a given CPU
5721 * @idle: task in question
5722 * @cpu: cpu the idle task belongs to
5724 * NOTE: this function does not set the idle thread's NEED_RESCHED
5725 * flag, to make booting more robust.
5727 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5729 struct rq
*rq
= cpu_rq(cpu
);
5730 unsigned long flags
;
5733 idle
->se
.exec_start
= sched_clock();
5735 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
5736 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
5737 __set_task_cpu(idle
, cpu
);
5739 spin_lock_irqsave(&rq
->lock
, flags
);
5740 rq
->curr
= rq
->idle
= idle
;
5741 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5744 spin_unlock_irqrestore(&rq
->lock
, flags
);
5746 /* Set the preempt count _outside_ the spinlocks! */
5747 #if defined(CONFIG_PREEMPT)
5748 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5750 task_thread_info(idle
)->preempt_count
= 0;
5753 * The idle tasks have their own, simple scheduling class:
5755 idle
->sched_class
= &idle_sched_class
;
5759 * In a system that switches off the HZ timer nohz_cpu_mask
5760 * indicates which cpus entered this state. This is used
5761 * in the rcu update to wait only for active cpus. For system
5762 * which do not switch off the HZ timer nohz_cpu_mask should
5763 * always be CPU_MASK_NONE.
5765 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
5768 * Increase the granularity value when there are more CPUs,
5769 * because with more CPUs the 'effective latency' as visible
5770 * to users decreases. But the relationship is not linear,
5771 * so pick a second-best guess by going with the log2 of the
5774 * This idea comes from the SD scheduler of Con Kolivas:
5776 static inline void sched_init_granularity(void)
5778 unsigned int factor
= 1 + ilog2(num_online_cpus());
5779 const unsigned long limit
= 200000000;
5781 sysctl_sched_min_granularity
*= factor
;
5782 if (sysctl_sched_min_granularity
> limit
)
5783 sysctl_sched_min_granularity
= limit
;
5785 sysctl_sched_latency
*= factor
;
5786 if (sysctl_sched_latency
> limit
)
5787 sysctl_sched_latency
= limit
;
5789 sysctl_sched_wakeup_granularity
*= factor
;
5794 * This is how migration works:
5796 * 1) we queue a struct migration_req structure in the source CPU's
5797 * runqueue and wake up that CPU's migration thread.
5798 * 2) we down() the locked semaphore => thread blocks.
5799 * 3) migration thread wakes up (implicitly it forces the migrated
5800 * thread off the CPU)
5801 * 4) it gets the migration request and checks whether the migrated
5802 * task is still in the wrong runqueue.
5803 * 5) if it's in the wrong runqueue then the migration thread removes
5804 * it and puts it into the right queue.
5805 * 6) migration thread up()s the semaphore.
5806 * 7) we wake up and the migration is done.
5810 * Change a given task's CPU affinity. Migrate the thread to a
5811 * proper CPU and schedule it away if the CPU it's executing on
5812 * is removed from the allowed bitmask.
5814 * NOTE: the caller must have a valid reference to the task, the
5815 * task must not exit() & deallocate itself prematurely. The
5816 * call is not atomic; no spinlocks may be held.
5818 int set_cpus_allowed_ptr(struct task_struct
*p
, const cpumask_t
*new_mask
)
5820 struct migration_req req
;
5821 unsigned long flags
;
5825 rq
= task_rq_lock(p
, &flags
);
5826 if (!cpus_intersects(*new_mask
, cpu_online_map
)) {
5831 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5832 !cpus_equal(p
->cpus_allowed
, *new_mask
))) {
5837 if (p
->sched_class
->set_cpus_allowed
)
5838 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5840 p
->cpus_allowed
= *new_mask
;
5841 p
->rt
.nr_cpus_allowed
= cpus_weight(*new_mask
);
5844 /* Can the task run on the task's current CPU? If so, we're done */
5845 if (cpu_isset(task_cpu(p
), *new_mask
))
5848 if (migrate_task(p
, any_online_cpu(*new_mask
), &req
)) {
5849 /* Need help from migration thread: drop lock and wait. */
5850 task_rq_unlock(rq
, &flags
);
5851 wake_up_process(rq
->migration_thread
);
5852 wait_for_completion(&req
.done
);
5853 tlb_migrate_finish(p
->mm
);
5857 task_rq_unlock(rq
, &flags
);
5861 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5864 * Move (not current) task off this cpu, onto dest cpu. We're doing
5865 * this because either it can't run here any more (set_cpus_allowed()
5866 * away from this CPU, or CPU going down), or because we're
5867 * attempting to rebalance this task on exec (sched_exec).
5869 * So we race with normal scheduler movements, but that's OK, as long
5870 * as the task is no longer on this CPU.
5872 * Returns non-zero if task was successfully migrated.
5874 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5876 struct rq
*rq_dest
, *rq_src
;
5879 if (unlikely(cpu_is_offline(dest_cpu
)))
5882 rq_src
= cpu_rq(src_cpu
);
5883 rq_dest
= cpu_rq(dest_cpu
);
5885 double_rq_lock(rq_src
, rq_dest
);
5886 /* Already moved. */
5887 if (task_cpu(p
) != src_cpu
)
5889 /* Affinity changed (again). */
5890 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
5893 on_rq
= p
->se
.on_rq
;
5895 deactivate_task(rq_src
, p
, 0);
5897 set_task_cpu(p
, dest_cpu
);
5899 activate_task(rq_dest
, p
, 0);
5900 check_preempt_curr(rq_dest
, p
);
5905 double_rq_unlock(rq_src
, rq_dest
);
5910 * migration_thread - this is a highprio system thread that performs
5911 * thread migration by bumping thread off CPU then 'pushing' onto
5914 static int migration_thread(void *data
)
5916 int cpu
= (long)data
;
5920 BUG_ON(rq
->migration_thread
!= current
);
5922 set_current_state(TASK_INTERRUPTIBLE
);
5923 while (!kthread_should_stop()) {
5924 struct migration_req
*req
;
5925 struct list_head
*head
;
5927 spin_lock_irq(&rq
->lock
);
5929 if (cpu_is_offline(cpu
)) {
5930 spin_unlock_irq(&rq
->lock
);
5934 if (rq
->active_balance
) {
5935 active_load_balance(rq
, cpu
);
5936 rq
->active_balance
= 0;
5939 head
= &rq
->migration_queue
;
5941 if (list_empty(head
)) {
5942 spin_unlock_irq(&rq
->lock
);
5944 set_current_state(TASK_INTERRUPTIBLE
);
5947 req
= list_entry(head
->next
, struct migration_req
, list
);
5948 list_del_init(head
->next
);
5950 spin_unlock(&rq
->lock
);
5951 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5954 complete(&req
->done
);
5956 __set_current_state(TASK_RUNNING
);
5960 /* Wait for kthread_stop */
5961 set_current_state(TASK_INTERRUPTIBLE
);
5962 while (!kthread_should_stop()) {
5964 set_current_state(TASK_INTERRUPTIBLE
);
5966 __set_current_state(TASK_RUNNING
);
5970 #ifdef CONFIG_HOTPLUG_CPU
5972 static int __migrate_task_irq(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5976 local_irq_disable();
5977 ret
= __migrate_task(p
, src_cpu
, dest_cpu
);
5983 * Figure out where task on dead CPU should go, use force if necessary.
5984 * NOTE: interrupts should be disabled by the caller
5986 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5988 unsigned long flags
;
5995 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5996 cpus_and(mask
, mask
, p
->cpus_allowed
);
5997 dest_cpu
= any_online_cpu(mask
);
5999 /* On any allowed CPU? */
6000 if (dest_cpu
>= nr_cpu_ids
)
6001 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6003 /* No more Mr. Nice Guy. */
6004 if (dest_cpu
>= nr_cpu_ids
) {
6005 cpumask_t cpus_allowed
;
6007 cpuset_cpus_allowed_locked(p
, &cpus_allowed
);
6009 * Try to stay on the same cpuset, where the
6010 * current cpuset may be a subset of all cpus.
6011 * The cpuset_cpus_allowed_locked() variant of
6012 * cpuset_cpus_allowed() will not block. It must be
6013 * called within calls to cpuset_lock/cpuset_unlock.
6015 rq
= task_rq_lock(p
, &flags
);
6016 p
->cpus_allowed
= cpus_allowed
;
6017 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
6018 task_rq_unlock(rq
, &flags
);
6021 * Don't tell them about moving exiting tasks or
6022 * kernel threads (both mm NULL), since they never
6025 if (p
->mm
&& printk_ratelimit()) {
6026 printk(KERN_INFO
"process %d (%s) no "
6027 "longer affine to cpu%d\n",
6028 task_pid_nr(p
), p
->comm
, dead_cpu
);
6031 } while (!__migrate_task_irq(p
, dead_cpu
, dest_cpu
));
6035 * While a dead CPU has no uninterruptible tasks queued at this point,
6036 * it might still have a nonzero ->nr_uninterruptible counter, because
6037 * for performance reasons the counter is not stricly tracking tasks to
6038 * their home CPUs. So we just add the counter to another CPU's counter,
6039 * to keep the global sum constant after CPU-down:
6041 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6043 struct rq
*rq_dest
= cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR
));
6044 unsigned long flags
;
6046 local_irq_save(flags
);
6047 double_rq_lock(rq_src
, rq_dest
);
6048 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6049 rq_src
->nr_uninterruptible
= 0;
6050 double_rq_unlock(rq_src
, rq_dest
);
6051 local_irq_restore(flags
);
6054 /* Run through task list and migrate tasks from the dead cpu. */
6055 static void migrate_live_tasks(int src_cpu
)
6057 struct task_struct
*p
, *t
;
6059 read_lock(&tasklist_lock
);
6061 do_each_thread(t
, p
) {
6065 if (task_cpu(p
) == src_cpu
)
6066 move_task_off_dead_cpu(src_cpu
, p
);
6067 } while_each_thread(t
, p
);
6069 read_unlock(&tasklist_lock
);
6073 * Schedules idle task to be the next runnable task on current CPU.
6074 * It does so by boosting its priority to highest possible.
6075 * Used by CPU offline code.
6077 void sched_idle_next(void)
6079 int this_cpu
= smp_processor_id();
6080 struct rq
*rq
= cpu_rq(this_cpu
);
6081 struct task_struct
*p
= rq
->idle
;
6082 unsigned long flags
;
6084 /* cpu has to be offline */
6085 BUG_ON(cpu_online(this_cpu
));
6088 * Strictly not necessary since rest of the CPUs are stopped by now
6089 * and interrupts disabled on the current cpu.
6091 spin_lock_irqsave(&rq
->lock
, flags
);
6093 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6095 update_rq_clock(rq
);
6096 activate_task(rq
, p
, 0);
6098 spin_unlock_irqrestore(&rq
->lock
, flags
);
6102 * Ensures that the idle task is using init_mm right before its cpu goes
6105 void idle_task_exit(void)
6107 struct mm_struct
*mm
= current
->active_mm
;
6109 BUG_ON(cpu_online(smp_processor_id()));
6112 switch_mm(mm
, &init_mm
, current
);
6116 /* called under rq->lock with disabled interrupts */
6117 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
6119 struct rq
*rq
= cpu_rq(dead_cpu
);
6121 /* Must be exiting, otherwise would be on tasklist. */
6122 BUG_ON(!p
->exit_state
);
6124 /* Cannot have done final schedule yet: would have vanished. */
6125 BUG_ON(p
->state
== TASK_DEAD
);
6130 * Drop lock around migration; if someone else moves it,
6131 * that's OK. No task can be added to this CPU, so iteration is
6134 spin_unlock_irq(&rq
->lock
);
6135 move_task_off_dead_cpu(dead_cpu
, p
);
6136 spin_lock_irq(&rq
->lock
);
6141 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6142 static void migrate_dead_tasks(unsigned int dead_cpu
)
6144 struct rq
*rq
= cpu_rq(dead_cpu
);
6145 struct task_struct
*next
;
6148 if (!rq
->nr_running
)
6150 update_rq_clock(rq
);
6151 next
= pick_next_task(rq
, rq
->curr
);
6154 next
->sched_class
->put_prev_task(rq
, next
);
6155 migrate_dead(dead_cpu
, next
);
6159 #endif /* CONFIG_HOTPLUG_CPU */
6161 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6163 static struct ctl_table sd_ctl_dir
[] = {
6165 .procname
= "sched_domain",
6171 static struct ctl_table sd_ctl_root
[] = {
6173 .ctl_name
= CTL_KERN
,
6174 .procname
= "kernel",
6176 .child
= sd_ctl_dir
,
6181 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6183 struct ctl_table
*entry
=
6184 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6189 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6191 struct ctl_table
*entry
;
6194 * In the intermediate directories, both the child directory and
6195 * procname are dynamically allocated and could fail but the mode
6196 * will always be set. In the lowest directory the names are
6197 * static strings and all have proc handlers.
6199 for (entry
= *tablep
; entry
->mode
; entry
++) {
6201 sd_free_ctl_entry(&entry
->child
);
6202 if (entry
->proc_handler
== NULL
)
6203 kfree(entry
->procname
);
6211 set_table_entry(struct ctl_table
*entry
,
6212 const char *procname
, void *data
, int maxlen
,
6213 mode_t mode
, proc_handler
*proc_handler
)
6215 entry
->procname
= procname
;
6217 entry
->maxlen
= maxlen
;
6219 entry
->proc_handler
= proc_handler
;
6222 static struct ctl_table
*
6223 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6225 struct ctl_table
*table
= sd_alloc_ctl_entry(12);
6230 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6231 sizeof(long), 0644, proc_doulongvec_minmax
);
6232 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6233 sizeof(long), 0644, proc_doulongvec_minmax
);
6234 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6235 sizeof(int), 0644, proc_dointvec_minmax
);
6236 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6237 sizeof(int), 0644, proc_dointvec_minmax
);
6238 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6239 sizeof(int), 0644, proc_dointvec_minmax
);
6240 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6241 sizeof(int), 0644, proc_dointvec_minmax
);
6242 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6243 sizeof(int), 0644, proc_dointvec_minmax
);
6244 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6245 sizeof(int), 0644, proc_dointvec_minmax
);
6246 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6247 sizeof(int), 0644, proc_dointvec_minmax
);
6248 set_table_entry(&table
[9], "cache_nice_tries",
6249 &sd
->cache_nice_tries
,
6250 sizeof(int), 0644, proc_dointvec_minmax
);
6251 set_table_entry(&table
[10], "flags", &sd
->flags
,
6252 sizeof(int), 0644, proc_dointvec_minmax
);
6253 /* &table[11] is terminator */
6258 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6260 struct ctl_table
*entry
, *table
;
6261 struct sched_domain
*sd
;
6262 int domain_num
= 0, i
;
6265 for_each_domain(cpu
, sd
)
6267 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6272 for_each_domain(cpu
, sd
) {
6273 snprintf(buf
, 32, "domain%d", i
);
6274 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6276 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6283 static struct ctl_table_header
*sd_sysctl_header
;
6284 static void register_sched_domain_sysctl(void)
6286 int i
, cpu_num
= num_online_cpus();
6287 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6290 WARN_ON(sd_ctl_dir
[0].child
);
6291 sd_ctl_dir
[0].child
= entry
;
6296 for_each_online_cpu(i
) {
6297 snprintf(buf
, 32, "cpu%d", i
);
6298 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6300 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6304 WARN_ON(sd_sysctl_header
);
6305 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6308 /* may be called multiple times per register */
6309 static void unregister_sched_domain_sysctl(void)
6311 if (sd_sysctl_header
)
6312 unregister_sysctl_table(sd_sysctl_header
);
6313 sd_sysctl_header
= NULL
;
6314 if (sd_ctl_dir
[0].child
)
6315 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6318 static void register_sched_domain_sysctl(void)
6321 static void unregister_sched_domain_sysctl(void)
6326 static void set_rq_online(struct rq
*rq
)
6329 const struct sched_class
*class;
6331 cpu_set(rq
->cpu
, rq
->rd
->online
);
6334 for_each_class(class) {
6335 if (class->rq_online
)
6336 class->rq_online(rq
);
6341 static void set_rq_offline(struct rq
*rq
)
6344 const struct sched_class
*class;
6346 for_each_class(class) {
6347 if (class->rq_offline
)
6348 class->rq_offline(rq
);
6351 cpu_clear(rq
->cpu
, rq
->rd
->online
);
6357 * migration_call - callback that gets triggered when a CPU is added.
6358 * Here we can start up the necessary migration thread for the new CPU.
6360 static int __cpuinit
6361 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6363 struct task_struct
*p
;
6364 int cpu
= (long)hcpu
;
6365 unsigned long flags
;
6370 case CPU_UP_PREPARE
:
6371 case CPU_UP_PREPARE_FROZEN
:
6372 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
6375 kthread_bind(p
, cpu
);
6376 /* Must be high prio: stop_machine expects to yield to it. */
6377 rq
= task_rq_lock(p
, &flags
);
6378 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
6379 task_rq_unlock(rq
, &flags
);
6380 cpu_rq(cpu
)->migration_thread
= p
;
6384 case CPU_ONLINE_FROZEN
:
6385 /* Strictly unnecessary, as first user will wake it. */
6386 wake_up_process(cpu_rq(cpu
)->migration_thread
);
6388 /* Update our root-domain */
6390 spin_lock_irqsave(&rq
->lock
, flags
);
6392 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6396 spin_unlock_irqrestore(&rq
->lock
, flags
);
6399 #ifdef CONFIG_HOTPLUG_CPU
6400 case CPU_UP_CANCELED
:
6401 case CPU_UP_CANCELED_FROZEN
:
6402 if (!cpu_rq(cpu
)->migration_thread
)
6404 /* Unbind it from offline cpu so it can run. Fall thru. */
6405 kthread_bind(cpu_rq(cpu
)->migration_thread
,
6406 any_online_cpu(cpu_online_map
));
6407 kthread_stop(cpu_rq(cpu
)->migration_thread
);
6408 cpu_rq(cpu
)->migration_thread
= NULL
;
6412 case CPU_DEAD_FROZEN
:
6413 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6414 migrate_live_tasks(cpu
);
6416 kthread_stop(rq
->migration_thread
);
6417 rq
->migration_thread
= NULL
;
6418 /* Idle task back to normal (off runqueue, low prio) */
6419 spin_lock_irq(&rq
->lock
);
6420 update_rq_clock(rq
);
6421 deactivate_task(rq
, rq
->idle
, 0);
6422 rq
->idle
->static_prio
= MAX_PRIO
;
6423 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
6424 rq
->idle
->sched_class
= &idle_sched_class
;
6425 migrate_dead_tasks(cpu
);
6426 spin_unlock_irq(&rq
->lock
);
6428 migrate_nr_uninterruptible(rq
);
6429 BUG_ON(rq
->nr_running
!= 0);
6432 * No need to migrate the tasks: it was best-effort if
6433 * they didn't take sched_hotcpu_mutex. Just wake up
6436 spin_lock_irq(&rq
->lock
);
6437 while (!list_empty(&rq
->migration_queue
)) {
6438 struct migration_req
*req
;
6440 req
= list_entry(rq
->migration_queue
.next
,
6441 struct migration_req
, list
);
6442 list_del_init(&req
->list
);
6443 complete(&req
->done
);
6445 spin_unlock_irq(&rq
->lock
);
6449 case CPU_DYING_FROZEN
:
6450 /* Update our root-domain */
6452 spin_lock_irqsave(&rq
->lock
, flags
);
6454 BUG_ON(!cpu_isset(cpu
, rq
->rd
->span
));
6457 spin_unlock_irqrestore(&rq
->lock
, flags
);
6464 /* Register at highest priority so that task migration (migrate_all_tasks)
6465 * happens before everything else.
6467 static struct notifier_block __cpuinitdata migration_notifier
= {
6468 .notifier_call
= migration_call
,
6472 void __init
migration_init(void)
6474 void *cpu
= (void *)(long)smp_processor_id();
6477 /* Start one for the boot CPU: */
6478 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6479 BUG_ON(err
== NOTIFY_BAD
);
6480 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6481 register_cpu_notifier(&migration_notifier
);
6487 #ifdef CONFIG_SCHED_DEBUG
6489 static inline const char *sd_level_to_string(enum sched_domain_level lvl
)
6502 case SD_LV_ALLNODES
:
6511 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6512 cpumask_t
*groupmask
)
6514 struct sched_group
*group
= sd
->groups
;
6517 cpulist_scnprintf(str
, sizeof(str
), sd
->span
);
6518 cpus_clear(*groupmask
);
6520 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6522 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6523 printk("does not load-balance\n");
6525 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6530 printk(KERN_CONT
"span %s level %s\n",
6531 str
, sd_level_to_string(sd
->level
));
6533 if (!cpu_isset(cpu
, sd
->span
)) {
6534 printk(KERN_ERR
"ERROR: domain->span does not contain "
6537 if (!cpu_isset(cpu
, group
->cpumask
)) {
6538 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6542 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6546 printk(KERN_ERR
"ERROR: group is NULL\n");
6550 if (!group
->__cpu_power
) {
6551 printk(KERN_CONT
"\n");
6552 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6557 if (!cpus_weight(group
->cpumask
)) {
6558 printk(KERN_CONT
"\n");
6559 printk(KERN_ERR
"ERROR: empty group\n");
6563 if (cpus_intersects(*groupmask
, group
->cpumask
)) {
6564 printk(KERN_CONT
"\n");
6565 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6569 cpus_or(*groupmask
, *groupmask
, group
->cpumask
);
6571 cpulist_scnprintf(str
, sizeof(str
), group
->cpumask
);
6572 printk(KERN_CONT
" %s", str
);
6574 group
= group
->next
;
6575 } while (group
!= sd
->groups
);
6576 printk(KERN_CONT
"\n");
6578 if (!cpus_equal(sd
->span
, *groupmask
))
6579 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6581 if (sd
->parent
&& !cpus_subset(*groupmask
, sd
->parent
->span
))
6582 printk(KERN_ERR
"ERROR: parent span is not a superset "
6583 "of domain->span\n");
6587 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6589 cpumask_t
*groupmask
;
6593 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6597 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6599 groupmask
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
6601 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6606 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6615 #else /* !CONFIG_SCHED_DEBUG */
6616 # define sched_domain_debug(sd, cpu) do { } while (0)
6617 #endif /* CONFIG_SCHED_DEBUG */
6619 static int sd_degenerate(struct sched_domain
*sd
)
6621 if (cpus_weight(sd
->span
) == 1)
6624 /* Following flags need at least 2 groups */
6625 if (sd
->flags
& (SD_LOAD_BALANCE
|
6626 SD_BALANCE_NEWIDLE
|
6630 SD_SHARE_PKG_RESOURCES
)) {
6631 if (sd
->groups
!= sd
->groups
->next
)
6635 /* Following flags don't use groups */
6636 if (sd
->flags
& (SD_WAKE_IDLE
|
6645 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6647 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6649 if (sd_degenerate(parent
))
6652 if (!cpus_equal(sd
->span
, parent
->span
))
6655 /* Does parent contain flags not in child? */
6656 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6657 if (cflags
& SD_WAKE_AFFINE
)
6658 pflags
&= ~SD_WAKE_BALANCE
;
6659 /* Flags needing groups don't count if only 1 group in parent */
6660 if (parent
->groups
== parent
->groups
->next
) {
6661 pflags
&= ~(SD_LOAD_BALANCE
|
6662 SD_BALANCE_NEWIDLE
|
6666 SD_SHARE_PKG_RESOURCES
);
6668 if (~cflags
& pflags
)
6674 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6676 unsigned long flags
;
6678 spin_lock_irqsave(&rq
->lock
, flags
);
6681 struct root_domain
*old_rd
= rq
->rd
;
6683 if (cpu_isset(rq
->cpu
, old_rd
->online
))
6686 cpu_clear(rq
->cpu
, old_rd
->span
);
6688 if (atomic_dec_and_test(&old_rd
->refcount
))
6692 atomic_inc(&rd
->refcount
);
6695 cpu_set(rq
->cpu
, rd
->span
);
6696 if (cpu_isset(rq
->cpu
, cpu_online_map
))
6699 spin_unlock_irqrestore(&rq
->lock
, flags
);
6702 static void init_rootdomain(struct root_domain
*rd
)
6704 memset(rd
, 0, sizeof(*rd
));
6706 cpus_clear(rd
->span
);
6707 cpus_clear(rd
->online
);
6709 cpupri_init(&rd
->cpupri
);
6712 static void init_defrootdomain(void)
6714 init_rootdomain(&def_root_domain
);
6715 atomic_set(&def_root_domain
.refcount
, 1);
6718 static struct root_domain
*alloc_rootdomain(void)
6720 struct root_domain
*rd
;
6722 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6726 init_rootdomain(rd
);
6732 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6733 * hold the hotplug lock.
6736 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6738 struct rq
*rq
= cpu_rq(cpu
);
6739 struct sched_domain
*tmp
;
6741 /* Remove the sched domains which do not contribute to scheduling. */
6742 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
6743 struct sched_domain
*parent
= tmp
->parent
;
6746 if (sd_parent_degenerate(tmp
, parent
)) {
6747 tmp
->parent
= parent
->parent
;
6749 parent
->parent
->child
= tmp
;
6753 if (sd
&& sd_degenerate(sd
)) {
6759 sched_domain_debug(sd
, cpu
);
6761 rq_attach_root(rq
, rd
);
6762 rcu_assign_pointer(rq
->sd
, sd
);
6765 /* cpus with isolated domains */
6766 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
6768 /* Setup the mask of cpus configured for isolated domains */
6769 static int __init
isolated_cpu_setup(char *str
)
6771 int ints
[NR_CPUS
], i
;
6773 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
6774 cpus_clear(cpu_isolated_map
);
6775 for (i
= 1; i
<= ints
[0]; i
++)
6776 if (ints
[i
] < NR_CPUS
)
6777 cpu_set(ints
[i
], cpu_isolated_map
);
6781 __setup("isolcpus=", isolated_cpu_setup
);
6784 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6785 * to a function which identifies what group(along with sched group) a CPU
6786 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6787 * (due to the fact that we keep track of groups covered with a cpumask_t).
6789 * init_sched_build_groups will build a circular linked list of the groups
6790 * covered by the given span, and will set each group's ->cpumask correctly,
6791 * and ->cpu_power to 0.
6794 init_sched_build_groups(const cpumask_t
*span
, const cpumask_t
*cpu_map
,
6795 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
6796 struct sched_group
**sg
,
6797 cpumask_t
*tmpmask
),
6798 cpumask_t
*covered
, cpumask_t
*tmpmask
)
6800 struct sched_group
*first
= NULL
, *last
= NULL
;
6803 cpus_clear(*covered
);
6805 for_each_cpu_mask(i
, *span
) {
6806 struct sched_group
*sg
;
6807 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6810 if (cpu_isset(i
, *covered
))
6813 cpus_clear(sg
->cpumask
);
6814 sg
->__cpu_power
= 0;
6816 for_each_cpu_mask(j
, *span
) {
6817 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6820 cpu_set(j
, *covered
);
6821 cpu_set(j
, sg
->cpumask
);
6832 #define SD_NODES_PER_DOMAIN 16
6837 * find_next_best_node - find the next node to include in a sched_domain
6838 * @node: node whose sched_domain we're building
6839 * @used_nodes: nodes already in the sched_domain
6841 * Find the next node to include in a given scheduling domain. Simply
6842 * finds the closest node not already in the @used_nodes map.
6844 * Should use nodemask_t.
6846 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6848 int i
, n
, val
, min_val
, best_node
= 0;
6852 for (i
= 0; i
< nr_node_ids
; i
++) {
6853 /* Start at @node */
6854 n
= (node
+ i
) % nr_node_ids
;
6856 if (!nr_cpus_node(n
))
6859 /* Skip already used nodes */
6860 if (node_isset(n
, *used_nodes
))
6863 /* Simple min distance search */
6864 val
= node_distance(node
, n
);
6866 if (val
< min_val
) {
6872 node_set(best_node
, *used_nodes
);
6877 * sched_domain_node_span - get a cpumask for a node's sched_domain
6878 * @node: node whose cpumask we're constructing
6879 * @span: resulting cpumask
6881 * Given a node, construct a good cpumask for its sched_domain to span. It
6882 * should be one that prevents unnecessary balancing, but also spreads tasks
6885 static void sched_domain_node_span(int node
, cpumask_t
*span
)
6887 nodemask_t used_nodes
;
6888 node_to_cpumask_ptr(nodemask
, node
);
6892 nodes_clear(used_nodes
);
6894 cpus_or(*span
, *span
, *nodemask
);
6895 node_set(node
, used_nodes
);
6897 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6898 int next_node
= find_next_best_node(node
, &used_nodes
);
6900 node_to_cpumask_ptr_next(nodemask
, next_node
);
6901 cpus_or(*span
, *span
, *nodemask
);
6904 #endif /* CONFIG_NUMA */
6906 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6909 * SMT sched-domains:
6911 #ifdef CONFIG_SCHED_SMT
6912 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6913 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
6916 cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6920 *sg
= &per_cpu(sched_group_cpus
, cpu
);
6923 #endif /* CONFIG_SCHED_SMT */
6926 * multi-core sched-domains:
6928 #ifdef CONFIG_SCHED_MC
6929 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6930 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
6931 #endif /* CONFIG_SCHED_MC */
6933 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6935 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6940 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6941 cpus_and(*mask
, *mask
, *cpu_map
);
6942 group
= first_cpu(*mask
);
6944 *sg
= &per_cpu(sched_group_core
, group
);
6947 #elif defined(CONFIG_SCHED_MC)
6949 cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6953 *sg
= &per_cpu(sched_group_core
, cpu
);
6958 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6959 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
6962 cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
, struct sched_group
**sg
,
6966 #ifdef CONFIG_SCHED_MC
6967 *mask
= cpu_coregroup_map(cpu
);
6968 cpus_and(*mask
, *mask
, *cpu_map
);
6969 group
= first_cpu(*mask
);
6970 #elif defined(CONFIG_SCHED_SMT)
6971 *mask
= per_cpu(cpu_sibling_map
, cpu
);
6972 cpus_and(*mask
, *mask
, *cpu_map
);
6973 group
= first_cpu(*mask
);
6978 *sg
= &per_cpu(sched_group_phys
, group
);
6984 * The init_sched_build_groups can't handle what we want to do with node
6985 * groups, so roll our own. Now each node has its own list of groups which
6986 * gets dynamically allocated.
6988 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6989 static struct sched_group
***sched_group_nodes_bycpu
;
6991 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6992 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
6994 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
6995 struct sched_group
**sg
, cpumask_t
*nodemask
)
6999 *nodemask
= node_to_cpumask(cpu_to_node(cpu
));
7000 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7001 group
= first_cpu(*nodemask
);
7004 *sg
= &per_cpu(sched_group_allnodes
, group
);
7008 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
7010 struct sched_group
*sg
= group_head
;
7016 for_each_cpu_mask(j
, sg
->cpumask
) {
7017 struct sched_domain
*sd
;
7019 sd
= &per_cpu(phys_domains
, j
);
7020 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
7022 * Only add "power" once for each
7028 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
7031 } while (sg
!= group_head
);
7033 #endif /* CONFIG_NUMA */
7036 /* Free memory allocated for various sched_group structures */
7037 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7041 for_each_cpu_mask(cpu
, *cpu_map
) {
7042 struct sched_group
**sched_group_nodes
7043 = sched_group_nodes_bycpu
[cpu
];
7045 if (!sched_group_nodes
)
7048 for (i
= 0; i
< nr_node_ids
; i
++) {
7049 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
7051 *nodemask
= node_to_cpumask(i
);
7052 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7053 if (cpus_empty(*nodemask
))
7063 if (oldsg
!= sched_group_nodes
[i
])
7066 kfree(sched_group_nodes
);
7067 sched_group_nodes_bycpu
[cpu
] = NULL
;
7070 #else /* !CONFIG_NUMA */
7071 static void free_sched_groups(const cpumask_t
*cpu_map
, cpumask_t
*nodemask
)
7074 #endif /* CONFIG_NUMA */
7077 * Initialize sched groups cpu_power.
7079 * cpu_power indicates the capacity of sched group, which is used while
7080 * distributing the load between different sched groups in a sched domain.
7081 * Typically cpu_power for all the groups in a sched domain will be same unless
7082 * there are asymmetries in the topology. If there are asymmetries, group
7083 * having more cpu_power will pickup more load compared to the group having
7086 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7087 * the maximum number of tasks a group can handle in the presence of other idle
7088 * or lightly loaded groups in the same sched domain.
7090 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7092 struct sched_domain
*child
;
7093 struct sched_group
*group
;
7095 WARN_ON(!sd
|| !sd
->groups
);
7097 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
7102 sd
->groups
->__cpu_power
= 0;
7105 * For perf policy, if the groups in child domain share resources
7106 * (for example cores sharing some portions of the cache hierarchy
7107 * or SMT), then set this domain groups cpu_power such that each group
7108 * can handle only one task, when there are other idle groups in the
7109 * same sched domain.
7111 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
7113 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
7114 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
7119 * add cpu_power of each child group to this groups cpu_power
7121 group
= child
->groups
;
7123 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
7124 group
= group
->next
;
7125 } while (group
!= child
->groups
);
7129 * Initializers for schedule domains
7130 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7133 #define SD_INIT(sd, type) sd_init_##type(sd)
7134 #define SD_INIT_FUNC(type) \
7135 static noinline void sd_init_##type(struct sched_domain *sd) \
7137 memset(sd, 0, sizeof(*sd)); \
7138 *sd = SD_##type##_INIT; \
7139 sd->level = SD_LV_##type; \
7144 SD_INIT_FUNC(ALLNODES
)
7147 #ifdef CONFIG_SCHED_SMT
7148 SD_INIT_FUNC(SIBLING
)
7150 #ifdef CONFIG_SCHED_MC
7155 * To minimize stack usage kmalloc room for cpumasks and share the
7156 * space as the usage in build_sched_domains() dictates. Used only
7157 * if the amount of space is significant.
7160 cpumask_t tmpmask
; /* make this one first */
7163 cpumask_t this_sibling_map
;
7164 cpumask_t this_core_map
;
7166 cpumask_t send_covered
;
7169 cpumask_t domainspan
;
7171 cpumask_t notcovered
;
7176 #define SCHED_CPUMASK_ALLOC 1
7177 #define SCHED_CPUMASK_FREE(v) kfree(v)
7178 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7180 #define SCHED_CPUMASK_ALLOC 0
7181 #define SCHED_CPUMASK_FREE(v)
7182 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7185 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7186 ((unsigned long)(a) + offsetof(struct allmasks, v))
7188 static int default_relax_domain_level
= -1;
7190 static int __init
setup_relax_domain_level(char *str
)
7194 val
= simple_strtoul(str
, NULL
, 0);
7195 if (val
< SD_LV_MAX
)
7196 default_relax_domain_level
= val
;
7200 __setup("relax_domain_level=", setup_relax_domain_level
);
7202 static void set_domain_attribute(struct sched_domain
*sd
,
7203 struct sched_domain_attr
*attr
)
7207 if (!attr
|| attr
->relax_domain_level
< 0) {
7208 if (default_relax_domain_level
< 0)
7211 request
= default_relax_domain_level
;
7213 request
= attr
->relax_domain_level
;
7214 if (request
< sd
->level
) {
7215 /* turn off idle balance on this domain */
7216 sd
->flags
&= ~(SD_WAKE_IDLE
|SD_BALANCE_NEWIDLE
);
7218 /* turn on idle balance on this domain */
7219 sd
->flags
|= (SD_WAKE_IDLE_FAR
|SD_BALANCE_NEWIDLE
);
7224 * Build sched domains for a given set of cpus and attach the sched domains
7225 * to the individual cpus
7227 static int __build_sched_domains(const cpumask_t
*cpu_map
,
7228 struct sched_domain_attr
*attr
)
7231 struct root_domain
*rd
;
7232 SCHED_CPUMASK_DECLARE(allmasks
);
7235 struct sched_group
**sched_group_nodes
= NULL
;
7236 int sd_allnodes
= 0;
7239 * Allocate the per-node list of sched groups
7241 sched_group_nodes
= kcalloc(nr_node_ids
, sizeof(struct sched_group
*),
7243 if (!sched_group_nodes
) {
7244 printk(KERN_WARNING
"Can not alloc sched group node list\n");
7249 rd
= alloc_rootdomain();
7251 printk(KERN_WARNING
"Cannot alloc root domain\n");
7253 kfree(sched_group_nodes
);
7258 #if SCHED_CPUMASK_ALLOC
7259 /* get space for all scratch cpumask variables */
7260 allmasks
= kmalloc(sizeof(*allmasks
), GFP_KERNEL
);
7262 printk(KERN_WARNING
"Cannot alloc cpumask array\n");
7265 kfree(sched_group_nodes
);
7270 tmpmask
= (cpumask_t
*)allmasks
;
7274 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
7278 * Set up domains for cpus specified by the cpu_map.
7280 for_each_cpu_mask(i
, *cpu_map
) {
7281 struct sched_domain
*sd
= NULL
, *p
;
7282 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7284 *nodemask
= node_to_cpumask(cpu_to_node(i
));
7285 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7288 if (cpus_weight(*cpu_map
) >
7289 SD_NODES_PER_DOMAIN
*cpus_weight(*nodemask
)) {
7290 sd
= &per_cpu(allnodes_domains
, i
);
7291 SD_INIT(sd
, ALLNODES
);
7292 set_domain_attribute(sd
, attr
);
7293 sd
->span
= *cpu_map
;
7294 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7300 sd
= &per_cpu(node_domains
, i
);
7302 set_domain_attribute(sd
, attr
);
7303 sched_domain_node_span(cpu_to_node(i
), &sd
->span
);
7307 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7311 sd
= &per_cpu(phys_domains
, i
);
7313 set_domain_attribute(sd
, attr
);
7314 sd
->span
= *nodemask
;
7318 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7320 #ifdef CONFIG_SCHED_MC
7322 sd
= &per_cpu(core_domains
, i
);
7324 set_domain_attribute(sd
, attr
);
7325 sd
->span
= cpu_coregroup_map(i
);
7326 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7329 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7332 #ifdef CONFIG_SCHED_SMT
7334 sd
= &per_cpu(cpu_domains
, i
);
7335 SD_INIT(sd
, SIBLING
);
7336 set_domain_attribute(sd
, attr
);
7337 sd
->span
= per_cpu(cpu_sibling_map
, i
);
7338 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
7341 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, tmpmask
);
7345 #ifdef CONFIG_SCHED_SMT
7346 /* Set up CPU (sibling) groups */
7347 for_each_cpu_mask(i
, *cpu_map
) {
7348 SCHED_CPUMASK_VAR(this_sibling_map
, allmasks
);
7349 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7351 *this_sibling_map
= per_cpu(cpu_sibling_map
, i
);
7352 cpus_and(*this_sibling_map
, *this_sibling_map
, *cpu_map
);
7353 if (i
!= first_cpu(*this_sibling_map
))
7356 init_sched_build_groups(this_sibling_map
, cpu_map
,
7358 send_covered
, tmpmask
);
7362 #ifdef CONFIG_SCHED_MC
7363 /* Set up multi-core groups */
7364 for_each_cpu_mask(i
, *cpu_map
) {
7365 SCHED_CPUMASK_VAR(this_core_map
, allmasks
);
7366 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7368 *this_core_map
= cpu_coregroup_map(i
);
7369 cpus_and(*this_core_map
, *this_core_map
, *cpu_map
);
7370 if (i
!= first_cpu(*this_core_map
))
7373 init_sched_build_groups(this_core_map
, cpu_map
,
7375 send_covered
, tmpmask
);
7379 /* Set up physical groups */
7380 for (i
= 0; i
< nr_node_ids
; i
++) {
7381 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7382 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7384 *nodemask
= node_to_cpumask(i
);
7385 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7386 if (cpus_empty(*nodemask
))
7389 init_sched_build_groups(nodemask
, cpu_map
,
7391 send_covered
, tmpmask
);
7395 /* Set up node groups */
7397 SCHED_CPUMASK_VAR(send_covered
, allmasks
);
7399 init_sched_build_groups(cpu_map
, cpu_map
,
7400 &cpu_to_allnodes_group
,
7401 send_covered
, tmpmask
);
7404 for (i
= 0; i
< nr_node_ids
; i
++) {
7405 /* Set up node groups */
7406 struct sched_group
*sg
, *prev
;
7407 SCHED_CPUMASK_VAR(nodemask
, allmasks
);
7408 SCHED_CPUMASK_VAR(domainspan
, allmasks
);
7409 SCHED_CPUMASK_VAR(covered
, allmasks
);
7412 *nodemask
= node_to_cpumask(i
);
7413 cpus_clear(*covered
);
7415 cpus_and(*nodemask
, *nodemask
, *cpu_map
);
7416 if (cpus_empty(*nodemask
)) {
7417 sched_group_nodes
[i
] = NULL
;
7421 sched_domain_node_span(i
, domainspan
);
7422 cpus_and(*domainspan
, *domainspan
, *cpu_map
);
7424 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
7426 printk(KERN_WARNING
"Can not alloc domain group for "
7430 sched_group_nodes
[i
] = sg
;
7431 for_each_cpu_mask(j
, *nodemask
) {
7432 struct sched_domain
*sd
;
7434 sd
= &per_cpu(node_domains
, j
);
7437 sg
->__cpu_power
= 0;
7438 sg
->cpumask
= *nodemask
;
7440 cpus_or(*covered
, *covered
, *nodemask
);
7443 for (j
= 0; j
< nr_node_ids
; j
++) {
7444 SCHED_CPUMASK_VAR(notcovered
, allmasks
);
7445 int n
= (i
+ j
) % nr_node_ids
;
7446 node_to_cpumask_ptr(pnodemask
, n
);
7448 cpus_complement(*notcovered
, *covered
);
7449 cpus_and(*tmpmask
, *notcovered
, *cpu_map
);
7450 cpus_and(*tmpmask
, *tmpmask
, *domainspan
);
7451 if (cpus_empty(*tmpmask
))
7454 cpus_and(*tmpmask
, *tmpmask
, *pnodemask
);
7455 if (cpus_empty(*tmpmask
))
7458 sg
= kmalloc_node(sizeof(struct sched_group
),
7462 "Can not alloc domain group for node %d\n", j
);
7465 sg
->__cpu_power
= 0;
7466 sg
->cpumask
= *tmpmask
;
7467 sg
->next
= prev
->next
;
7468 cpus_or(*covered
, *covered
, *tmpmask
);
7475 /* Calculate CPU power for physical packages and nodes */
7476 #ifdef CONFIG_SCHED_SMT
7477 for_each_cpu_mask(i
, *cpu_map
) {
7478 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
7480 init_sched_groups_power(i
, sd
);
7483 #ifdef CONFIG_SCHED_MC
7484 for_each_cpu_mask(i
, *cpu_map
) {
7485 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
7487 init_sched_groups_power(i
, sd
);
7491 for_each_cpu_mask(i
, *cpu_map
) {
7492 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
7494 init_sched_groups_power(i
, sd
);
7498 for (i
= 0; i
< nr_node_ids
; i
++)
7499 init_numa_sched_groups_power(sched_group_nodes
[i
]);
7502 struct sched_group
*sg
;
7504 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
,
7506 init_numa_sched_groups_power(sg
);
7510 /* Attach the domains */
7511 for_each_cpu_mask(i
, *cpu_map
) {
7512 struct sched_domain
*sd
;
7513 #ifdef CONFIG_SCHED_SMT
7514 sd
= &per_cpu(cpu_domains
, i
);
7515 #elif defined(CONFIG_SCHED_MC)
7516 sd
= &per_cpu(core_domains
, i
);
7518 sd
= &per_cpu(phys_domains
, i
);
7520 cpu_attach_domain(sd
, rd
, i
);
7523 SCHED_CPUMASK_FREE((void *)allmasks
);
7528 free_sched_groups(cpu_map
, tmpmask
);
7529 SCHED_CPUMASK_FREE((void *)allmasks
);
7534 static int build_sched_domains(const cpumask_t
*cpu_map
)
7536 return __build_sched_domains(cpu_map
, NULL
);
7539 static cpumask_t
*doms_cur
; /* current sched domains */
7540 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7541 static struct sched_domain_attr
*dattr_cur
;
7542 /* attribues of custom domains in 'doms_cur' */
7545 * Special case: If a kmalloc of a doms_cur partition (array of
7546 * cpumask_t) fails, then fallback to a single sched domain,
7547 * as determined by the single cpumask_t fallback_doms.
7549 static cpumask_t fallback_doms
;
7551 void __attribute__((weak
)) arch_update_cpu_topology(void)
7556 * Free current domain masks.
7557 * Called after all cpus are attached to NULL domain.
7559 static void free_sched_domains(void)
7562 if (doms_cur
!= &fallback_doms
)
7564 doms_cur
= &fallback_doms
;
7568 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7569 * For now this just excludes isolated cpus, but could be used to
7570 * exclude other special cases in the future.
7572 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
7576 arch_update_cpu_topology();
7578 doms_cur
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
7580 doms_cur
= &fallback_doms
;
7581 cpus_andnot(*doms_cur
, *cpu_map
, cpu_isolated_map
);
7583 err
= build_sched_domains(doms_cur
);
7584 register_sched_domain_sysctl();
7589 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
,
7592 free_sched_groups(cpu_map
, tmpmask
);
7596 * Detach sched domains from a group of cpus specified in cpu_map
7597 * These cpus will now be attached to the NULL domain
7599 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
7604 unregister_sched_domain_sysctl();
7606 for_each_cpu_mask(i
, *cpu_map
)
7607 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7608 synchronize_sched();
7609 arch_destroy_sched_domains(cpu_map
, &tmpmask
);
7612 /* handle null as "default" */
7613 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7614 struct sched_domain_attr
*new, int idx_new
)
7616 struct sched_domain_attr tmp
;
7623 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7624 new ? (new + idx_new
) : &tmp
,
7625 sizeof(struct sched_domain_attr
));
7629 * Partition sched domains as specified by the 'ndoms_new'
7630 * cpumasks in the array doms_new[] of cpumasks. This compares
7631 * doms_new[] to the current sched domain partitioning, doms_cur[].
7632 * It destroys each deleted domain and builds each new domain.
7634 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7635 * The masks don't intersect (don't overlap.) We should setup one
7636 * sched domain for each mask. CPUs not in any of the cpumasks will
7637 * not be load balanced. If the same cpumask appears both in the
7638 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7641 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7642 * ownership of it and will kfree it when done with it. If the caller
7643 * failed the kmalloc call, then it can pass in doms_new == NULL,
7644 * and partition_sched_domains() will fallback to the single partition
7647 * Call with hotplug lock held
7649 void partition_sched_domains(int ndoms_new
, cpumask_t
*doms_new
,
7650 struct sched_domain_attr
*dattr_new
)
7654 mutex_lock(&sched_domains_mutex
);
7656 /* always unregister in case we don't destroy any domains */
7657 unregister_sched_domain_sysctl();
7659 if (doms_new
== NULL
) {
7661 doms_new
= &fallback_doms
;
7662 cpus_andnot(doms_new
[0], cpu_online_map
, cpu_isolated_map
);
7666 /* Destroy deleted domains */
7667 for (i
= 0; i
< ndoms_cur
; i
++) {
7668 for (j
= 0; j
< ndoms_new
; j
++) {
7669 if (cpus_equal(doms_cur
[i
], doms_new
[j
])
7670 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7673 /* no match - a current sched domain not in new doms_new[] */
7674 detach_destroy_domains(doms_cur
+ i
);
7679 /* Build new domains */
7680 for (i
= 0; i
< ndoms_new
; i
++) {
7681 for (j
= 0; j
< ndoms_cur
; j
++) {
7682 if (cpus_equal(doms_new
[i
], doms_cur
[j
])
7683 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7686 /* no match - add a new doms_new */
7687 __build_sched_domains(doms_new
+ i
,
7688 dattr_new
? dattr_new
+ i
: NULL
);
7693 /* Remember the new sched domains */
7694 if (doms_cur
!= &fallback_doms
)
7696 kfree(dattr_cur
); /* kfree(NULL) is safe */
7697 doms_cur
= doms_new
;
7698 dattr_cur
= dattr_new
;
7699 ndoms_cur
= ndoms_new
;
7701 register_sched_domain_sysctl();
7703 mutex_unlock(&sched_domains_mutex
);
7706 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7707 int arch_reinit_sched_domains(void)
7712 mutex_lock(&sched_domains_mutex
);
7713 detach_destroy_domains(&cpu_online_map
);
7714 free_sched_domains();
7715 err
= arch_init_sched_domains(&cpu_online_map
);
7716 mutex_unlock(&sched_domains_mutex
);
7722 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7726 if (buf
[0] != '0' && buf
[0] != '1')
7730 sched_smt_power_savings
= (buf
[0] == '1');
7732 sched_mc_power_savings
= (buf
[0] == '1');
7734 ret
= arch_reinit_sched_domains();
7736 return ret
? ret
: count
;
7739 #ifdef CONFIG_SCHED_MC
7740 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
7742 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7744 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
7745 const char *buf
, size_t count
)
7747 return sched_power_savings_store(buf
, count
, 0);
7749 static SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
7750 sched_mc_power_savings_store
);
7753 #ifdef CONFIG_SCHED_SMT
7754 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
7756 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7758 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
7759 const char *buf
, size_t count
)
7761 return sched_power_savings_store(buf
, count
, 1);
7763 static SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
7764 sched_smt_power_savings_store
);
7767 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7771 #ifdef CONFIG_SCHED_SMT
7773 err
= sysfs_create_file(&cls
->kset
.kobj
,
7774 &attr_sched_smt_power_savings
.attr
);
7776 #ifdef CONFIG_SCHED_MC
7777 if (!err
&& mc_capable())
7778 err
= sysfs_create_file(&cls
->kset
.kobj
,
7779 &attr_sched_mc_power_savings
.attr
);
7783 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7786 * Force a reinitialization of the sched domains hierarchy. The domains
7787 * and groups cannot be updated in place without racing with the balancing
7788 * code, so we temporarily attach all running cpus to the NULL domain
7789 * which will prevent rebalancing while the sched domains are recalculated.
7791 static int update_sched_domains(struct notifier_block
*nfb
,
7792 unsigned long action
, void *hcpu
)
7794 int cpu
= (int)(long)hcpu
;
7797 case CPU_DOWN_PREPARE
:
7798 case CPU_DOWN_PREPARE_FROZEN
:
7799 disable_runtime(cpu_rq(cpu
));
7801 case CPU_UP_PREPARE
:
7802 case CPU_UP_PREPARE_FROZEN
:
7803 detach_destroy_domains(&cpu_online_map
);
7804 free_sched_domains();
7808 case CPU_DOWN_FAILED
:
7809 case CPU_DOWN_FAILED_FROZEN
:
7811 case CPU_ONLINE_FROZEN
:
7812 enable_runtime(cpu_rq(cpu
));
7814 case CPU_UP_CANCELED
:
7815 case CPU_UP_CANCELED_FROZEN
:
7817 case CPU_DEAD_FROZEN
:
7819 * Fall through and re-initialise the domains.
7826 #ifndef CONFIG_CPUSETS
7828 * Create default domain partitioning if cpusets are disabled.
7829 * Otherwise we let cpusets rebuild the domains based on the
7833 /* The hotplug lock is already held by cpu_up/cpu_down */
7834 arch_init_sched_domains(&cpu_online_map
);
7840 void __init
sched_init_smp(void)
7842 cpumask_t non_isolated_cpus
;
7844 #if defined(CONFIG_NUMA)
7845 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7847 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7850 mutex_lock(&sched_domains_mutex
);
7851 arch_init_sched_domains(&cpu_online_map
);
7852 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
7853 if (cpus_empty(non_isolated_cpus
))
7854 cpu_set(smp_processor_id(), non_isolated_cpus
);
7855 mutex_unlock(&sched_domains_mutex
);
7857 /* XXX: Theoretical race here - CPU may be hotplugged now */
7858 hotcpu_notifier(update_sched_domains
, 0);
7861 /* Move init over to a non-isolated CPU */
7862 if (set_cpus_allowed_ptr(current
, &non_isolated_cpus
) < 0)
7864 sched_init_granularity();
7867 void __init
sched_init_smp(void)
7869 sched_init_granularity();
7871 #endif /* CONFIG_SMP */
7873 int in_sched_functions(unsigned long addr
)
7875 return in_lock_functions(addr
) ||
7876 (addr
>= (unsigned long)__sched_text_start
7877 && addr
< (unsigned long)__sched_text_end
);
7880 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7882 cfs_rq
->tasks_timeline
= RB_ROOT
;
7883 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7884 #ifdef CONFIG_FAIR_GROUP_SCHED
7887 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7890 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7892 struct rt_prio_array
*array
;
7895 array
= &rt_rq
->active
;
7896 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7897 INIT_LIST_HEAD(array
->queue
+ i
);
7898 __clear_bit(i
, array
->bitmap
);
7900 /* delimiter for bitsearch: */
7901 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7903 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7904 rt_rq
->highest_prio
= MAX_RT_PRIO
;
7907 rt_rq
->rt_nr_migratory
= 0;
7908 rt_rq
->overloaded
= 0;
7912 rt_rq
->rt_throttled
= 0;
7913 rt_rq
->rt_runtime
= 0;
7914 spin_lock_init(&rt_rq
->rt_runtime_lock
);
7916 #ifdef CONFIG_RT_GROUP_SCHED
7917 rt_rq
->rt_nr_boosted
= 0;
7922 #ifdef CONFIG_FAIR_GROUP_SCHED
7923 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7924 struct sched_entity
*se
, int cpu
, int add
,
7925 struct sched_entity
*parent
)
7927 struct rq
*rq
= cpu_rq(cpu
);
7928 tg
->cfs_rq
[cpu
] = cfs_rq
;
7929 init_cfs_rq(cfs_rq
, rq
);
7932 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7935 /* se could be NULL for init_task_group */
7940 se
->cfs_rq
= &rq
->cfs
;
7942 se
->cfs_rq
= parent
->my_q
;
7945 se
->load
.weight
= tg
->shares
;
7946 se
->load
.inv_weight
= 0;
7947 se
->parent
= parent
;
7951 #ifdef CONFIG_RT_GROUP_SCHED
7952 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7953 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7954 struct sched_rt_entity
*parent
)
7956 struct rq
*rq
= cpu_rq(cpu
);
7958 tg
->rt_rq
[cpu
] = rt_rq
;
7959 init_rt_rq(rt_rq
, rq
);
7961 rt_rq
->rt_se
= rt_se
;
7962 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7964 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7966 tg
->rt_se
[cpu
] = rt_se
;
7971 rt_se
->rt_rq
= &rq
->rt
;
7973 rt_se
->rt_rq
= parent
->my_q
;
7975 rt_se
->my_q
= rt_rq
;
7976 rt_se
->parent
= parent
;
7977 INIT_LIST_HEAD(&rt_se
->run_list
);
7981 void __init
sched_init(void)
7984 unsigned long alloc_size
= 0, ptr
;
7986 #ifdef CONFIG_FAIR_GROUP_SCHED
7987 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7989 #ifdef CONFIG_RT_GROUP_SCHED
7990 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7992 #ifdef CONFIG_USER_SCHED
7996 * As sched_init() is called before page_alloc is setup,
7997 * we use alloc_bootmem().
8000 ptr
= (unsigned long)alloc_bootmem(alloc_size
);
8002 #ifdef CONFIG_FAIR_GROUP_SCHED
8003 init_task_group
.se
= (struct sched_entity
**)ptr
;
8004 ptr
+= nr_cpu_ids
* sizeof(void **);
8006 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8007 ptr
+= nr_cpu_ids
* sizeof(void **);
8009 #ifdef CONFIG_USER_SCHED
8010 root_task_group
.se
= (struct sched_entity
**)ptr
;
8011 ptr
+= nr_cpu_ids
* sizeof(void **);
8013 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8014 ptr
+= nr_cpu_ids
* sizeof(void **);
8015 #endif /* CONFIG_USER_SCHED */
8016 #endif /* CONFIG_FAIR_GROUP_SCHED */
8017 #ifdef CONFIG_RT_GROUP_SCHED
8018 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8019 ptr
+= nr_cpu_ids
* sizeof(void **);
8021 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8022 ptr
+= nr_cpu_ids
* sizeof(void **);
8024 #ifdef CONFIG_USER_SCHED
8025 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8026 ptr
+= nr_cpu_ids
* sizeof(void **);
8028 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8029 ptr
+= nr_cpu_ids
* sizeof(void **);
8030 #endif /* CONFIG_USER_SCHED */
8031 #endif /* CONFIG_RT_GROUP_SCHED */
8035 init_defrootdomain();
8038 init_rt_bandwidth(&def_rt_bandwidth
,
8039 global_rt_period(), global_rt_runtime());
8041 #ifdef CONFIG_RT_GROUP_SCHED
8042 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
8043 global_rt_period(), global_rt_runtime());
8044 #ifdef CONFIG_USER_SCHED
8045 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8046 global_rt_period(), RUNTIME_INF
);
8047 #endif /* CONFIG_USER_SCHED */
8048 #endif /* CONFIG_RT_GROUP_SCHED */
8050 #ifdef CONFIG_GROUP_SCHED
8051 list_add(&init_task_group
.list
, &task_groups
);
8052 INIT_LIST_HEAD(&init_task_group
.children
);
8054 #ifdef CONFIG_USER_SCHED
8055 INIT_LIST_HEAD(&root_task_group
.children
);
8056 init_task_group
.parent
= &root_task_group
;
8057 list_add(&init_task_group
.siblings
, &root_task_group
.children
);
8058 #endif /* CONFIG_USER_SCHED */
8059 #endif /* CONFIG_GROUP_SCHED */
8061 for_each_possible_cpu(i
) {
8065 spin_lock_init(&rq
->lock
);
8066 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
8068 init_cfs_rq(&rq
->cfs
, rq
);
8069 init_rt_rq(&rq
->rt
, rq
);
8070 #ifdef CONFIG_FAIR_GROUP_SCHED
8071 init_task_group
.shares
= init_task_group_load
;
8072 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8073 #ifdef CONFIG_CGROUP_SCHED
8075 * How much cpu bandwidth does init_task_group get?
8077 * In case of task-groups formed thr' the cgroup filesystem, it
8078 * gets 100% of the cpu resources in the system. This overall
8079 * system cpu resource is divided among the tasks of
8080 * init_task_group and its child task-groups in a fair manner,
8081 * based on each entity's (task or task-group's) weight
8082 * (se->load.weight).
8084 * In other words, if init_task_group has 10 tasks of weight
8085 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8086 * then A0's share of the cpu resource is:
8088 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8090 * We achieve this by letting init_task_group's tasks sit
8091 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8093 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
8094 #elif defined CONFIG_USER_SCHED
8095 root_task_group
.shares
= NICE_0_LOAD
;
8096 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, 0, NULL
);
8098 * In case of task-groups formed thr' the user id of tasks,
8099 * init_task_group represents tasks belonging to root user.
8100 * Hence it forms a sibling of all subsequent groups formed.
8101 * In this case, init_task_group gets only a fraction of overall
8102 * system cpu resource, based on the weight assigned to root
8103 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8104 * by letting tasks of init_task_group sit in a separate cfs_rq
8105 * (init_cfs_rq) and having one entity represent this group of
8106 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8108 init_tg_cfs_entry(&init_task_group
,
8109 &per_cpu(init_cfs_rq
, i
),
8110 &per_cpu(init_sched_entity
, i
), i
, 1,
8111 root_task_group
.se
[i
]);
8114 #endif /* CONFIG_FAIR_GROUP_SCHED */
8116 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8117 #ifdef CONFIG_RT_GROUP_SCHED
8118 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8119 #ifdef CONFIG_CGROUP_SCHED
8120 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
8121 #elif defined CONFIG_USER_SCHED
8122 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, 0, NULL
);
8123 init_tg_rt_entry(&init_task_group
,
8124 &per_cpu(init_rt_rq
, i
),
8125 &per_cpu(init_sched_rt_entity
, i
), i
, 1,
8126 root_task_group
.rt_se
[i
]);
8130 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8131 rq
->cpu_load
[j
] = 0;
8135 rq
->active_balance
= 0;
8136 rq
->next_balance
= jiffies
;
8140 rq
->migration_thread
= NULL
;
8141 INIT_LIST_HEAD(&rq
->migration_queue
);
8142 rq_attach_root(rq
, &def_root_domain
);
8145 atomic_set(&rq
->nr_iowait
, 0);
8148 set_load_weight(&init_task
);
8150 #ifdef CONFIG_PREEMPT_NOTIFIERS
8151 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8155 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8158 #ifdef CONFIG_RT_MUTEXES
8159 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
8163 * The boot idle thread does lazy MMU switching as well:
8165 atomic_inc(&init_mm
.mm_count
);
8166 enter_lazy_tlb(&init_mm
, current
);
8169 * Make us the idle thread. Technically, schedule() should not be
8170 * called from this thread, however somewhere below it might be,
8171 * but because we are the idle thread, we just pick up running again
8172 * when this runqueue becomes "idle".
8174 init_idle(current
, smp_processor_id());
8176 * During early bootup we pretend to be a normal task:
8178 current
->sched_class
= &fair_sched_class
;
8180 scheduler_running
= 1;
8183 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8184 void __might_sleep(char *file
, int line
)
8187 static unsigned long prev_jiffy
; /* ratelimiting */
8189 if ((in_atomic() || irqs_disabled()) &&
8190 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
8191 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8193 prev_jiffy
= jiffies
;
8194 printk(KERN_ERR
"BUG: sleeping function called from invalid"
8195 " context at %s:%d\n", file
, line
);
8196 printk("in_atomic():%d, irqs_disabled():%d\n",
8197 in_atomic(), irqs_disabled());
8198 debug_show_held_locks(current
);
8199 if (irqs_disabled())
8200 print_irqtrace_events(current
);
8205 EXPORT_SYMBOL(__might_sleep
);
8208 #ifdef CONFIG_MAGIC_SYSRQ
8209 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8213 update_rq_clock(rq
);
8214 on_rq
= p
->se
.on_rq
;
8216 deactivate_task(rq
, p
, 0);
8217 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8219 activate_task(rq
, p
, 0);
8220 resched_task(rq
->curr
);
8224 void normalize_rt_tasks(void)
8226 struct task_struct
*g
, *p
;
8227 unsigned long flags
;
8230 read_lock_irqsave(&tasklist_lock
, flags
);
8231 do_each_thread(g
, p
) {
8233 * Only normalize user tasks:
8238 p
->se
.exec_start
= 0;
8239 #ifdef CONFIG_SCHEDSTATS
8240 p
->se
.wait_start
= 0;
8241 p
->se
.sleep_start
= 0;
8242 p
->se
.block_start
= 0;
8247 * Renice negative nice level userspace
8250 if (TASK_NICE(p
) < 0 && p
->mm
)
8251 set_user_nice(p
, 0);
8255 spin_lock(&p
->pi_lock
);
8256 rq
= __task_rq_lock(p
);
8258 normalize_task(rq
, p
);
8260 __task_rq_unlock(rq
);
8261 spin_unlock(&p
->pi_lock
);
8262 } while_each_thread(g
, p
);
8264 read_unlock_irqrestore(&tasklist_lock
, flags
);
8267 #endif /* CONFIG_MAGIC_SYSRQ */
8271 * These functions are only useful for the IA64 MCA handling.
8273 * They can only be called when the whole system has been
8274 * stopped - every CPU needs to be quiescent, and no scheduling
8275 * activity can take place. Using them for anything else would
8276 * be a serious bug, and as a result, they aren't even visible
8277 * under any other configuration.
8281 * curr_task - return the current task for a given cpu.
8282 * @cpu: the processor in question.
8284 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8286 struct task_struct
*curr_task(int cpu
)
8288 return cpu_curr(cpu
);
8292 * set_curr_task - set the current task for a given cpu.
8293 * @cpu: the processor in question.
8294 * @p: the task pointer to set.
8296 * Description: This function must only be used when non-maskable interrupts
8297 * are serviced on a separate stack. It allows the architecture to switch the
8298 * notion of the current task on a cpu in a non-blocking manner. This function
8299 * must be called with all CPU's synchronized, and interrupts disabled, the
8300 * and caller must save the original value of the current task (see
8301 * curr_task() above) and restore that value before reenabling interrupts and
8302 * re-starting the system.
8304 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8306 void set_curr_task(int cpu
, struct task_struct
*p
)
8313 #ifdef CONFIG_FAIR_GROUP_SCHED
8314 static void free_fair_sched_group(struct task_group
*tg
)
8318 for_each_possible_cpu(i
) {
8320 kfree(tg
->cfs_rq
[i
]);
8330 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8332 struct cfs_rq
*cfs_rq
;
8333 struct sched_entity
*se
, *parent_se
;
8337 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8340 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8344 tg
->shares
= NICE_0_LOAD
;
8346 for_each_possible_cpu(i
) {
8349 cfs_rq
= kmalloc_node(sizeof(struct cfs_rq
),
8350 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8354 se
= kmalloc_node(sizeof(struct sched_entity
),
8355 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8359 parent_se
= parent
? parent
->se
[i
] : NULL
;
8360 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent_se
);
8369 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8371 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8372 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8375 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8377 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8379 #else /* !CONFG_FAIR_GROUP_SCHED */
8380 static inline void free_fair_sched_group(struct task_group
*tg
)
8385 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8390 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8394 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8397 #endif /* CONFIG_FAIR_GROUP_SCHED */
8399 #ifdef CONFIG_RT_GROUP_SCHED
8400 static void free_rt_sched_group(struct task_group
*tg
)
8404 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8406 for_each_possible_cpu(i
) {
8408 kfree(tg
->rt_rq
[i
]);
8410 kfree(tg
->rt_se
[i
]);
8418 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8420 struct rt_rq
*rt_rq
;
8421 struct sched_rt_entity
*rt_se
, *parent_se
;
8425 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8428 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8432 init_rt_bandwidth(&tg
->rt_bandwidth
,
8433 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8435 for_each_possible_cpu(i
) {
8438 rt_rq
= kmalloc_node(sizeof(struct rt_rq
),
8439 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8443 rt_se
= kmalloc_node(sizeof(struct sched_rt_entity
),
8444 GFP_KERNEL
|__GFP_ZERO
, cpu_to_node(i
));
8448 parent_se
= parent
? parent
->rt_se
[i
] : NULL
;
8449 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent_se
);
8458 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8460 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8461 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8464 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8466 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8468 #else /* !CONFIG_RT_GROUP_SCHED */
8469 static inline void free_rt_sched_group(struct task_group
*tg
)
8474 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8479 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8483 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8486 #endif /* CONFIG_RT_GROUP_SCHED */
8488 #ifdef CONFIG_GROUP_SCHED
8489 static void free_sched_group(struct task_group
*tg
)
8491 free_fair_sched_group(tg
);
8492 free_rt_sched_group(tg
);
8496 /* allocate runqueue etc for a new task group */
8497 struct task_group
*sched_create_group(struct task_group
*parent
)
8499 struct task_group
*tg
;
8500 unsigned long flags
;
8503 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8505 return ERR_PTR(-ENOMEM
);
8507 if (!alloc_fair_sched_group(tg
, parent
))
8510 if (!alloc_rt_sched_group(tg
, parent
))
8513 spin_lock_irqsave(&task_group_lock
, flags
);
8514 for_each_possible_cpu(i
) {
8515 register_fair_sched_group(tg
, i
);
8516 register_rt_sched_group(tg
, i
);
8518 list_add_rcu(&tg
->list
, &task_groups
);
8520 WARN_ON(!parent
); /* root should already exist */
8522 tg
->parent
= parent
;
8523 list_add_rcu(&tg
->siblings
, &parent
->children
);
8524 INIT_LIST_HEAD(&tg
->children
);
8525 spin_unlock_irqrestore(&task_group_lock
, flags
);
8530 free_sched_group(tg
);
8531 return ERR_PTR(-ENOMEM
);
8534 /* rcu callback to free various structures associated with a task group */
8535 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8537 /* now it should be safe to free those cfs_rqs */
8538 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8541 /* Destroy runqueue etc associated with a task group */
8542 void sched_destroy_group(struct task_group
*tg
)
8544 unsigned long flags
;
8547 spin_lock_irqsave(&task_group_lock
, flags
);
8548 for_each_possible_cpu(i
) {
8549 unregister_fair_sched_group(tg
, i
);
8550 unregister_rt_sched_group(tg
, i
);
8552 list_del_rcu(&tg
->list
);
8553 list_del_rcu(&tg
->siblings
);
8554 spin_unlock_irqrestore(&task_group_lock
, flags
);
8556 /* wait for possible concurrent references to cfs_rqs complete */
8557 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8560 /* change task's runqueue when it moves between groups.
8561 * The caller of this function should have put the task in its new group
8562 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8563 * reflect its new group.
8565 void sched_move_task(struct task_struct
*tsk
)
8568 unsigned long flags
;
8571 rq
= task_rq_lock(tsk
, &flags
);
8573 update_rq_clock(rq
);
8575 running
= task_current(rq
, tsk
);
8576 on_rq
= tsk
->se
.on_rq
;
8579 dequeue_task(rq
, tsk
, 0);
8580 if (unlikely(running
))
8581 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8583 set_task_rq(tsk
, task_cpu(tsk
));
8585 #ifdef CONFIG_FAIR_GROUP_SCHED
8586 if (tsk
->sched_class
->moved_group
)
8587 tsk
->sched_class
->moved_group(tsk
);
8590 if (unlikely(running
))
8591 tsk
->sched_class
->set_curr_task(rq
);
8593 enqueue_task(rq
, tsk
, 0);
8595 task_rq_unlock(rq
, &flags
);
8597 #endif /* CONFIG_GROUP_SCHED */
8599 #ifdef CONFIG_FAIR_GROUP_SCHED
8600 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8602 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8607 dequeue_entity(cfs_rq
, se
, 0);
8609 se
->load
.weight
= shares
;
8610 se
->load
.inv_weight
= 0;
8613 enqueue_entity(cfs_rq
, se
, 0);
8616 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8618 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8619 struct rq
*rq
= cfs_rq
->rq
;
8620 unsigned long flags
;
8622 spin_lock_irqsave(&rq
->lock
, flags
);
8623 __set_se_shares(se
, shares
);
8624 spin_unlock_irqrestore(&rq
->lock
, flags
);
8627 static DEFINE_MUTEX(shares_mutex
);
8629 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8632 unsigned long flags
;
8635 * We can't change the weight of the root cgroup.
8640 if (shares
< MIN_SHARES
)
8641 shares
= MIN_SHARES
;
8642 else if (shares
> MAX_SHARES
)
8643 shares
= MAX_SHARES
;
8645 mutex_lock(&shares_mutex
);
8646 if (tg
->shares
== shares
)
8649 spin_lock_irqsave(&task_group_lock
, flags
);
8650 for_each_possible_cpu(i
)
8651 unregister_fair_sched_group(tg
, i
);
8652 list_del_rcu(&tg
->siblings
);
8653 spin_unlock_irqrestore(&task_group_lock
, flags
);
8655 /* wait for any ongoing reference to this group to finish */
8656 synchronize_sched();
8659 * Now we are free to modify the group's share on each cpu
8660 * w/o tripping rebalance_share or load_balance_fair.
8662 tg
->shares
= shares
;
8663 for_each_possible_cpu(i
) {
8667 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8668 set_se_shares(tg
->se
[i
], shares
);
8672 * Enable load balance activity on this group, by inserting it back on
8673 * each cpu's rq->leaf_cfs_rq_list.
8675 spin_lock_irqsave(&task_group_lock
, flags
);
8676 for_each_possible_cpu(i
)
8677 register_fair_sched_group(tg
, i
);
8678 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8679 spin_unlock_irqrestore(&task_group_lock
, flags
);
8681 mutex_unlock(&shares_mutex
);
8685 unsigned long sched_group_shares(struct task_group
*tg
)
8691 #ifdef CONFIG_RT_GROUP_SCHED
8693 * Ensure that the real time constraints are schedulable.
8695 static DEFINE_MUTEX(rt_constraints_mutex
);
8697 static unsigned long to_ratio(u64 period
, u64 runtime
)
8699 if (runtime
== RUNTIME_INF
)
8702 return div64_u64(runtime
<< 16, period
);
8705 #ifdef CONFIG_CGROUP_SCHED
8706 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8708 struct task_group
*tgi
, *parent
= tg
->parent
;
8709 unsigned long total
= 0;
8712 if (global_rt_period() < period
)
8715 return to_ratio(period
, runtime
) <
8716 to_ratio(global_rt_period(), global_rt_runtime());
8719 if (ktime_to_ns(parent
->rt_bandwidth
.rt_period
) < period
)
8723 list_for_each_entry_rcu(tgi
, &parent
->children
, siblings
) {
8727 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8728 tgi
->rt_bandwidth
.rt_runtime
);
8732 return total
+ to_ratio(period
, runtime
) <=
8733 to_ratio(ktime_to_ns(parent
->rt_bandwidth
.rt_period
),
8734 parent
->rt_bandwidth
.rt_runtime
);
8736 #elif defined CONFIG_USER_SCHED
8737 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8739 struct task_group
*tgi
;
8740 unsigned long total
= 0;
8741 unsigned long global_ratio
=
8742 to_ratio(global_rt_period(), global_rt_runtime());
8745 list_for_each_entry_rcu(tgi
, &task_groups
, list
) {
8749 total
+= to_ratio(ktime_to_ns(tgi
->rt_bandwidth
.rt_period
),
8750 tgi
->rt_bandwidth
.rt_runtime
);
8754 return total
+ to_ratio(period
, runtime
) < global_ratio
;
8758 /* Must be called with tasklist_lock held */
8759 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8761 struct task_struct
*g
, *p
;
8762 do_each_thread(g
, p
) {
8763 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8765 } while_each_thread(g
, p
);
8769 static int tg_set_bandwidth(struct task_group
*tg
,
8770 u64 rt_period
, u64 rt_runtime
)
8774 mutex_lock(&rt_constraints_mutex
);
8775 read_lock(&tasklist_lock
);
8776 if (rt_runtime
== 0 && tg_has_rt_tasks(tg
)) {
8780 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
)) {
8785 spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8786 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8787 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8789 for_each_possible_cpu(i
) {
8790 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8792 spin_lock(&rt_rq
->rt_runtime_lock
);
8793 rt_rq
->rt_runtime
= rt_runtime
;
8794 spin_unlock(&rt_rq
->rt_runtime_lock
);
8796 spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8798 read_unlock(&tasklist_lock
);
8799 mutex_unlock(&rt_constraints_mutex
);
8804 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8806 u64 rt_runtime
, rt_period
;
8808 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8809 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8810 if (rt_runtime_us
< 0)
8811 rt_runtime
= RUNTIME_INF
;
8813 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8816 long sched_group_rt_runtime(struct task_group
*tg
)
8820 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8823 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8824 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8825 return rt_runtime_us
;
8828 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8830 u64 rt_runtime
, rt_period
;
8832 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8833 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8838 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8841 long sched_group_rt_period(struct task_group
*tg
)
8845 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8846 do_div(rt_period_us
, NSEC_PER_USEC
);
8847 return rt_period_us
;
8850 static int sched_rt_global_constraints(void)
8852 struct task_group
*tg
= &root_task_group
;
8853 u64 rt_runtime
, rt_period
;
8856 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8857 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8859 mutex_lock(&rt_constraints_mutex
);
8860 if (!__rt_schedulable(tg
, rt_period
, rt_runtime
))
8862 mutex_unlock(&rt_constraints_mutex
);
8866 #else /* !CONFIG_RT_GROUP_SCHED */
8867 static int sched_rt_global_constraints(void)
8869 unsigned long flags
;
8872 spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8873 for_each_possible_cpu(i
) {
8874 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8876 spin_lock(&rt_rq
->rt_runtime_lock
);
8877 rt_rq
->rt_runtime
= global_rt_runtime();
8878 spin_unlock(&rt_rq
->rt_runtime_lock
);
8880 spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8884 #endif /* CONFIG_RT_GROUP_SCHED */
8886 int sched_rt_handler(struct ctl_table
*table
, int write
,
8887 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
8891 int old_period
, old_runtime
;
8892 static DEFINE_MUTEX(mutex
);
8895 old_period
= sysctl_sched_rt_period
;
8896 old_runtime
= sysctl_sched_rt_runtime
;
8898 ret
= proc_dointvec(table
, write
, filp
, buffer
, lenp
, ppos
);
8900 if (!ret
&& write
) {
8901 ret
= sched_rt_global_constraints();
8903 sysctl_sched_rt_period
= old_period
;
8904 sysctl_sched_rt_runtime
= old_runtime
;
8906 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8907 def_rt_bandwidth
.rt_period
=
8908 ns_to_ktime(global_rt_period());
8911 mutex_unlock(&mutex
);
8916 #ifdef CONFIG_CGROUP_SCHED
8918 /* return corresponding task_group object of a cgroup */
8919 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8921 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8922 struct task_group
, css
);
8925 static struct cgroup_subsys_state
*
8926 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8928 struct task_group
*tg
, *parent
;
8930 if (!cgrp
->parent
) {
8931 /* This is early initialization for the top cgroup */
8932 init_task_group
.css
.cgroup
= cgrp
;
8933 return &init_task_group
.css
;
8936 parent
= cgroup_tg(cgrp
->parent
);
8937 tg
= sched_create_group(parent
);
8939 return ERR_PTR(-ENOMEM
);
8941 /* Bind the cgroup to task_group object we just created */
8942 tg
->css
.cgroup
= cgrp
;
8948 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8950 struct task_group
*tg
= cgroup_tg(cgrp
);
8952 sched_destroy_group(tg
);
8956 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8957 struct task_struct
*tsk
)
8959 #ifdef CONFIG_RT_GROUP_SCHED
8960 /* Don't accept realtime tasks when there is no way for them to run */
8961 if (rt_task(tsk
) && cgroup_tg(cgrp
)->rt_bandwidth
.rt_runtime
== 0)
8964 /* We don't support RT-tasks being in separate groups */
8965 if (tsk
->sched_class
!= &fair_sched_class
)
8973 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8974 struct cgroup
*old_cont
, struct task_struct
*tsk
)
8976 sched_move_task(tsk
);
8979 #ifdef CONFIG_FAIR_GROUP_SCHED
8980 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8983 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8986 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8988 struct task_group
*tg
= cgroup_tg(cgrp
);
8990 return (u64
) tg
->shares
;
8992 #endif /* CONFIG_FAIR_GROUP_SCHED */
8994 #ifdef CONFIG_RT_GROUP_SCHED
8995 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8998 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9001 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9003 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9006 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9009 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9012 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9014 return sched_group_rt_period(cgroup_tg(cgrp
));
9016 #endif /* CONFIG_RT_GROUP_SCHED */
9018 static struct cftype cpu_files
[] = {
9019 #ifdef CONFIG_FAIR_GROUP_SCHED
9022 .read_u64
= cpu_shares_read_u64
,
9023 .write_u64
= cpu_shares_write_u64
,
9026 #ifdef CONFIG_RT_GROUP_SCHED
9028 .name
= "rt_runtime_us",
9029 .read_s64
= cpu_rt_runtime_read
,
9030 .write_s64
= cpu_rt_runtime_write
,
9033 .name
= "rt_period_us",
9034 .read_u64
= cpu_rt_period_read_uint
,
9035 .write_u64
= cpu_rt_period_write_uint
,
9040 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9042 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9045 struct cgroup_subsys cpu_cgroup_subsys
= {
9047 .create
= cpu_cgroup_create
,
9048 .destroy
= cpu_cgroup_destroy
,
9049 .can_attach
= cpu_cgroup_can_attach
,
9050 .attach
= cpu_cgroup_attach
,
9051 .populate
= cpu_cgroup_populate
,
9052 .subsys_id
= cpu_cgroup_subsys_id
,
9056 #endif /* CONFIG_CGROUP_SCHED */
9058 #ifdef CONFIG_CGROUP_CPUACCT
9061 * CPU accounting code for task groups.
9063 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9064 * (balbir@in.ibm.com).
9067 /* track cpu usage of a group of tasks */
9069 struct cgroup_subsys_state css
;
9070 /* cpuusage holds pointer to a u64-type object on every cpu */
9074 struct cgroup_subsys cpuacct_subsys
;
9076 /* return cpu accounting group corresponding to this container */
9077 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9079 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9080 struct cpuacct
, css
);
9083 /* return cpu accounting group to which this task belongs */
9084 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9086 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9087 struct cpuacct
, css
);
9090 /* create a new cpu accounting group */
9091 static struct cgroup_subsys_state
*cpuacct_create(
9092 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9094 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9097 return ERR_PTR(-ENOMEM
);
9099 ca
->cpuusage
= alloc_percpu(u64
);
9100 if (!ca
->cpuusage
) {
9102 return ERR_PTR(-ENOMEM
);
9108 /* destroy an existing cpu accounting group */
9110 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9112 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9114 free_percpu(ca
->cpuusage
);
9118 /* return total cpu usage (in nanoseconds) of a group */
9119 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9121 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9122 u64 totalcpuusage
= 0;
9125 for_each_possible_cpu(i
) {
9126 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9129 * Take rq->lock to make 64-bit addition safe on 32-bit
9132 spin_lock_irq(&cpu_rq(i
)->lock
);
9133 totalcpuusage
+= *cpuusage
;
9134 spin_unlock_irq(&cpu_rq(i
)->lock
);
9137 return totalcpuusage
;
9140 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9143 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9152 for_each_possible_cpu(i
) {
9153 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, i
);
9155 spin_lock_irq(&cpu_rq(i
)->lock
);
9157 spin_unlock_irq(&cpu_rq(i
)->lock
);
9163 static struct cftype files
[] = {
9166 .read_u64
= cpuusage_read
,
9167 .write_u64
= cpuusage_write
,
9171 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9173 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9177 * charge this task's execution time to its accounting group.
9179 * called with rq->lock held.
9181 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9185 if (!cpuacct_subsys
.active
)
9190 u64
*cpuusage
= percpu_ptr(ca
->cpuusage
, task_cpu(tsk
));
9192 *cpuusage
+= cputime
;
9196 struct cgroup_subsys cpuacct_subsys
= {
9198 .create
= cpuacct_create
,
9199 .destroy
= cpuacct_destroy
,
9200 .populate
= cpuacct_populate
,
9201 .subsys_id
= cpuacct_subsys_id
,
9203 #endif /* CONFIG_CGROUP_CPUACCT */