2 * drivers/spi/spi_imx.c
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
7 * Initial version inspired by:
8 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/device.h>
24 #include <linux/ioport.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/platform_device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/spi/spi.h>
30 #include <linux/workqueue.h>
31 #include <linux/delay.h>
35 #include <asm/hardware.h>
36 #include <asm/delay.h>
38 #include <asm/arch/hardware.h>
39 #include <asm/arch/imx-dma.h>
40 #include <asm/arch/spi_imx.h>
42 /*-------------------------------------------------------------------------*/
43 /* SPI Registers offsets from peripheral base address */
44 #define SPI_RXDATA (0x00)
45 #define SPI_TXDATA (0x04)
46 #define SPI_CONTROL (0x08)
47 #define SPI_INT_STATUS (0x0C)
48 #define SPI_TEST (0x10)
49 #define SPI_PERIOD (0x14)
50 #define SPI_DMA (0x18)
51 #define SPI_RESET (0x1C)
53 /* SPI Control Register Bit Fields & Masks */
54 #define SPI_CONTROL_BITCOUNT_MASK (0xF) /* Bit Count Mask */
55 #define SPI_CONTROL_BITCOUNT(n) (((n) - 1) & SPI_CONTROL_BITCOUNT_MASK)
56 #define SPI_CONTROL_POL (0x1 << 4) /* Clock Polarity Mask */
57 #define SPI_CONTROL_POL_ACT_HIGH (0x0 << 4) /* Active high pol. (0=idle) */
58 #define SPI_CONTROL_POL_ACT_LOW (0x1 << 4) /* Active low pol. (1=idle) */
59 #define SPI_CONTROL_PHA (0x1 << 5) /* Clock Phase Mask */
60 #define SPI_CONTROL_PHA_0 (0x0 << 5) /* Clock Phase 0 */
61 #define SPI_CONTROL_PHA_1 (0x1 << 5) /* Clock Phase 1 */
62 #define SPI_CONTROL_SSCTL (0x1 << 6) /* /SS Waveform Select Mask */
63 #define SPI_CONTROL_SSCTL_0 (0x0 << 6) /* Master: /SS stays low between SPI burst
64 Slave: RXFIFO advanced by BIT_COUNT */
65 #define SPI_CONTROL_SSCTL_1 (0x1 << 6) /* Master: /SS insert pulse between SPI burst
66 Slave: RXFIFO advanced by /SS rising edge */
67 #define SPI_CONTROL_SSPOL (0x1 << 7) /* /SS Polarity Select Mask */
68 #define SPI_CONTROL_SSPOL_ACT_LOW (0x0 << 7) /* /SS Active low */
69 #define SPI_CONTROL_SSPOL_ACT_HIGH (0x1 << 7) /* /SS Active high */
70 #define SPI_CONTROL_XCH (0x1 << 8) /* Exchange */
71 #define SPI_CONTROL_SPIEN (0x1 << 9) /* SPI Module Enable */
72 #define SPI_CONTROL_MODE (0x1 << 10) /* SPI Mode Select Mask */
73 #define SPI_CONTROL_MODE_SLAVE (0x0 << 10) /* SPI Mode Slave */
74 #define SPI_CONTROL_MODE_MASTER (0x1 << 10) /* SPI Mode Master */
75 #define SPI_CONTROL_DRCTL (0x3 << 11) /* /SPI_RDY Control Mask */
76 #define SPI_CONTROL_DRCTL_0 (0x0 << 11) /* Ignore /SPI_RDY */
77 #define SPI_CONTROL_DRCTL_1 (0x1 << 11) /* /SPI_RDY falling edge triggers input */
78 #define SPI_CONTROL_DRCTL_2 (0x2 << 11) /* /SPI_RDY active low level triggers input */
79 #define SPI_CONTROL_DATARATE (0x7 << 13) /* Data Rate Mask */
80 #define SPI_PERCLK2_DIV_MIN (0) /* PERCLK2:4 */
81 #define SPI_PERCLK2_DIV_MAX (7) /* PERCLK2:512 */
82 #define SPI_CONTROL_DATARATE_MIN (SPI_PERCLK2_DIV_MAX << 13)
83 #define SPI_CONTROL_DATARATE_MAX (SPI_PERCLK2_DIV_MIN << 13)
84 #define SPI_CONTROL_DATARATE_BAD (SPI_CONTROL_DATARATE_MIN + 1)
86 /* SPI Interrupt/Status Register Bit Fields & Masks */
87 #define SPI_STATUS_TE (0x1 << 0) /* TXFIFO Empty Status */
88 #define SPI_STATUS_TH (0x1 << 1) /* TXFIFO Half Status */
89 #define SPI_STATUS_TF (0x1 << 2) /* TXFIFO Full Status */
90 #define SPI_STATUS_RR (0x1 << 3) /* RXFIFO Data Ready Status */
91 #define SPI_STATUS_RH (0x1 << 4) /* RXFIFO Half Status */
92 #define SPI_STATUS_RF (0x1 << 5) /* RXFIFO Full Status */
93 #define SPI_STATUS_RO (0x1 << 6) /* RXFIFO Overflow */
94 #define SPI_STATUS_BO (0x1 << 7) /* Bit Count Overflow */
95 #define SPI_STATUS (0xFF) /* SPI Status Mask */
96 #define SPI_INTEN_TE (0x1 << 8) /* TXFIFO Empty Interrupt Enable */
97 #define SPI_INTEN_TH (0x1 << 9) /* TXFIFO Half Interrupt Enable */
98 #define SPI_INTEN_TF (0x1 << 10) /* TXFIFO Full Interrupt Enable */
99 #define SPI_INTEN_RE (0x1 << 11) /* RXFIFO Data Ready Interrupt Enable */
100 #define SPI_INTEN_RH (0x1 << 12) /* RXFIFO Half Interrupt Enable */
101 #define SPI_INTEN_RF (0x1 << 13) /* RXFIFO Full Interrupt Enable */
102 #define SPI_INTEN_RO (0x1 << 14) /* RXFIFO Overflow Interrupt Enable */
103 #define SPI_INTEN_BO (0x1 << 15) /* Bit Count Overflow Interrupt Enable */
104 #define SPI_INTEN (0xFF << 8) /* SPI Interrupt Enable Mask */
106 /* SPI Test Register Bit Fields & Masks */
107 #define SPI_TEST_TXCNT (0xF << 0) /* TXFIFO Counter */
108 #define SPI_TEST_RXCNT_LSB (4) /* RXFIFO Counter LSB */
109 #define SPI_TEST_RXCNT (0xF << 4) /* RXFIFO Counter */
110 #define SPI_TEST_SSTATUS (0xF << 8) /* State Machine Status */
111 #define SPI_TEST_LBC (0x1 << 14) /* Loop Back Control */
113 /* SPI Period Register Bit Fields & Masks */
114 #define SPI_PERIOD_WAIT (0x7FFF << 0) /* Wait Between Transactions */
115 #define SPI_PERIOD_MAX_WAIT (0x7FFF) /* Max Wait Between
117 #define SPI_PERIOD_CSRC (0x1 << 15) /* Period Clock Source Mask */
118 #define SPI_PERIOD_CSRC_BCLK (0x0 << 15) /* Period Clock Source is
120 #define SPI_PERIOD_CSRC_32768 (0x1 << 15) /* Period Clock Source is
123 /* SPI DMA Register Bit Fields & Masks */
124 #define SPI_DMA_RHDMA (0x1 << 4) /* RXFIFO Half Status */
125 #define SPI_DMA_RFDMA (0x1 << 5) /* RXFIFO Full Status */
126 #define SPI_DMA_TEDMA (0x1 << 6) /* TXFIFO Empty Status */
127 #define SPI_DMA_THDMA (0x1 << 7) /* TXFIFO Half Status */
128 #define SPI_DMA_RHDEN (0x1 << 12) /* RXFIFO Half DMA Request Enable */
129 #define SPI_DMA_RFDEN (0x1 << 13) /* RXFIFO Full DMA Request Enable */
130 #define SPI_DMA_TEDEN (0x1 << 14) /* TXFIFO Empty DMA Request Enable */
131 #define SPI_DMA_THDEN (0x1 << 15) /* TXFIFO Half DMA Request Enable */
133 /* SPI Soft Reset Register Bit Fields & Masks */
134 #define SPI_RESET_START (0x1) /* Start */
136 /* Default SPI configuration values */
137 #define SPI_DEFAULT_CONTROL \
139 SPI_CONTROL_BITCOUNT(16) | \
140 SPI_CONTROL_POL_ACT_HIGH | \
141 SPI_CONTROL_PHA_0 | \
142 SPI_CONTROL_SPIEN | \
143 SPI_CONTROL_SSCTL_1 | \
144 SPI_CONTROL_MODE_MASTER | \
145 SPI_CONTROL_DRCTL_0 | \
146 SPI_CONTROL_DATARATE_MIN \
148 #define SPI_DEFAULT_ENABLE_LOOPBACK (0)
149 #define SPI_DEFAULT_ENABLE_DMA (0)
150 #define SPI_DEFAULT_PERIOD_WAIT (8)
151 /*-------------------------------------------------------------------------*/
154 /*-------------------------------------------------------------------------*/
155 /* TX/RX SPI FIFO size */
156 #define SPI_FIFO_DEPTH (8)
157 #define SPI_FIFO_BYTE_WIDTH (2)
158 #define SPI_FIFO_OVERFLOW_MARGIN (2)
160 /* DMA burst length for half full/empty request trigger */
161 #define SPI_DMA_BLR (SPI_FIFO_DEPTH * SPI_FIFO_BYTE_WIDTH / 2)
163 /* Dummy char output to achieve reads.
164 Choosing something different from all zeroes may help pattern recogition
165 for oscilloscope analysis, but may break some drivers. */
166 #define SPI_DUMMY_u8 0
167 #define SPI_DUMMY_u16 ((SPI_DUMMY_u8 << 8) | SPI_DUMMY_u8)
168 #define SPI_DUMMY_u32 ((SPI_DUMMY_u16 << 16) | SPI_DUMMY_u16)
171 * Macro to change a u32 field:
172 * @r : register to edit
174 * @v : new value for the field correctly bit-alligned
176 #define u32_EDIT(r, m, v) r = (r & ~(m)) | (v)
179 #define START_STATE ((void*)0)
180 #define RUNNING_STATE ((void*)1)
181 #define DONE_STATE ((void*)2)
182 #define ERROR_STATE ((void*)-1)
185 #define QUEUE_RUNNING (0)
186 #define QUEUE_STOPPED (1)
188 #define IS_DMA_ALIGNED(x) (((u32)(x) & 0x03) == 0)
189 /*-------------------------------------------------------------------------*/
192 /*-------------------------------------------------------------------------*/
193 /* Driver data structs */
197 /* Driver model hookup */
198 struct platform_device
*pdev
;
200 /* SPI framework hookup */
201 struct spi_master
*master
;
204 struct spi_imx_master
*master_info
;
206 /* Memory resources and SPI regs virtual address */
207 struct resource
*ioarea
;
210 /* SPI RX_DATA physical address */
211 dma_addr_t rd_data_phys
;
213 /* Driver message queue */
214 struct workqueue_struct
*workqueue
;
215 struct work_struct work
;
217 struct list_head queue
;
221 /* Message Transfer pump */
222 struct tasklet_struct pump_transfers
;
224 /* Current message, transfer and state */
225 struct spi_message
*cur_msg
;
226 struct spi_transfer
*cur_transfer
;
227 struct chip_data
*cur_chip
;
229 /* Rd / Wr buffers pointers */
240 /* Function pointers */
241 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
242 void (*cs_control
)(u32 command
);
249 int rx_dma_needs_unmap
;
250 int tx_dma_needs_unmap
;
252 u32 dummy_dma_buf ____cacheline_aligned
;
266 void (*cs_control
)(u32 command
);
268 /*-------------------------------------------------------------------------*/
271 static void pump_messages(struct work_struct
*work
);
273 static void flush(struct driver_data
*drv_data
)
275 void __iomem
*regs
= drv_data
->regs
;
278 dev_dbg(&drv_data
->pdev
->dev
, "flush\n");
280 /* Wait for end of transaction */
282 control
= readl(regs
+ SPI_CONTROL
);
283 } while (control
& SPI_CONTROL_XCH
);
285 /* Release chip select if requested, transfer delays are
286 handled in pump_transfers */
287 if (drv_data
->cs_change
)
288 drv_data
->cs_control(SPI_CS_DEASSERT
);
290 /* Disable SPI to flush FIFOs */
291 writel(control
& ~SPI_CONTROL_SPIEN
, regs
+ SPI_CONTROL
);
292 writel(control
, regs
+ SPI_CONTROL
);
295 static void restore_state(struct driver_data
*drv_data
)
297 void __iomem
*regs
= drv_data
->regs
;
298 struct chip_data
*chip
= drv_data
->cur_chip
;
300 /* Load chip registers */
301 dev_dbg(&drv_data
->pdev
->dev
,
304 " control = 0x%08X\n",
307 writel(chip
->test
, regs
+ SPI_TEST
);
308 writel(chip
->period
, regs
+ SPI_PERIOD
);
309 writel(0, regs
+ SPI_INT_STATUS
);
310 writel(chip
->control
, regs
+ SPI_CONTROL
);
313 static void null_cs_control(u32 command
)
317 static inline u32
data_to_write(struct driver_data
*drv_data
)
319 return ((u32
)(drv_data
->tx_end
- drv_data
->tx
)) / drv_data
->n_bytes
;
322 static inline u32
data_to_read(struct driver_data
*drv_data
)
324 return ((u32
)(drv_data
->rx_end
- drv_data
->rx
)) / drv_data
->n_bytes
;
327 static int write(struct driver_data
*drv_data
)
329 void __iomem
*regs
= drv_data
->regs
;
330 void *tx
= drv_data
->tx
;
331 void *tx_end
= drv_data
->tx_end
;
332 u8 n_bytes
= drv_data
->n_bytes
;
333 u32 remaining_writes
;
334 u32 fifo_avail_space
;
338 /* Compute how many fifo writes to do */
339 remaining_writes
= (u32
)(tx_end
- tx
) / n_bytes
;
340 fifo_avail_space
= SPI_FIFO_DEPTH
-
341 (readl(regs
+ SPI_TEST
) & SPI_TEST_TXCNT
);
342 if (drv_data
->rx
&& (fifo_avail_space
> SPI_FIFO_OVERFLOW_MARGIN
))
343 /* Fix misunderstood receive overflow */
344 fifo_avail_space
-= SPI_FIFO_OVERFLOW_MARGIN
;
345 n
= min(remaining_writes
, fifo_avail_space
);
347 dev_dbg(&drv_data
->pdev
->dev
,
349 " remaining writes = %d\n"
350 " fifo avail space = %d\n"
351 " fifo writes = %d\n",
352 (n_bytes
== 1) ? "u8" : "u16",
358 /* Fill SPI TXFIFO */
359 if (drv_data
->rd_only
) {
362 writel(SPI_DUMMY_u16
, regs
+ SPI_TXDATA
);
367 writel(d
, regs
+ SPI_TXDATA
);
373 writel(d
, regs
+ SPI_TXDATA
);
379 /* Trigger transfer */
380 writel(readl(regs
+ SPI_CONTROL
) | SPI_CONTROL_XCH
,
383 /* Update tx pointer */
387 return (tx
>= tx_end
);
390 static int read(struct driver_data
*drv_data
)
392 void __iomem
*regs
= drv_data
->regs
;
393 void *rx
= drv_data
->rx
;
394 void *rx_end
= drv_data
->rx_end
;
395 u8 n_bytes
= drv_data
->n_bytes
;
401 /* Compute how many fifo reads to do */
402 remaining_reads
= (u32
)(rx_end
- rx
) / n_bytes
;
403 fifo_rxcnt
= (readl(regs
+ SPI_TEST
) & SPI_TEST_RXCNT
) >>
405 n
= min(remaining_reads
, fifo_rxcnt
);
407 dev_dbg(&drv_data
->pdev
->dev
,
409 " remaining reads = %d\n"
410 " fifo rx count = %d\n"
411 " fifo reads = %d\n",
412 (n_bytes
== 1) ? "u8" : "u16",
418 /* Read SPI RXFIFO */
421 d
= readl(regs
+ SPI_RXDATA
);
427 d
= readl(regs
+ SPI_RXDATA
);
433 /* Update rx pointer */
437 return (rx
>= rx_end
);
440 static void *next_transfer(struct driver_data
*drv_data
)
442 struct spi_message
*msg
= drv_data
->cur_msg
;
443 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
445 /* Move to next transfer */
446 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
447 drv_data
->cur_transfer
=
448 list_entry(trans
->transfer_list
.next
,
451 return RUNNING_STATE
;
457 static int map_dma_buffers(struct driver_data
*drv_data
)
459 struct spi_message
*msg
;
463 drv_data
->rx_dma_needs_unmap
= 0;
464 drv_data
->tx_dma_needs_unmap
= 0;
466 if (!drv_data
->master_info
->enable_dma
||
467 !drv_data
->cur_chip
->enable_dma
)
470 msg
= drv_data
->cur_msg
;
471 dev
= &msg
->spi
->dev
;
472 if (msg
->is_dma_mapped
) {
473 if (drv_data
->tx_dma
)
474 /* The caller provided at least dma and cpu virtual
475 address for write; pump_transfers() will consider the
476 transfer as write only if cpu rx virtual address is
480 if (drv_data
->rx_dma
) {
481 /* The caller provided dma and cpu virtual address to
482 performe read only transfer -->
483 use drv_data->dummy_dma_buf for dummy writes to
485 buf
= &drv_data
->dummy_dma_buf
;
486 drv_data
->tx_map_len
= sizeof(drv_data
->dummy_dma_buf
);
487 drv_data
->tx_dma
= dma_map_single(dev
,
489 drv_data
->tx_map_len
,
491 if (dma_mapping_error(drv_data
->tx_dma
))
494 drv_data
->tx_dma_needs_unmap
= 1;
496 /* Flags transfer as rd_only for pump_transfers() DMA
497 regs programming (should be redundant) */
504 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
507 /* NULL rx means write-only transfer and no map needed
508 since rx DMA will not be used */
511 drv_data
->rx_dma
= dma_map_single(
516 if (dma_mapping_error(drv_data
->rx_dma
))
518 drv_data
->rx_dma_needs_unmap
= 1;
521 if (drv_data
->tx
== NULL
) {
522 /* Read only message --> use drv_data->dummy_dma_buf for dummy
523 writes to achive reads */
524 buf
= &drv_data
->dummy_dma_buf
;
525 drv_data
->tx_map_len
= sizeof(drv_data
->dummy_dma_buf
);
528 drv_data
->tx_map_len
= drv_data
->len
;
530 drv_data
->tx_dma
= dma_map_single(dev
,
532 drv_data
->tx_map_len
,
534 if (dma_mapping_error(drv_data
->tx_dma
)) {
535 if (drv_data
->rx_dma
) {
536 dma_unmap_single(dev
,
540 drv_data
->rx_dma_needs_unmap
= 0;
544 drv_data
->tx_dma_needs_unmap
= 1;
549 static void unmap_dma_buffers(struct driver_data
*drv_data
)
551 struct spi_message
*msg
= drv_data
->cur_msg
;
552 struct device
*dev
= &msg
->spi
->dev
;
554 if (drv_data
->rx_dma_needs_unmap
) {
555 dma_unmap_single(dev
,
559 drv_data
->rx_dma_needs_unmap
= 0;
561 if (drv_data
->tx_dma_needs_unmap
) {
562 dma_unmap_single(dev
,
564 drv_data
->tx_map_len
,
566 drv_data
->tx_dma_needs_unmap
= 0;
570 /* Caller already set message->status (dma is already blocked) */
571 static void giveback(struct spi_message
*message
, struct driver_data
*drv_data
)
573 void __iomem
*regs
= drv_data
->regs
;
575 /* Bring SPI to sleep; restore_state() and pump_transfer()
577 writel(0, regs
+ SPI_INT_STATUS
);
578 writel(0, regs
+ SPI_DMA
);
580 /* Unconditioned deselct */
581 drv_data
->cs_control(SPI_CS_DEASSERT
);
583 message
->state
= NULL
;
584 if (message
->complete
)
585 message
->complete(message
->context
);
587 drv_data
->cur_msg
= NULL
;
588 drv_data
->cur_transfer
= NULL
;
589 drv_data
->cur_chip
= NULL
;
590 queue_work(drv_data
->workqueue
, &drv_data
->work
);
593 static void dma_err_handler(int channel
, void *data
, int errcode
)
595 struct driver_data
*drv_data
= data
;
596 struct spi_message
*msg
= drv_data
->cur_msg
;
598 dev_dbg(&drv_data
->pdev
->dev
, "dma_err_handler\n");
600 /* Disable both rx and tx dma channels */
601 imx_dma_disable(drv_data
->rx_channel
);
602 imx_dma_disable(drv_data
->tx_channel
);
603 unmap_dma_buffers(drv_data
);
607 msg
->state
= ERROR_STATE
;
608 tasklet_schedule(&drv_data
->pump_transfers
);
611 static void dma_tx_handler(int channel
, void *data
)
613 struct driver_data
*drv_data
= data
;
615 dev_dbg(&drv_data
->pdev
->dev
, "dma_tx_handler\n");
617 imx_dma_disable(channel
);
619 /* Now waits for TX FIFO empty */
620 writel(SPI_INTEN_TE
, drv_data
->regs
+ SPI_INT_STATUS
);
623 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
626 struct spi_message
*msg
= drv_data
->cur_msg
;
627 void __iomem
*regs
= drv_data
->regs
;
629 status
= readl(regs
+ SPI_INT_STATUS
);
631 if ((status
& (SPI_INTEN_RO
| SPI_STATUS_RO
))
632 == (SPI_INTEN_RO
| SPI_STATUS_RO
)) {
633 writel(status
& ~SPI_INTEN
, regs
+ SPI_INT_STATUS
);
635 imx_dma_disable(drv_data
->tx_channel
);
636 imx_dma_disable(drv_data
->rx_channel
);
637 unmap_dma_buffers(drv_data
);
641 dev_warn(&drv_data
->pdev
->dev
,
642 "dma_transfer - fifo overun\n");
644 msg
->state
= ERROR_STATE
;
645 tasklet_schedule(&drv_data
->pump_transfers
);
650 if (status
& SPI_STATUS_TE
) {
651 writel(status
& ~SPI_INTEN_TE
, regs
+ SPI_INT_STATUS
);
654 /* Wait end of transfer before read trailing data */
655 while (readl(regs
+ SPI_CONTROL
) & SPI_CONTROL_XCH
)
658 imx_dma_disable(drv_data
->rx_channel
);
659 unmap_dma_buffers(drv_data
);
661 /* Release chip select if requested, transfer delays are
662 handled in pump_transfers() */
663 if (drv_data
->cs_change
)
664 drv_data
->cs_control(SPI_CS_DEASSERT
);
666 /* Calculate number of trailing data and read them */
667 dev_dbg(&drv_data
->pdev
->dev
,
668 "dma_transfer - test = 0x%08X\n",
669 readl(regs
+ SPI_TEST
));
670 drv_data
->rx
= drv_data
->rx_end
-
671 ((readl(regs
+ SPI_TEST
) &
673 SPI_TEST_RXCNT_LSB
)*drv_data
->n_bytes
;
676 /* Write only transfer */
677 unmap_dma_buffers(drv_data
);
682 /* End of transfer, update total byte transfered */
683 msg
->actual_length
+= drv_data
->len
;
685 /* Move to next transfer */
686 msg
->state
= next_transfer(drv_data
);
688 /* Schedule transfer tasklet */
689 tasklet_schedule(&drv_data
->pump_transfers
);
694 /* Opps problem detected */
698 static irqreturn_t
interrupt_wronly_transfer(struct driver_data
*drv_data
)
700 struct spi_message
*msg
= drv_data
->cur_msg
;
701 void __iomem
*regs
= drv_data
->regs
;
703 irqreturn_t handled
= IRQ_NONE
;
705 status
= readl(regs
+ SPI_INT_STATUS
);
707 if (status
& SPI_INTEN_TE
) {
708 /* TXFIFO Empty Interrupt on the last transfered word */
709 writel(status
& ~SPI_INTEN
, regs
+ SPI_INT_STATUS
);
710 dev_dbg(&drv_data
->pdev
->dev
,
711 "interrupt_wronly_transfer - end of tx\n");
715 /* Update total byte transfered */
716 msg
->actual_length
+= drv_data
->len
;
718 /* Move to next transfer */
719 msg
->state
= next_transfer(drv_data
);
721 /* Schedule transfer tasklet */
722 tasklet_schedule(&drv_data
->pump_transfers
);
726 while (status
& SPI_STATUS_TH
) {
727 dev_dbg(&drv_data
->pdev
->dev
,
728 "interrupt_wronly_transfer - status = 0x%08X\n",
732 if (write(drv_data
)) {
733 /* End of TXFIFO writes,
734 now wait until TXFIFO is empty */
735 writel(SPI_INTEN_TE
, regs
+ SPI_INT_STATUS
);
739 status
= readl(regs
+ SPI_INT_STATUS
);
741 /* We did something */
742 handled
= IRQ_HANDLED
;
749 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
751 struct spi_message
*msg
= drv_data
->cur_msg
;
752 void __iomem
*regs
= drv_data
->regs
;
754 irqreturn_t handled
= IRQ_NONE
;
757 status
= readl(regs
+ SPI_INT_STATUS
);
759 if (status
& SPI_INTEN_TE
) {
760 /* TXFIFO Empty Interrupt on the last transfered word */
761 writel(status
& ~SPI_INTEN
, regs
+ SPI_INT_STATUS
);
762 dev_dbg(&drv_data
->pdev
->dev
,
763 "interrupt_transfer - end of tx\n");
765 if (msg
->state
== ERROR_STATE
) {
766 /* RXFIFO overrun was detected and message aborted */
769 /* Wait for end of transaction */
771 control
= readl(regs
+ SPI_CONTROL
);
772 } while (control
& SPI_CONTROL_XCH
);
774 /* Release chip select if requested, transfer delays are
775 handled in pump_transfers */
776 if (drv_data
->cs_change
)
777 drv_data
->cs_control(SPI_CS_DEASSERT
);
779 /* Read trailing bytes */
780 limit
= loops_per_jiffy
<< 1;
781 while ((read(drv_data
) == 0) && limit
--);
784 dev_err(&drv_data
->pdev
->dev
,
785 "interrupt_transfer - "
786 "trailing byte read failed\n");
788 dev_dbg(&drv_data
->pdev
->dev
,
789 "interrupt_transfer - end of rx\n");
791 /* Update total byte transfered */
792 msg
->actual_length
+= drv_data
->len
;
794 /* Move to next transfer */
795 msg
->state
= next_transfer(drv_data
);
798 /* Schedule transfer tasklet */
799 tasklet_schedule(&drv_data
->pump_transfers
);
803 while (status
& (SPI_STATUS_TH
| SPI_STATUS_RO
)) {
804 dev_dbg(&drv_data
->pdev
->dev
,
805 "interrupt_transfer - status = 0x%08X\n",
808 if (status
& SPI_STATUS_RO
) {
809 /* RXFIFO overrun, abort message end wait
810 until TXFIFO is empty */
811 writel(SPI_INTEN_TE
, regs
+ SPI_INT_STATUS
);
813 dev_warn(&drv_data
->pdev
->dev
,
814 "interrupt_transfer - fifo overun\n"
815 " data not yet written = %d\n"
816 " data not yet read = %d\n",
817 data_to_write(drv_data
),
818 data_to_read(drv_data
));
820 msg
->state
= ERROR_STATE
;
827 if (write(drv_data
)) {
828 /* End of TXFIFO writes,
829 now wait until TXFIFO is empty */
830 writel(SPI_INTEN_TE
, regs
+ SPI_INT_STATUS
);
834 status
= readl(regs
+ SPI_INT_STATUS
);
836 /* We did something */
837 handled
= IRQ_HANDLED
;
844 static irqreturn_t
spi_int(int irq
, void *dev_id
)
846 struct driver_data
*drv_data
= (struct driver_data
*)dev_id
;
848 if (!drv_data
->cur_msg
) {
849 dev_err(&drv_data
->pdev
->dev
,
850 "spi_int - bad message state\n");
855 return drv_data
->transfer_handler(drv_data
);
858 static inline u32
spi_speed_hz(u32 data_rate
)
860 return imx_get_perclk2() / (4 << ((data_rate
) >> 13));
863 static u32
spi_data_rate(u32 speed_hz
)
866 u32 quantized_hz
= imx_get_perclk2() >> 2;
868 for (div
= SPI_PERCLK2_DIV_MIN
;
869 div
<= SPI_PERCLK2_DIV_MAX
;
870 div
++, quantized_hz
>>= 1) {
871 if (quantized_hz
<= speed_hz
)
872 /* Max available speed LEQ required speed */
875 return SPI_CONTROL_DATARATE_BAD
;
878 static void pump_transfers(unsigned long data
)
880 struct driver_data
*drv_data
= (struct driver_data
*)data
;
881 struct spi_message
*message
;
882 struct spi_transfer
*transfer
, *previous
;
883 struct chip_data
*chip
;
887 dev_dbg(&drv_data
->pdev
->dev
, "pump_transfer\n");
889 message
= drv_data
->cur_msg
;
891 /* Handle for abort */
892 if (message
->state
== ERROR_STATE
) {
893 message
->status
= -EIO
;
894 giveback(message
, drv_data
);
898 /* Handle end of message */
899 if (message
->state
== DONE_STATE
) {
901 giveback(message
, drv_data
);
905 chip
= drv_data
->cur_chip
;
907 /* Delay if requested at end of transfer*/
908 transfer
= drv_data
->cur_transfer
;
909 if (message
->state
== RUNNING_STATE
) {
910 previous
= list_entry(transfer
->transfer_list
.prev
,
913 if (previous
->delay_usecs
)
914 udelay(previous
->delay_usecs
);
917 message
->state
= RUNNING_STATE
;
918 drv_data
->cs_control
= chip
->cs_control
;
921 transfer
= drv_data
->cur_transfer
;
922 drv_data
->tx
= (void *)transfer
->tx_buf
;
923 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
924 drv_data
->rx
= transfer
->rx_buf
;
925 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
926 drv_data
->rx_dma
= transfer
->rx_dma
;
927 drv_data
->tx_dma
= transfer
->tx_dma
;
928 drv_data
->len
= transfer
->len
;
929 drv_data
->cs_change
= transfer
->cs_change
;
930 drv_data
->rd_only
= (drv_data
->tx
== NULL
);
932 regs
= drv_data
->regs
;
933 control
= readl(regs
+ SPI_CONTROL
);
935 /* Bits per word setup */
936 tmp
= transfer
->bits_per_word
;
938 /* Use device setup */
939 tmp
= chip
->bits_per_word
;
940 drv_data
->n_bytes
= chip
->n_bytes
;
942 /* Use per-transfer setup */
943 drv_data
->n_bytes
= (tmp
<= 8) ? 1 : 2;
944 u32_EDIT(control
, SPI_CONTROL_BITCOUNT_MASK
, tmp
- 1);
946 /* Speed setup (surely valid because already checked) */
947 tmp
= transfer
->speed_hz
;
949 tmp
= chip
->max_speed_hz
;
950 tmp
= spi_data_rate(tmp
);
951 u32_EDIT(control
, SPI_CONTROL_DATARATE
, tmp
);
953 writel(control
, regs
+ SPI_CONTROL
);
955 /* Assert device chip-select */
956 drv_data
->cs_control(SPI_CS_ASSERT
);
958 /* DMA cannot read/write SPI FIFOs other than 16 bits at a time; hence
959 if bits_per_word is less or equal 8 PIO transfers are performed.
960 Moreover DMA is convinient for transfer length bigger than FIFOs
962 if ((drv_data
->n_bytes
== 2) &&
963 (drv_data
->len
> SPI_FIFO_DEPTH
*SPI_FIFO_BYTE_WIDTH
) &&
964 (map_dma_buffers(drv_data
) == 0)) {
965 dev_dbg(&drv_data
->pdev
->dev
,
966 "pump dma transfer\n"
973 (unsigned int)drv_data
->tx_dma
,
975 (unsigned int)drv_data
->rx_dma
,
978 /* Ensure we have the correct interrupt handler */
979 drv_data
->transfer_handler
= dma_transfer
;
981 /* Trigger transfer */
982 writel(readl(regs
+ SPI_CONTROL
) | SPI_CONTROL_XCH
,
987 /* Linear source address */
988 CCR(drv_data
->tx_channel
) =
991 CCR_SSIZ_32
| CCR_DSIZ_16
|
994 /* Read only transfer -> fixed source address for
995 dummy write to achive read */
996 CCR(drv_data
->tx_channel
) =
999 CCR_SSIZ_32
| CCR_DSIZ_16
|
1002 imx_dma_setup_single(
1003 drv_data
->tx_channel
,
1006 drv_data
->rd_data_phys
+ 4,
1010 /* Setup rx DMA for linear destination address */
1011 CCR(drv_data
->rx_channel
) =
1014 CCR_DSIZ_32
| CCR_SSIZ_16
|
1016 imx_dma_setup_single(
1017 drv_data
->rx_channel
,
1020 drv_data
->rd_data_phys
,
1022 imx_dma_enable(drv_data
->rx_channel
);
1024 /* Enable SPI interrupt */
1025 writel(SPI_INTEN_RO
, regs
+ SPI_INT_STATUS
);
1027 /* Set SPI to request DMA service on both
1028 Rx and Tx half fifo watermark */
1029 writel(SPI_DMA_RHDEN
| SPI_DMA_THDEN
, regs
+ SPI_DMA
);
1031 /* Write only access -> set SPI to request DMA
1032 service on Tx half fifo watermark */
1033 writel(SPI_DMA_THDEN
, regs
+ SPI_DMA
);
1035 imx_dma_enable(drv_data
->tx_channel
);
1037 dev_dbg(&drv_data
->pdev
->dev
,
1038 "pump pio transfer\n"
1046 /* Ensure we have the correct interrupt handler */
1048 drv_data
->transfer_handler
= interrupt_transfer
;
1050 drv_data
->transfer_handler
= interrupt_wronly_transfer
;
1052 /* Enable SPI interrupt */
1054 writel(SPI_INTEN_TH
| SPI_INTEN_RO
,
1055 regs
+ SPI_INT_STATUS
);
1057 writel(SPI_INTEN_TH
, regs
+ SPI_INT_STATUS
);
1061 static void pump_messages(struct work_struct
*work
)
1063 struct driver_data
*drv_data
=
1064 container_of(work
, struct driver_data
, work
);
1065 unsigned long flags
;
1067 /* Lock queue and check for queue work */
1068 spin_lock_irqsave(&drv_data
->lock
, flags
);
1069 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1071 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1075 /* Make sure we are not already running a message */
1076 if (drv_data
->cur_msg
) {
1077 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1081 /* Extract head of queue */
1082 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1083 struct spi_message
, queue
);
1084 list_del_init(&drv_data
->cur_msg
->queue
);
1086 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1088 /* Initial message state */
1089 drv_data
->cur_msg
->state
= START_STATE
;
1090 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1091 struct spi_transfer
,
1094 /* Setup the SPI using the per chip configuration */
1095 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1096 restore_state(drv_data
);
1098 /* Mark as busy and launch transfers */
1099 tasklet_schedule(&drv_data
->pump_transfers
);
1102 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1104 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1105 u32 min_speed_hz
, max_speed_hz
, tmp
;
1106 struct spi_transfer
*trans
;
1107 unsigned long flags
;
1109 msg
->actual_length
= 0;
1111 /* Per transfer setup check */
1112 min_speed_hz
= spi_speed_hz(SPI_CONTROL_DATARATE_MIN
);
1113 max_speed_hz
= spi
->max_speed_hz
;
1114 list_for_each_entry(trans
, &msg
->transfers
, transfer_list
) {
1115 tmp
= trans
->bits_per_word
;
1117 dev_err(&drv_data
->pdev
->dev
,
1118 "message rejected : "
1119 "invalid transfer bits_per_word (%d bits)\n",
1123 tmp
= trans
->speed_hz
;
1125 if (tmp
< min_speed_hz
) {
1126 dev_err(&drv_data
->pdev
->dev
,
1127 "message rejected : "
1128 "device min speed (%d Hz) exceeds "
1129 "required transfer speed (%d Hz)\n",
1133 } else if (tmp
> max_speed_hz
) {
1134 dev_err(&drv_data
->pdev
->dev
,
1135 "message rejected : "
1136 "transfer speed (%d Hz) exceeds "
1137 "device max speed (%d Hz)\n",
1145 /* Message accepted */
1146 msg
->status
= -EINPROGRESS
;
1147 msg
->state
= START_STATE
;
1149 spin_lock_irqsave(&drv_data
->lock
, flags
);
1150 if (drv_data
->run
== QUEUE_STOPPED
) {
1151 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1155 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1156 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1157 queue_work(drv_data
->workqueue
, &drv_data
->work
);
1159 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1163 /* Message rejected and not queued */
1164 msg
->status
= -EINVAL
;
1165 msg
->state
= ERROR_STATE
;
1167 msg
->complete(msg
->context
);
1171 /* the spi->mode bits understood by this driver: */
1172 #define MODEBITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH)
1174 /* On first setup bad values must free chip_data memory since will cause
1175 spi_new_device to fail. Bad value setup from protocol driver are simply not
1176 applied and notified to the calling driver. */
1177 static int setup(struct spi_device
*spi
)
1179 struct spi_imx_chip
*chip_info
;
1180 struct chip_data
*chip
;
1181 int first_setup
= 0;
1185 if (spi
->mode
& ~MODEBITS
) {
1186 dev_dbg(&spi
->dev
, "setup: unsupported mode bits %x\n",
1187 spi
->mode
& ~MODEBITS
);
1191 /* Get controller data */
1192 chip_info
= spi
->controller_data
;
1194 /* Get controller_state */
1195 chip
= spi_get_ctldata(spi
);
1199 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1202 "setup - cannot allocate controller state\n");
1205 chip
->control
= SPI_DEFAULT_CONTROL
;
1207 if (chip_info
== NULL
) {
1208 /* spi_board_info.controller_data not is supplied */
1209 chip_info
= kzalloc(sizeof(struct spi_imx_chip
),
1214 "cannot allocate controller data\n");
1216 goto err_first_setup
;
1218 /* Set controller data default value */
1219 chip_info
->enable_loopback
=
1220 SPI_DEFAULT_ENABLE_LOOPBACK
;
1221 chip_info
->enable_dma
= SPI_DEFAULT_ENABLE_DMA
;
1222 chip_info
->ins_ss_pulse
= 1;
1223 chip_info
->bclk_wait
= SPI_DEFAULT_PERIOD_WAIT
;
1224 chip_info
->cs_control
= null_cs_control
;
1228 /* Now set controller state based on controller data */
1232 if (chip_info
->enable_loopback
)
1233 chip
->test
= SPI_TEST_LBC
;
1237 /* SPI dma driven */
1238 chip
->enable_dma
= chip_info
->enable_dma
;
1240 /* SPI /SS pulse between spi burst */
1241 if (chip_info
->ins_ss_pulse
)
1242 u32_EDIT(chip
->control
,
1243 SPI_CONTROL_SSCTL
, SPI_CONTROL_SSCTL_1
);
1245 u32_EDIT(chip
->control
,
1246 SPI_CONTROL_SSCTL
, SPI_CONTROL_SSCTL_0
);
1248 /* SPI bclk waits between each bits_per_word spi burst */
1249 if (chip_info
->bclk_wait
> SPI_PERIOD_MAX_WAIT
) {
1252 "bclk_wait exceeds max allowed (%d)\n",
1253 SPI_PERIOD_MAX_WAIT
);
1254 goto err_first_setup
;
1256 chip
->period
= SPI_PERIOD_CSRC_BCLK
|
1257 (chip_info
->bclk_wait
& SPI_PERIOD_WAIT
);
1262 if (tmp
& SPI_CS_HIGH
) {
1263 u32_EDIT(chip
->control
,
1264 SPI_CONTROL_SSPOL
, SPI_CONTROL_SSPOL_ACT_HIGH
);
1266 switch (tmp
& SPI_MODE_3
) {
1271 tmp
= SPI_CONTROL_PHA_1
;
1274 tmp
= SPI_CONTROL_POL_ACT_LOW
;
1278 tmp
= SPI_CONTROL_PHA_1
| SPI_CONTROL_POL_ACT_LOW
;
1281 u32_EDIT(chip
->control
, SPI_CONTROL_POL
| SPI_CONTROL_PHA
, tmp
);
1283 /* SPI word width */
1284 tmp
= spi
->bits_per_word
;
1287 spi
->bits_per_word
= 8;
1288 } else if (tmp
> 16) {
1292 "invalid bits_per_word (%d)\n",
1295 goto err_first_setup
;
1297 /* Undo setup using chip as backup copy */
1298 tmp
= chip
->bits_per_word
;
1299 spi
->bits_per_word
= tmp
;
1302 chip
->bits_per_word
= tmp
;
1303 u32_EDIT(chip
->control
, SPI_CONTROL_BITCOUNT_MASK
, tmp
- 1);
1304 chip
->n_bytes
= (tmp
<= 8) ? 1 : 2;
1307 tmp
= spi_data_rate(spi
->max_speed_hz
);
1308 if (tmp
== SPI_CONTROL_DATARATE_BAD
) {
1312 "HW min speed (%d Hz) exceeds required "
1313 "max speed (%d Hz)\n",
1314 spi_speed_hz(SPI_CONTROL_DATARATE_MIN
),
1317 goto err_first_setup
;
1319 /* Undo setup using chip as backup copy */
1320 spi
->max_speed_hz
= chip
->max_speed_hz
;
1322 u32_EDIT(chip
->control
, SPI_CONTROL_DATARATE
, tmp
);
1323 /* Actual rounded max_speed_hz */
1324 tmp
= spi_speed_hz(tmp
);
1325 spi
->max_speed_hz
= tmp
;
1326 chip
->max_speed_hz
= tmp
;
1329 /* SPI chip-select management */
1330 if (chip_info
->cs_control
)
1331 chip
->cs_control
= chip_info
->cs_control
;
1333 chip
->cs_control
= null_cs_control
;
1335 /* Save controller_state */
1336 spi_set_ctldata(spi
, chip
);
1341 " loopback enable = %s\n"
1342 " dma enable = %s\n"
1343 " insert /ss pulse = %s\n"
1344 " period wait = %d\n"
1346 " bits per word = %d\n"
1347 " min speed = %d Hz\n"
1348 " rounded max speed = %d Hz\n",
1349 chip
->test
& SPI_TEST_LBC
? "Yes" : "No",
1350 chip
->enable_dma
? "Yes" : "No",
1351 chip
->control
& SPI_CONTROL_SSCTL
? "Yes" : "No",
1352 chip
->period
& SPI_PERIOD_WAIT
,
1355 spi_speed_hz(SPI_CONTROL_DATARATE_MIN
),
1364 static void cleanup(struct spi_device
*spi
)
1366 kfree(spi_get_ctldata(spi
));
1369 static int __init
init_queue(struct driver_data
*drv_data
)
1371 INIT_LIST_HEAD(&drv_data
->queue
);
1372 spin_lock_init(&drv_data
->lock
);
1374 drv_data
->run
= QUEUE_STOPPED
;
1377 tasklet_init(&drv_data
->pump_transfers
,
1378 pump_transfers
, (unsigned long)drv_data
);
1380 INIT_WORK(&drv_data
->work
, pump_messages
);
1381 drv_data
->workqueue
= create_singlethread_workqueue(
1382 drv_data
->master
->dev
.parent
->bus_id
);
1383 if (drv_data
->workqueue
== NULL
)
1389 static int start_queue(struct driver_data
*drv_data
)
1391 unsigned long flags
;
1393 spin_lock_irqsave(&drv_data
->lock
, flags
);
1395 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1396 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1400 drv_data
->run
= QUEUE_RUNNING
;
1401 drv_data
->cur_msg
= NULL
;
1402 drv_data
->cur_transfer
= NULL
;
1403 drv_data
->cur_chip
= NULL
;
1404 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1406 queue_work(drv_data
->workqueue
, &drv_data
->work
);
1411 static int stop_queue(struct driver_data
*drv_data
)
1413 unsigned long flags
;
1414 unsigned limit
= 500;
1417 spin_lock_irqsave(&drv_data
->lock
, flags
);
1419 /* This is a bit lame, but is optimized for the common execution path.
1420 * A wait_queue on the drv_data->busy could be used, but then the common
1421 * execution path (pump_messages) would be required to call wake_up or
1422 * friends on every SPI message. Do this instead */
1423 drv_data
->run
= QUEUE_STOPPED
;
1424 while (!list_empty(&drv_data
->queue
) && drv_data
->busy
&& limit
--) {
1425 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1427 spin_lock_irqsave(&drv_data
->lock
, flags
);
1430 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1433 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1438 static int destroy_queue(struct driver_data
*drv_data
)
1442 status
= stop_queue(drv_data
);
1446 if (drv_data
->workqueue
)
1447 destroy_workqueue(drv_data
->workqueue
);
1452 static int __init
spi_imx_probe(struct platform_device
*pdev
)
1454 struct device
*dev
= &pdev
->dev
;
1455 struct spi_imx_master
*platform_info
;
1456 struct spi_master
*master
;
1457 struct driver_data
*drv_data
= NULL
;
1458 struct resource
*res
;
1459 int irq
, status
= 0;
1461 platform_info
= dev
->platform_data
;
1462 if (platform_info
== NULL
) {
1463 dev_err(&pdev
->dev
, "probe - no platform data supplied\n");
1468 /* Allocate master with space for drv_data */
1469 master
= spi_alloc_master(dev
, sizeof(struct driver_data
));
1471 dev_err(&pdev
->dev
, "probe - cannot alloc spi_master\n");
1475 drv_data
= spi_master_get_devdata(master
);
1476 drv_data
->master
= master
;
1477 drv_data
->master_info
= platform_info
;
1478 drv_data
->pdev
= pdev
;
1480 master
->bus_num
= pdev
->id
;
1481 master
->num_chipselect
= platform_info
->num_chipselect
;
1482 master
->cleanup
= cleanup
;
1483 master
->setup
= setup
;
1484 master
->transfer
= transfer
;
1486 drv_data
->dummy_dma_buf
= SPI_DUMMY_u32
;
1488 /* Find and map resources */
1489 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1491 dev_err(&pdev
->dev
, "probe - MEM resources not defined\n");
1495 drv_data
->ioarea
= request_mem_region(res
->start
,
1496 res
->end
- res
->start
+ 1,
1498 if (drv_data
->ioarea
== NULL
) {
1499 dev_err(&pdev
->dev
, "probe - cannot reserve region\n");
1503 drv_data
->regs
= ioremap(res
->start
, res
->end
- res
->start
+ 1);
1504 if (drv_data
->regs
== NULL
) {
1505 dev_err(&pdev
->dev
, "probe - cannot map IO\n");
1509 drv_data
->rd_data_phys
= (dma_addr_t
)res
->start
;
1512 irq
= platform_get_irq(pdev
, 0);
1514 dev_err(&pdev
->dev
, "probe - IRQ resource not defined\n");
1518 status
= request_irq(irq
, spi_int
, IRQF_DISABLED
, dev
->bus_id
, drv_data
);
1520 dev_err(&pdev
->dev
, "probe - cannot get IRQ (%d)\n", status
);
1524 /* Setup DMA if requested */
1525 drv_data
->tx_channel
= -1;
1526 drv_data
->rx_channel
= -1;
1527 if (platform_info
->enable_dma
) {
1528 /* Get rx DMA channel */
1529 status
= imx_dma_request_by_prio(&drv_data
->rx_channel
,
1530 "spi_imx_rx", DMA_PRIO_HIGH
);
1533 "probe - problem (%d) requesting rx channel\n",
1537 imx_dma_setup_handlers(drv_data
->rx_channel
, NULL
,
1538 dma_err_handler
, drv_data
);
1540 /* Get tx DMA channel */
1541 status
= imx_dma_request_by_prio(&drv_data
->tx_channel
,
1542 "spi_imx_tx", DMA_PRIO_MEDIUM
);
1545 "probe - problem (%d) requesting tx channel\n",
1547 imx_dma_free(drv_data
->rx_channel
);
1550 imx_dma_setup_handlers(drv_data
->tx_channel
,
1551 dma_tx_handler
, dma_err_handler
,
1554 /* Set request source and burst length for allocated channels */
1555 switch (drv_data
->pdev
->id
) {
1558 RSSR(drv_data
->rx_channel
) = DMA_REQ_SPI1_R
;
1559 RSSR(drv_data
->tx_channel
) = DMA_REQ_SPI1_T
;
1563 RSSR(drv_data
->rx_channel
) = DMA_REQ_SPI2_R
;
1564 RSSR(drv_data
->tx_channel
) = DMA_REQ_SPI2_T
;
1567 dev_err(dev
, "probe - bad SPI Id\n");
1568 imx_dma_free(drv_data
->rx_channel
);
1569 imx_dma_free(drv_data
->tx_channel
);
1573 BLR(drv_data
->rx_channel
) = SPI_DMA_BLR
;
1574 BLR(drv_data
->tx_channel
) = SPI_DMA_BLR
;
1577 /* Load default SPI configuration */
1578 writel(SPI_RESET_START
, drv_data
->regs
+ SPI_RESET
);
1579 writel(0, drv_data
->regs
+ SPI_RESET
);
1580 writel(SPI_DEFAULT_CONTROL
, drv_data
->regs
+ SPI_CONTROL
);
1582 /* Initial and start queue */
1583 status
= init_queue(drv_data
);
1585 dev_err(&pdev
->dev
, "probe - problem initializing queue\n");
1586 goto err_init_queue
;
1588 status
= start_queue(drv_data
);
1590 dev_err(&pdev
->dev
, "probe - problem starting queue\n");
1591 goto err_start_queue
;
1594 /* Register with the SPI framework */
1595 platform_set_drvdata(pdev
, drv_data
);
1596 status
= spi_register_master(master
);
1598 dev_err(&pdev
->dev
, "probe - problem registering spi master\n");
1599 goto err_spi_register
;
1602 dev_dbg(dev
, "probe succeded\n");
1608 destroy_queue(drv_data
);
1613 free_irq(irq
, drv_data
);
1616 iounmap(drv_data
->regs
);
1619 release_resource(drv_data
->ioarea
);
1620 kfree(drv_data
->ioarea
);
1623 spi_master_put(master
);
1630 static int __exit
spi_imx_remove(struct platform_device
*pdev
)
1632 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1639 tasklet_kill(&drv_data
->pump_transfers
);
1641 /* Remove the queue */
1642 status
= destroy_queue(drv_data
);
1644 dev_err(&pdev
->dev
, "queue remove failed (%d)\n", status
);
1649 writel(SPI_RESET_START
, drv_data
->regs
+ SPI_RESET
);
1650 writel(0, drv_data
->regs
+ SPI_RESET
);
1653 if (drv_data
->master_info
->enable_dma
) {
1654 RSSR(drv_data
->rx_channel
) = 0;
1655 RSSR(drv_data
->tx_channel
) = 0;
1656 imx_dma_free(drv_data
->tx_channel
);
1657 imx_dma_free(drv_data
->rx_channel
);
1661 irq
= platform_get_irq(pdev
, 0);
1663 free_irq(irq
, drv_data
);
1665 /* Release map resources */
1666 iounmap(drv_data
->regs
);
1667 release_resource(drv_data
->ioarea
);
1668 kfree(drv_data
->ioarea
);
1670 /* Disconnect from the SPI framework */
1671 spi_unregister_master(drv_data
->master
);
1672 spi_master_put(drv_data
->master
);
1674 /* Prevent double remove */
1675 platform_set_drvdata(pdev
, NULL
);
1677 dev_dbg(&pdev
->dev
, "remove succeded\n");
1682 static void spi_imx_shutdown(struct platform_device
*pdev
)
1684 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1687 writel(SPI_RESET_START
, drv_data
->regs
+ SPI_RESET
);
1688 writel(0, drv_data
->regs
+ SPI_RESET
);
1690 dev_dbg(&pdev
->dev
, "shutdown succeded\n");
1695 static int spi_imx_suspend(struct platform_device
*pdev
, pm_message_t state
)
1697 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1700 status
= stop_queue(drv_data
);
1702 dev_warn(&pdev
->dev
, "suspend cannot stop queue\n");
1706 dev_dbg(&pdev
->dev
, "suspended\n");
1711 static int spi_imx_resume(struct platform_device
*pdev
)
1713 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1716 /* Start the queue running */
1717 status
= start_queue(drv_data
);
1719 dev_err(&pdev
->dev
, "problem starting queue (%d)\n", status
);
1721 dev_dbg(&pdev
->dev
, "resumed\n");
1726 #define spi_imx_suspend NULL
1727 #define spi_imx_resume NULL
1728 #endif /* CONFIG_PM */
1730 /* work with hotplug and coldplug */
1731 MODULE_ALIAS("platform:spi_imx");
1733 static struct platform_driver driver
= {
1736 .owner
= THIS_MODULE
,
1738 .remove
= __exit_p(spi_imx_remove
),
1739 .shutdown
= spi_imx_shutdown
,
1740 .suspend
= spi_imx_suspend
,
1741 .resume
= spi_imx_resume
,
1744 static int __init
spi_imx_init(void)
1746 return platform_driver_probe(&driver
, spi_imx_probe
);
1748 module_init(spi_imx_init
);
1750 static void __exit
spi_imx_exit(void)
1752 platform_driver_unregister(&driver
);
1754 module_exit(spi_imx_exit
);
1756 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
1757 MODULE_DESCRIPTION("iMX SPI Controller Driver");
1758 MODULE_LICENSE("GPL");