swap_info: change to array of pointers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swapfile.c
blobdc88a7e4257ec529a9a4944b2cb06620276d1e2f
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
38 static DEFINE_SPINLOCK(swap_lock);
39 static unsigned int nr_swapfiles;
40 long nr_swap_pages;
41 long total_swap_pages;
42 static int swap_overflow;
43 static int least_priority;
45 static const char Bad_file[] = "Bad swap file entry ";
46 static const char Unused_file[] = "Unused swap file entry ";
47 static const char Bad_offset[] = "Bad swap offset entry ";
48 static const char Unused_offset[] = "Unused swap offset entry ";
50 static struct swap_list_t swap_list = {-1, -1};
52 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
54 static DEFINE_MUTEX(swapon_mutex);
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
58 enum {
59 SWAP_MAP = 0, /* ops for reference from swap users */
60 SWAP_CACHE, /* ops for reference from swap cache */
63 static inline int swap_count(unsigned short ent)
65 return ent & SWAP_COUNT_MASK;
68 static inline bool swap_has_cache(unsigned short ent)
70 return !!(ent & SWAP_HAS_CACHE);
73 static inline unsigned short encode_swapmap(int count, bool has_cache)
75 unsigned short ret = count;
77 if (has_cache)
78 return SWAP_HAS_CACHE | ret;
79 return ret;
82 /* returns 1 if swap entry is freed */
83 static int
84 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
86 swp_entry_t entry = swp_entry(si->type, offset);
87 struct page *page;
88 int ret = 0;
90 page = find_get_page(&swapper_space, entry.val);
91 if (!page)
92 return 0;
94 * This function is called from scan_swap_map() and it's called
95 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
96 * We have to use trylock for avoiding deadlock. This is a special
97 * case and you should use try_to_free_swap() with explicit lock_page()
98 * in usual operations.
100 if (trylock_page(page)) {
101 ret = try_to_free_swap(page);
102 unlock_page(page);
104 page_cache_release(page);
105 return ret;
109 * We need this because the bdev->unplug_fn can sleep and we cannot
110 * hold swap_lock while calling the unplug_fn. And swap_lock
111 * cannot be turned into a mutex.
113 static DECLARE_RWSEM(swap_unplug_sem);
115 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
117 swp_entry_t entry;
119 down_read(&swap_unplug_sem);
120 entry.val = page_private(page);
121 if (PageSwapCache(page)) {
122 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
123 struct backing_dev_info *bdi;
126 * If the page is removed from swapcache from under us (with a
127 * racy try_to_unuse/swapoff) we need an additional reference
128 * count to avoid reading garbage from page_private(page) above.
129 * If the WARN_ON triggers during a swapoff it maybe the race
130 * condition and it's harmless. However if it triggers without
131 * swapoff it signals a problem.
133 WARN_ON(page_count(page) <= 1);
135 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
136 blk_run_backing_dev(bdi, page);
138 up_read(&swap_unplug_sem);
142 * swapon tell device that all the old swap contents can be discarded,
143 * to allow the swap device to optimize its wear-levelling.
145 static int discard_swap(struct swap_info_struct *si)
147 struct swap_extent *se;
148 int err = 0;
150 list_for_each_entry(se, &si->extent_list, list) {
151 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
152 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154 if (se->start_page == 0) {
155 /* Do not discard the swap header page! */
156 start_block += 1 << (PAGE_SHIFT - 9);
157 nr_blocks -= 1 << (PAGE_SHIFT - 9);
158 if (!nr_blocks)
159 continue;
162 err = blkdev_issue_discard(si->bdev, start_block,
163 nr_blocks, GFP_KERNEL,
164 DISCARD_FL_BARRIER);
165 if (err)
166 break;
168 cond_resched();
170 return err; /* That will often be -EOPNOTSUPP */
174 * swap allocation tell device that a cluster of swap can now be discarded,
175 * to allow the swap device to optimize its wear-levelling.
177 static void discard_swap_cluster(struct swap_info_struct *si,
178 pgoff_t start_page, pgoff_t nr_pages)
180 struct swap_extent *se = si->curr_swap_extent;
181 int found_extent = 0;
183 while (nr_pages) {
184 struct list_head *lh;
186 if (se->start_page <= start_page &&
187 start_page < se->start_page + se->nr_pages) {
188 pgoff_t offset = start_page - se->start_page;
189 sector_t start_block = se->start_block + offset;
190 sector_t nr_blocks = se->nr_pages - offset;
192 if (nr_blocks > nr_pages)
193 nr_blocks = nr_pages;
194 start_page += nr_blocks;
195 nr_pages -= nr_blocks;
197 if (!found_extent++)
198 si->curr_swap_extent = se;
200 start_block <<= PAGE_SHIFT - 9;
201 nr_blocks <<= PAGE_SHIFT - 9;
202 if (blkdev_issue_discard(si->bdev, start_block,
203 nr_blocks, GFP_NOIO,
204 DISCARD_FL_BARRIER))
205 break;
208 lh = se->list.next;
209 if (lh == &si->extent_list)
210 lh = lh->next;
211 se = list_entry(lh, struct swap_extent, list);
215 static int wait_for_discard(void *word)
217 schedule();
218 return 0;
221 #define SWAPFILE_CLUSTER 256
222 #define LATENCY_LIMIT 256
224 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
225 int cache)
227 unsigned long offset;
228 unsigned long scan_base;
229 unsigned long last_in_cluster = 0;
230 int latency_ration = LATENCY_LIMIT;
231 int found_free_cluster = 0;
234 * We try to cluster swap pages by allocating them sequentially
235 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
236 * way, however, we resort to first-free allocation, starting
237 * a new cluster. This prevents us from scattering swap pages
238 * all over the entire swap partition, so that we reduce
239 * overall disk seek times between swap pages. -- sct
240 * But we do now try to find an empty cluster. -Andrea
241 * And we let swap pages go all over an SSD partition. Hugh
244 si->flags += SWP_SCANNING;
245 scan_base = offset = si->cluster_next;
247 if (unlikely(!si->cluster_nr--)) {
248 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
249 si->cluster_nr = SWAPFILE_CLUSTER - 1;
250 goto checks;
252 if (si->flags & SWP_DISCARDABLE) {
254 * Start range check on racing allocations, in case
255 * they overlap the cluster we eventually decide on
256 * (we scan without swap_lock to allow preemption).
257 * It's hardly conceivable that cluster_nr could be
258 * wrapped during our scan, but don't depend on it.
260 if (si->lowest_alloc)
261 goto checks;
262 si->lowest_alloc = si->max;
263 si->highest_alloc = 0;
265 spin_unlock(&swap_lock);
268 * If seek is expensive, start searching for new cluster from
269 * start of partition, to minimize the span of allocated swap.
270 * But if seek is cheap, search from our current position, so
271 * that swap is allocated from all over the partition: if the
272 * Flash Translation Layer only remaps within limited zones,
273 * we don't want to wear out the first zone too quickly.
275 if (!(si->flags & SWP_SOLIDSTATE))
276 scan_base = offset = si->lowest_bit;
277 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
279 /* Locate the first empty (unaligned) cluster */
280 for (; last_in_cluster <= si->highest_bit; offset++) {
281 if (si->swap_map[offset])
282 last_in_cluster = offset + SWAPFILE_CLUSTER;
283 else if (offset == last_in_cluster) {
284 spin_lock(&swap_lock);
285 offset -= SWAPFILE_CLUSTER - 1;
286 si->cluster_next = offset;
287 si->cluster_nr = SWAPFILE_CLUSTER - 1;
288 found_free_cluster = 1;
289 goto checks;
291 if (unlikely(--latency_ration < 0)) {
292 cond_resched();
293 latency_ration = LATENCY_LIMIT;
297 offset = si->lowest_bit;
298 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
300 /* Locate the first empty (unaligned) cluster */
301 for (; last_in_cluster < scan_base; offset++) {
302 if (si->swap_map[offset])
303 last_in_cluster = offset + SWAPFILE_CLUSTER;
304 else if (offset == last_in_cluster) {
305 spin_lock(&swap_lock);
306 offset -= SWAPFILE_CLUSTER - 1;
307 si->cluster_next = offset;
308 si->cluster_nr = SWAPFILE_CLUSTER - 1;
309 found_free_cluster = 1;
310 goto checks;
312 if (unlikely(--latency_ration < 0)) {
313 cond_resched();
314 latency_ration = LATENCY_LIMIT;
318 offset = scan_base;
319 spin_lock(&swap_lock);
320 si->cluster_nr = SWAPFILE_CLUSTER - 1;
321 si->lowest_alloc = 0;
324 checks:
325 if (!(si->flags & SWP_WRITEOK))
326 goto no_page;
327 if (!si->highest_bit)
328 goto no_page;
329 if (offset > si->highest_bit)
330 scan_base = offset = si->lowest_bit;
332 /* reuse swap entry of cache-only swap if not busy. */
333 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
334 int swap_was_freed;
335 spin_unlock(&swap_lock);
336 swap_was_freed = __try_to_reclaim_swap(si, offset);
337 spin_lock(&swap_lock);
338 /* entry was freed successfully, try to use this again */
339 if (swap_was_freed)
340 goto checks;
341 goto scan; /* check next one */
344 if (si->swap_map[offset])
345 goto scan;
347 if (offset == si->lowest_bit)
348 si->lowest_bit++;
349 if (offset == si->highest_bit)
350 si->highest_bit--;
351 si->inuse_pages++;
352 if (si->inuse_pages == si->pages) {
353 si->lowest_bit = si->max;
354 si->highest_bit = 0;
356 if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
357 si->swap_map[offset] = encode_swapmap(0, true);
358 else /* at suspend */
359 si->swap_map[offset] = encode_swapmap(1, false);
360 si->cluster_next = offset + 1;
361 si->flags -= SWP_SCANNING;
363 if (si->lowest_alloc) {
365 * Only set when SWP_DISCARDABLE, and there's a scan
366 * for a free cluster in progress or just completed.
368 if (found_free_cluster) {
370 * To optimize wear-levelling, discard the
371 * old data of the cluster, taking care not to
372 * discard any of its pages that have already
373 * been allocated by racing tasks (offset has
374 * already stepped over any at the beginning).
376 if (offset < si->highest_alloc &&
377 si->lowest_alloc <= last_in_cluster)
378 last_in_cluster = si->lowest_alloc - 1;
379 si->flags |= SWP_DISCARDING;
380 spin_unlock(&swap_lock);
382 if (offset < last_in_cluster)
383 discard_swap_cluster(si, offset,
384 last_in_cluster - offset + 1);
386 spin_lock(&swap_lock);
387 si->lowest_alloc = 0;
388 si->flags &= ~SWP_DISCARDING;
390 smp_mb(); /* wake_up_bit advises this */
391 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
393 } else if (si->flags & SWP_DISCARDING) {
395 * Delay using pages allocated by racing tasks
396 * until the whole discard has been issued. We
397 * could defer that delay until swap_writepage,
398 * but it's easier to keep this self-contained.
400 spin_unlock(&swap_lock);
401 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
402 wait_for_discard, TASK_UNINTERRUPTIBLE);
403 spin_lock(&swap_lock);
404 } else {
406 * Note pages allocated by racing tasks while
407 * scan for a free cluster is in progress, so
408 * that its final discard can exclude them.
410 if (offset < si->lowest_alloc)
411 si->lowest_alloc = offset;
412 if (offset > si->highest_alloc)
413 si->highest_alloc = offset;
416 return offset;
418 scan:
419 spin_unlock(&swap_lock);
420 while (++offset <= si->highest_bit) {
421 if (!si->swap_map[offset]) {
422 spin_lock(&swap_lock);
423 goto checks;
425 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
426 spin_lock(&swap_lock);
427 goto checks;
429 if (unlikely(--latency_ration < 0)) {
430 cond_resched();
431 latency_ration = LATENCY_LIMIT;
434 offset = si->lowest_bit;
435 while (++offset < scan_base) {
436 if (!si->swap_map[offset]) {
437 spin_lock(&swap_lock);
438 goto checks;
440 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
441 spin_lock(&swap_lock);
442 goto checks;
444 if (unlikely(--latency_ration < 0)) {
445 cond_resched();
446 latency_ration = LATENCY_LIMIT;
449 spin_lock(&swap_lock);
451 no_page:
452 si->flags -= SWP_SCANNING;
453 return 0;
456 swp_entry_t get_swap_page(void)
458 struct swap_info_struct *si;
459 pgoff_t offset;
460 int type, next;
461 int wrapped = 0;
463 spin_lock(&swap_lock);
464 if (nr_swap_pages <= 0)
465 goto noswap;
466 nr_swap_pages--;
468 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
469 si = swap_info[type];
470 next = si->next;
471 if (next < 0 ||
472 (!wrapped && si->prio != swap_info[next]->prio)) {
473 next = swap_list.head;
474 wrapped++;
477 if (!si->highest_bit)
478 continue;
479 if (!(si->flags & SWP_WRITEOK))
480 continue;
482 swap_list.next = next;
483 /* This is called for allocating swap entry for cache */
484 offset = scan_swap_map(si, SWAP_CACHE);
485 if (offset) {
486 spin_unlock(&swap_lock);
487 return swp_entry(type, offset);
489 next = swap_list.next;
492 nr_swap_pages++;
493 noswap:
494 spin_unlock(&swap_lock);
495 return (swp_entry_t) {0};
498 /* The only caller of this function is now susupend routine */
499 swp_entry_t get_swap_page_of_type(int type)
501 struct swap_info_struct *si;
502 pgoff_t offset;
504 spin_lock(&swap_lock);
505 si = swap_info[type];
506 if (si && (si->flags & SWP_WRITEOK)) {
507 nr_swap_pages--;
508 /* This is called for allocating swap entry, not cache */
509 offset = scan_swap_map(si, SWAP_MAP);
510 if (offset) {
511 spin_unlock(&swap_lock);
512 return swp_entry(type, offset);
514 nr_swap_pages++;
516 spin_unlock(&swap_lock);
517 return (swp_entry_t) {0};
520 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
522 struct swap_info_struct * p;
523 unsigned long offset, type;
525 if (!entry.val)
526 goto out;
527 type = swp_type(entry);
528 if (type >= nr_swapfiles)
529 goto bad_nofile;
530 p = swap_info[type];
531 if (!(p->flags & SWP_USED))
532 goto bad_device;
533 offset = swp_offset(entry);
534 if (offset >= p->max)
535 goto bad_offset;
536 if (!p->swap_map[offset])
537 goto bad_free;
538 spin_lock(&swap_lock);
539 return p;
541 bad_free:
542 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
543 goto out;
544 bad_offset:
545 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
546 goto out;
547 bad_device:
548 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
549 goto out;
550 bad_nofile:
551 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
552 out:
553 return NULL;
556 static int swap_entry_free(struct swap_info_struct *p,
557 swp_entry_t ent, int cache)
559 unsigned long offset = swp_offset(ent);
560 int count = swap_count(p->swap_map[offset]);
561 bool has_cache;
563 has_cache = swap_has_cache(p->swap_map[offset]);
565 if (cache == SWAP_MAP) { /* dropping usage count of swap */
566 if (count < SWAP_MAP_MAX) {
567 count--;
568 p->swap_map[offset] = encode_swapmap(count, has_cache);
570 } else { /* dropping swap cache flag */
571 VM_BUG_ON(!has_cache);
572 p->swap_map[offset] = encode_swapmap(count, false);
575 /* return code. */
576 count = p->swap_map[offset];
577 /* free if no reference */
578 if (!count) {
579 if (offset < p->lowest_bit)
580 p->lowest_bit = offset;
581 if (offset > p->highest_bit)
582 p->highest_bit = offset;
583 if (swap_list.next >= 0 &&
584 p->prio > swap_info[swap_list.next]->prio)
585 swap_list.next = p->type;
586 nr_swap_pages++;
587 p->inuse_pages--;
589 if (!swap_count(count))
590 mem_cgroup_uncharge_swap(ent);
591 return count;
595 * Caller has made sure that the swapdevice corresponding to entry
596 * is still around or has not been recycled.
598 void swap_free(swp_entry_t entry)
600 struct swap_info_struct * p;
602 p = swap_info_get(entry);
603 if (p) {
604 swap_entry_free(p, entry, SWAP_MAP);
605 spin_unlock(&swap_lock);
610 * Called after dropping swapcache to decrease refcnt to swap entries.
612 void swapcache_free(swp_entry_t entry, struct page *page)
614 struct swap_info_struct *p;
615 int ret;
617 p = swap_info_get(entry);
618 if (p) {
619 ret = swap_entry_free(p, entry, SWAP_CACHE);
620 if (page) {
621 bool swapout;
622 if (ret)
623 swapout = true; /* the end of swap out */
624 else
625 swapout = false; /* no more swap users! */
626 mem_cgroup_uncharge_swapcache(page, entry, swapout);
628 spin_unlock(&swap_lock);
630 return;
634 * How many references to page are currently swapped out?
636 static inline int page_swapcount(struct page *page)
638 int count = 0;
639 struct swap_info_struct *p;
640 swp_entry_t entry;
642 entry.val = page_private(page);
643 p = swap_info_get(entry);
644 if (p) {
645 count = swap_count(p->swap_map[swp_offset(entry)]);
646 spin_unlock(&swap_lock);
648 return count;
652 * We can write to an anon page without COW if there are no other references
653 * to it. And as a side-effect, free up its swap: because the old content
654 * on disk will never be read, and seeking back there to write new content
655 * later would only waste time away from clustering.
657 int reuse_swap_page(struct page *page)
659 int count;
661 VM_BUG_ON(!PageLocked(page));
662 count = page_mapcount(page);
663 if (count <= 1 && PageSwapCache(page)) {
664 count += page_swapcount(page);
665 if (count == 1 && !PageWriteback(page)) {
666 delete_from_swap_cache(page);
667 SetPageDirty(page);
670 return count == 1;
674 * If swap is getting full, or if there are no more mappings of this page,
675 * then try_to_free_swap is called to free its swap space.
677 int try_to_free_swap(struct page *page)
679 VM_BUG_ON(!PageLocked(page));
681 if (!PageSwapCache(page))
682 return 0;
683 if (PageWriteback(page))
684 return 0;
685 if (page_swapcount(page))
686 return 0;
688 delete_from_swap_cache(page);
689 SetPageDirty(page);
690 return 1;
694 * Free the swap entry like above, but also try to
695 * free the page cache entry if it is the last user.
697 int free_swap_and_cache(swp_entry_t entry)
699 struct swap_info_struct *p;
700 struct page *page = NULL;
702 if (non_swap_entry(entry))
703 return 1;
705 p = swap_info_get(entry);
706 if (p) {
707 if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
708 page = find_get_page(&swapper_space, entry.val);
709 if (page && !trylock_page(page)) {
710 page_cache_release(page);
711 page = NULL;
714 spin_unlock(&swap_lock);
716 if (page) {
718 * Not mapped elsewhere, or swap space full? Free it!
719 * Also recheck PageSwapCache now page is locked (above).
721 if (PageSwapCache(page) && !PageWriteback(page) &&
722 (!page_mapped(page) || vm_swap_full())) {
723 delete_from_swap_cache(page);
724 SetPageDirty(page);
726 unlock_page(page);
727 page_cache_release(page);
729 return p != NULL;
732 #ifdef CONFIG_HIBERNATION
734 * Find the swap type that corresponds to given device (if any).
736 * @offset - number of the PAGE_SIZE-sized block of the device, starting
737 * from 0, in which the swap header is expected to be located.
739 * This is needed for the suspend to disk (aka swsusp).
741 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
743 struct block_device *bdev = NULL;
744 int type;
746 if (device)
747 bdev = bdget(device);
749 spin_lock(&swap_lock);
750 for (type = 0; type < nr_swapfiles; type++) {
751 struct swap_info_struct *sis = swap_info[type];
753 if (!(sis->flags & SWP_WRITEOK))
754 continue;
756 if (!bdev) {
757 if (bdev_p)
758 *bdev_p = bdgrab(sis->bdev);
760 spin_unlock(&swap_lock);
761 return type;
763 if (bdev == sis->bdev) {
764 struct swap_extent *se;
766 se = list_entry(sis->extent_list.next,
767 struct swap_extent, list);
768 if (se->start_block == offset) {
769 if (bdev_p)
770 *bdev_p = bdgrab(sis->bdev);
772 spin_unlock(&swap_lock);
773 bdput(bdev);
774 return type;
778 spin_unlock(&swap_lock);
779 if (bdev)
780 bdput(bdev);
782 return -ENODEV;
786 * Return either the total number of swap pages of given type, or the number
787 * of free pages of that type (depending on @free)
789 * This is needed for software suspend
791 unsigned int count_swap_pages(int type, int free)
793 unsigned int n = 0;
795 spin_lock(&swap_lock);
796 if ((unsigned int)type < nr_swapfiles) {
797 struct swap_info_struct *sis = swap_info[type];
799 if (sis->flags & SWP_WRITEOK) {
800 n = sis->pages;
801 if (free)
802 n -= sis->inuse_pages;
805 spin_unlock(&swap_lock);
806 return n;
808 #endif
811 * No need to decide whether this PTE shares the swap entry with others,
812 * just let do_wp_page work it out if a write is requested later - to
813 * force COW, vm_page_prot omits write permission from any private vma.
815 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
816 unsigned long addr, swp_entry_t entry, struct page *page)
818 struct mem_cgroup *ptr = NULL;
819 spinlock_t *ptl;
820 pte_t *pte;
821 int ret = 1;
823 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
824 ret = -ENOMEM;
825 goto out_nolock;
828 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
829 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
830 if (ret > 0)
831 mem_cgroup_cancel_charge_swapin(ptr);
832 ret = 0;
833 goto out;
836 inc_mm_counter(vma->vm_mm, anon_rss);
837 get_page(page);
838 set_pte_at(vma->vm_mm, addr, pte,
839 pte_mkold(mk_pte(page, vma->vm_page_prot)));
840 page_add_anon_rmap(page, vma, addr);
841 mem_cgroup_commit_charge_swapin(page, ptr);
842 swap_free(entry);
844 * Move the page to the active list so it is not
845 * immediately swapped out again after swapon.
847 activate_page(page);
848 out:
849 pte_unmap_unlock(pte, ptl);
850 out_nolock:
851 return ret;
854 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
855 unsigned long addr, unsigned long end,
856 swp_entry_t entry, struct page *page)
858 pte_t swp_pte = swp_entry_to_pte(entry);
859 pte_t *pte;
860 int ret = 0;
863 * We don't actually need pte lock while scanning for swp_pte: since
864 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
865 * page table while we're scanning; though it could get zapped, and on
866 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
867 * of unmatched parts which look like swp_pte, so unuse_pte must
868 * recheck under pte lock. Scanning without pte lock lets it be
869 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
871 pte = pte_offset_map(pmd, addr);
872 do {
874 * swapoff spends a _lot_ of time in this loop!
875 * Test inline before going to call unuse_pte.
877 if (unlikely(pte_same(*pte, swp_pte))) {
878 pte_unmap(pte);
879 ret = unuse_pte(vma, pmd, addr, entry, page);
880 if (ret)
881 goto out;
882 pte = pte_offset_map(pmd, addr);
884 } while (pte++, addr += PAGE_SIZE, addr != end);
885 pte_unmap(pte - 1);
886 out:
887 return ret;
890 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
891 unsigned long addr, unsigned long end,
892 swp_entry_t entry, struct page *page)
894 pmd_t *pmd;
895 unsigned long next;
896 int ret;
898 pmd = pmd_offset(pud, addr);
899 do {
900 next = pmd_addr_end(addr, end);
901 if (pmd_none_or_clear_bad(pmd))
902 continue;
903 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
904 if (ret)
905 return ret;
906 } while (pmd++, addr = next, addr != end);
907 return 0;
910 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
911 unsigned long addr, unsigned long end,
912 swp_entry_t entry, struct page *page)
914 pud_t *pud;
915 unsigned long next;
916 int ret;
918 pud = pud_offset(pgd, addr);
919 do {
920 next = pud_addr_end(addr, end);
921 if (pud_none_or_clear_bad(pud))
922 continue;
923 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
924 if (ret)
925 return ret;
926 } while (pud++, addr = next, addr != end);
927 return 0;
930 static int unuse_vma(struct vm_area_struct *vma,
931 swp_entry_t entry, struct page *page)
933 pgd_t *pgd;
934 unsigned long addr, end, next;
935 int ret;
937 if (page->mapping) {
938 addr = page_address_in_vma(page, vma);
939 if (addr == -EFAULT)
940 return 0;
941 else
942 end = addr + PAGE_SIZE;
943 } else {
944 addr = vma->vm_start;
945 end = vma->vm_end;
948 pgd = pgd_offset(vma->vm_mm, addr);
949 do {
950 next = pgd_addr_end(addr, end);
951 if (pgd_none_or_clear_bad(pgd))
952 continue;
953 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
954 if (ret)
955 return ret;
956 } while (pgd++, addr = next, addr != end);
957 return 0;
960 static int unuse_mm(struct mm_struct *mm,
961 swp_entry_t entry, struct page *page)
963 struct vm_area_struct *vma;
964 int ret = 0;
966 if (!down_read_trylock(&mm->mmap_sem)) {
968 * Activate page so shrink_inactive_list is unlikely to unmap
969 * its ptes while lock is dropped, so swapoff can make progress.
971 activate_page(page);
972 unlock_page(page);
973 down_read(&mm->mmap_sem);
974 lock_page(page);
976 for (vma = mm->mmap; vma; vma = vma->vm_next) {
977 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
978 break;
980 up_read(&mm->mmap_sem);
981 return (ret < 0)? ret: 0;
985 * Scan swap_map from current position to next entry still in use.
986 * Recycle to start on reaching the end, returning 0 when empty.
988 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
989 unsigned int prev)
991 unsigned int max = si->max;
992 unsigned int i = prev;
993 int count;
996 * No need for swap_lock here: we're just looking
997 * for whether an entry is in use, not modifying it; false
998 * hits are okay, and sys_swapoff() has already prevented new
999 * allocations from this area (while holding swap_lock).
1001 for (;;) {
1002 if (++i >= max) {
1003 if (!prev) {
1004 i = 0;
1005 break;
1008 * No entries in use at top of swap_map,
1009 * loop back to start and recheck there.
1011 max = prev + 1;
1012 prev = 0;
1013 i = 1;
1015 count = si->swap_map[i];
1016 if (count && swap_count(count) != SWAP_MAP_BAD)
1017 break;
1019 return i;
1023 * We completely avoid races by reading each swap page in advance,
1024 * and then search for the process using it. All the necessary
1025 * page table adjustments can then be made atomically.
1027 static int try_to_unuse(unsigned int type)
1029 struct swap_info_struct *si = swap_info[type];
1030 struct mm_struct *start_mm;
1031 unsigned short *swap_map;
1032 unsigned short swcount;
1033 struct page *page;
1034 swp_entry_t entry;
1035 unsigned int i = 0;
1036 int retval = 0;
1037 int reset_overflow = 0;
1038 int shmem;
1041 * When searching mms for an entry, a good strategy is to
1042 * start at the first mm we freed the previous entry from
1043 * (though actually we don't notice whether we or coincidence
1044 * freed the entry). Initialize this start_mm with a hold.
1046 * A simpler strategy would be to start at the last mm we
1047 * freed the previous entry from; but that would take less
1048 * advantage of mmlist ordering, which clusters forked mms
1049 * together, child after parent. If we race with dup_mmap(), we
1050 * prefer to resolve parent before child, lest we miss entries
1051 * duplicated after we scanned child: using last mm would invert
1052 * that. Though it's only a serious concern when an overflowed
1053 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1055 start_mm = &init_mm;
1056 atomic_inc(&init_mm.mm_users);
1059 * Keep on scanning until all entries have gone. Usually,
1060 * one pass through swap_map is enough, but not necessarily:
1061 * there are races when an instance of an entry might be missed.
1063 while ((i = find_next_to_unuse(si, i)) != 0) {
1064 if (signal_pending(current)) {
1065 retval = -EINTR;
1066 break;
1070 * Get a page for the entry, using the existing swap
1071 * cache page if there is one. Otherwise, get a clean
1072 * page and read the swap into it.
1074 swap_map = &si->swap_map[i];
1075 entry = swp_entry(type, i);
1076 page = read_swap_cache_async(entry,
1077 GFP_HIGHUSER_MOVABLE, NULL, 0);
1078 if (!page) {
1080 * Either swap_duplicate() failed because entry
1081 * has been freed independently, and will not be
1082 * reused since sys_swapoff() already disabled
1083 * allocation from here, or alloc_page() failed.
1085 if (!*swap_map)
1086 continue;
1087 retval = -ENOMEM;
1088 break;
1092 * Don't hold on to start_mm if it looks like exiting.
1094 if (atomic_read(&start_mm->mm_users) == 1) {
1095 mmput(start_mm);
1096 start_mm = &init_mm;
1097 atomic_inc(&init_mm.mm_users);
1101 * Wait for and lock page. When do_swap_page races with
1102 * try_to_unuse, do_swap_page can handle the fault much
1103 * faster than try_to_unuse can locate the entry. This
1104 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1105 * defer to do_swap_page in such a case - in some tests,
1106 * do_swap_page and try_to_unuse repeatedly compete.
1108 wait_on_page_locked(page);
1109 wait_on_page_writeback(page);
1110 lock_page(page);
1111 wait_on_page_writeback(page);
1114 * Remove all references to entry.
1115 * Whenever we reach init_mm, there's no address space
1116 * to search, but use it as a reminder to search shmem.
1118 shmem = 0;
1119 swcount = *swap_map;
1120 if (swap_count(swcount)) {
1121 if (start_mm == &init_mm)
1122 shmem = shmem_unuse(entry, page);
1123 else
1124 retval = unuse_mm(start_mm, entry, page);
1126 if (swap_count(*swap_map)) {
1127 int set_start_mm = (*swap_map >= swcount);
1128 struct list_head *p = &start_mm->mmlist;
1129 struct mm_struct *new_start_mm = start_mm;
1130 struct mm_struct *prev_mm = start_mm;
1131 struct mm_struct *mm;
1133 atomic_inc(&new_start_mm->mm_users);
1134 atomic_inc(&prev_mm->mm_users);
1135 spin_lock(&mmlist_lock);
1136 while (swap_count(*swap_map) && !retval && !shmem &&
1137 (p = p->next) != &start_mm->mmlist) {
1138 mm = list_entry(p, struct mm_struct, mmlist);
1139 if (!atomic_inc_not_zero(&mm->mm_users))
1140 continue;
1141 spin_unlock(&mmlist_lock);
1142 mmput(prev_mm);
1143 prev_mm = mm;
1145 cond_resched();
1147 swcount = *swap_map;
1148 if (!swap_count(swcount)) /* any usage ? */
1150 else if (mm == &init_mm) {
1151 set_start_mm = 1;
1152 shmem = shmem_unuse(entry, page);
1153 } else
1154 retval = unuse_mm(mm, entry, page);
1156 if (set_start_mm && *swap_map < swcount) {
1157 mmput(new_start_mm);
1158 atomic_inc(&mm->mm_users);
1159 new_start_mm = mm;
1160 set_start_mm = 0;
1162 spin_lock(&mmlist_lock);
1164 spin_unlock(&mmlist_lock);
1165 mmput(prev_mm);
1166 mmput(start_mm);
1167 start_mm = new_start_mm;
1169 if (shmem) {
1170 /* page has already been unlocked and released */
1171 if (shmem > 0)
1172 continue;
1173 retval = shmem;
1174 break;
1176 if (retval) {
1177 unlock_page(page);
1178 page_cache_release(page);
1179 break;
1183 * How could swap count reach 0x7ffe ?
1184 * There's no way to repeat a swap page within an mm
1185 * (except in shmem, where it's the shared object which takes
1186 * the reference count)?
1187 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1188 * short is too small....)
1189 * If that's wrong, then we should worry more about
1190 * exit_mmap() and do_munmap() cases described above:
1191 * we might be resetting SWAP_MAP_MAX too early here.
1192 * We know "Undead"s can happen, they're okay, so don't
1193 * report them; but do report if we reset SWAP_MAP_MAX.
1195 /* We might release the lock_page() in unuse_mm(). */
1196 if (!PageSwapCache(page) || page_private(page) != entry.val)
1197 goto retry;
1199 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1200 spin_lock(&swap_lock);
1201 *swap_map = encode_swapmap(0, true);
1202 spin_unlock(&swap_lock);
1203 reset_overflow = 1;
1207 * If a reference remains (rare), we would like to leave
1208 * the page in the swap cache; but try_to_unmap could
1209 * then re-duplicate the entry once we drop page lock,
1210 * so we might loop indefinitely; also, that page could
1211 * not be swapped out to other storage meanwhile. So:
1212 * delete from cache even if there's another reference,
1213 * after ensuring that the data has been saved to disk -
1214 * since if the reference remains (rarer), it will be
1215 * read from disk into another page. Splitting into two
1216 * pages would be incorrect if swap supported "shared
1217 * private" pages, but they are handled by tmpfs files.
1219 if (swap_count(*swap_map) &&
1220 PageDirty(page) && PageSwapCache(page)) {
1221 struct writeback_control wbc = {
1222 .sync_mode = WB_SYNC_NONE,
1225 swap_writepage(page, &wbc);
1226 lock_page(page);
1227 wait_on_page_writeback(page);
1231 * It is conceivable that a racing task removed this page from
1232 * swap cache just before we acquired the page lock at the top,
1233 * or while we dropped it in unuse_mm(). The page might even
1234 * be back in swap cache on another swap area: that we must not
1235 * delete, since it may not have been written out to swap yet.
1237 if (PageSwapCache(page) &&
1238 likely(page_private(page) == entry.val))
1239 delete_from_swap_cache(page);
1242 * So we could skip searching mms once swap count went
1243 * to 1, we did not mark any present ptes as dirty: must
1244 * mark page dirty so shrink_page_list will preserve it.
1246 SetPageDirty(page);
1247 retry:
1248 unlock_page(page);
1249 page_cache_release(page);
1252 * Make sure that we aren't completely killing
1253 * interactive performance.
1255 cond_resched();
1258 mmput(start_mm);
1259 if (reset_overflow) {
1260 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1261 swap_overflow = 0;
1263 return retval;
1267 * After a successful try_to_unuse, if no swap is now in use, we know
1268 * we can empty the mmlist. swap_lock must be held on entry and exit.
1269 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1270 * added to the mmlist just after page_duplicate - before would be racy.
1272 static void drain_mmlist(void)
1274 struct list_head *p, *next;
1275 unsigned int type;
1277 for (type = 0; type < nr_swapfiles; type++)
1278 if (swap_info[type]->inuse_pages)
1279 return;
1280 spin_lock(&mmlist_lock);
1281 list_for_each_safe(p, next, &init_mm.mmlist)
1282 list_del_init(p);
1283 spin_unlock(&mmlist_lock);
1287 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1288 * corresponds to page offset `offset'. Note that the type of this function
1289 * is sector_t, but it returns page offset into the bdev, not sector offset.
1291 sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
1293 struct swap_info_struct *sis;
1294 struct swap_extent *start_se;
1295 struct swap_extent *se;
1296 pgoff_t offset;
1298 sis = swap_info[swp_type(entry)];
1299 *bdev = sis->bdev;
1301 offset = swp_offset(entry);
1302 start_se = sis->curr_swap_extent;
1303 se = start_se;
1305 for ( ; ; ) {
1306 struct list_head *lh;
1308 if (se->start_page <= offset &&
1309 offset < (se->start_page + se->nr_pages)) {
1310 return se->start_block + (offset - se->start_page);
1312 lh = se->list.next;
1313 if (lh == &sis->extent_list)
1314 lh = lh->next;
1315 se = list_entry(lh, struct swap_extent, list);
1316 sis->curr_swap_extent = se;
1317 BUG_ON(se == start_se); /* It *must* be present */
1321 #ifdef CONFIG_HIBERNATION
1323 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1324 * corresponding to given index in swap_info (swap type).
1326 sector_t swapdev_block(int type, pgoff_t offset)
1328 struct block_device *bdev;
1330 if ((unsigned int)type >= nr_swapfiles)
1331 return 0;
1332 if (!(swap_info[type]->flags & SWP_WRITEOK))
1333 return 0;
1334 return map_swap_page(swp_entry(type, offset), &bdev);
1336 #endif /* CONFIG_HIBERNATION */
1339 * Free all of a swapdev's extent information
1341 static void destroy_swap_extents(struct swap_info_struct *sis)
1343 while (!list_empty(&sis->extent_list)) {
1344 struct swap_extent *se;
1346 se = list_entry(sis->extent_list.next,
1347 struct swap_extent, list);
1348 list_del(&se->list);
1349 kfree(se);
1354 * Add a block range (and the corresponding page range) into this swapdev's
1355 * extent list. The extent list is kept sorted in page order.
1357 * This function rather assumes that it is called in ascending page order.
1359 static int
1360 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1361 unsigned long nr_pages, sector_t start_block)
1363 struct swap_extent *se;
1364 struct swap_extent *new_se;
1365 struct list_head *lh;
1367 lh = sis->extent_list.prev; /* The highest page extent */
1368 if (lh != &sis->extent_list) {
1369 se = list_entry(lh, struct swap_extent, list);
1370 BUG_ON(se->start_page + se->nr_pages != start_page);
1371 if (se->start_block + se->nr_pages == start_block) {
1372 /* Merge it */
1373 se->nr_pages += nr_pages;
1374 return 0;
1379 * No merge. Insert a new extent, preserving ordering.
1381 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1382 if (new_se == NULL)
1383 return -ENOMEM;
1384 new_se->start_page = start_page;
1385 new_se->nr_pages = nr_pages;
1386 new_se->start_block = start_block;
1388 list_add_tail(&new_se->list, &sis->extent_list);
1389 return 1;
1393 * A `swap extent' is a simple thing which maps a contiguous range of pages
1394 * onto a contiguous range of disk blocks. An ordered list of swap extents
1395 * is built at swapon time and is then used at swap_writepage/swap_readpage
1396 * time for locating where on disk a page belongs.
1398 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1399 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1400 * swap files identically.
1402 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1403 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1404 * swapfiles are handled *identically* after swapon time.
1406 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1407 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1408 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1409 * requirements, they are simply tossed out - we will never use those blocks
1410 * for swapping.
1412 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1413 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1414 * which will scribble on the fs.
1416 * The amount of disk space which a single swap extent represents varies.
1417 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1418 * extents in the list. To avoid much list walking, we cache the previous
1419 * search location in `curr_swap_extent', and start new searches from there.
1420 * This is extremely effective. The average number of iterations in
1421 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1423 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1425 struct inode *inode;
1426 unsigned blocks_per_page;
1427 unsigned long page_no;
1428 unsigned blkbits;
1429 sector_t probe_block;
1430 sector_t last_block;
1431 sector_t lowest_block = -1;
1432 sector_t highest_block = 0;
1433 int nr_extents = 0;
1434 int ret;
1436 inode = sis->swap_file->f_mapping->host;
1437 if (S_ISBLK(inode->i_mode)) {
1438 ret = add_swap_extent(sis, 0, sis->max, 0);
1439 *span = sis->pages;
1440 goto done;
1443 blkbits = inode->i_blkbits;
1444 blocks_per_page = PAGE_SIZE >> blkbits;
1447 * Map all the blocks into the extent list. This code doesn't try
1448 * to be very smart.
1450 probe_block = 0;
1451 page_no = 0;
1452 last_block = i_size_read(inode) >> blkbits;
1453 while ((probe_block + blocks_per_page) <= last_block &&
1454 page_no < sis->max) {
1455 unsigned block_in_page;
1456 sector_t first_block;
1458 first_block = bmap(inode, probe_block);
1459 if (first_block == 0)
1460 goto bad_bmap;
1463 * It must be PAGE_SIZE aligned on-disk
1465 if (first_block & (blocks_per_page - 1)) {
1466 probe_block++;
1467 goto reprobe;
1470 for (block_in_page = 1; block_in_page < blocks_per_page;
1471 block_in_page++) {
1472 sector_t block;
1474 block = bmap(inode, probe_block + block_in_page);
1475 if (block == 0)
1476 goto bad_bmap;
1477 if (block != first_block + block_in_page) {
1478 /* Discontiguity */
1479 probe_block++;
1480 goto reprobe;
1484 first_block >>= (PAGE_SHIFT - blkbits);
1485 if (page_no) { /* exclude the header page */
1486 if (first_block < lowest_block)
1487 lowest_block = first_block;
1488 if (first_block > highest_block)
1489 highest_block = first_block;
1493 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1495 ret = add_swap_extent(sis, page_no, 1, first_block);
1496 if (ret < 0)
1497 goto out;
1498 nr_extents += ret;
1499 page_no++;
1500 probe_block += blocks_per_page;
1501 reprobe:
1502 continue;
1504 ret = nr_extents;
1505 *span = 1 + highest_block - lowest_block;
1506 if (page_no == 0)
1507 page_no = 1; /* force Empty message */
1508 sis->max = page_no;
1509 sis->pages = page_no - 1;
1510 sis->highest_bit = page_no - 1;
1511 done:
1512 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1513 struct swap_extent, list);
1514 goto out;
1515 bad_bmap:
1516 printk(KERN_ERR "swapon: swapfile has holes\n");
1517 ret = -EINVAL;
1518 out:
1519 return ret;
1522 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1524 struct swap_info_struct * p = NULL;
1525 unsigned short *swap_map;
1526 struct file *swap_file, *victim;
1527 struct address_space *mapping;
1528 struct inode *inode;
1529 char * pathname;
1530 int i, type, prev;
1531 int err;
1533 if (!capable(CAP_SYS_ADMIN))
1534 return -EPERM;
1536 pathname = getname(specialfile);
1537 err = PTR_ERR(pathname);
1538 if (IS_ERR(pathname))
1539 goto out;
1541 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1542 putname(pathname);
1543 err = PTR_ERR(victim);
1544 if (IS_ERR(victim))
1545 goto out;
1547 mapping = victim->f_mapping;
1548 prev = -1;
1549 spin_lock(&swap_lock);
1550 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1551 p = swap_info[type];
1552 if (p->flags & SWP_WRITEOK) {
1553 if (p->swap_file->f_mapping == mapping)
1554 break;
1556 prev = type;
1558 if (type < 0) {
1559 err = -EINVAL;
1560 spin_unlock(&swap_lock);
1561 goto out_dput;
1563 if (!security_vm_enough_memory(p->pages))
1564 vm_unacct_memory(p->pages);
1565 else {
1566 err = -ENOMEM;
1567 spin_unlock(&swap_lock);
1568 goto out_dput;
1570 if (prev < 0)
1571 swap_list.head = p->next;
1572 else
1573 swap_info[prev]->next = p->next;
1574 if (type == swap_list.next) {
1575 /* just pick something that's safe... */
1576 swap_list.next = swap_list.head;
1578 if (p->prio < 0) {
1579 for (i = p->next; i >= 0; i = swap_info[i]->next)
1580 swap_info[i]->prio = p->prio--;
1581 least_priority++;
1583 nr_swap_pages -= p->pages;
1584 total_swap_pages -= p->pages;
1585 p->flags &= ~SWP_WRITEOK;
1586 spin_unlock(&swap_lock);
1588 current->flags |= PF_OOM_ORIGIN;
1589 err = try_to_unuse(type);
1590 current->flags &= ~PF_OOM_ORIGIN;
1592 if (err) {
1593 /* re-insert swap space back into swap_list */
1594 spin_lock(&swap_lock);
1595 if (p->prio < 0)
1596 p->prio = --least_priority;
1597 prev = -1;
1598 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1599 if (p->prio >= swap_info[i]->prio)
1600 break;
1601 prev = i;
1603 p->next = i;
1604 if (prev < 0)
1605 swap_list.head = swap_list.next = type;
1606 else
1607 swap_info[prev]->next = type;
1608 nr_swap_pages += p->pages;
1609 total_swap_pages += p->pages;
1610 p->flags |= SWP_WRITEOK;
1611 spin_unlock(&swap_lock);
1612 goto out_dput;
1615 /* wait for any unplug function to finish */
1616 down_write(&swap_unplug_sem);
1617 up_write(&swap_unplug_sem);
1619 destroy_swap_extents(p);
1620 mutex_lock(&swapon_mutex);
1621 spin_lock(&swap_lock);
1622 drain_mmlist();
1624 /* wait for anyone still in scan_swap_map */
1625 p->highest_bit = 0; /* cuts scans short */
1626 while (p->flags >= SWP_SCANNING) {
1627 spin_unlock(&swap_lock);
1628 schedule_timeout_uninterruptible(1);
1629 spin_lock(&swap_lock);
1632 swap_file = p->swap_file;
1633 p->swap_file = NULL;
1634 p->max = 0;
1635 swap_map = p->swap_map;
1636 p->swap_map = NULL;
1637 p->flags = 0;
1638 spin_unlock(&swap_lock);
1639 mutex_unlock(&swapon_mutex);
1640 vfree(swap_map);
1641 /* Destroy swap account informatin */
1642 swap_cgroup_swapoff(type);
1644 inode = mapping->host;
1645 if (S_ISBLK(inode->i_mode)) {
1646 struct block_device *bdev = I_BDEV(inode);
1647 set_blocksize(bdev, p->old_block_size);
1648 bd_release(bdev);
1649 } else {
1650 mutex_lock(&inode->i_mutex);
1651 inode->i_flags &= ~S_SWAPFILE;
1652 mutex_unlock(&inode->i_mutex);
1654 filp_close(swap_file, NULL);
1655 err = 0;
1657 out_dput:
1658 filp_close(victim, NULL);
1659 out:
1660 return err;
1663 #ifdef CONFIG_PROC_FS
1664 /* iterator */
1665 static void *swap_start(struct seq_file *swap, loff_t *pos)
1667 struct swap_info_struct *si;
1668 int type;
1669 loff_t l = *pos;
1671 mutex_lock(&swapon_mutex);
1673 if (!l)
1674 return SEQ_START_TOKEN;
1676 for (type = 0; type < nr_swapfiles; type++) {
1677 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1678 si = swap_info[type];
1679 if (!(si->flags & SWP_USED) || !si->swap_map)
1680 continue;
1681 if (!--l)
1682 return si;
1685 return NULL;
1688 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1690 struct swap_info_struct *si = v;
1691 int type;
1693 if (v == SEQ_START_TOKEN)
1694 type = 0;
1695 else
1696 type = si->type + 1;
1698 for (; type < nr_swapfiles; type++) {
1699 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1700 si = swap_info[type];
1701 if (!(si->flags & SWP_USED) || !si->swap_map)
1702 continue;
1703 ++*pos;
1704 return si;
1707 return NULL;
1710 static void swap_stop(struct seq_file *swap, void *v)
1712 mutex_unlock(&swapon_mutex);
1715 static int swap_show(struct seq_file *swap, void *v)
1717 struct swap_info_struct *si = v;
1718 struct file *file;
1719 int len;
1721 if (si == SEQ_START_TOKEN) {
1722 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1723 return 0;
1726 file = si->swap_file;
1727 len = seq_path(swap, &file->f_path, " \t\n\\");
1728 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1729 len < 40 ? 40 - len : 1, " ",
1730 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1731 "partition" : "file\t",
1732 si->pages << (PAGE_SHIFT - 10),
1733 si->inuse_pages << (PAGE_SHIFT - 10),
1734 si->prio);
1735 return 0;
1738 static const struct seq_operations swaps_op = {
1739 .start = swap_start,
1740 .next = swap_next,
1741 .stop = swap_stop,
1742 .show = swap_show
1745 static int swaps_open(struct inode *inode, struct file *file)
1747 return seq_open(file, &swaps_op);
1750 static const struct file_operations proc_swaps_operations = {
1751 .open = swaps_open,
1752 .read = seq_read,
1753 .llseek = seq_lseek,
1754 .release = seq_release,
1757 static int __init procswaps_init(void)
1759 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1760 return 0;
1762 __initcall(procswaps_init);
1763 #endif /* CONFIG_PROC_FS */
1765 #ifdef MAX_SWAPFILES_CHECK
1766 static int __init max_swapfiles_check(void)
1768 MAX_SWAPFILES_CHECK();
1769 return 0;
1771 late_initcall(max_swapfiles_check);
1772 #endif
1775 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1777 * The swapon system call
1779 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1781 struct swap_info_struct * p;
1782 char *name = NULL;
1783 struct block_device *bdev = NULL;
1784 struct file *swap_file = NULL;
1785 struct address_space *mapping;
1786 unsigned int type;
1787 int i, prev;
1788 int error;
1789 union swap_header *swap_header = NULL;
1790 unsigned int nr_good_pages = 0;
1791 int nr_extents = 0;
1792 sector_t span;
1793 unsigned long maxpages = 1;
1794 unsigned long swapfilepages;
1795 unsigned short *swap_map = NULL;
1796 struct page *page = NULL;
1797 struct inode *inode = NULL;
1798 int did_down = 0;
1800 if (!capable(CAP_SYS_ADMIN))
1801 return -EPERM;
1803 p = kzalloc(sizeof(*p), GFP_KERNEL);
1804 if (!p)
1805 return -ENOMEM;
1807 spin_lock(&swap_lock);
1808 for (type = 0; type < nr_swapfiles; type++) {
1809 if (!(swap_info[type]->flags & SWP_USED))
1810 break;
1812 error = -EPERM;
1813 if (type >= MAX_SWAPFILES) {
1814 spin_unlock(&swap_lock);
1815 kfree(p);
1816 goto out;
1818 INIT_LIST_HEAD(&p->extent_list);
1819 if (type >= nr_swapfiles) {
1820 p->type = type;
1821 swap_info[type] = p;
1823 * Write swap_info[type] before nr_swapfiles, in case a
1824 * racing procfs swap_start() or swap_next() is reading them.
1825 * (We never shrink nr_swapfiles, we never free this entry.)
1827 smp_wmb();
1828 nr_swapfiles++;
1829 } else {
1830 kfree(p);
1831 p = swap_info[type];
1833 * Do not memset this entry: a racing procfs swap_next()
1834 * would be relying on p->type to remain valid.
1837 p->flags = SWP_USED;
1838 p->next = -1;
1839 spin_unlock(&swap_lock);
1841 name = getname(specialfile);
1842 error = PTR_ERR(name);
1843 if (IS_ERR(name)) {
1844 name = NULL;
1845 goto bad_swap_2;
1847 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1848 error = PTR_ERR(swap_file);
1849 if (IS_ERR(swap_file)) {
1850 swap_file = NULL;
1851 goto bad_swap_2;
1854 p->swap_file = swap_file;
1855 mapping = swap_file->f_mapping;
1856 inode = mapping->host;
1858 error = -EBUSY;
1859 for (i = 0; i < nr_swapfiles; i++) {
1860 struct swap_info_struct *q = swap_info[i];
1862 if (i == type || !q->swap_file)
1863 continue;
1864 if (mapping == q->swap_file->f_mapping)
1865 goto bad_swap;
1868 error = -EINVAL;
1869 if (S_ISBLK(inode->i_mode)) {
1870 bdev = I_BDEV(inode);
1871 error = bd_claim(bdev, sys_swapon);
1872 if (error < 0) {
1873 bdev = NULL;
1874 error = -EINVAL;
1875 goto bad_swap;
1877 p->old_block_size = block_size(bdev);
1878 error = set_blocksize(bdev, PAGE_SIZE);
1879 if (error < 0)
1880 goto bad_swap;
1881 p->bdev = bdev;
1882 } else if (S_ISREG(inode->i_mode)) {
1883 p->bdev = inode->i_sb->s_bdev;
1884 mutex_lock(&inode->i_mutex);
1885 did_down = 1;
1886 if (IS_SWAPFILE(inode)) {
1887 error = -EBUSY;
1888 goto bad_swap;
1890 } else {
1891 goto bad_swap;
1894 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1897 * Read the swap header.
1899 if (!mapping->a_ops->readpage) {
1900 error = -EINVAL;
1901 goto bad_swap;
1903 page = read_mapping_page(mapping, 0, swap_file);
1904 if (IS_ERR(page)) {
1905 error = PTR_ERR(page);
1906 goto bad_swap;
1908 swap_header = kmap(page);
1910 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1911 printk(KERN_ERR "Unable to find swap-space signature\n");
1912 error = -EINVAL;
1913 goto bad_swap;
1916 /* swap partition endianess hack... */
1917 if (swab32(swap_header->info.version) == 1) {
1918 swab32s(&swap_header->info.version);
1919 swab32s(&swap_header->info.last_page);
1920 swab32s(&swap_header->info.nr_badpages);
1921 for (i = 0; i < swap_header->info.nr_badpages; i++)
1922 swab32s(&swap_header->info.badpages[i]);
1924 /* Check the swap header's sub-version */
1925 if (swap_header->info.version != 1) {
1926 printk(KERN_WARNING
1927 "Unable to handle swap header version %d\n",
1928 swap_header->info.version);
1929 error = -EINVAL;
1930 goto bad_swap;
1933 p->lowest_bit = 1;
1934 p->cluster_next = 1;
1935 p->cluster_nr = 0;
1938 * Find out how many pages are allowed for a single swap
1939 * device. There are two limiting factors: 1) the number of
1940 * bits for the swap offset in the swp_entry_t type and
1941 * 2) the number of bits in the a swap pte as defined by
1942 * the different architectures. In order to find the
1943 * largest possible bit mask a swap entry with swap type 0
1944 * and swap offset ~0UL is created, encoded to a swap pte,
1945 * decoded to a swp_entry_t again and finally the swap
1946 * offset is extracted. This will mask all the bits from
1947 * the initial ~0UL mask that can't be encoded in either
1948 * the swp_entry_t or the architecture definition of a
1949 * swap pte.
1951 maxpages = swp_offset(pte_to_swp_entry(
1952 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1953 if (maxpages > swap_header->info.last_page)
1954 maxpages = swap_header->info.last_page;
1955 p->highest_bit = maxpages - 1;
1957 error = -EINVAL;
1958 if (!maxpages)
1959 goto bad_swap;
1960 if (swapfilepages && maxpages > swapfilepages) {
1961 printk(KERN_WARNING
1962 "Swap area shorter than signature indicates\n");
1963 goto bad_swap;
1965 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1966 goto bad_swap;
1967 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1968 goto bad_swap;
1970 /* OK, set up the swap map and apply the bad block list */
1971 swap_map = vmalloc(maxpages * sizeof(short));
1972 if (!swap_map) {
1973 error = -ENOMEM;
1974 goto bad_swap;
1977 memset(swap_map, 0, maxpages * sizeof(short));
1978 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1979 int page_nr = swap_header->info.badpages[i];
1980 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1981 error = -EINVAL;
1982 goto bad_swap;
1984 swap_map[page_nr] = SWAP_MAP_BAD;
1987 error = swap_cgroup_swapon(type, maxpages);
1988 if (error)
1989 goto bad_swap;
1991 nr_good_pages = swap_header->info.last_page -
1992 swap_header->info.nr_badpages -
1993 1 /* header page */;
1995 if (nr_good_pages) {
1996 swap_map[0] = SWAP_MAP_BAD;
1997 p->max = maxpages;
1998 p->pages = nr_good_pages;
1999 nr_extents = setup_swap_extents(p, &span);
2000 if (nr_extents < 0) {
2001 error = nr_extents;
2002 goto bad_swap;
2004 nr_good_pages = p->pages;
2006 if (!nr_good_pages) {
2007 printk(KERN_WARNING "Empty swap-file\n");
2008 error = -EINVAL;
2009 goto bad_swap;
2012 if (p->bdev) {
2013 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2014 p->flags |= SWP_SOLIDSTATE;
2015 p->cluster_next = 1 + (random32() % p->highest_bit);
2017 if (discard_swap(p) == 0)
2018 p->flags |= SWP_DISCARDABLE;
2021 mutex_lock(&swapon_mutex);
2022 spin_lock(&swap_lock);
2023 if (swap_flags & SWAP_FLAG_PREFER)
2024 p->prio =
2025 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2026 else
2027 p->prio = --least_priority;
2028 p->swap_map = swap_map;
2029 p->flags |= SWP_WRITEOK;
2030 nr_swap_pages += nr_good_pages;
2031 total_swap_pages += nr_good_pages;
2033 printk(KERN_INFO "Adding %uk swap on %s. "
2034 "Priority:%d extents:%d across:%lluk %s%s\n",
2035 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2036 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2037 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2038 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2040 /* insert swap space into swap_list: */
2041 prev = -1;
2042 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2043 if (p->prio >= swap_info[i]->prio)
2044 break;
2045 prev = i;
2047 p->next = i;
2048 if (prev < 0)
2049 swap_list.head = swap_list.next = type;
2050 else
2051 swap_info[prev]->next = type;
2052 spin_unlock(&swap_lock);
2053 mutex_unlock(&swapon_mutex);
2054 error = 0;
2055 goto out;
2056 bad_swap:
2057 if (bdev) {
2058 set_blocksize(bdev, p->old_block_size);
2059 bd_release(bdev);
2061 destroy_swap_extents(p);
2062 swap_cgroup_swapoff(type);
2063 bad_swap_2:
2064 spin_lock(&swap_lock);
2065 p->swap_file = NULL;
2066 p->flags = 0;
2067 spin_unlock(&swap_lock);
2068 vfree(swap_map);
2069 if (swap_file)
2070 filp_close(swap_file, NULL);
2071 out:
2072 if (page && !IS_ERR(page)) {
2073 kunmap(page);
2074 page_cache_release(page);
2076 if (name)
2077 putname(name);
2078 if (did_down) {
2079 if (!error)
2080 inode->i_flags |= S_SWAPFILE;
2081 mutex_unlock(&inode->i_mutex);
2083 return error;
2086 void si_swapinfo(struct sysinfo *val)
2088 unsigned int type;
2089 unsigned long nr_to_be_unused = 0;
2091 spin_lock(&swap_lock);
2092 for (type = 0; type < nr_swapfiles; type++) {
2093 struct swap_info_struct *si = swap_info[type];
2095 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2096 nr_to_be_unused += si->inuse_pages;
2098 val->freeswap = nr_swap_pages + nr_to_be_unused;
2099 val->totalswap = total_swap_pages + nr_to_be_unused;
2100 spin_unlock(&swap_lock);
2104 * Verify that a swap entry is valid and increment its swap map count.
2106 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2107 * "permanent", but will be reclaimed by the next swapoff.
2108 * Returns error code in following case.
2109 * - success -> 0
2110 * - swp_entry is invalid -> EINVAL
2111 * - swp_entry is migration entry -> EINVAL
2112 * - swap-cache reference is requested but there is already one. -> EEXIST
2113 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2115 static int __swap_duplicate(swp_entry_t entry, bool cache)
2117 struct swap_info_struct * p;
2118 unsigned long offset, type;
2119 int result = -EINVAL;
2120 int count;
2121 bool has_cache;
2123 if (non_swap_entry(entry))
2124 return -EINVAL;
2126 type = swp_type(entry);
2127 if (type >= nr_swapfiles)
2128 goto bad_file;
2129 p = swap_info[type];
2130 offset = swp_offset(entry);
2132 spin_lock(&swap_lock);
2134 if (unlikely(offset >= p->max))
2135 goto unlock_out;
2137 count = swap_count(p->swap_map[offset]);
2138 has_cache = swap_has_cache(p->swap_map[offset]);
2140 if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
2142 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2143 if (!has_cache && count) {
2144 p->swap_map[offset] = encode_swapmap(count, true);
2145 result = 0;
2146 } else if (has_cache) /* someone added cache */
2147 result = -EEXIST;
2148 else if (!count) /* no users */
2149 result = -ENOENT;
2151 } else if (count || has_cache) {
2152 if (count < SWAP_MAP_MAX - 1) {
2153 p->swap_map[offset] = encode_swapmap(count + 1,
2154 has_cache);
2155 result = 0;
2156 } else if (count <= SWAP_MAP_MAX) {
2157 if (swap_overflow++ < 5)
2158 printk(KERN_WARNING
2159 "swap_dup: swap entry overflow\n");
2160 p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
2161 has_cache);
2162 result = 0;
2164 } else
2165 result = -ENOENT; /* unused swap entry */
2166 unlock_out:
2167 spin_unlock(&swap_lock);
2168 out:
2169 return result;
2171 bad_file:
2172 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2173 goto out;
2176 * increase reference count of swap entry by 1.
2178 void swap_duplicate(swp_entry_t entry)
2180 __swap_duplicate(entry, SWAP_MAP);
2184 * @entry: swap entry for which we allocate swap cache.
2186 * Called when allocating swap cache for exising swap entry,
2187 * This can return error codes. Returns 0 at success.
2188 * -EBUSY means there is a swap cache.
2189 * Note: return code is different from swap_duplicate().
2191 int swapcache_prepare(swp_entry_t entry)
2193 return __swap_duplicate(entry, SWAP_CACHE);
2197 * swap_lock prevents swap_map being freed. Don't grab an extra
2198 * reference on the swaphandle, it doesn't matter if it becomes unused.
2200 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2202 struct swap_info_struct *si;
2203 int our_page_cluster = page_cluster;
2204 pgoff_t target, toff;
2205 pgoff_t base, end;
2206 int nr_pages = 0;
2208 if (!our_page_cluster) /* no readahead */
2209 return 0;
2211 si = swap_info[swp_type(entry)];
2212 target = swp_offset(entry);
2213 base = (target >> our_page_cluster) << our_page_cluster;
2214 end = base + (1 << our_page_cluster);
2215 if (!base) /* first page is swap header */
2216 base++;
2218 spin_lock(&swap_lock);
2219 if (end > si->max) /* don't go beyond end of map */
2220 end = si->max;
2222 /* Count contiguous allocated slots above our target */
2223 for (toff = target; ++toff < end; nr_pages++) {
2224 /* Don't read in free or bad pages */
2225 if (!si->swap_map[toff])
2226 break;
2227 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2228 break;
2230 /* Count contiguous allocated slots below our target */
2231 for (toff = target; --toff >= base; nr_pages++) {
2232 /* Don't read in free or bad pages */
2233 if (!si->swap_map[toff])
2234 break;
2235 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2236 break;
2238 spin_unlock(&swap_lock);
2241 * Indicate starting offset, and return number of pages to get:
2242 * if only 1, say 0, since there's then no readahead to be done.
2244 *offset = ++toff;
2245 return nr_pages? ++nr_pages: 0;