sparc: Use popc if possible for hweight routines.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / mm / init_64.c
blobe94b57fb79a09be65781fbefe4d3e46d194d9f2a
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
9 * Derived from "arch/i386/mm/init.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
12 * Dave Engebretsen <engebret@us.ibm.com>
13 * Rework for PPC64 port.
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
22 #undef DEBUG
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/bootmem.h>
38 #include <linux/highmem.h>
39 #include <linux/idr.h>
40 #include <linux/nodemask.h>
41 #include <linux/module.h>
42 #include <linux/poison.h>
43 #include <linux/memblock.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
47 #include <asm/pgalloc.h>
48 #include <asm/page.h>
49 #include <asm/prom.h>
50 #include <asm/rtas.h>
51 #include <asm/io.h>
52 #include <asm/mmu_context.h>
53 #include <asm/pgtable.h>
54 #include <asm/mmu.h>
55 #include <asm/uaccess.h>
56 #include <asm/smp.h>
57 #include <asm/machdep.h>
58 #include <asm/tlb.h>
59 #include <asm/eeh.h>
60 #include <asm/processor.h>
61 #include <asm/mmzone.h>
62 #include <asm/cputable.h>
63 #include <asm/sections.h>
64 #include <asm/system.h>
65 #include <asm/iommu.h>
66 #include <asm/abs_addr.h>
67 #include <asm/vdso.h>
69 #include "mmu_decl.h"
71 #ifdef CONFIG_PPC_STD_MMU_64
72 #if PGTABLE_RANGE > USER_VSID_RANGE
73 #warning Limited user VSID range means pagetable space is wasted
74 #endif
76 #if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
77 #warning TASK_SIZE is smaller than it needs to be.
78 #endif
79 #endif /* CONFIG_PPC_STD_MMU_64 */
81 phys_addr_t memstart_addr = ~0;
82 EXPORT_SYMBOL_GPL(memstart_addr);
83 phys_addr_t kernstart_addr;
84 EXPORT_SYMBOL_GPL(kernstart_addr);
86 static void pgd_ctor(void *addr)
88 memset(addr, 0, PGD_TABLE_SIZE);
91 static void pmd_ctor(void *addr)
93 memset(addr, 0, PMD_TABLE_SIZE);
96 struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
99 * Create a kmem_cache() for pagetables. This is not used for PTE
100 * pages - they're linked to struct page, come from the normal free
101 * pages pool and have a different entry size (see real_pte_t) to
102 * everything else. Caches created by this function are used for all
103 * the higher level pagetables, and for hugepage pagetables.
105 void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
107 char *name;
108 unsigned long table_size = sizeof(void *) << shift;
109 unsigned long align = table_size;
111 /* When batching pgtable pointers for RCU freeing, we store
112 * the index size in the low bits. Table alignment must be
113 * big enough to fit it.
115 * Likewise, hugeapge pagetable pointers contain a (different)
116 * shift value in the low bits. All tables must be aligned so
117 * as to leave enough 0 bits in the address to contain it. */
118 unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
119 HUGEPD_SHIFT_MASK + 1);
120 struct kmem_cache *new;
122 /* It would be nice if this was a BUILD_BUG_ON(), but at the
123 * moment, gcc doesn't seem to recognize is_power_of_2 as a
124 * constant expression, so so much for that. */
125 BUG_ON(!is_power_of_2(minalign));
126 BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
128 if (PGT_CACHE(shift))
129 return; /* Already have a cache of this size */
131 align = max_t(unsigned long, align, minalign);
132 name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
133 new = kmem_cache_create(name, table_size, align, 0, ctor);
134 PGT_CACHE(shift) = new;
136 pr_debug("Allocated pgtable cache for order %d\n", shift);
140 void pgtable_cache_init(void)
142 pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
143 pgtable_cache_add(PMD_INDEX_SIZE, pmd_ctor);
144 if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_INDEX_SIZE))
145 panic("Couldn't allocate pgtable caches");
147 /* In all current configs, when the PUD index exists it's the
148 * same size as either the pgd or pmd index. Verify that the
149 * initialization above has also created a PUD cache. This
150 * will need re-examiniation if we add new possibilities for
151 * the pagetable layout. */
152 BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
155 #ifdef CONFIG_SPARSEMEM_VMEMMAP
157 * Given an address within the vmemmap, determine the pfn of the page that
158 * represents the start of the section it is within. Note that we have to
159 * do this by hand as the proffered address may not be correctly aligned.
160 * Subtraction of non-aligned pointers produces undefined results.
162 static unsigned long __meminit vmemmap_section_start(unsigned long page)
164 unsigned long offset = page - ((unsigned long)(vmemmap));
166 /* Return the pfn of the start of the section. */
167 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
171 * Check if this vmemmap page is already initialised. If any section
172 * which overlaps this vmemmap page is initialised then this page is
173 * initialised already.
175 static int __meminit vmemmap_populated(unsigned long start, int page_size)
177 unsigned long end = start + page_size;
179 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
180 if (pfn_valid(vmemmap_section_start(start)))
181 return 1;
183 return 0;
186 /* On hash-based CPUs, the vmemmap is bolted in the hash table.
188 * On Book3E CPUs, the vmemmap is currently mapped in the top half of
189 * the vmalloc space using normal page tables, though the size of
190 * pages encoded in the PTEs can be different
193 #ifdef CONFIG_PPC_BOOK3E
194 static void __meminit vmemmap_create_mapping(unsigned long start,
195 unsigned long page_size,
196 unsigned long phys)
198 /* Create a PTE encoding without page size */
199 unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
200 _PAGE_KERNEL_RW;
202 /* PTEs only contain page size encodings up to 32M */
203 BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
205 /* Encode the size in the PTE */
206 flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
208 /* For each PTE for that area, map things. Note that we don't
209 * increment phys because all PTEs are of the large size and
210 * thus must have the low bits clear
212 for (i = 0; i < page_size; i += PAGE_SIZE)
213 BUG_ON(map_kernel_page(start + i, phys, flags));
215 #else /* CONFIG_PPC_BOOK3E */
216 static void __meminit vmemmap_create_mapping(unsigned long start,
217 unsigned long page_size,
218 unsigned long phys)
220 int mapped = htab_bolt_mapping(start, start + page_size, phys,
221 PAGE_KERNEL, mmu_vmemmap_psize,
222 mmu_kernel_ssize);
223 BUG_ON(mapped < 0);
225 #endif /* CONFIG_PPC_BOOK3E */
227 struct vmemmap_backing *vmemmap_list;
229 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
231 static struct vmemmap_backing *next;
232 static int num_left;
234 /* allocate a page when required and hand out chunks */
235 if (!next || !num_left) {
236 next = vmemmap_alloc_block(PAGE_SIZE, node);
237 if (unlikely(!next)) {
238 WARN_ON(1);
239 return NULL;
241 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
244 num_left--;
246 return next++;
249 static __meminit void vmemmap_list_populate(unsigned long phys,
250 unsigned long start,
251 int node)
253 struct vmemmap_backing *vmem_back;
255 vmem_back = vmemmap_list_alloc(node);
256 if (unlikely(!vmem_back)) {
257 WARN_ON(1);
258 return;
261 vmem_back->phys = phys;
262 vmem_back->virt_addr = start;
263 vmem_back->list = vmemmap_list;
265 vmemmap_list = vmem_back;
268 int __meminit vmemmap_populate(struct page *start_page,
269 unsigned long nr_pages, int node)
271 unsigned long start = (unsigned long)start_page;
272 unsigned long end = (unsigned long)(start_page + nr_pages);
273 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
275 /* Align to the page size of the linear mapping. */
276 start = _ALIGN_DOWN(start, page_size);
278 pr_debug("vmemmap_populate page %p, %ld pages, node %d\n",
279 start_page, nr_pages, node);
280 pr_debug(" -> map %lx..%lx\n", start, end);
282 for (; start < end; start += page_size) {
283 void *p;
285 if (vmemmap_populated(start, page_size))
286 continue;
288 p = vmemmap_alloc_block(page_size, node);
289 if (!p)
290 return -ENOMEM;
292 vmemmap_list_populate(__pa(p), start, node);
294 pr_debug(" * %016lx..%016lx allocated at %p\n",
295 start, start + page_size, p);
297 vmemmap_create_mapping(start, page_size, __pa(p));
300 return 0;
302 #endif /* CONFIG_SPARSEMEM_VMEMMAP */