[CIFS] Fix warnings from checkpatch
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / splice.c
blob399442179d89d5821b4caccc488fb0180e4e35c0
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
34 * Attempt to steal a page from a pipe buffer. This should perhaps go into
35 * a vm helper function, it's already simplified quite a bit by the
36 * addition of remove_mapping(). If success is returned, the caller may
37 * attempt to reuse this page for another destination.
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 struct pipe_buffer *buf)
42 struct page *page = buf->page;
43 struct address_space *mapping;
45 lock_page(page);
47 mapping = page_mapping(page);
48 if (mapping) {
49 WARN_ON(!PageUptodate(page));
52 * At least for ext2 with nobh option, we need to wait on
53 * writeback completing on this page, since we'll remove it
54 * from the pagecache. Otherwise truncate wont wait on the
55 * page, allowing the disk blocks to be reused by someone else
56 * before we actually wrote our data to them. fs corruption
57 * ensues.
59 wait_on_page_writeback(page);
61 if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
62 goto out_unlock;
65 * If we succeeded in removing the mapping, set LRU flag
66 * and return good.
68 if (remove_mapping(mapping, page)) {
69 buf->flags |= PIPE_BUF_FLAG_LRU;
70 return 0;
75 * Raced with truncate or failed to remove page from current
76 * address space, unlock and return failure.
78 out_unlock:
79 unlock_page(page);
80 return 1;
83 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 page_cache_release(buf->page);
87 buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 * Check whether the contents of buf is OK to access. Since the content
92 * is a page cache page, IO may be in flight.
94 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
95 struct pipe_buffer *buf)
97 struct page *page = buf->page;
98 int err;
100 if (!PageUptodate(page)) {
101 lock_page(page);
104 * Page got truncated/unhashed. This will cause a 0-byte
105 * splice, if this is the first page.
107 if (!page->mapping) {
108 err = -ENODATA;
109 goto error;
113 * Uh oh, read-error from disk.
115 if (!PageUptodate(page)) {
116 err = -EIO;
117 goto error;
121 * Page is ok afterall, we are done.
123 unlock_page(page);
126 return 0;
127 error:
128 unlock_page(page);
129 return err;
132 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
133 .can_merge = 0,
134 .map = generic_pipe_buf_map,
135 .unmap = generic_pipe_buf_unmap,
136 .confirm = page_cache_pipe_buf_confirm,
137 .release = page_cache_pipe_buf_release,
138 .steal = page_cache_pipe_buf_steal,
139 .get = generic_pipe_buf_get,
142 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
143 struct pipe_buffer *buf)
145 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
146 return 1;
148 buf->flags |= PIPE_BUF_FLAG_LRU;
149 return generic_pipe_buf_steal(pipe, buf);
152 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
153 .can_merge = 0,
154 .map = generic_pipe_buf_map,
155 .unmap = generic_pipe_buf_unmap,
156 .confirm = generic_pipe_buf_confirm,
157 .release = page_cache_pipe_buf_release,
158 .steal = user_page_pipe_buf_steal,
159 .get = generic_pipe_buf_get,
163 * splice_to_pipe - fill passed data into a pipe
164 * @pipe: pipe to fill
165 * @spd: data to fill
167 * Description:
168 * @spd contains a map of pages and len/offset tuples, along with
169 * the struct pipe_buf_operations associated with these pages. This
170 * function will link that data to the pipe.
173 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
174 struct splice_pipe_desc *spd)
176 unsigned int spd_pages = spd->nr_pages;
177 int ret, do_wakeup, page_nr;
179 ret = 0;
180 do_wakeup = 0;
181 page_nr = 0;
183 if (pipe->inode)
184 mutex_lock(&pipe->inode->i_mutex);
186 for (;;) {
187 if (!pipe->readers) {
188 send_sig(SIGPIPE, current, 0);
189 if (!ret)
190 ret = -EPIPE;
191 break;
194 if (pipe->nrbufs < PIPE_BUFFERS) {
195 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
196 struct pipe_buffer *buf = pipe->bufs + newbuf;
198 buf->page = spd->pages[page_nr];
199 buf->offset = spd->partial[page_nr].offset;
200 buf->len = spd->partial[page_nr].len;
201 buf->private = spd->partial[page_nr].private;
202 buf->ops = spd->ops;
203 if (spd->flags & SPLICE_F_GIFT)
204 buf->flags |= PIPE_BUF_FLAG_GIFT;
206 pipe->nrbufs++;
207 page_nr++;
208 ret += buf->len;
210 if (pipe->inode)
211 do_wakeup = 1;
213 if (!--spd->nr_pages)
214 break;
215 if (pipe->nrbufs < PIPE_BUFFERS)
216 continue;
218 break;
221 if (spd->flags & SPLICE_F_NONBLOCK) {
222 if (!ret)
223 ret = -EAGAIN;
224 break;
227 if (signal_pending(current)) {
228 if (!ret)
229 ret = -ERESTARTSYS;
230 break;
233 if (do_wakeup) {
234 smp_mb();
235 if (waitqueue_active(&pipe->wait))
236 wake_up_interruptible_sync(&pipe->wait);
237 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
238 do_wakeup = 0;
241 pipe->waiting_writers++;
242 pipe_wait(pipe);
243 pipe->waiting_writers--;
246 if (pipe->inode) {
247 mutex_unlock(&pipe->inode->i_mutex);
249 if (do_wakeup) {
250 smp_mb();
251 if (waitqueue_active(&pipe->wait))
252 wake_up_interruptible(&pipe->wait);
253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
257 while (page_nr < spd_pages)
258 spd->spd_release(spd, page_nr++);
260 return ret;
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
265 page_cache_release(spd->pages[i]);
268 static int
269 __generic_file_splice_read(struct file *in, loff_t *ppos,
270 struct pipe_inode_info *pipe, size_t len,
271 unsigned int flags)
273 struct address_space *mapping = in->f_mapping;
274 unsigned int loff, nr_pages, req_pages;
275 struct page *pages[PIPE_BUFFERS];
276 struct partial_page partial[PIPE_BUFFERS];
277 struct page *page;
278 pgoff_t index, end_index;
279 loff_t isize;
280 int error, page_nr;
281 struct splice_pipe_desc spd = {
282 .pages = pages,
283 .partial = partial,
284 .flags = flags,
285 .ops = &page_cache_pipe_buf_ops,
286 .spd_release = spd_release_page,
289 index = *ppos >> PAGE_CACHE_SHIFT;
290 loff = *ppos & ~PAGE_CACHE_MASK;
291 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
292 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
295 * Lookup the (hopefully) full range of pages we need.
297 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
298 index += spd.nr_pages;
301 * If find_get_pages_contig() returned fewer pages than we needed,
302 * readahead/allocate the rest and fill in the holes.
304 if (spd.nr_pages < nr_pages)
305 page_cache_sync_readahead(mapping, &in->f_ra, in,
306 index, req_pages - spd.nr_pages);
308 error = 0;
309 while (spd.nr_pages < nr_pages) {
311 * Page could be there, find_get_pages_contig() breaks on
312 * the first hole.
314 page = find_get_page(mapping, index);
315 if (!page) {
317 * page didn't exist, allocate one.
319 page = page_cache_alloc_cold(mapping);
320 if (!page)
321 break;
323 error = add_to_page_cache_lru(page, mapping, index,
324 mapping_gfp_mask(mapping));
325 if (unlikely(error)) {
326 page_cache_release(page);
327 if (error == -EEXIST)
328 continue;
329 break;
332 * add_to_page_cache() locks the page, unlock it
333 * to avoid convoluting the logic below even more.
335 unlock_page(page);
338 pages[spd.nr_pages++] = page;
339 index++;
343 * Now loop over the map and see if we need to start IO on any
344 * pages, fill in the partial map, etc.
346 index = *ppos >> PAGE_CACHE_SHIFT;
347 nr_pages = spd.nr_pages;
348 spd.nr_pages = 0;
349 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
350 unsigned int this_len;
352 if (!len)
353 break;
356 * this_len is the max we'll use from this page
358 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
359 page = pages[page_nr];
361 if (PageReadahead(page))
362 page_cache_async_readahead(mapping, &in->f_ra, in,
363 page, index, req_pages - page_nr);
366 * If the page isn't uptodate, we may need to start io on it
368 if (!PageUptodate(page)) {
370 * If in nonblock mode then dont block on waiting
371 * for an in-flight io page
373 if (flags & SPLICE_F_NONBLOCK) {
374 if (TestSetPageLocked(page)) {
375 error = -EAGAIN;
376 break;
378 } else
379 lock_page(page);
382 * Page was truncated, or invalidated by the
383 * filesystem. Redo the find/create, but this time the
384 * page is kept locked, so there's no chance of another
385 * race with truncate/invalidate.
387 if (!page->mapping) {
388 unlock_page(page);
389 page = find_or_create_page(mapping, index,
390 mapping_gfp_mask(mapping));
392 if (!page) {
393 error = -ENOMEM;
394 break;
396 page_cache_release(pages[page_nr]);
397 pages[page_nr] = page;
400 * page was already under io and is now done, great
402 if (PageUptodate(page)) {
403 unlock_page(page);
404 goto fill_it;
408 * need to read in the page
410 error = mapping->a_ops->readpage(in, page);
411 if (unlikely(error)) {
413 * We really should re-lookup the page here,
414 * but it complicates things a lot. Instead
415 * lets just do what we already stored, and
416 * we'll get it the next time we are called.
418 if (error == AOP_TRUNCATED_PAGE)
419 error = 0;
421 break;
424 fill_it:
426 * i_size must be checked after PageUptodate.
428 isize = i_size_read(mapping->host);
429 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
430 if (unlikely(!isize || index > end_index))
431 break;
434 * if this is the last page, see if we need to shrink
435 * the length and stop
437 if (end_index == index) {
438 unsigned int plen;
441 * max good bytes in this page
443 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
444 if (plen <= loff)
445 break;
448 * force quit after adding this page
450 this_len = min(this_len, plen - loff);
451 len = this_len;
454 partial[page_nr].offset = loff;
455 partial[page_nr].len = this_len;
456 len -= this_len;
457 loff = 0;
458 spd.nr_pages++;
459 index++;
463 * Release any pages at the end, if we quit early. 'page_nr' is how far
464 * we got, 'nr_pages' is how many pages are in the map.
466 while (page_nr < nr_pages)
467 page_cache_release(pages[page_nr++]);
468 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
470 if (spd.nr_pages)
471 return splice_to_pipe(pipe, &spd);
473 return error;
477 * generic_file_splice_read - splice data from file to a pipe
478 * @in: file to splice from
479 * @ppos: position in @in
480 * @pipe: pipe to splice to
481 * @len: number of bytes to splice
482 * @flags: splice modifier flags
484 * Description:
485 * Will read pages from given file and fill them into a pipe. Can be
486 * used as long as the address_space operations for the source implements
487 * a readpage() hook.
490 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
491 struct pipe_inode_info *pipe, size_t len,
492 unsigned int flags)
494 loff_t isize, left;
495 int ret;
497 isize = i_size_read(in->f_mapping->host);
498 if (unlikely(*ppos >= isize))
499 return 0;
501 left = isize - *ppos;
502 if (unlikely(left < len))
503 len = left;
505 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
506 if (ret > 0)
507 *ppos += ret;
509 return ret;
512 EXPORT_SYMBOL(generic_file_splice_read);
515 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
516 * using sendpage(). Return the number of bytes sent.
518 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
519 struct pipe_buffer *buf, struct splice_desc *sd)
521 struct file *file = sd->u.file;
522 loff_t pos = sd->pos;
523 int ret, more;
525 ret = buf->ops->confirm(pipe, buf);
526 if (!ret) {
527 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
529 ret = file->f_op->sendpage(file, buf->page, buf->offset,
530 sd->len, &pos, more);
533 return ret;
537 * This is a little more tricky than the file -> pipe splicing. There are
538 * basically three cases:
540 * - Destination page already exists in the address space and there
541 * are users of it. For that case we have no other option that
542 * copying the data. Tough luck.
543 * - Destination page already exists in the address space, but there
544 * are no users of it. Make sure it's uptodate, then drop it. Fall
545 * through to last case.
546 * - Destination page does not exist, we can add the pipe page to
547 * the page cache and avoid the copy.
549 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
550 * sd->flags), we attempt to migrate pages from the pipe to the output
551 * file address space page cache. This is possible if no one else has
552 * the pipe page referenced outside of the pipe and page cache. If
553 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
554 * a new page in the output file page cache and fill/dirty that.
556 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
557 struct splice_desc *sd)
559 struct file *file = sd->u.file;
560 struct address_space *mapping = file->f_mapping;
561 unsigned int offset, this_len;
562 struct page *page;
563 void *fsdata;
564 int ret;
567 * make sure the data in this buffer is uptodate
569 ret = buf->ops->confirm(pipe, buf);
570 if (unlikely(ret))
571 return ret;
573 offset = sd->pos & ~PAGE_CACHE_MASK;
575 this_len = sd->len;
576 if (this_len + offset > PAGE_CACHE_SIZE)
577 this_len = PAGE_CACHE_SIZE - offset;
579 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
580 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
581 if (unlikely(ret))
582 goto out;
584 if (buf->page != page) {
586 * Careful, ->map() uses KM_USER0!
588 char *src = buf->ops->map(pipe, buf, 1);
589 char *dst = kmap_atomic(page, KM_USER1);
591 memcpy(dst + offset, src + buf->offset, this_len);
592 flush_dcache_page(page);
593 kunmap_atomic(dst, KM_USER1);
594 buf->ops->unmap(pipe, buf, src);
596 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
597 page, fsdata);
598 out:
599 return ret;
603 * __splice_from_pipe - splice data from a pipe to given actor
604 * @pipe: pipe to splice from
605 * @sd: information to @actor
606 * @actor: handler that splices the data
608 * Description:
609 * This function does little more than loop over the pipe and call
610 * @actor to do the actual moving of a single struct pipe_buffer to
611 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
612 * pipe_to_user.
615 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
616 splice_actor *actor)
618 int ret, do_wakeup, err;
620 ret = 0;
621 do_wakeup = 0;
623 for (;;) {
624 if (pipe->nrbufs) {
625 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
626 const struct pipe_buf_operations *ops = buf->ops;
628 sd->len = buf->len;
629 if (sd->len > sd->total_len)
630 sd->len = sd->total_len;
632 err = actor(pipe, buf, sd);
633 if (err <= 0) {
634 if (!ret && err != -ENODATA)
635 ret = err;
637 break;
640 ret += err;
641 buf->offset += err;
642 buf->len -= err;
644 sd->len -= err;
645 sd->pos += err;
646 sd->total_len -= err;
647 if (sd->len)
648 continue;
650 if (!buf->len) {
651 buf->ops = NULL;
652 ops->release(pipe, buf);
653 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
654 pipe->nrbufs--;
655 if (pipe->inode)
656 do_wakeup = 1;
659 if (!sd->total_len)
660 break;
663 if (pipe->nrbufs)
664 continue;
665 if (!pipe->writers)
666 break;
667 if (!pipe->waiting_writers) {
668 if (ret)
669 break;
672 if (sd->flags & SPLICE_F_NONBLOCK) {
673 if (!ret)
674 ret = -EAGAIN;
675 break;
678 if (signal_pending(current)) {
679 if (!ret)
680 ret = -ERESTARTSYS;
681 break;
684 if (do_wakeup) {
685 smp_mb();
686 if (waitqueue_active(&pipe->wait))
687 wake_up_interruptible_sync(&pipe->wait);
688 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
689 do_wakeup = 0;
692 pipe_wait(pipe);
695 if (do_wakeup) {
696 smp_mb();
697 if (waitqueue_active(&pipe->wait))
698 wake_up_interruptible(&pipe->wait);
699 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
702 return ret;
704 EXPORT_SYMBOL(__splice_from_pipe);
707 * splice_from_pipe - splice data from a pipe to a file
708 * @pipe: pipe to splice from
709 * @out: file to splice to
710 * @ppos: position in @out
711 * @len: how many bytes to splice
712 * @flags: splice modifier flags
713 * @actor: handler that splices the data
715 * Description:
716 * See __splice_from_pipe. This function locks the input and output inodes,
717 * otherwise it's identical to __splice_from_pipe().
720 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
721 loff_t *ppos, size_t len, unsigned int flags,
722 splice_actor *actor)
724 ssize_t ret;
725 struct inode *inode = out->f_mapping->host;
726 struct splice_desc sd = {
727 .total_len = len,
728 .flags = flags,
729 .pos = *ppos,
730 .u.file = out,
734 * The actor worker might be calling ->prepare_write and
735 * ->commit_write. Most of the time, these expect i_mutex to
736 * be held. Since this may result in an ABBA deadlock with
737 * pipe->inode, we have to order lock acquiry here.
739 inode_double_lock(inode, pipe->inode);
740 ret = __splice_from_pipe(pipe, &sd, actor);
741 inode_double_unlock(inode, pipe->inode);
743 return ret;
747 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
748 * @pipe: pipe info
749 * @out: file to write to
750 * @ppos: position in @out
751 * @len: number of bytes to splice
752 * @flags: splice modifier flags
754 * Description:
755 * Will either move or copy pages (determined by @flags options) from
756 * the given pipe inode to the given file. The caller is responsible
757 * for acquiring i_mutex on both inodes.
760 ssize_t
761 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
762 loff_t *ppos, size_t len, unsigned int flags)
764 struct address_space *mapping = out->f_mapping;
765 struct inode *inode = mapping->host;
766 struct splice_desc sd = {
767 .total_len = len,
768 .flags = flags,
769 .pos = *ppos,
770 .u.file = out,
772 ssize_t ret;
773 int err;
775 err = remove_suid(out->f_path.dentry);
776 if (unlikely(err))
777 return err;
779 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
780 if (ret > 0) {
781 unsigned long nr_pages;
783 *ppos += ret;
784 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
787 * If file or inode is SYNC and we actually wrote some data,
788 * sync it.
790 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
791 err = generic_osync_inode(inode, mapping,
792 OSYNC_METADATA|OSYNC_DATA);
794 if (err)
795 ret = err;
797 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
800 return ret;
803 EXPORT_SYMBOL(generic_file_splice_write_nolock);
806 * generic_file_splice_write - splice data from a pipe to a file
807 * @pipe: pipe info
808 * @out: file to write to
809 * @ppos: position in @out
810 * @len: number of bytes to splice
811 * @flags: splice modifier flags
813 * Description:
814 * Will either move or copy pages (determined by @flags options) from
815 * the given pipe inode to the given file.
818 ssize_t
819 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
820 loff_t *ppos, size_t len, unsigned int flags)
822 struct address_space *mapping = out->f_mapping;
823 struct inode *inode = mapping->host;
824 struct splice_desc sd = {
825 .total_len = len,
826 .flags = flags,
827 .pos = *ppos,
828 .u.file = out,
830 ssize_t ret;
832 inode_double_lock(inode, pipe->inode);
833 ret = remove_suid(out->f_path.dentry);
834 if (likely(!ret))
835 ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
836 inode_double_unlock(inode, pipe->inode);
837 if (ret > 0) {
838 unsigned long nr_pages;
840 *ppos += ret;
841 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
844 * If file or inode is SYNC and we actually wrote some data,
845 * sync it.
847 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
848 int err;
850 mutex_lock(&inode->i_mutex);
851 err = generic_osync_inode(inode, mapping,
852 OSYNC_METADATA|OSYNC_DATA);
853 mutex_unlock(&inode->i_mutex);
855 if (err)
856 ret = err;
858 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
861 return ret;
864 EXPORT_SYMBOL(generic_file_splice_write);
867 * generic_splice_sendpage - splice data from a pipe to a socket
868 * @pipe: pipe to splice from
869 * @out: socket to write to
870 * @ppos: position in @out
871 * @len: number of bytes to splice
872 * @flags: splice modifier flags
874 * Description:
875 * Will send @len bytes from the pipe to a network socket. No data copying
876 * is involved.
879 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
880 loff_t *ppos, size_t len, unsigned int flags)
882 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
885 EXPORT_SYMBOL(generic_splice_sendpage);
888 * Attempt to initiate a splice from pipe to file.
890 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
891 loff_t *ppos, size_t len, unsigned int flags)
893 int ret;
895 if (unlikely(!out->f_op || !out->f_op->splice_write))
896 return -EINVAL;
898 if (unlikely(!(out->f_mode & FMODE_WRITE)))
899 return -EBADF;
901 ret = rw_verify_area(WRITE, out, ppos, len);
902 if (unlikely(ret < 0))
903 return ret;
905 return out->f_op->splice_write(pipe, out, ppos, len, flags);
909 * Attempt to initiate a splice from a file to a pipe.
911 static long do_splice_to(struct file *in, loff_t *ppos,
912 struct pipe_inode_info *pipe, size_t len,
913 unsigned int flags)
915 int ret;
917 if (unlikely(!in->f_op || !in->f_op->splice_read))
918 return -EINVAL;
920 if (unlikely(!(in->f_mode & FMODE_READ)))
921 return -EBADF;
923 ret = rw_verify_area(READ, in, ppos, len);
924 if (unlikely(ret < 0))
925 return ret;
927 return in->f_op->splice_read(in, ppos, pipe, len, flags);
931 * splice_direct_to_actor - splices data directly between two non-pipes
932 * @in: file to splice from
933 * @sd: actor information on where to splice to
934 * @actor: handles the data splicing
936 * Description:
937 * This is a special case helper to splice directly between two
938 * points, without requiring an explicit pipe. Internally an allocated
939 * pipe is cached in the process, and reused during the lifetime of
940 * that process.
943 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
944 splice_direct_actor *actor)
946 struct pipe_inode_info *pipe;
947 long ret, bytes;
948 umode_t i_mode;
949 size_t len;
950 int i, flags;
953 * We require the input being a regular file, as we don't want to
954 * randomly drop data for eg socket -> socket splicing. Use the
955 * piped splicing for that!
957 i_mode = in->f_path.dentry->d_inode->i_mode;
958 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
959 return -EINVAL;
962 * neither in nor out is a pipe, setup an internal pipe attached to
963 * 'out' and transfer the wanted data from 'in' to 'out' through that
965 pipe = current->splice_pipe;
966 if (unlikely(!pipe)) {
967 pipe = alloc_pipe_info(NULL);
968 if (!pipe)
969 return -ENOMEM;
972 * We don't have an immediate reader, but we'll read the stuff
973 * out of the pipe right after the splice_to_pipe(). So set
974 * PIPE_READERS appropriately.
976 pipe->readers = 1;
978 current->splice_pipe = pipe;
982 * Do the splice.
984 ret = 0;
985 bytes = 0;
986 len = sd->total_len;
987 flags = sd->flags;
990 * Don't block on output, we have to drain the direct pipe.
992 sd->flags &= ~SPLICE_F_NONBLOCK;
994 while (len) {
995 size_t read_len;
996 loff_t pos = sd->pos, prev_pos = pos;
998 ret = do_splice_to(in, &pos, pipe, len, flags);
999 if (unlikely(ret <= 0))
1000 goto out_release;
1002 read_len = ret;
1003 sd->total_len = read_len;
1006 * NOTE: nonblocking mode only applies to the input. We
1007 * must not do the output in nonblocking mode as then we
1008 * could get stuck data in the internal pipe:
1010 ret = actor(pipe, sd);
1011 if (unlikely(ret <= 0)) {
1012 sd->pos = prev_pos;
1013 goto out_release;
1016 bytes += ret;
1017 len -= ret;
1018 sd->pos = pos;
1020 if (ret < read_len) {
1021 sd->pos = prev_pos + ret;
1022 goto out_release;
1026 done:
1027 pipe->nrbufs = pipe->curbuf = 0;
1028 file_accessed(in);
1029 return bytes;
1031 out_release:
1033 * If we did an incomplete transfer we must release
1034 * the pipe buffers in question:
1036 for (i = 0; i < PIPE_BUFFERS; i++) {
1037 struct pipe_buffer *buf = pipe->bufs + i;
1039 if (buf->ops) {
1040 buf->ops->release(pipe, buf);
1041 buf->ops = NULL;
1045 if (!bytes)
1046 bytes = ret;
1048 goto done;
1050 EXPORT_SYMBOL(splice_direct_to_actor);
1052 static int direct_splice_actor(struct pipe_inode_info *pipe,
1053 struct splice_desc *sd)
1055 struct file *file = sd->u.file;
1057 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1061 * do_splice_direct - splices data directly between two files
1062 * @in: file to splice from
1063 * @ppos: input file offset
1064 * @out: file to splice to
1065 * @len: number of bytes to splice
1066 * @flags: splice modifier flags
1068 * Description:
1069 * For use by do_sendfile(). splice can easily emulate sendfile, but
1070 * doing it in the application would incur an extra system call
1071 * (splice in + splice out, as compared to just sendfile()). So this helper
1072 * can splice directly through a process-private pipe.
1075 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1076 size_t len, unsigned int flags)
1078 struct splice_desc sd = {
1079 .len = len,
1080 .total_len = len,
1081 .flags = flags,
1082 .pos = *ppos,
1083 .u.file = out,
1085 long ret;
1087 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1088 if (ret > 0)
1089 *ppos = sd.pos;
1091 return ret;
1095 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1096 * location, so checking ->i_pipe is not enough to verify that this is a
1097 * pipe.
1099 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1101 if (S_ISFIFO(inode->i_mode))
1102 return inode->i_pipe;
1104 return NULL;
1108 * Determine where to splice to/from.
1110 static long do_splice(struct file *in, loff_t __user *off_in,
1111 struct file *out, loff_t __user *off_out,
1112 size_t len, unsigned int flags)
1114 struct pipe_inode_info *pipe;
1115 loff_t offset, *off;
1116 long ret;
1118 pipe = pipe_info(in->f_path.dentry->d_inode);
1119 if (pipe) {
1120 if (off_in)
1121 return -ESPIPE;
1122 if (off_out) {
1123 if (out->f_op->llseek == no_llseek)
1124 return -EINVAL;
1125 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1126 return -EFAULT;
1127 off = &offset;
1128 } else
1129 off = &out->f_pos;
1131 ret = do_splice_from(pipe, out, off, len, flags);
1133 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1134 ret = -EFAULT;
1136 return ret;
1139 pipe = pipe_info(out->f_path.dentry->d_inode);
1140 if (pipe) {
1141 if (off_out)
1142 return -ESPIPE;
1143 if (off_in) {
1144 if (in->f_op->llseek == no_llseek)
1145 return -EINVAL;
1146 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1147 return -EFAULT;
1148 off = &offset;
1149 } else
1150 off = &in->f_pos;
1152 ret = do_splice_to(in, off, pipe, len, flags);
1154 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1155 ret = -EFAULT;
1157 return ret;
1160 return -EINVAL;
1164 * Do a copy-from-user while holding the mmap_semaphore for reading, in a
1165 * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem
1166 * for writing) and page faulting on the user memory pointed to by src.
1167 * This assumes that we will very rarely hit the partial != 0 path, or this
1168 * will not be a win.
1170 static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n)
1172 int partial;
1174 if (!access_ok(VERIFY_READ, src, n))
1175 return -EFAULT;
1177 pagefault_disable();
1178 partial = __copy_from_user_inatomic(dst, src, n);
1179 pagefault_enable();
1182 * Didn't copy everything, drop the mmap_sem and do a faulting copy
1184 if (unlikely(partial)) {
1185 up_read(&current->mm->mmap_sem);
1186 partial = copy_from_user(dst, src, n);
1187 down_read(&current->mm->mmap_sem);
1190 return partial;
1194 * Map an iov into an array of pages and offset/length tupples. With the
1195 * partial_page structure, we can map several non-contiguous ranges into
1196 * our ones pages[] map instead of splitting that operation into pieces.
1197 * Could easily be exported as a generic helper for other users, in which
1198 * case one would probably want to add a 'max_nr_pages' parameter as well.
1200 static int get_iovec_page_array(const struct iovec __user *iov,
1201 unsigned int nr_vecs, struct page **pages,
1202 struct partial_page *partial, int aligned)
1204 int buffers = 0, error = 0;
1206 down_read(&current->mm->mmap_sem);
1208 while (nr_vecs) {
1209 unsigned long off, npages;
1210 struct iovec entry;
1211 void __user *base;
1212 size_t len;
1213 int i;
1215 error = -EFAULT;
1216 if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry)))
1217 break;
1219 base = entry.iov_base;
1220 len = entry.iov_len;
1223 * Sanity check this iovec. 0 read succeeds.
1225 error = 0;
1226 if (unlikely(!len))
1227 break;
1228 error = -EFAULT;
1229 if (!access_ok(VERIFY_READ, base, len))
1230 break;
1233 * Get this base offset and number of pages, then map
1234 * in the user pages.
1236 off = (unsigned long) base & ~PAGE_MASK;
1239 * If asked for alignment, the offset must be zero and the
1240 * length a multiple of the PAGE_SIZE.
1242 error = -EINVAL;
1243 if (aligned && (off || len & ~PAGE_MASK))
1244 break;
1246 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1247 if (npages > PIPE_BUFFERS - buffers)
1248 npages = PIPE_BUFFERS - buffers;
1250 error = get_user_pages(current, current->mm,
1251 (unsigned long) base, npages, 0, 0,
1252 &pages[buffers], NULL);
1254 if (unlikely(error <= 0))
1255 break;
1258 * Fill this contiguous range into the partial page map.
1260 for (i = 0; i < error; i++) {
1261 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1263 partial[buffers].offset = off;
1264 partial[buffers].len = plen;
1266 off = 0;
1267 len -= plen;
1268 buffers++;
1272 * We didn't complete this iov, stop here since it probably
1273 * means we have to move some of this into a pipe to
1274 * be able to continue.
1276 if (len)
1277 break;
1280 * Don't continue if we mapped fewer pages than we asked for,
1281 * or if we mapped the max number of pages that we have
1282 * room for.
1284 if (error < npages || buffers == PIPE_BUFFERS)
1285 break;
1287 nr_vecs--;
1288 iov++;
1291 up_read(&current->mm->mmap_sem);
1293 if (buffers)
1294 return buffers;
1296 return error;
1299 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1300 struct splice_desc *sd)
1302 char *src;
1303 int ret;
1305 ret = buf->ops->confirm(pipe, buf);
1306 if (unlikely(ret))
1307 return ret;
1310 * See if we can use the atomic maps, by prefaulting in the
1311 * pages and doing an atomic copy
1313 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1314 src = buf->ops->map(pipe, buf, 1);
1315 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1316 sd->len);
1317 buf->ops->unmap(pipe, buf, src);
1318 if (!ret) {
1319 ret = sd->len;
1320 goto out;
1325 * No dice, use slow non-atomic map and copy
1327 src = buf->ops->map(pipe, buf, 0);
1329 ret = sd->len;
1330 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1331 ret = -EFAULT;
1333 buf->ops->unmap(pipe, buf, src);
1334 out:
1335 if (ret > 0)
1336 sd->u.userptr += ret;
1337 return ret;
1341 * For lack of a better implementation, implement vmsplice() to userspace
1342 * as a simple copy of the pipes pages to the user iov.
1344 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1345 unsigned long nr_segs, unsigned int flags)
1347 struct pipe_inode_info *pipe;
1348 struct splice_desc sd;
1349 ssize_t size;
1350 int error;
1351 long ret;
1353 pipe = pipe_info(file->f_path.dentry->d_inode);
1354 if (!pipe)
1355 return -EBADF;
1357 if (pipe->inode)
1358 mutex_lock(&pipe->inode->i_mutex);
1360 error = ret = 0;
1361 while (nr_segs) {
1362 void __user *base;
1363 size_t len;
1366 * Get user address base and length for this iovec.
1368 error = get_user(base, &iov->iov_base);
1369 if (unlikely(error))
1370 break;
1371 error = get_user(len, &iov->iov_len);
1372 if (unlikely(error))
1373 break;
1376 * Sanity check this iovec. 0 read succeeds.
1378 if (unlikely(!len))
1379 break;
1380 if (unlikely(!base)) {
1381 error = -EFAULT;
1382 break;
1385 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1386 error = -EFAULT;
1387 break;
1390 sd.len = 0;
1391 sd.total_len = len;
1392 sd.flags = flags;
1393 sd.u.userptr = base;
1394 sd.pos = 0;
1396 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1397 if (size < 0) {
1398 if (!ret)
1399 ret = size;
1401 break;
1404 ret += size;
1406 if (size < len)
1407 break;
1409 nr_segs--;
1410 iov++;
1413 if (pipe->inode)
1414 mutex_unlock(&pipe->inode->i_mutex);
1416 if (!ret)
1417 ret = error;
1419 return ret;
1423 * vmsplice splices a user address range into a pipe. It can be thought of
1424 * as splice-from-memory, where the regular splice is splice-from-file (or
1425 * to file). In both cases the output is a pipe, naturally.
1427 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1428 unsigned long nr_segs, unsigned int flags)
1430 struct pipe_inode_info *pipe;
1431 struct page *pages[PIPE_BUFFERS];
1432 struct partial_page partial[PIPE_BUFFERS];
1433 struct splice_pipe_desc spd = {
1434 .pages = pages,
1435 .partial = partial,
1436 .flags = flags,
1437 .ops = &user_page_pipe_buf_ops,
1438 .spd_release = spd_release_page,
1441 pipe = pipe_info(file->f_path.dentry->d_inode);
1442 if (!pipe)
1443 return -EBADF;
1445 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1446 flags & SPLICE_F_GIFT);
1447 if (spd.nr_pages <= 0)
1448 return spd.nr_pages;
1450 return splice_to_pipe(pipe, &spd);
1454 * Note that vmsplice only really supports true splicing _from_ user memory
1455 * to a pipe, not the other way around. Splicing from user memory is a simple
1456 * operation that can be supported without any funky alignment restrictions
1457 * or nasty vm tricks. We simply map in the user memory and fill them into
1458 * a pipe. The reverse isn't quite as easy, though. There are two possible
1459 * solutions for that:
1461 * - memcpy() the data internally, at which point we might as well just
1462 * do a regular read() on the buffer anyway.
1463 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1464 * has restriction limitations on both ends of the pipe).
1466 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1469 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1470 unsigned long nr_segs, unsigned int flags)
1472 struct file *file;
1473 long error;
1474 int fput;
1476 if (unlikely(nr_segs > UIO_MAXIOV))
1477 return -EINVAL;
1478 else if (unlikely(!nr_segs))
1479 return 0;
1481 error = -EBADF;
1482 file = fget_light(fd, &fput);
1483 if (file) {
1484 if (file->f_mode & FMODE_WRITE)
1485 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1486 else if (file->f_mode & FMODE_READ)
1487 error = vmsplice_to_user(file, iov, nr_segs, flags);
1489 fput_light(file, fput);
1492 return error;
1495 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1496 int fd_out, loff_t __user *off_out,
1497 size_t len, unsigned int flags)
1499 long error;
1500 struct file *in, *out;
1501 int fput_in, fput_out;
1503 if (unlikely(!len))
1504 return 0;
1506 error = -EBADF;
1507 in = fget_light(fd_in, &fput_in);
1508 if (in) {
1509 if (in->f_mode & FMODE_READ) {
1510 out = fget_light(fd_out, &fput_out);
1511 if (out) {
1512 if (out->f_mode & FMODE_WRITE)
1513 error = do_splice(in, off_in,
1514 out, off_out,
1515 len, flags);
1516 fput_light(out, fput_out);
1520 fput_light(in, fput_in);
1523 return error;
1527 * Make sure there's data to read. Wait for input if we can, otherwise
1528 * return an appropriate error.
1530 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1532 int ret;
1535 * Check ->nrbufs without the inode lock first. This function
1536 * is speculative anyways, so missing one is ok.
1538 if (pipe->nrbufs)
1539 return 0;
1541 ret = 0;
1542 mutex_lock(&pipe->inode->i_mutex);
1544 while (!pipe->nrbufs) {
1545 if (signal_pending(current)) {
1546 ret = -ERESTARTSYS;
1547 break;
1549 if (!pipe->writers)
1550 break;
1551 if (!pipe->waiting_writers) {
1552 if (flags & SPLICE_F_NONBLOCK) {
1553 ret = -EAGAIN;
1554 break;
1557 pipe_wait(pipe);
1560 mutex_unlock(&pipe->inode->i_mutex);
1561 return ret;
1565 * Make sure there's writeable room. Wait for room if we can, otherwise
1566 * return an appropriate error.
1568 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1570 int ret;
1573 * Check ->nrbufs without the inode lock first. This function
1574 * is speculative anyways, so missing one is ok.
1576 if (pipe->nrbufs < PIPE_BUFFERS)
1577 return 0;
1579 ret = 0;
1580 mutex_lock(&pipe->inode->i_mutex);
1582 while (pipe->nrbufs >= PIPE_BUFFERS) {
1583 if (!pipe->readers) {
1584 send_sig(SIGPIPE, current, 0);
1585 ret = -EPIPE;
1586 break;
1588 if (flags & SPLICE_F_NONBLOCK) {
1589 ret = -EAGAIN;
1590 break;
1592 if (signal_pending(current)) {
1593 ret = -ERESTARTSYS;
1594 break;
1596 pipe->waiting_writers++;
1597 pipe_wait(pipe);
1598 pipe->waiting_writers--;
1601 mutex_unlock(&pipe->inode->i_mutex);
1602 return ret;
1606 * Link contents of ipipe to opipe.
1608 static int link_pipe(struct pipe_inode_info *ipipe,
1609 struct pipe_inode_info *opipe,
1610 size_t len, unsigned int flags)
1612 struct pipe_buffer *ibuf, *obuf;
1613 int ret = 0, i = 0, nbuf;
1616 * Potential ABBA deadlock, work around it by ordering lock
1617 * grabbing by inode address. Otherwise two different processes
1618 * could deadlock (one doing tee from A -> B, the other from B -> A).
1620 inode_double_lock(ipipe->inode, opipe->inode);
1622 do {
1623 if (!opipe->readers) {
1624 send_sig(SIGPIPE, current, 0);
1625 if (!ret)
1626 ret = -EPIPE;
1627 break;
1631 * If we have iterated all input buffers or ran out of
1632 * output room, break.
1634 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1635 break;
1637 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1638 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1641 * Get a reference to this pipe buffer,
1642 * so we can copy the contents over.
1644 ibuf->ops->get(ipipe, ibuf);
1646 obuf = opipe->bufs + nbuf;
1647 *obuf = *ibuf;
1650 * Don't inherit the gift flag, we need to
1651 * prevent multiple steals of this page.
1653 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1655 if (obuf->len > len)
1656 obuf->len = len;
1658 opipe->nrbufs++;
1659 ret += obuf->len;
1660 len -= obuf->len;
1661 i++;
1662 } while (len);
1665 * return EAGAIN if we have the potential of some data in the
1666 * future, otherwise just return 0
1668 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1669 ret = -EAGAIN;
1671 inode_double_unlock(ipipe->inode, opipe->inode);
1674 * If we put data in the output pipe, wakeup any potential readers.
1676 if (ret > 0) {
1677 smp_mb();
1678 if (waitqueue_active(&opipe->wait))
1679 wake_up_interruptible(&opipe->wait);
1680 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1683 return ret;
1687 * This is a tee(1) implementation that works on pipes. It doesn't copy
1688 * any data, it simply references the 'in' pages on the 'out' pipe.
1689 * The 'flags' used are the SPLICE_F_* variants, currently the only
1690 * applicable one is SPLICE_F_NONBLOCK.
1692 static long do_tee(struct file *in, struct file *out, size_t len,
1693 unsigned int flags)
1695 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1696 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1697 int ret = -EINVAL;
1700 * Duplicate the contents of ipipe to opipe without actually
1701 * copying the data.
1703 if (ipipe && opipe && ipipe != opipe) {
1705 * Keep going, unless we encounter an error. The ipipe/opipe
1706 * ordering doesn't really matter.
1708 ret = link_ipipe_prep(ipipe, flags);
1709 if (!ret) {
1710 ret = link_opipe_prep(opipe, flags);
1711 if (!ret)
1712 ret = link_pipe(ipipe, opipe, len, flags);
1716 return ret;
1719 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1721 struct file *in;
1722 int error, fput_in;
1724 if (unlikely(!len))
1725 return 0;
1727 error = -EBADF;
1728 in = fget_light(fdin, &fput_in);
1729 if (in) {
1730 if (in->f_mode & FMODE_READ) {
1731 int fput_out;
1732 struct file *out = fget_light(fdout, &fput_out);
1734 if (out) {
1735 if (out->f_mode & FMODE_WRITE)
1736 error = do_tee(in, out, len, flags);
1737 fput_light(out, fput_out);
1740 fput_light(in, fput_in);
1743 return error;