perf_events: Update Intel extra regs shared constraints management
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / cpu / perf_event.c
blob019fda7489e73ce493f2a9293a6033fd488e7b09
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
36 #if 0
37 #undef wrmsrl
38 #define wrmsrl(msr, val) \
39 do { \
40 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
41 (unsigned long)(val)); \
42 native_write_msr((msr), (u32)((u64)(val)), \
43 (u32)((u64)(val) >> 32)); \
44 } while (0)
45 #endif
48 * | NHM/WSM | SNB |
49 * register -------------------------------
50 * | HT | no HT | HT | no HT |
51 *-----------------------------------------
52 * offcore | core | core | cpu | core |
53 * lbr_sel | core | core | cpu | core |
54 * ld_lat | cpu | core | cpu | core |
55 *-----------------------------------------
57 * Given that there is a small number of shared regs,
58 * we can pre-allocate their slot in the per-cpu
59 * per-core reg tables.
61 enum extra_reg_type {
62 EXTRA_REG_NONE = -1, /* not used */
64 EXTRA_REG_RSP_0 = 0, /* offcore_response_0 */
65 EXTRA_REG_RSP_1 = 1, /* offcore_response_1 */
67 EXTRA_REG_MAX /* number of entries needed */
71 * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
73 static unsigned long
74 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
76 unsigned long offset, addr = (unsigned long)from;
77 unsigned long size, len = 0;
78 struct page *page;
79 void *map;
80 int ret;
82 do {
83 ret = __get_user_pages_fast(addr, 1, 0, &page);
84 if (!ret)
85 break;
87 offset = addr & (PAGE_SIZE - 1);
88 size = min(PAGE_SIZE - offset, n - len);
90 map = kmap_atomic(page);
91 memcpy(to, map+offset, size);
92 kunmap_atomic(map);
93 put_page(page);
95 len += size;
96 to += size;
97 addr += size;
99 } while (len < n);
101 return len;
104 struct event_constraint {
105 union {
106 unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
107 u64 idxmsk64;
109 u64 code;
110 u64 cmask;
111 int weight;
114 struct amd_nb {
115 int nb_id; /* NorthBridge id */
116 int refcnt; /* reference count */
117 struct perf_event *owners[X86_PMC_IDX_MAX];
118 struct event_constraint event_constraints[X86_PMC_IDX_MAX];
121 struct intel_percore;
123 #define MAX_LBR_ENTRIES 16
125 struct cpu_hw_events {
127 * Generic x86 PMC bits
129 struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
130 unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
131 unsigned long running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
132 int enabled;
134 int n_events;
135 int n_added;
136 int n_txn;
137 int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
138 u64 tags[X86_PMC_IDX_MAX];
139 struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
141 unsigned int group_flag;
144 * Intel DebugStore bits
146 struct debug_store *ds;
147 u64 pebs_enabled;
150 * Intel LBR bits
152 int lbr_users;
153 void *lbr_context;
154 struct perf_branch_stack lbr_stack;
155 struct perf_branch_entry lbr_entries[MAX_LBR_ENTRIES];
158 * manage shared (per-core, per-cpu) registers
159 * used on Intel NHM/WSM/SNB
161 struct intel_shared_regs *shared_regs;
164 * AMD specific bits
166 struct amd_nb *amd_nb;
169 #define __EVENT_CONSTRAINT(c, n, m, w) {\
170 { .idxmsk64 = (n) }, \
171 .code = (c), \
172 .cmask = (m), \
173 .weight = (w), \
176 #define EVENT_CONSTRAINT(c, n, m) \
177 __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
180 * Constraint on the Event code.
182 #define INTEL_EVENT_CONSTRAINT(c, n) \
183 EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
186 * Constraint on the Event code + UMask + fixed-mask
188 * filter mask to validate fixed counter events.
189 * the following filters disqualify for fixed counters:
190 * - inv
191 * - edge
192 * - cnt-mask
193 * The other filters are supported by fixed counters.
194 * The any-thread option is supported starting with v3.
196 #define FIXED_EVENT_CONSTRAINT(c, n) \
197 EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
200 * Constraint on the Event code + UMask
202 #define INTEL_UEVENT_CONSTRAINT(c, n) \
203 EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
205 #define EVENT_CONSTRAINT_END \
206 EVENT_CONSTRAINT(0, 0, 0)
208 #define for_each_event_constraint(e, c) \
209 for ((e) = (c); (e)->weight; (e)++)
212 * Per register state.
214 struct er_account {
215 raw_spinlock_t lock; /* per-core: protect structure */
216 u64 config; /* extra MSR config */
217 u64 reg; /* extra MSR number */
218 atomic_t ref; /* reference count */
222 * Extra registers for specific events.
224 * Some events need large masks and require external MSRs.
225 * Those extra MSRs end up being shared for all events on
226 * a PMU and sometimes between PMU of sibling HT threads.
227 * In either case, the kernel needs to handle conflicting
228 * accesses to those extra, shared, regs. The data structure
229 * to manage those registers is stored in cpu_hw_event.
231 struct extra_reg {
232 unsigned int event;
233 unsigned int msr;
234 u64 config_mask;
235 u64 valid_mask;
236 int idx; /* per_xxx->regs[] reg index */
239 #define EVENT_EXTRA_REG(e, ms, m, vm, i) { \
240 .event = (e), \
241 .msr = (ms), \
242 .config_mask = (m), \
243 .valid_mask = (vm), \
244 .idx = EXTRA_REG_##i \
247 #define INTEL_EVENT_EXTRA_REG(event, msr, vm, idx) \
248 EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm, idx)
250 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0, RSP_0)
252 union perf_capabilities {
253 struct {
254 u64 lbr_format : 6;
255 u64 pebs_trap : 1;
256 u64 pebs_arch_reg : 1;
257 u64 pebs_format : 4;
258 u64 smm_freeze : 1;
260 u64 capabilities;
264 * struct x86_pmu - generic x86 pmu
266 struct x86_pmu {
268 * Generic x86 PMC bits
270 const char *name;
271 int version;
272 int (*handle_irq)(struct pt_regs *);
273 void (*disable_all)(void);
274 void (*enable_all)(int added);
275 void (*enable)(struct perf_event *);
276 void (*disable)(struct perf_event *);
277 void (*hw_watchdog_set_attr)(struct perf_event_attr *attr);
278 int (*hw_config)(struct perf_event *event);
279 int (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
280 unsigned eventsel;
281 unsigned perfctr;
282 u64 (*event_map)(int);
283 int max_events;
284 int num_counters;
285 int num_counters_fixed;
286 int cntval_bits;
287 u64 cntval_mask;
288 int apic;
289 u64 max_period;
290 struct event_constraint *
291 (*get_event_constraints)(struct cpu_hw_events *cpuc,
292 struct perf_event *event);
294 void (*put_event_constraints)(struct cpu_hw_events *cpuc,
295 struct perf_event *event);
296 struct event_constraint *event_constraints;
297 void (*quirks)(void);
298 int perfctr_second_write;
300 int (*cpu_prepare)(int cpu);
301 void (*cpu_starting)(int cpu);
302 void (*cpu_dying)(int cpu);
303 void (*cpu_dead)(int cpu);
306 * Intel Arch Perfmon v2+
308 u64 intel_ctrl;
309 union perf_capabilities intel_cap;
312 * Intel DebugStore bits
314 int bts, pebs;
315 int bts_active, pebs_active;
316 int pebs_record_size;
317 void (*drain_pebs)(struct pt_regs *regs);
318 struct event_constraint *pebs_constraints;
321 * Intel LBR
323 unsigned long lbr_tos, lbr_from, lbr_to; /* MSR base regs */
324 int lbr_nr; /* hardware stack size */
327 * Extra registers for events
329 struct extra_reg *extra_regs;
332 static struct x86_pmu x86_pmu __read_mostly;
334 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
335 .enabled = 1,
338 static int x86_perf_event_set_period(struct perf_event *event);
341 * Generalized hw caching related hw_event table, filled
342 * in on a per model basis. A value of 0 means
343 * 'not supported', -1 means 'hw_event makes no sense on
344 * this CPU', any other value means the raw hw_event
345 * ID.
348 #define C(x) PERF_COUNT_HW_CACHE_##x
350 static u64 __read_mostly hw_cache_event_ids
351 [PERF_COUNT_HW_CACHE_MAX]
352 [PERF_COUNT_HW_CACHE_OP_MAX]
353 [PERF_COUNT_HW_CACHE_RESULT_MAX];
354 static u64 __read_mostly hw_cache_extra_regs
355 [PERF_COUNT_HW_CACHE_MAX]
356 [PERF_COUNT_HW_CACHE_OP_MAX]
357 [PERF_COUNT_HW_CACHE_RESULT_MAX];
359 void hw_nmi_watchdog_set_attr(struct perf_event_attr *wd_attr)
361 if (x86_pmu.hw_watchdog_set_attr)
362 x86_pmu.hw_watchdog_set_attr(wd_attr);
366 * Propagate event elapsed time into the generic event.
367 * Can only be executed on the CPU where the event is active.
368 * Returns the delta events processed.
370 static u64
371 x86_perf_event_update(struct perf_event *event)
373 struct hw_perf_event *hwc = &event->hw;
374 int shift = 64 - x86_pmu.cntval_bits;
375 u64 prev_raw_count, new_raw_count;
376 int idx = hwc->idx;
377 s64 delta;
379 if (idx == X86_PMC_IDX_FIXED_BTS)
380 return 0;
383 * Careful: an NMI might modify the previous event value.
385 * Our tactic to handle this is to first atomically read and
386 * exchange a new raw count - then add that new-prev delta
387 * count to the generic event atomically:
389 again:
390 prev_raw_count = local64_read(&hwc->prev_count);
391 rdmsrl(hwc->event_base, new_raw_count);
393 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
394 new_raw_count) != prev_raw_count)
395 goto again;
398 * Now we have the new raw value and have updated the prev
399 * timestamp already. We can now calculate the elapsed delta
400 * (event-)time and add that to the generic event.
402 * Careful, not all hw sign-extends above the physical width
403 * of the count.
405 delta = (new_raw_count << shift) - (prev_raw_count << shift);
406 delta >>= shift;
408 local64_add(delta, &event->count);
409 local64_sub(delta, &hwc->period_left);
411 return new_raw_count;
414 static inline int x86_pmu_addr_offset(int index)
416 int offset;
418 /* offset = X86_FEATURE_PERFCTR_CORE ? index << 1 : index */
419 alternative_io(ASM_NOP2,
420 "shll $1, %%eax",
421 X86_FEATURE_PERFCTR_CORE,
422 "=a" (offset),
423 "a" (index));
425 return offset;
428 static inline unsigned int x86_pmu_config_addr(int index)
430 return x86_pmu.eventsel + x86_pmu_addr_offset(index);
433 static inline unsigned int x86_pmu_event_addr(int index)
435 return x86_pmu.perfctr + x86_pmu_addr_offset(index);
439 * Find and validate any extra registers to set up.
441 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
443 struct hw_perf_event_extra *reg;
444 struct extra_reg *er;
446 reg = &event->hw.extra_reg;
448 if (!x86_pmu.extra_regs)
449 return 0;
451 for (er = x86_pmu.extra_regs; er->msr; er++) {
452 if (er->event != (config & er->config_mask))
453 continue;
454 if (event->attr.config1 & ~er->valid_mask)
455 return -EINVAL;
457 reg->idx = er->idx;
458 reg->config = event->attr.config1;
459 reg->reg = er->msr;
460 break;
462 return 0;
465 static atomic_t active_events;
466 static DEFINE_MUTEX(pmc_reserve_mutex);
468 #ifdef CONFIG_X86_LOCAL_APIC
470 static bool reserve_pmc_hardware(void)
472 int i;
474 for (i = 0; i < x86_pmu.num_counters; i++) {
475 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
476 goto perfctr_fail;
479 for (i = 0; i < x86_pmu.num_counters; i++) {
480 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
481 goto eventsel_fail;
484 return true;
486 eventsel_fail:
487 for (i--; i >= 0; i--)
488 release_evntsel_nmi(x86_pmu_config_addr(i));
490 i = x86_pmu.num_counters;
492 perfctr_fail:
493 for (i--; i >= 0; i--)
494 release_perfctr_nmi(x86_pmu_event_addr(i));
496 return false;
499 static void release_pmc_hardware(void)
501 int i;
503 for (i = 0; i < x86_pmu.num_counters; i++) {
504 release_perfctr_nmi(x86_pmu_event_addr(i));
505 release_evntsel_nmi(x86_pmu_config_addr(i));
509 #else
511 static bool reserve_pmc_hardware(void) { return true; }
512 static void release_pmc_hardware(void) {}
514 #endif
516 static bool check_hw_exists(void)
518 u64 val, val_new = 0;
519 int i, reg, ret = 0;
522 * Check to see if the BIOS enabled any of the counters, if so
523 * complain and bail.
525 for (i = 0; i < x86_pmu.num_counters; i++) {
526 reg = x86_pmu_config_addr(i);
527 ret = rdmsrl_safe(reg, &val);
528 if (ret)
529 goto msr_fail;
530 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
531 goto bios_fail;
534 if (x86_pmu.num_counters_fixed) {
535 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
536 ret = rdmsrl_safe(reg, &val);
537 if (ret)
538 goto msr_fail;
539 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
540 if (val & (0x03 << i*4))
541 goto bios_fail;
546 * Now write a value and read it back to see if it matches,
547 * this is needed to detect certain hardware emulators (qemu/kvm)
548 * that don't trap on the MSR access and always return 0s.
550 val = 0xabcdUL;
551 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
552 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
553 if (ret || val != val_new)
554 goto msr_fail;
556 return true;
558 bios_fail:
560 * We still allow the PMU driver to operate:
562 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
563 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
565 return true;
567 msr_fail:
568 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
570 return false;
573 static void reserve_ds_buffers(void);
574 static void release_ds_buffers(void);
576 static void hw_perf_event_destroy(struct perf_event *event)
578 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
579 release_pmc_hardware();
580 release_ds_buffers();
581 mutex_unlock(&pmc_reserve_mutex);
585 static inline int x86_pmu_initialized(void)
587 return x86_pmu.handle_irq != NULL;
590 static inline int
591 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
593 struct perf_event_attr *attr = &event->attr;
594 unsigned int cache_type, cache_op, cache_result;
595 u64 config, val;
597 config = attr->config;
599 cache_type = (config >> 0) & 0xff;
600 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
601 return -EINVAL;
603 cache_op = (config >> 8) & 0xff;
604 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
605 return -EINVAL;
607 cache_result = (config >> 16) & 0xff;
608 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
609 return -EINVAL;
611 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
613 if (val == 0)
614 return -ENOENT;
616 if (val == -1)
617 return -EINVAL;
619 hwc->config |= val;
620 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
621 return x86_pmu_extra_regs(val, event);
624 static int x86_setup_perfctr(struct perf_event *event)
626 struct perf_event_attr *attr = &event->attr;
627 struct hw_perf_event *hwc = &event->hw;
628 u64 config;
630 if (!is_sampling_event(event)) {
631 hwc->sample_period = x86_pmu.max_period;
632 hwc->last_period = hwc->sample_period;
633 local64_set(&hwc->period_left, hwc->sample_period);
634 } else {
636 * If we have a PMU initialized but no APIC
637 * interrupts, we cannot sample hardware
638 * events (user-space has to fall back and
639 * sample via a hrtimer based software event):
641 if (!x86_pmu.apic)
642 return -EOPNOTSUPP;
646 * Do not allow config1 (extended registers) to propagate,
647 * there's no sane user-space generalization yet:
649 if (attr->type == PERF_TYPE_RAW)
650 return 0;
652 if (attr->type == PERF_TYPE_HW_CACHE)
653 return set_ext_hw_attr(hwc, event);
655 if (attr->config >= x86_pmu.max_events)
656 return -EINVAL;
659 * The generic map:
661 config = x86_pmu.event_map(attr->config);
663 if (config == 0)
664 return -ENOENT;
666 if (config == -1LL)
667 return -EINVAL;
670 * Branch tracing:
672 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
673 !attr->freq && hwc->sample_period == 1) {
674 /* BTS is not supported by this architecture. */
675 if (!x86_pmu.bts_active)
676 return -EOPNOTSUPP;
678 /* BTS is currently only allowed for user-mode. */
679 if (!attr->exclude_kernel)
680 return -EOPNOTSUPP;
683 hwc->config |= config;
685 return 0;
688 static int x86_pmu_hw_config(struct perf_event *event)
690 if (event->attr.precise_ip) {
691 int precise = 0;
693 /* Support for constant skid */
694 if (x86_pmu.pebs_active) {
695 precise++;
697 /* Support for IP fixup */
698 if (x86_pmu.lbr_nr)
699 precise++;
702 if (event->attr.precise_ip > precise)
703 return -EOPNOTSUPP;
707 * Generate PMC IRQs:
708 * (keep 'enabled' bit clear for now)
710 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
713 * Count user and OS events unless requested not to
715 if (!event->attr.exclude_user)
716 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
717 if (!event->attr.exclude_kernel)
718 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
720 if (event->attr.type == PERF_TYPE_RAW)
721 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
723 return x86_setup_perfctr(event);
727 * Setup the hardware configuration for a given attr_type
729 static int __x86_pmu_event_init(struct perf_event *event)
731 int err;
733 if (!x86_pmu_initialized())
734 return -ENODEV;
736 err = 0;
737 if (!atomic_inc_not_zero(&active_events)) {
738 mutex_lock(&pmc_reserve_mutex);
739 if (atomic_read(&active_events) == 0) {
740 if (!reserve_pmc_hardware())
741 err = -EBUSY;
742 else
743 reserve_ds_buffers();
745 if (!err)
746 atomic_inc(&active_events);
747 mutex_unlock(&pmc_reserve_mutex);
749 if (err)
750 return err;
752 event->destroy = hw_perf_event_destroy;
754 event->hw.idx = -1;
755 event->hw.last_cpu = -1;
756 event->hw.last_tag = ~0ULL;
758 /* mark unused */
759 event->hw.extra_reg.idx = EXTRA_REG_NONE;
761 return x86_pmu.hw_config(event);
764 static void x86_pmu_disable_all(void)
766 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
767 int idx;
769 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
770 u64 val;
772 if (!test_bit(idx, cpuc->active_mask))
773 continue;
774 rdmsrl(x86_pmu_config_addr(idx), val);
775 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
776 continue;
777 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
778 wrmsrl(x86_pmu_config_addr(idx), val);
782 static void x86_pmu_disable(struct pmu *pmu)
784 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
786 if (!x86_pmu_initialized())
787 return;
789 if (!cpuc->enabled)
790 return;
792 cpuc->n_added = 0;
793 cpuc->enabled = 0;
794 barrier();
796 x86_pmu.disable_all();
799 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
800 u64 enable_mask)
802 if (hwc->extra_reg.reg)
803 wrmsrl(hwc->extra_reg.reg, hwc->extra_reg.config);
804 wrmsrl(hwc->config_base, hwc->config | enable_mask);
807 static void x86_pmu_enable_all(int added)
809 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
810 int idx;
812 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
813 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
815 if (!test_bit(idx, cpuc->active_mask))
816 continue;
818 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
822 static struct pmu pmu;
824 static inline int is_x86_event(struct perf_event *event)
826 return event->pmu == &pmu;
829 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
831 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
832 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
833 int i, j, w, wmax, num = 0;
834 struct hw_perf_event *hwc;
836 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
838 for (i = 0; i < n; i++) {
839 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
840 constraints[i] = c;
844 * fastpath, try to reuse previous register
846 for (i = 0; i < n; i++) {
847 hwc = &cpuc->event_list[i]->hw;
848 c = constraints[i];
850 /* never assigned */
851 if (hwc->idx == -1)
852 break;
854 /* constraint still honored */
855 if (!test_bit(hwc->idx, c->idxmsk))
856 break;
858 /* not already used */
859 if (test_bit(hwc->idx, used_mask))
860 break;
862 __set_bit(hwc->idx, used_mask);
863 if (assign)
864 assign[i] = hwc->idx;
866 if (i == n)
867 goto done;
870 * begin slow path
873 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
876 * weight = number of possible counters
878 * 1 = most constrained, only works on one counter
879 * wmax = least constrained, works on any counter
881 * assign events to counters starting with most
882 * constrained events.
884 wmax = x86_pmu.num_counters;
887 * when fixed event counters are present,
888 * wmax is incremented by 1 to account
889 * for one more choice
891 if (x86_pmu.num_counters_fixed)
892 wmax++;
894 for (w = 1, num = n; num && w <= wmax; w++) {
895 /* for each event */
896 for (i = 0; num && i < n; i++) {
897 c = constraints[i];
898 hwc = &cpuc->event_list[i]->hw;
900 if (c->weight != w)
901 continue;
903 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
904 if (!test_bit(j, used_mask))
905 break;
908 if (j == X86_PMC_IDX_MAX)
909 break;
911 __set_bit(j, used_mask);
913 if (assign)
914 assign[i] = j;
915 num--;
918 done:
920 * scheduling failed or is just a simulation,
921 * free resources if necessary
923 if (!assign || num) {
924 for (i = 0; i < n; i++) {
925 if (x86_pmu.put_event_constraints)
926 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
929 return num ? -ENOSPC : 0;
933 * dogrp: true if must collect siblings events (group)
934 * returns total number of events and error code
936 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
938 struct perf_event *event;
939 int n, max_count;
941 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
943 /* current number of events already accepted */
944 n = cpuc->n_events;
946 if (is_x86_event(leader)) {
947 if (n >= max_count)
948 return -ENOSPC;
949 cpuc->event_list[n] = leader;
950 n++;
952 if (!dogrp)
953 return n;
955 list_for_each_entry(event, &leader->sibling_list, group_entry) {
956 if (!is_x86_event(event) ||
957 event->state <= PERF_EVENT_STATE_OFF)
958 continue;
960 if (n >= max_count)
961 return -ENOSPC;
963 cpuc->event_list[n] = event;
964 n++;
966 return n;
969 static inline void x86_assign_hw_event(struct perf_event *event,
970 struct cpu_hw_events *cpuc, int i)
972 struct hw_perf_event *hwc = &event->hw;
974 hwc->idx = cpuc->assign[i];
975 hwc->last_cpu = smp_processor_id();
976 hwc->last_tag = ++cpuc->tags[i];
978 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
979 hwc->config_base = 0;
980 hwc->event_base = 0;
981 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
982 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
983 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
984 } else {
985 hwc->config_base = x86_pmu_config_addr(hwc->idx);
986 hwc->event_base = x86_pmu_event_addr(hwc->idx);
990 static inline int match_prev_assignment(struct hw_perf_event *hwc,
991 struct cpu_hw_events *cpuc,
992 int i)
994 return hwc->idx == cpuc->assign[i] &&
995 hwc->last_cpu == smp_processor_id() &&
996 hwc->last_tag == cpuc->tags[i];
999 static void x86_pmu_start(struct perf_event *event, int flags);
1000 static void x86_pmu_stop(struct perf_event *event, int flags);
1002 static void x86_pmu_enable(struct pmu *pmu)
1004 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1005 struct perf_event *event;
1006 struct hw_perf_event *hwc;
1007 int i, added = cpuc->n_added;
1009 if (!x86_pmu_initialized())
1010 return;
1012 if (cpuc->enabled)
1013 return;
1015 if (cpuc->n_added) {
1016 int n_running = cpuc->n_events - cpuc->n_added;
1018 * apply assignment obtained either from
1019 * hw_perf_group_sched_in() or x86_pmu_enable()
1021 * step1: save events moving to new counters
1022 * step2: reprogram moved events into new counters
1024 for (i = 0; i < n_running; i++) {
1025 event = cpuc->event_list[i];
1026 hwc = &event->hw;
1029 * we can avoid reprogramming counter if:
1030 * - assigned same counter as last time
1031 * - running on same CPU as last time
1032 * - no other event has used the counter since
1034 if (hwc->idx == -1 ||
1035 match_prev_assignment(hwc, cpuc, i))
1036 continue;
1039 * Ensure we don't accidentally enable a stopped
1040 * counter simply because we rescheduled.
1042 if (hwc->state & PERF_HES_STOPPED)
1043 hwc->state |= PERF_HES_ARCH;
1045 x86_pmu_stop(event, PERF_EF_UPDATE);
1048 for (i = 0; i < cpuc->n_events; i++) {
1049 event = cpuc->event_list[i];
1050 hwc = &event->hw;
1052 if (!match_prev_assignment(hwc, cpuc, i))
1053 x86_assign_hw_event(event, cpuc, i);
1054 else if (i < n_running)
1055 continue;
1057 if (hwc->state & PERF_HES_ARCH)
1058 continue;
1060 x86_pmu_start(event, PERF_EF_RELOAD);
1062 cpuc->n_added = 0;
1063 perf_events_lapic_init();
1066 cpuc->enabled = 1;
1067 barrier();
1069 x86_pmu.enable_all(added);
1072 static inline void x86_pmu_disable_event(struct perf_event *event)
1074 struct hw_perf_event *hwc = &event->hw;
1076 wrmsrl(hwc->config_base, hwc->config);
1079 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1082 * Set the next IRQ period, based on the hwc->period_left value.
1083 * To be called with the event disabled in hw:
1085 static int
1086 x86_perf_event_set_period(struct perf_event *event)
1088 struct hw_perf_event *hwc = &event->hw;
1089 s64 left = local64_read(&hwc->period_left);
1090 s64 period = hwc->sample_period;
1091 int ret = 0, idx = hwc->idx;
1093 if (idx == X86_PMC_IDX_FIXED_BTS)
1094 return 0;
1097 * If we are way outside a reasonable range then just skip forward:
1099 if (unlikely(left <= -period)) {
1100 left = period;
1101 local64_set(&hwc->period_left, left);
1102 hwc->last_period = period;
1103 ret = 1;
1106 if (unlikely(left <= 0)) {
1107 left += period;
1108 local64_set(&hwc->period_left, left);
1109 hwc->last_period = period;
1110 ret = 1;
1113 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1115 if (unlikely(left < 2))
1116 left = 2;
1118 if (left > x86_pmu.max_period)
1119 left = x86_pmu.max_period;
1121 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1124 * The hw event starts counting from this event offset,
1125 * mark it to be able to extra future deltas:
1127 local64_set(&hwc->prev_count, (u64)-left);
1129 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1132 * Due to erratum on certan cpu we need
1133 * a second write to be sure the register
1134 * is updated properly
1136 if (x86_pmu.perfctr_second_write) {
1137 wrmsrl(hwc->event_base,
1138 (u64)(-left) & x86_pmu.cntval_mask);
1141 perf_event_update_userpage(event);
1143 return ret;
1146 static void x86_pmu_enable_event(struct perf_event *event)
1148 if (__this_cpu_read(cpu_hw_events.enabled))
1149 __x86_pmu_enable_event(&event->hw,
1150 ARCH_PERFMON_EVENTSEL_ENABLE);
1154 * Add a single event to the PMU.
1156 * The event is added to the group of enabled events
1157 * but only if it can be scehduled with existing events.
1159 static int x86_pmu_add(struct perf_event *event, int flags)
1161 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1162 struct hw_perf_event *hwc;
1163 int assign[X86_PMC_IDX_MAX];
1164 int n, n0, ret;
1166 hwc = &event->hw;
1168 perf_pmu_disable(event->pmu);
1169 n0 = cpuc->n_events;
1170 ret = n = collect_events(cpuc, event, false);
1171 if (ret < 0)
1172 goto out;
1174 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1175 if (!(flags & PERF_EF_START))
1176 hwc->state |= PERF_HES_ARCH;
1179 * If group events scheduling transaction was started,
1180 * skip the schedulability test here, it will be performed
1181 * at commit time (->commit_txn) as a whole
1183 if (cpuc->group_flag & PERF_EVENT_TXN)
1184 goto done_collect;
1186 ret = x86_pmu.schedule_events(cpuc, n, assign);
1187 if (ret)
1188 goto out;
1190 * copy new assignment, now we know it is possible
1191 * will be used by hw_perf_enable()
1193 memcpy(cpuc->assign, assign, n*sizeof(int));
1195 done_collect:
1196 cpuc->n_events = n;
1197 cpuc->n_added += n - n0;
1198 cpuc->n_txn += n - n0;
1200 ret = 0;
1201 out:
1202 perf_pmu_enable(event->pmu);
1203 return ret;
1206 static void x86_pmu_start(struct perf_event *event, int flags)
1208 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1209 int idx = event->hw.idx;
1211 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1212 return;
1214 if (WARN_ON_ONCE(idx == -1))
1215 return;
1217 if (flags & PERF_EF_RELOAD) {
1218 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1219 x86_perf_event_set_period(event);
1222 event->hw.state = 0;
1224 cpuc->events[idx] = event;
1225 __set_bit(idx, cpuc->active_mask);
1226 __set_bit(idx, cpuc->running);
1227 x86_pmu.enable(event);
1228 perf_event_update_userpage(event);
1231 void perf_event_print_debug(void)
1233 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1234 u64 pebs;
1235 struct cpu_hw_events *cpuc;
1236 unsigned long flags;
1237 int cpu, idx;
1239 if (!x86_pmu.num_counters)
1240 return;
1242 local_irq_save(flags);
1244 cpu = smp_processor_id();
1245 cpuc = &per_cpu(cpu_hw_events, cpu);
1247 if (x86_pmu.version >= 2) {
1248 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1249 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1250 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1251 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1252 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1254 pr_info("\n");
1255 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1256 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1257 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1258 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1259 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1261 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1263 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1264 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1265 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1267 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1269 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1270 cpu, idx, pmc_ctrl);
1271 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1272 cpu, idx, pmc_count);
1273 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1274 cpu, idx, prev_left);
1276 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1277 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1279 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1280 cpu, idx, pmc_count);
1282 local_irq_restore(flags);
1285 static void x86_pmu_stop(struct perf_event *event, int flags)
1287 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1288 struct hw_perf_event *hwc = &event->hw;
1290 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1291 x86_pmu.disable(event);
1292 cpuc->events[hwc->idx] = NULL;
1293 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1294 hwc->state |= PERF_HES_STOPPED;
1297 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1299 * Drain the remaining delta count out of a event
1300 * that we are disabling:
1302 x86_perf_event_update(event);
1303 hwc->state |= PERF_HES_UPTODATE;
1307 static void x86_pmu_del(struct perf_event *event, int flags)
1309 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1310 int i;
1313 * If we're called during a txn, we don't need to do anything.
1314 * The events never got scheduled and ->cancel_txn will truncate
1315 * the event_list.
1317 if (cpuc->group_flag & PERF_EVENT_TXN)
1318 return;
1320 x86_pmu_stop(event, PERF_EF_UPDATE);
1322 for (i = 0; i < cpuc->n_events; i++) {
1323 if (event == cpuc->event_list[i]) {
1325 if (x86_pmu.put_event_constraints)
1326 x86_pmu.put_event_constraints(cpuc, event);
1328 while (++i < cpuc->n_events)
1329 cpuc->event_list[i-1] = cpuc->event_list[i];
1331 --cpuc->n_events;
1332 break;
1335 perf_event_update_userpage(event);
1338 static int x86_pmu_handle_irq(struct pt_regs *regs)
1340 struct perf_sample_data data;
1341 struct cpu_hw_events *cpuc;
1342 struct perf_event *event;
1343 int idx, handled = 0;
1344 u64 val;
1346 perf_sample_data_init(&data, 0);
1348 cpuc = &__get_cpu_var(cpu_hw_events);
1351 * Some chipsets need to unmask the LVTPC in a particular spot
1352 * inside the nmi handler. As a result, the unmasking was pushed
1353 * into all the nmi handlers.
1355 * This generic handler doesn't seem to have any issues where the
1356 * unmasking occurs so it was left at the top.
1358 apic_write(APIC_LVTPC, APIC_DM_NMI);
1360 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1361 if (!test_bit(idx, cpuc->active_mask)) {
1363 * Though we deactivated the counter some cpus
1364 * might still deliver spurious interrupts still
1365 * in flight. Catch them:
1367 if (__test_and_clear_bit(idx, cpuc->running))
1368 handled++;
1369 continue;
1372 event = cpuc->events[idx];
1374 val = x86_perf_event_update(event);
1375 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1376 continue;
1379 * event overflow
1381 handled++;
1382 data.period = event->hw.last_period;
1384 if (!x86_perf_event_set_period(event))
1385 continue;
1387 if (perf_event_overflow(event, &data, regs))
1388 x86_pmu_stop(event, 0);
1391 if (handled)
1392 inc_irq_stat(apic_perf_irqs);
1394 return handled;
1397 void perf_events_lapic_init(void)
1399 if (!x86_pmu.apic || !x86_pmu_initialized())
1400 return;
1403 * Always use NMI for PMU
1405 apic_write(APIC_LVTPC, APIC_DM_NMI);
1408 struct pmu_nmi_state {
1409 unsigned int marked;
1410 int handled;
1413 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1415 static int __kprobes
1416 perf_event_nmi_handler(struct notifier_block *self,
1417 unsigned long cmd, void *__args)
1419 struct die_args *args = __args;
1420 unsigned int this_nmi;
1421 int handled;
1423 if (!atomic_read(&active_events))
1424 return NOTIFY_DONE;
1426 switch (cmd) {
1427 case DIE_NMI:
1428 break;
1429 case DIE_NMIUNKNOWN:
1430 this_nmi = percpu_read(irq_stat.__nmi_count);
1431 if (this_nmi != __this_cpu_read(pmu_nmi.marked))
1432 /* let the kernel handle the unknown nmi */
1433 return NOTIFY_DONE;
1435 * This one is a PMU back-to-back nmi. Two events
1436 * trigger 'simultaneously' raising two back-to-back
1437 * NMIs. If the first NMI handles both, the latter
1438 * will be empty and daze the CPU. So, we drop it to
1439 * avoid false-positive 'unknown nmi' messages.
1441 return NOTIFY_STOP;
1442 default:
1443 return NOTIFY_DONE;
1446 handled = x86_pmu.handle_irq(args->regs);
1447 if (!handled)
1448 return NOTIFY_DONE;
1450 this_nmi = percpu_read(irq_stat.__nmi_count);
1451 if ((handled > 1) ||
1452 /* the next nmi could be a back-to-back nmi */
1453 ((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
1454 (__this_cpu_read(pmu_nmi.handled) > 1))) {
1456 * We could have two subsequent back-to-back nmis: The
1457 * first handles more than one counter, the 2nd
1458 * handles only one counter and the 3rd handles no
1459 * counter.
1461 * This is the 2nd nmi because the previous was
1462 * handling more than one counter. We will mark the
1463 * next (3rd) and then drop it if unhandled.
1465 __this_cpu_write(pmu_nmi.marked, this_nmi + 1);
1466 __this_cpu_write(pmu_nmi.handled, handled);
1469 return NOTIFY_STOP;
1472 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1473 .notifier_call = perf_event_nmi_handler,
1474 .next = NULL,
1475 .priority = NMI_LOCAL_LOW_PRIOR,
1478 static struct event_constraint unconstrained;
1479 static struct event_constraint emptyconstraint;
1481 static struct event_constraint *
1482 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1484 struct event_constraint *c;
1486 if (x86_pmu.event_constraints) {
1487 for_each_event_constraint(c, x86_pmu.event_constraints) {
1488 if ((event->hw.config & c->cmask) == c->code)
1489 return c;
1493 return &unconstrained;
1496 #include "perf_event_amd.c"
1497 #include "perf_event_p6.c"
1498 #include "perf_event_p4.c"
1499 #include "perf_event_intel_lbr.c"
1500 #include "perf_event_intel_ds.c"
1501 #include "perf_event_intel.c"
1503 static int __cpuinit
1504 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1506 unsigned int cpu = (long)hcpu;
1507 int ret = NOTIFY_OK;
1509 switch (action & ~CPU_TASKS_FROZEN) {
1510 case CPU_UP_PREPARE:
1511 if (x86_pmu.cpu_prepare)
1512 ret = x86_pmu.cpu_prepare(cpu);
1513 break;
1515 case CPU_STARTING:
1516 if (x86_pmu.cpu_starting)
1517 x86_pmu.cpu_starting(cpu);
1518 break;
1520 case CPU_DYING:
1521 if (x86_pmu.cpu_dying)
1522 x86_pmu.cpu_dying(cpu);
1523 break;
1525 case CPU_UP_CANCELED:
1526 case CPU_DEAD:
1527 if (x86_pmu.cpu_dead)
1528 x86_pmu.cpu_dead(cpu);
1529 break;
1531 default:
1532 break;
1535 return ret;
1538 static void __init pmu_check_apic(void)
1540 if (cpu_has_apic)
1541 return;
1543 x86_pmu.apic = 0;
1544 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1545 pr_info("no hardware sampling interrupt available.\n");
1548 static int __init init_hw_perf_events(void)
1550 struct event_constraint *c;
1551 int err;
1553 pr_info("Performance Events: ");
1555 switch (boot_cpu_data.x86_vendor) {
1556 case X86_VENDOR_INTEL:
1557 err = intel_pmu_init();
1558 break;
1559 case X86_VENDOR_AMD:
1560 err = amd_pmu_init();
1561 break;
1562 default:
1563 return 0;
1565 if (err != 0) {
1566 pr_cont("no PMU driver, software events only.\n");
1567 return 0;
1570 pmu_check_apic();
1572 /* sanity check that the hardware exists or is emulated */
1573 if (!check_hw_exists())
1574 return 0;
1576 pr_cont("%s PMU driver.\n", x86_pmu.name);
1578 if (x86_pmu.quirks)
1579 x86_pmu.quirks();
1581 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1582 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1583 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1584 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1586 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1588 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1589 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1590 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1591 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1594 x86_pmu.intel_ctrl |=
1595 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1597 perf_events_lapic_init();
1598 register_die_notifier(&perf_event_nmi_notifier);
1600 unconstrained = (struct event_constraint)
1601 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1602 0, x86_pmu.num_counters);
1604 if (x86_pmu.event_constraints) {
1605 for_each_event_constraint(c, x86_pmu.event_constraints) {
1606 if (c->cmask != X86_RAW_EVENT_MASK)
1607 continue;
1609 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1610 c->weight += x86_pmu.num_counters;
1614 pr_info("... version: %d\n", x86_pmu.version);
1615 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1616 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1617 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1618 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1619 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1620 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1622 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1623 perf_cpu_notifier(x86_pmu_notifier);
1625 return 0;
1627 early_initcall(init_hw_perf_events);
1629 static inline void x86_pmu_read(struct perf_event *event)
1631 x86_perf_event_update(event);
1635 * Start group events scheduling transaction
1636 * Set the flag to make pmu::enable() not perform the
1637 * schedulability test, it will be performed at commit time
1639 static void x86_pmu_start_txn(struct pmu *pmu)
1641 perf_pmu_disable(pmu);
1642 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1643 __this_cpu_write(cpu_hw_events.n_txn, 0);
1647 * Stop group events scheduling transaction
1648 * Clear the flag and pmu::enable() will perform the
1649 * schedulability test.
1651 static void x86_pmu_cancel_txn(struct pmu *pmu)
1653 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1655 * Truncate the collected events.
1657 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1658 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1659 perf_pmu_enable(pmu);
1663 * Commit group events scheduling transaction
1664 * Perform the group schedulability test as a whole
1665 * Return 0 if success
1667 static int x86_pmu_commit_txn(struct pmu *pmu)
1669 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1670 int assign[X86_PMC_IDX_MAX];
1671 int n, ret;
1673 n = cpuc->n_events;
1675 if (!x86_pmu_initialized())
1676 return -EAGAIN;
1678 ret = x86_pmu.schedule_events(cpuc, n, assign);
1679 if (ret)
1680 return ret;
1683 * copy new assignment, now we know it is possible
1684 * will be used by hw_perf_enable()
1686 memcpy(cpuc->assign, assign, n*sizeof(int));
1688 cpuc->group_flag &= ~PERF_EVENT_TXN;
1689 perf_pmu_enable(pmu);
1690 return 0;
1694 * validate that we can schedule this event
1696 static int validate_event(struct perf_event *event)
1698 struct cpu_hw_events *fake_cpuc;
1699 struct event_constraint *c;
1700 int ret = 0;
1702 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1703 if (!fake_cpuc)
1704 return -ENOMEM;
1706 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1708 if (!c || !c->weight)
1709 ret = -ENOSPC;
1711 if (x86_pmu.put_event_constraints)
1712 x86_pmu.put_event_constraints(fake_cpuc, event);
1714 kfree(fake_cpuc);
1716 return ret;
1720 * validate a single event group
1722 * validation include:
1723 * - check events are compatible which each other
1724 * - events do not compete for the same counter
1725 * - number of events <= number of counters
1727 * validation ensures the group can be loaded onto the
1728 * PMU if it was the only group available.
1730 static int validate_group(struct perf_event *event)
1732 struct perf_event *leader = event->group_leader;
1733 struct cpu_hw_events *fake_cpuc;
1734 int ret, n;
1736 ret = -ENOMEM;
1737 fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1738 if (!fake_cpuc)
1739 goto out;
1741 * the event is not yet connected with its
1742 * siblings therefore we must first collect
1743 * existing siblings, then add the new event
1744 * before we can simulate the scheduling
1746 ret = -ENOSPC;
1747 n = collect_events(fake_cpuc, leader, true);
1748 if (n < 0)
1749 goto out_free;
1751 fake_cpuc->n_events = n;
1752 n = collect_events(fake_cpuc, event, false);
1753 if (n < 0)
1754 goto out_free;
1756 fake_cpuc->n_events = n;
1758 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1760 out_free:
1761 kfree(fake_cpuc);
1762 out:
1763 return ret;
1766 static int x86_pmu_event_init(struct perf_event *event)
1768 struct pmu *tmp;
1769 int err;
1771 switch (event->attr.type) {
1772 case PERF_TYPE_RAW:
1773 case PERF_TYPE_HARDWARE:
1774 case PERF_TYPE_HW_CACHE:
1775 break;
1777 default:
1778 return -ENOENT;
1781 err = __x86_pmu_event_init(event);
1782 if (!err) {
1784 * we temporarily connect event to its pmu
1785 * such that validate_group() can classify
1786 * it as an x86 event using is_x86_event()
1788 tmp = event->pmu;
1789 event->pmu = &pmu;
1791 if (event->group_leader != event)
1792 err = validate_group(event);
1793 else
1794 err = validate_event(event);
1796 event->pmu = tmp;
1798 if (err) {
1799 if (event->destroy)
1800 event->destroy(event);
1803 return err;
1806 static struct pmu pmu = {
1807 .pmu_enable = x86_pmu_enable,
1808 .pmu_disable = x86_pmu_disable,
1810 .event_init = x86_pmu_event_init,
1812 .add = x86_pmu_add,
1813 .del = x86_pmu_del,
1814 .start = x86_pmu_start,
1815 .stop = x86_pmu_stop,
1816 .read = x86_pmu_read,
1818 .start_txn = x86_pmu_start_txn,
1819 .cancel_txn = x86_pmu_cancel_txn,
1820 .commit_txn = x86_pmu_commit_txn,
1824 * callchain support
1827 static int backtrace_stack(void *data, char *name)
1829 return 0;
1832 static void backtrace_address(void *data, unsigned long addr, int reliable)
1834 struct perf_callchain_entry *entry = data;
1836 perf_callchain_store(entry, addr);
1839 static const struct stacktrace_ops backtrace_ops = {
1840 .stack = backtrace_stack,
1841 .address = backtrace_address,
1842 .walk_stack = print_context_stack_bp,
1845 void
1846 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1848 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1849 /* TODO: We don't support guest os callchain now */
1850 return;
1853 perf_callchain_store(entry, regs->ip);
1855 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1858 #ifdef CONFIG_COMPAT
1859 static inline int
1860 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1862 /* 32-bit process in 64-bit kernel. */
1863 struct stack_frame_ia32 frame;
1864 const void __user *fp;
1866 if (!test_thread_flag(TIF_IA32))
1867 return 0;
1869 fp = compat_ptr(regs->bp);
1870 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1871 unsigned long bytes;
1872 frame.next_frame = 0;
1873 frame.return_address = 0;
1875 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1876 if (bytes != sizeof(frame))
1877 break;
1879 if (fp < compat_ptr(regs->sp))
1880 break;
1882 perf_callchain_store(entry, frame.return_address);
1883 fp = compat_ptr(frame.next_frame);
1885 return 1;
1887 #else
1888 static inline int
1889 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1891 return 0;
1893 #endif
1895 void
1896 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1898 struct stack_frame frame;
1899 const void __user *fp;
1901 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1902 /* TODO: We don't support guest os callchain now */
1903 return;
1906 fp = (void __user *)regs->bp;
1908 perf_callchain_store(entry, regs->ip);
1910 if (perf_callchain_user32(regs, entry))
1911 return;
1913 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1914 unsigned long bytes;
1915 frame.next_frame = NULL;
1916 frame.return_address = 0;
1918 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1919 if (bytes != sizeof(frame))
1920 break;
1922 if ((unsigned long)fp < regs->sp)
1923 break;
1925 perf_callchain_store(entry, frame.return_address);
1926 fp = frame.next_frame;
1930 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1932 unsigned long ip;
1934 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1935 ip = perf_guest_cbs->get_guest_ip();
1936 else
1937 ip = instruction_pointer(regs);
1939 return ip;
1942 unsigned long perf_misc_flags(struct pt_regs *regs)
1944 int misc = 0;
1946 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1947 if (perf_guest_cbs->is_user_mode())
1948 misc |= PERF_RECORD_MISC_GUEST_USER;
1949 else
1950 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1951 } else {
1952 if (user_mode(regs))
1953 misc |= PERF_RECORD_MISC_USER;
1954 else
1955 misc |= PERF_RECORD_MISC_KERNEL;
1958 if (regs->flags & PERF_EFLAGS_EXACT)
1959 misc |= PERF_RECORD_MISC_EXACT_IP;
1961 return misc;