mtd: denali: update get nand para functions
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / nand / denali.c
blob0f9fc5e7a5204478c379f95bb0eff878e14c1fe1
1 /*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/pci.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
28 #include "denali.h"
30 MODULE_LICENSE("GPL");
32 /* We define a module parameter that allows the user to override
33 * the hardware and decide what timing mode should be used.
35 #define NAND_DEFAULT_TIMINGS -1
37 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
38 module_param(onfi_timing_mode, int, S_IRUGO);
39 MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
40 " -1 indicates use default timings");
42 #define DENALI_NAND_NAME "denali-nand"
44 /* We define a macro here that combines all interrupts this driver uses into
45 * a single constant value, for convenience. */
46 #define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
47 INTR_STATUS0__ECC_TRANSACTION_DONE | \
48 INTR_STATUS0__ECC_ERR | \
49 INTR_STATUS0__PROGRAM_FAIL | \
50 INTR_STATUS0__LOAD_COMP | \
51 INTR_STATUS0__PROGRAM_COMP | \
52 INTR_STATUS0__TIME_OUT | \
53 INTR_STATUS0__ERASE_FAIL | \
54 INTR_STATUS0__RST_COMP | \
55 INTR_STATUS0__ERASE_COMP)
57 /* indicates whether or not the internal value for the flash bank is
58 valid or not */
59 #define CHIP_SELECT_INVALID -1
61 #define SUPPORT_8BITECC 1
63 /* This macro divides two integers and rounds fractional values up
64 * to the nearest integer value. */
65 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
67 /* this macro allows us to convert from an MTD structure to our own
68 * device context (denali) structure.
70 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
72 /* These constants are defined by the driver to enable common driver
73 configuration options. */
74 #define SPARE_ACCESS 0x41
75 #define MAIN_ACCESS 0x42
76 #define MAIN_SPARE_ACCESS 0x43
78 #define DENALI_READ 0
79 #define DENALI_WRITE 0x100
81 /* types of device accesses. We can issue commands and get status */
82 #define COMMAND_CYCLE 0
83 #define ADDR_CYCLE 1
84 #define STATUS_CYCLE 2
86 /* this is a helper macro that allows us to
87 * format the bank into the proper bits for the controller */
88 #define BANK(x) ((x) << 24)
90 /* List of platforms this NAND controller has be integrated into */
91 static const struct pci_device_id denali_pci_ids[] = {
92 { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
93 { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
94 { /* end: all zeroes */ }
98 /* these are static lookup tables that give us easy access to
99 registers in the NAND controller.
101 static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
102 INTR_STATUS1,
103 INTR_STATUS2,
104 INTR_STATUS3};
106 static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
107 DEVICE_RESET__BANK1,
108 DEVICE_RESET__BANK2,
109 DEVICE_RESET__BANK3};
111 static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
112 INTR_STATUS1__TIME_OUT,
113 INTR_STATUS2__TIME_OUT,
114 INTR_STATUS3__TIME_OUT};
116 static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
117 INTR_STATUS1__RST_COMP,
118 INTR_STATUS2__RST_COMP,
119 INTR_STATUS3__RST_COMP};
121 /* specifies the debug level of the driver */
122 static int nand_debug_level;
124 /* forward declarations */
125 static void clear_interrupts(struct denali_nand_info *denali);
126 static uint32_t wait_for_irq(struct denali_nand_info *denali,
127 uint32_t irq_mask);
128 static void denali_irq_enable(struct denali_nand_info *denali,
129 uint32_t int_mask);
130 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
132 #define DEBUG_DENALI 0
134 /* This is a wrapper for writing to the denali registers.
135 * this allows us to create debug information so we can
136 * observe how the driver is programming the device.
137 * it uses standard linux convention for (val, addr) */
138 static void denali_write32(uint32_t value, void *addr)
140 iowrite32(value, addr);
142 #if DEBUG_DENALI
143 printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value,
144 (uint32_t)((uint32_t)addr & 0x1fff));
145 #endif
148 /* Certain operations for the denali NAND controller use
149 * an indexed mode to read/write data. The operation is
150 * performed by writing the address value of the command
151 * to the device memory followed by the data. This function
152 * abstracts this common operation.
154 static void index_addr(struct denali_nand_info *denali,
155 uint32_t address, uint32_t data)
157 denali_write32(address, denali->flash_mem);
158 denali_write32(data, denali->flash_mem + 0x10);
161 /* Perform an indexed read of the device */
162 static void index_addr_read_data(struct denali_nand_info *denali,
163 uint32_t address, uint32_t *pdata)
165 denali_write32(address, denali->flash_mem);
166 *pdata = ioread32(denali->flash_mem + 0x10);
169 /* We need to buffer some data for some of the NAND core routines.
170 * The operations manage buffering that data. */
171 static void reset_buf(struct denali_nand_info *denali)
173 denali->buf.head = denali->buf.tail = 0;
176 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
178 BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
179 denali->buf.buf[denali->buf.tail++] = byte;
182 /* reads the status of the device */
183 static void read_status(struct denali_nand_info *denali)
185 uint32_t cmd = 0x0;
187 /* initialize the data buffer to store status */
188 reset_buf(denali);
190 /* initiate a device status read */
191 cmd = MODE_11 | BANK(denali->flash_bank);
192 index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
193 denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
195 /* update buffer with status value */
196 write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
198 #if DEBUG_DENALI
199 printk(KERN_INFO "device reporting status value of 0x%2x\n",
200 denali->buf.buf[0]);
201 #endif
204 /* resets a specific device connected to the core */
205 static void reset_bank(struct denali_nand_info *denali)
207 uint32_t irq_status = 0;
208 uint32_t irq_mask = reset_complete[denali->flash_bank] |
209 operation_timeout[denali->flash_bank];
210 int bank = 0;
212 clear_interrupts(denali);
214 bank = device_reset_banks[denali->flash_bank];
215 denali_write32(bank, denali->flash_reg + DEVICE_RESET);
217 irq_status = wait_for_irq(denali, irq_mask);
219 if (irq_status & operation_timeout[denali->flash_bank])
220 printk(KERN_ERR "reset bank failed.\n");
223 /* Reset the flash controller */
224 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
226 uint32_t i;
228 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
229 __FILE__, __LINE__, __func__);
231 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
232 denali_write32(reset_complete[i] | operation_timeout[i],
233 denali->flash_reg + intr_status_addresses[i]);
235 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
236 denali_write32(device_reset_banks[i],
237 denali->flash_reg + DEVICE_RESET);
238 while (!(ioread32(denali->flash_reg +
239 intr_status_addresses[i]) &
240 (reset_complete[i] | operation_timeout[i])))
242 if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
243 operation_timeout[i])
244 nand_dbg_print(NAND_DBG_WARN,
245 "NAND Reset operation timed out on bank %d\n", i);
248 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
249 denali_write32(reset_complete[i] | operation_timeout[i],
250 denali->flash_reg + intr_status_addresses[i]);
252 return PASS;
255 /* this routine calculates the ONFI timing values for a given mode and
256 * programs the clocking register accordingly. The mode is determined by
257 * the get_onfi_nand_para routine.
259 static void nand_onfi_timing_set(struct denali_nand_info *denali,
260 uint16_t mode)
262 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
263 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
264 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
265 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
266 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
267 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
268 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
269 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
270 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
271 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
272 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
273 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
275 uint16_t TclsRising = 1;
276 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
277 uint16_t dv_window = 0;
278 uint16_t en_lo, en_hi;
279 uint16_t acc_clks;
280 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
282 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
283 __FILE__, __LINE__, __func__);
285 en_lo = CEIL_DIV(Trp[mode], CLK_X);
286 en_hi = CEIL_DIV(Treh[mode], CLK_X);
287 #if ONFI_BLOOM_TIME
288 if ((en_hi * CLK_X) < (Treh[mode] + 2))
289 en_hi++;
290 #endif
292 if ((en_lo + en_hi) * CLK_X < Trc[mode])
293 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
295 if ((en_lo + en_hi) < CLK_MULTI)
296 en_lo += CLK_MULTI - en_lo - en_hi;
298 while (dv_window < 8) {
299 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
301 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
303 data_invalid =
304 data_invalid_rhoh <
305 data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
307 dv_window = data_invalid - Trea[mode];
309 if (dv_window < 8)
310 en_lo++;
313 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
315 while (((acc_clks * CLK_X) - Trea[mode]) < 3)
316 acc_clks++;
318 if ((data_invalid - acc_clks * CLK_X) < 2)
319 nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
320 __FILE__, __LINE__);
322 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
323 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
324 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
325 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
326 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
327 if (!TclsRising)
328 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
329 if (cs_cnt == 0)
330 cs_cnt = 1;
332 if (Tcea[mode]) {
333 while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
334 cs_cnt++;
337 #if MODE5_WORKAROUND
338 if (mode == 5)
339 acc_clks = 5;
340 #endif
342 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
343 if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
344 (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
345 acc_clks = 6;
347 denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
348 denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
349 denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
350 denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
351 denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
352 denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
353 denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
354 denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
357 /* configures the initial ECC settings for the controller */
358 static void set_ecc_config(struct denali_nand_info *denali)
360 #if SUPPORT_8BITECC
361 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) < 4096) ||
362 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) <= 128))
363 denali_write32(8, denali->flash_reg + ECC_CORRECTION);
364 #endif
366 if ((ioread32(denali->flash_reg + ECC_CORRECTION) &
367 ECC_CORRECTION__VALUE) == 1) {
368 denali->dev_info.wECCBytesPerSector = 4;
369 denali->dev_info.wECCBytesPerSector *=
370 denali->dev_info.wDevicesConnected;
371 denali->dev_info.wNumPageSpareFlag =
372 denali->dev_info.wPageSpareSize -
373 denali->dev_info.wPageDataSize /
374 (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
375 denali->dev_info.wECCBytesPerSector
376 - denali->dev_info.wSpareSkipBytes;
377 } else {
378 denali->dev_info.wECCBytesPerSector =
379 (ioread32(denali->flash_reg + ECC_CORRECTION) &
380 ECC_CORRECTION__VALUE) * 13 / 8;
381 if ((denali->dev_info.wECCBytesPerSector) % 2 == 0)
382 denali->dev_info.wECCBytesPerSector += 2;
383 else
384 denali->dev_info.wECCBytesPerSector += 1;
386 denali->dev_info.wECCBytesPerSector *=
387 denali->dev_info.wDevicesConnected;
388 denali->dev_info.wNumPageSpareFlag =
389 denali->dev_info.wPageSpareSize -
390 denali->dev_info.wPageDataSize /
391 (ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
392 denali->dev_info.wECCBytesPerSector
393 - denali->dev_info.wSpareSkipBytes;
397 /* queries the NAND device to see what ONFI modes it supports. */
398 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
400 int i;
401 uint16_t blks_lun_l, blks_lun_h, n_of_luns;
402 uint32_t blockperlun, id;
404 denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);
406 while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
407 INTR_STATUS0__RST_COMP) |
408 (ioread32(denali->flash_reg + INTR_STATUS0) &
409 INTR_STATUS0__TIME_OUT)))
412 if (ioread32(denali->flash_reg + INTR_STATUS0) &
413 INTR_STATUS0__RST_COMP) {
414 denali_write32(DEVICE_RESET__BANK1,
415 denali->flash_reg + DEVICE_RESET);
416 while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
417 INTR_STATUS1__RST_COMP) |
418 (ioread32(denali->flash_reg + INTR_STATUS1) &
419 INTR_STATUS1__TIME_OUT)))
422 if (ioread32(denali->flash_reg + INTR_STATUS1) &
423 INTR_STATUS1__RST_COMP) {
424 denali_write32(DEVICE_RESET__BANK2,
425 denali->flash_reg + DEVICE_RESET);
426 while (!((ioread32(denali->flash_reg + INTR_STATUS2) &
427 INTR_STATUS2__RST_COMP) |
428 (ioread32(denali->flash_reg + INTR_STATUS2) &
429 INTR_STATUS2__TIME_OUT)))
432 if (ioread32(denali->flash_reg + INTR_STATUS2) &
433 INTR_STATUS2__RST_COMP) {
434 denali_write32(DEVICE_RESET__BANK3,
435 denali->flash_reg + DEVICE_RESET);
436 while (!((ioread32(denali->flash_reg +
437 INTR_STATUS3) &
438 INTR_STATUS3__RST_COMP) |
439 (ioread32(denali->flash_reg +
440 INTR_STATUS3) &
441 INTR_STATUS3__TIME_OUT)))
443 } else {
444 printk(KERN_ERR "Getting a time out for bank 2!\n");
446 } else {
447 printk(KERN_ERR "Getting a time out for bank 1!\n");
451 denali_write32(INTR_STATUS0__TIME_OUT,
452 denali->flash_reg + INTR_STATUS0);
453 denali_write32(INTR_STATUS1__TIME_OUT,
454 denali->flash_reg + INTR_STATUS1);
455 denali_write32(INTR_STATUS2__TIME_OUT,
456 denali->flash_reg + INTR_STATUS2);
457 denali_write32(INTR_STATUS3__TIME_OUT,
458 denali->flash_reg + INTR_STATUS3);
460 denali->dev_info.wONFIDevFeatures =
461 ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
462 denali->dev_info.wONFIOptCommands =
463 ioread32(denali->flash_reg + ONFI_OPTIONAL_COMMANDS);
464 denali->dev_info.wONFITimingMode =
465 ioread32(denali->flash_reg + ONFI_TIMING_MODE);
466 denali->dev_info.wONFIPgmCacheTimingMode =
467 ioread32(denali->flash_reg + ONFI_PGM_CACHE_TIMING_MODE);
469 n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
470 ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
471 blks_lun_l = ioread32(denali->flash_reg +
472 ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
473 blks_lun_h = ioread32(denali->flash_reg +
474 ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
476 blockperlun = (blks_lun_h << 16) | blks_lun_l;
478 denali->dev_info.wTotalBlocks = n_of_luns * blockperlun;
480 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
481 ONFI_TIMING_MODE__VALUE))
482 return FAIL;
484 for (i = 5; i > 0; i--) {
485 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
486 (0x01 << i))
487 break;
490 nand_onfi_timing_set(denali, i);
492 index_addr(denali, MODE_11 | 0, 0x90);
493 index_addr(denali, MODE_11 | 1, 0);
495 for (i = 0; i < 3; i++)
496 index_addr_read_data(denali, MODE_11 | 2, &id);
498 nand_dbg_print(NAND_DBG_DEBUG, "3rd ID: 0x%x\n", id);
500 denali->dev_info.MLCDevice = id & 0x0C;
502 /* By now, all the ONFI devices we know support the page cache */
503 /* rw feature. So here we enable the pipeline_rw_ahead feature */
504 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
505 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
507 return PASS;
510 static void get_samsung_nand_para(struct denali_nand_info *denali)
512 uint8_t no_of_planes;
513 uint32_t blk_size;
514 uint64_t plane_size, capacity;
515 uint32_t id_bytes[5];
516 int i;
518 index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
519 index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
520 for (i = 0; i < 5; i++)
521 index_addr_read_data(denali, (uint32_t)(MODE_11 | 2),
522 &id_bytes[i]);
524 nand_dbg_print(NAND_DBG_DEBUG,
525 "ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
526 id_bytes[0], id_bytes[1], id_bytes[2],
527 id_bytes[3], id_bytes[4]);
529 if ((id_bytes[1] & 0xff) == 0xd3) { /* Samsung K9WAG08U1A */
530 /* Set timing register values according to datasheet */
531 denali_write32(5, denali->flash_reg + ACC_CLKS);
532 denali_write32(20, denali->flash_reg + RE_2_WE);
533 denali_write32(12, denali->flash_reg + WE_2_RE);
534 denali_write32(14, denali->flash_reg + ADDR_2_DATA);
535 denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
536 denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
537 denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
540 no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
541 plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
542 blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) &
543 0x30) >> 4);
544 capacity = (uint64_t)128 * plane_size * no_of_planes;
546 do_div(capacity, blk_size);
547 denali->dev_info.wTotalBlocks = capacity;
550 static void get_toshiba_nand_para(struct denali_nand_info *denali)
552 uint32_t tmp;
554 /* Workaround to fix a controller bug which reports a wrong */
555 /* spare area size for some kind of Toshiba NAND device */
556 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
557 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
558 denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
559 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
560 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
561 denali_write32(tmp,
562 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
563 #if SUPPORT_15BITECC
564 denali_write32(15, denali->flash_reg + ECC_CORRECTION);
565 #elif SUPPORT_8BITECC
566 denali_write32(8, denali->flash_reg + ECC_CORRECTION);
567 #endif
571 static void get_hynix_nand_para(struct denali_nand_info *denali,
572 uint8_t device_id)
574 uint32_t main_size, spare_size;
576 switch (device_id) {
577 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
578 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
579 denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
580 denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
581 denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
582 main_size = 4096 *
583 ioread32(denali->flash_reg + DEVICES_CONNECTED);
584 spare_size = 224 *
585 ioread32(denali->flash_reg + DEVICES_CONNECTED);
586 denali_write32(main_size,
587 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
588 denali_write32(spare_size,
589 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
590 denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
591 #if SUPPORT_15BITECC
592 denali_write32(15, denali->flash_reg + ECC_CORRECTION);
593 #elif SUPPORT_8BITECC
594 denali_write32(8, denali->flash_reg + ECC_CORRECTION);
595 #endif
596 denali->dev_info.MLCDevice = 1;
597 break;
598 default:
599 nand_dbg_print(NAND_DBG_WARN,
600 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
601 "Will use default parameter values instead.\n",
602 denali->dev_info.wDeviceID);
606 /* determines how many NAND chips are connected to the controller. Note for
607 Intel CE4100 devices we don't support more than one device.
609 static void find_valid_banks(struct denali_nand_info *denali)
611 uint32_t id[LLD_MAX_FLASH_BANKS];
612 int i;
614 denali->total_used_banks = 1;
615 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
616 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
617 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
618 index_addr_read_data(denali,
619 (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
621 nand_dbg_print(NAND_DBG_DEBUG,
622 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
624 if (i == 0) {
625 if (!(id[i] & 0x0ff))
626 break; /* WTF? */
627 } else {
628 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
629 denali->total_used_banks++;
630 else
631 break;
635 if (denali->platform == INTEL_CE4100) {
636 /* Platform limitations of the CE4100 device limit
637 * users to a single chip solution for NAND.
638 * Multichip support is not enabled.
640 if (denali->total_used_banks != 1) {
641 printk(KERN_ERR "Sorry, Intel CE4100 only supports "
642 "a single NAND device.\n");
643 BUG();
646 nand_dbg_print(NAND_DBG_DEBUG,
647 "denali->total_used_banks: %d\n", denali->total_used_banks);
650 static void detect_partition_feature(struct denali_nand_info *denali)
652 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
653 if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
654 PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
655 denali->dev_info.wSpectraStartBlock =
656 ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
657 MIN_MAX_BANK_1__MIN_VALUE) *
658 denali->dev_info.wTotalBlocks)
660 (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
661 MIN_BLK_ADDR_1__VALUE);
663 denali->dev_info.wSpectraEndBlock =
664 (((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
665 MIN_MAX_BANK_1__MAX_VALUE) >> 2) *
666 denali->dev_info.wTotalBlocks)
668 (ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
669 MAX_BLK_ADDR_1__VALUE);
671 denali->dev_info.wTotalBlocks *=
672 denali->total_used_banks;
674 if (denali->dev_info.wSpectraEndBlock >=
675 denali->dev_info.wTotalBlocks) {
676 denali->dev_info.wSpectraEndBlock =
677 denali->dev_info.wTotalBlocks - 1;
680 denali->dev_info.wDataBlockNum =
681 denali->dev_info.wSpectraEndBlock -
682 denali->dev_info.wSpectraStartBlock + 1;
683 } else {
684 denali->dev_info.wTotalBlocks *=
685 denali->total_used_banks;
686 denali->dev_info.wSpectraStartBlock =
687 SPECTRA_START_BLOCK;
688 denali->dev_info.wSpectraEndBlock =
689 denali->dev_info.wTotalBlocks - 1;
690 denali->dev_info.wDataBlockNum =
691 denali->dev_info.wSpectraEndBlock -
692 denali->dev_info.wSpectraStartBlock + 1;
694 } else {
695 denali->dev_info.wTotalBlocks *= denali->total_used_banks;
696 denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
697 denali->dev_info.wSpectraEndBlock =
698 denali->dev_info.wTotalBlocks - 1;
699 denali->dev_info.wDataBlockNum =
700 denali->dev_info.wSpectraEndBlock -
701 denali->dev_info.wSpectraStartBlock + 1;
705 static void dump_device_info(struct denali_nand_info *denali)
707 nand_dbg_print(NAND_DBG_DEBUG, "denali->dev_info:\n");
708 nand_dbg_print(NAND_DBG_DEBUG, "DeviceMaker: 0x%x\n",
709 denali->dev_info.wDeviceMaker);
710 nand_dbg_print(NAND_DBG_DEBUG, "DeviceID: 0x%x\n",
711 denali->dev_info.wDeviceID);
712 nand_dbg_print(NAND_DBG_DEBUG, "DeviceType: 0x%x\n",
713 denali->dev_info.wDeviceType);
714 nand_dbg_print(NAND_DBG_DEBUG, "SpectraStartBlock: %d\n",
715 denali->dev_info.wSpectraStartBlock);
716 nand_dbg_print(NAND_DBG_DEBUG, "SpectraEndBlock: %d\n",
717 denali->dev_info.wSpectraEndBlock);
718 nand_dbg_print(NAND_DBG_DEBUG, "TotalBlocks: %d\n",
719 denali->dev_info.wTotalBlocks);
720 nand_dbg_print(NAND_DBG_DEBUG, "PagesPerBlock: %d\n",
721 denali->dev_info.wPagesPerBlock);
722 nand_dbg_print(NAND_DBG_DEBUG, "PageSize: %d\n",
723 denali->dev_info.wPageSize);
724 nand_dbg_print(NAND_DBG_DEBUG, "PageDataSize: %d\n",
725 denali->dev_info.wPageDataSize);
726 nand_dbg_print(NAND_DBG_DEBUG, "PageSpareSize: %d\n",
727 denali->dev_info.wPageSpareSize);
728 nand_dbg_print(NAND_DBG_DEBUG, "NumPageSpareFlag: %d\n",
729 denali->dev_info.wNumPageSpareFlag);
730 nand_dbg_print(NAND_DBG_DEBUG, "ECCBytesPerSector: %d\n",
731 denali->dev_info.wECCBytesPerSector);
732 nand_dbg_print(NAND_DBG_DEBUG, "BlockSize: %d\n",
733 denali->dev_info.wBlockSize);
734 nand_dbg_print(NAND_DBG_DEBUG, "BlockDataSize: %d\n",
735 denali->dev_info.wBlockDataSize);
736 nand_dbg_print(NAND_DBG_DEBUG, "DataBlockNum: %d\n",
737 denali->dev_info.wDataBlockNum);
738 nand_dbg_print(NAND_DBG_DEBUG, "PlaneNum: %d\n",
739 denali->dev_info.bPlaneNum);
740 nand_dbg_print(NAND_DBG_DEBUG, "DeviceMainAreaSize: %d\n",
741 denali->dev_info.wDeviceMainAreaSize);
742 nand_dbg_print(NAND_DBG_DEBUG, "DeviceSpareAreaSize: %d\n",
743 denali->dev_info.wDeviceSpareAreaSize);
744 nand_dbg_print(NAND_DBG_DEBUG, "DevicesConnected: %d\n",
745 denali->dev_info.wDevicesConnected);
746 nand_dbg_print(NAND_DBG_DEBUG, "DeviceWidth: %d\n",
747 denali->dev_info.wDeviceWidth);
748 nand_dbg_print(NAND_DBG_DEBUG, "HWRevision: 0x%x\n",
749 denali->dev_info.wHWRevision);
750 nand_dbg_print(NAND_DBG_DEBUG, "HWFeatures: 0x%x\n",
751 denali->dev_info.wHWFeatures);
752 nand_dbg_print(NAND_DBG_DEBUG, "ONFIDevFeatures: 0x%x\n",
753 denali->dev_info.wONFIDevFeatures);
754 nand_dbg_print(NAND_DBG_DEBUG, "ONFIOptCommands: 0x%x\n",
755 denali->dev_info.wONFIOptCommands);
756 nand_dbg_print(NAND_DBG_DEBUG, "ONFITimingMode: 0x%x\n",
757 denali->dev_info.wONFITimingMode);
758 nand_dbg_print(NAND_DBG_DEBUG, "ONFIPgmCacheTimingMode: 0x%x\n",
759 denali->dev_info.wONFIPgmCacheTimingMode);
760 nand_dbg_print(NAND_DBG_DEBUG, "MLCDevice: %s\n",
761 denali->dev_info.MLCDevice ? "Yes" : "No");
762 nand_dbg_print(NAND_DBG_DEBUG, "SpareSkipBytes: %d\n",
763 denali->dev_info.wSpareSkipBytes);
764 nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageNumber: %d\n",
765 denali->dev_info.nBitsInPageNumber);
766 nand_dbg_print(NAND_DBG_DEBUG, "BitsInPageDataSize: %d\n",
767 denali->dev_info.nBitsInPageDataSize);
768 nand_dbg_print(NAND_DBG_DEBUG, "BitsInBlockDataSize: %d\n",
769 denali->dev_info.nBitsInBlockDataSize);
772 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
774 uint16_t status = PASS;
775 uint8_t no_of_planes;
776 uint32_t id_bytes[5], addr;
777 uint8_t i, maf_id, device_id;
779 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
780 __FILE__, __LINE__, __func__);
782 /* Use read id method to get device ID and other
783 * params. For some NAND chips, controller can't
784 * report the correct device ID by reading from
785 * DEVICE_ID register
786 * */
787 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
788 index_addr(denali, (uint32_t)addr | 0, 0x90);
789 index_addr(denali, (uint32_t)addr | 1, 0);
790 for (i = 0; i < 5; i++)
791 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
792 maf_id = id_bytes[0];
793 device_id = id_bytes[1];
795 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
796 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
797 if (FAIL == get_onfi_nand_para(denali))
798 return FAIL;
799 } else if (maf_id == 0xEC) { /* Samsung NAND */
800 get_samsung_nand_para(denali);
801 } else if (maf_id == 0x98) { /* Toshiba NAND */
802 get_toshiba_nand_para(denali);
803 } else if (maf_id == 0xAD) { /* Hynix NAND */
804 get_hynix_nand_para(denali, device_id);
805 } else {
806 denali->dev_info.wTotalBlocks = GLOB_HWCTL_DEFAULT_BLKS;
809 nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
810 "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
811 "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
812 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
813 ioread32(denali->flash_reg + ACC_CLKS),
814 ioread32(denali->flash_reg + RE_2_WE),
815 ioread32(denali->flash_reg + WE_2_RE),
816 ioread32(denali->flash_reg + ADDR_2_DATA),
817 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
818 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
819 ioread32(denali->flash_reg + CS_SETUP_CNT));
821 denali->dev_info.wHWRevision = ioread32(denali->flash_reg + REVISION);
822 denali->dev_info.wHWFeatures = ioread32(denali->flash_reg + FEATURES);
824 denali->dev_info.wDeviceMainAreaSize =
825 ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
826 denali->dev_info.wDeviceSpareAreaSize =
827 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
829 denali->dev_info.wPageDataSize =
830 ioread32(denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
832 /* Note: When using the Micon 4K NAND device, the controller will report
833 * Page Spare Size as 216 bytes. But Micron's Spec say it's 218 bytes.
834 * And if force set it to 218 bytes, the controller can not work
835 * correctly. So just let it be. But keep in mind that this bug may
836 * cause
837 * other problems in future. - Yunpeng 2008-10-10
839 denali->dev_info.wPageSpareSize =
840 ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
842 denali->dev_info.wPagesPerBlock =
843 ioread32(denali->flash_reg + PAGES_PER_BLOCK);
845 denali->dev_info.wPageSize =
846 denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
847 denali->dev_info.wBlockSize =
848 denali->dev_info.wPageSize * denali->dev_info.wPagesPerBlock;
849 denali->dev_info.wBlockDataSize =
850 denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;
852 denali->dev_info.wDeviceWidth =
853 ioread32(denali->flash_reg + DEVICE_WIDTH);
854 denali->dev_info.wDeviceType =
855 ((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);
857 denali->dev_info.wDevicesConnected =
858 ioread32(denali->flash_reg + DEVICES_CONNECTED);
860 denali->dev_info.wSpareSkipBytes =
861 ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
862 denali->dev_info.wDevicesConnected;
864 denali->dev_info.nBitsInPageNumber =
865 ilog2(denali->dev_info.wPagesPerBlock);
866 denali->dev_info.nBitsInPageDataSize =
867 ilog2(denali->dev_info.wPageDataSize);
868 denali->dev_info.nBitsInBlockDataSize =
869 ilog2(denali->dev_info.wBlockDataSize);
871 set_ecc_config(denali);
873 no_of_planes = ioread32(denali->flash_reg + NUMBER_OF_PLANES) &
874 NUMBER_OF_PLANES__VALUE;
876 switch (no_of_planes) {
877 case 0:
878 case 1:
879 case 3:
880 case 7:
881 denali->dev_info.bPlaneNum = no_of_planes + 1;
882 break;
883 default:
884 status = FAIL;
885 break;
888 find_valid_banks(denali);
890 detect_partition_feature(denali);
892 dump_device_info(denali);
894 /* If the user specified to override the default timings
895 * with a specific ONFI mode, we apply those changes here.
897 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
898 nand_onfi_timing_set(denali, onfi_timing_mode);
900 return status;
903 static void denali_set_intr_modes(struct denali_nand_info *denali,
904 uint16_t INT_ENABLE)
906 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
907 __FILE__, __LINE__, __func__);
909 if (INT_ENABLE)
910 denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
911 else
912 denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
915 /* validation function to verify that the controlling software is making
916 a valid request
918 static inline bool is_flash_bank_valid(int flash_bank)
920 return (flash_bank >= 0 && flash_bank < 4);
923 static void denali_irq_init(struct denali_nand_info *denali)
925 uint32_t int_mask = 0;
927 /* Disable global interrupts */
928 denali_set_intr_modes(denali, false);
930 int_mask = DENALI_IRQ_ALL;
932 /* Clear all status bits */
933 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
934 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
935 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
936 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);
938 denali_irq_enable(denali, int_mask);
941 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
943 denali_set_intr_modes(denali, false);
944 free_irq(irqnum, denali);
947 static void denali_irq_enable(struct denali_nand_info *denali,
948 uint32_t int_mask)
950 denali_write32(int_mask, denali->flash_reg + INTR_EN0);
951 denali_write32(int_mask, denali->flash_reg + INTR_EN1);
952 denali_write32(int_mask, denali->flash_reg + INTR_EN2);
953 denali_write32(int_mask, denali->flash_reg + INTR_EN3);
956 /* This function only returns when an interrupt that this driver cares about
957 * occurs. This is to reduce the overhead of servicing interrupts
959 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
961 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
964 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
965 static inline void clear_interrupt(struct denali_nand_info *denali,
966 uint32_t irq_mask)
968 uint32_t intr_status_reg = 0;
970 intr_status_reg = intr_status_addresses[denali->flash_bank];
972 denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
975 static void clear_interrupts(struct denali_nand_info *denali)
977 uint32_t status = 0x0;
978 spin_lock_irq(&denali->irq_lock);
980 status = read_interrupt_status(denali);
982 #if DEBUG_DENALI
983 denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
984 denali->idx %= 32;
985 #endif
987 denali->irq_status = 0x0;
988 spin_unlock_irq(&denali->irq_lock);
991 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
993 uint32_t intr_status_reg = 0;
995 intr_status_reg = intr_status_addresses[denali->flash_bank];
997 return ioread32(denali->flash_reg + intr_status_reg);
1000 #if DEBUG_DENALI
1001 static void print_irq_log(struct denali_nand_info *denali)
1003 int i = 0;
1005 printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
1006 for (i = 0; i < 32; i++)
1007 printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
1009 #endif
1011 /* This is the interrupt service routine. It handles all interrupts
1012 * sent to this device. Note that on CE4100, this is a shared
1013 * interrupt.
1015 static irqreturn_t denali_isr(int irq, void *dev_id)
1017 struct denali_nand_info *denali = dev_id;
1018 uint32_t irq_status = 0x0;
1019 irqreturn_t result = IRQ_NONE;
1021 spin_lock(&denali->irq_lock);
1023 /* check to see if a valid NAND chip has
1024 * been selected.
1026 if (is_flash_bank_valid(denali->flash_bank)) {
1027 /* check to see if controller generated
1028 * the interrupt, since this is a shared interrupt */
1029 irq_status = denali_irq_detected(denali);
1030 if (irq_status != 0) {
1031 #if DEBUG_DENALI
1032 denali->irq_debug_array[denali->idx++] =
1033 0x10000000 | irq_status;
1034 denali->idx %= 32;
1036 printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
1037 #endif
1038 /* handle interrupt */
1039 /* first acknowledge it */
1040 clear_interrupt(denali, irq_status);
1041 /* store the status in the device context for someone
1042 to read */
1043 denali->irq_status |= irq_status;
1044 /* notify anyone who cares that it happened */
1045 complete(&denali->complete);
1046 /* tell the OS that we've handled this */
1047 result = IRQ_HANDLED;
1050 spin_unlock(&denali->irq_lock);
1051 return result;
1053 #define BANK(x) ((x) << 24)
1055 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
1057 unsigned long comp_res = 0;
1058 uint32_t intr_status = 0;
1059 bool retry = false;
1060 unsigned long timeout = msecs_to_jiffies(1000);
1062 do {
1063 #if DEBUG_DENALI
1064 printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
1065 #endif
1066 comp_res =
1067 wait_for_completion_timeout(&denali->complete, timeout);
1068 spin_lock_irq(&denali->irq_lock);
1069 intr_status = denali->irq_status;
1071 #if DEBUG_DENALI
1072 denali->irq_debug_array[denali->idx++] =
1073 0x20000000 | (irq_mask << 16) | intr_status;
1074 denali->idx %= 32;
1075 #endif
1077 if (intr_status & irq_mask) {
1078 denali->irq_status &= ~irq_mask;
1079 spin_unlock_irq(&denali->irq_lock);
1080 #if DEBUG_DENALI
1081 if (retry)
1082 printk(KERN_INFO "status on retry = 0x%x\n",
1083 intr_status);
1084 #endif
1085 /* our interrupt was detected */
1086 break;
1087 } else {
1088 /* these are not the interrupts you are looking for -
1089 * need to wait again */
1090 spin_unlock_irq(&denali->irq_lock);
1091 #if DEBUG_DENALI
1092 print_irq_log(denali);
1093 printk(KERN_INFO "received irq nobody cared:"
1094 " irq_status = 0x%x, irq_mask = 0x%x,"
1095 " timeout = %ld\n", intr_status,
1096 irq_mask, comp_res);
1097 #endif
1098 retry = true;
1100 } while (comp_res != 0);
1102 if (comp_res == 0) {
1103 /* timeout */
1104 printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
1105 intr_status, irq_mask);
1107 intr_status = 0;
1109 return intr_status;
1112 /* This helper function setups the registers for ECC and whether or not
1113 the spare area will be transfered. */
1114 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
1115 bool transfer_spare)
1117 int ecc_en_flag = 0, transfer_spare_flag = 0;
1119 /* set ECC, transfer spare bits if needed */
1120 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
1121 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
1123 /* Enable spare area/ECC per user's request. */
1124 denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
1125 denali_write32(transfer_spare_flag,
1126 denali->flash_reg + TRANSFER_SPARE_REG);
1129 /* sends a pipeline command operation to the controller. See the Denali NAND
1130 controller's user guide for more information (section 4.2.3.6).
1132 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
1133 bool ecc_en,
1134 bool transfer_spare,
1135 int access_type,
1136 int op)
1138 int status = PASS;
1139 uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
1140 irq_mask = 0;
1142 if (op == DENALI_READ)
1143 irq_mask = INTR_STATUS0__LOAD_COMP;
1144 else if (op == DENALI_WRITE)
1145 irq_mask = 0;
1146 else
1147 BUG();
1149 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
1151 #if DEBUG_DENALI
1152 spin_lock_irq(&denali->irq_lock);
1153 denali->irq_debug_array[denali->idx++] =
1154 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
1155 (access_type << 4);
1156 denali->idx %= 32;
1157 spin_unlock_irq(&denali->irq_lock);
1158 #endif
1161 /* clear interrupts */
1162 clear_interrupts(denali);
1164 addr = BANK(denali->flash_bank) | denali->page;
1166 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
1167 cmd = MODE_01 | addr;
1168 denali_write32(cmd, denali->flash_mem);
1169 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
1170 /* read spare area */
1171 cmd = MODE_10 | addr;
1172 index_addr(denali, (uint32_t)cmd, access_type);
1174 cmd = MODE_01 | addr;
1175 denali_write32(cmd, denali->flash_mem);
1176 } else if (op == DENALI_READ) {
1177 /* setup page read request for access type */
1178 cmd = MODE_10 | addr;
1179 index_addr(denali, (uint32_t)cmd, access_type);
1181 /* page 33 of the NAND controller spec indicates we should not
1182 use the pipeline commands in Spare area only mode. So we
1183 don't.
1185 if (access_type == SPARE_ACCESS) {
1186 cmd = MODE_01 | addr;
1187 denali_write32(cmd, denali->flash_mem);
1188 } else {
1189 index_addr(denali, (uint32_t)cmd,
1190 0x2000 | op | page_count);
1192 /* wait for command to be accepted
1193 * can always use status0 bit as the
1194 * mask is identical for each
1195 * bank. */
1196 irq_status = wait_for_irq(denali, irq_mask);
1198 if (irq_status == 0) {
1199 printk(KERN_ERR "cmd, page, addr on timeout "
1200 "(0x%x, 0x%x, 0x%x)\n", cmd,
1201 denali->page, addr);
1202 status = FAIL;
1203 } else {
1204 cmd = MODE_01 | addr;
1205 denali_write32(cmd, denali->flash_mem);
1209 return status;
1212 /* helper function that simply writes a buffer to the flash */
1213 static int write_data_to_flash_mem(struct denali_nand_info *denali,
1214 const uint8_t *buf,
1215 int len)
1217 uint32_t i = 0, *buf32;
1219 /* verify that the len is a multiple of 4. see comment in
1220 * read_data_from_flash_mem() */
1221 BUG_ON((len % 4) != 0);
1223 /* write the data to the flash memory */
1224 buf32 = (uint32_t *)buf;
1225 for (i = 0; i < len / 4; i++)
1226 denali_write32(*buf32++, denali->flash_mem + 0x10);
1227 return i*4; /* intent is to return the number of bytes read */
1230 /* helper function that simply reads a buffer from the flash */
1231 static int read_data_from_flash_mem(struct denali_nand_info *denali,
1232 uint8_t *buf,
1233 int len)
1235 uint32_t i = 0, *buf32;
1237 /* we assume that len will be a multiple of 4, if not
1238 * it would be nice to know about it ASAP rather than
1239 * have random failures...
1240 * This assumption is based on the fact that this
1241 * function is designed to be used to read flash pages,
1242 * which are typically multiples of 4...
1245 BUG_ON((len % 4) != 0);
1247 /* transfer the data from the flash */
1248 buf32 = (uint32_t *)buf;
1249 for (i = 0; i < len / 4; i++)
1250 *buf32++ = ioread32(denali->flash_mem + 0x10);
1251 return i*4; /* intent is to return the number of bytes read */
1254 /* writes OOB data to the device */
1255 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
1257 struct denali_nand_info *denali = mtd_to_denali(mtd);
1258 uint32_t irq_status = 0;
1259 uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
1260 INTR_STATUS0__PROGRAM_FAIL;
1261 int status = 0;
1263 denali->page = page;
1265 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
1266 DENALI_WRITE) == PASS) {
1267 write_data_to_flash_mem(denali, buf, mtd->oobsize);
1269 #if DEBUG_DENALI
1270 spin_lock_irq(&denali->irq_lock);
1271 denali->irq_debug_array[denali->idx++] =
1272 0x80000000 | mtd->oobsize;
1273 denali->idx %= 32;
1274 spin_unlock_irq(&denali->irq_lock);
1275 #endif
1278 /* wait for operation to complete */
1279 irq_status = wait_for_irq(denali, irq_mask);
1281 if (irq_status == 0) {
1282 printk(KERN_ERR "OOB write failed\n");
1283 status = -EIO;
1285 } else {
1286 printk(KERN_ERR "unable to send pipeline command\n");
1287 status = -EIO;
1289 return status;
1292 /* reads OOB data from the device */
1293 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
1295 struct denali_nand_info *denali = mtd_to_denali(mtd);
1296 uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
1297 irq_status = 0, addr = 0x0, cmd = 0x0;
1299 denali->page = page;
1301 #if DEBUG_DENALI
1302 printk(KERN_INFO "read_oob %d\n", page);
1303 #endif
1304 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
1305 DENALI_READ) == PASS) {
1306 read_data_from_flash_mem(denali, buf, mtd->oobsize);
1308 /* wait for command to be accepted
1309 * can always use status0 bit as the mask is identical for each
1310 * bank. */
1311 irq_status = wait_for_irq(denali, irq_mask);
1313 if (irq_status == 0)
1314 printk(KERN_ERR "page on OOB timeout %d\n",
1315 denali->page);
1317 /* We set the device back to MAIN_ACCESS here as I observed
1318 * instability with the controller if you do a block erase
1319 * and the last transaction was a SPARE_ACCESS. Block erase
1320 * is reliable (according to the MTD test infrastructure)
1321 * if you are in MAIN_ACCESS.
1323 addr = BANK(denali->flash_bank) | denali->page;
1324 cmd = MODE_10 | addr;
1325 index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
1327 #if DEBUG_DENALI
1328 spin_lock_irq(&denali->irq_lock);
1329 denali->irq_debug_array[denali->idx++] =
1330 0x60000000 | mtd->oobsize;
1331 denali->idx %= 32;
1332 spin_unlock_irq(&denali->irq_lock);
1333 #endif
1337 /* this function examines buffers to see if they contain data that
1338 * indicate that the buffer is part of an erased region of flash.
1340 bool is_erased(uint8_t *buf, int len)
1342 int i = 0;
1343 for (i = 0; i < len; i++)
1344 if (buf[i] != 0xFF)
1345 return false;
1346 return true;
1348 #define ECC_SECTOR_SIZE 512
1350 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
1351 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
1352 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
1353 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
1354 #define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
1355 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
1357 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
1358 uint8_t *oobbuf, uint32_t irq_status)
1360 bool check_erased_page = false;
1362 if (irq_status & INTR_STATUS0__ECC_ERR) {
1363 /* read the ECC errors. we'll ignore them for now */
1364 uint32_t err_address = 0, err_correction_info = 0;
1365 uint32_t err_byte = 0, err_sector = 0, err_device = 0;
1366 uint32_t err_correction_value = 0;
1368 do {
1369 err_address = ioread32(denali->flash_reg +
1370 ECC_ERROR_ADDRESS);
1371 err_sector = ECC_SECTOR(err_address);
1372 err_byte = ECC_BYTE(err_address);
1375 err_correction_info = ioread32(denali->flash_reg +
1376 ERR_CORRECTION_INFO);
1377 err_correction_value =
1378 ECC_CORRECTION_VALUE(err_correction_info);
1379 err_device = ECC_ERR_DEVICE(err_correction_info);
1381 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
1382 /* offset in our buffer is computed as:
1383 sector number * sector size + offset in
1384 sector
1386 int offset = err_sector * ECC_SECTOR_SIZE +
1387 err_byte;
1388 if (offset < denali->mtd.writesize) {
1389 /* correct the ECC error */
1390 buf[offset] ^= err_correction_value;
1391 denali->mtd.ecc_stats.corrected++;
1392 } else {
1393 /* bummer, couldn't correct the error */
1394 printk(KERN_ERR "ECC offset invalid\n");
1395 denali->mtd.ecc_stats.failed++;
1397 } else {
1398 /* if the error is not correctable, need to
1399 * look at the page to see if it is an erased
1400 * page. if so, then it's not a real ECC error
1401 * */
1402 check_erased_page = true;
1405 #if DEBUG_DENALI
1406 printk(KERN_INFO "Detected ECC error in page %d:"
1407 " err_addr = 0x%08x, info to fix is"
1408 " 0x%08x\n", denali->page, err_address,
1409 err_correction_info);
1410 #endif
1411 } while (!ECC_LAST_ERR(err_correction_info));
1413 return check_erased_page;
1416 /* programs the controller to either enable/disable DMA transfers */
1417 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1419 uint32_t reg_val = 0x0;
1421 if (en)
1422 reg_val = DMA_ENABLE__FLAG;
1424 denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
1425 ioread32(denali->flash_reg + DMA_ENABLE);
1428 /* setups the HW to perform the data DMA */
1429 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1431 uint32_t mode = 0x0;
1432 const int page_count = 1;
1433 dma_addr_t addr = denali->buf.dma_buf;
1435 mode = MODE_10 | BANK(denali->flash_bank);
1437 /* DMA is a four step process */
1439 /* 1. setup transfer type and # of pages */
1440 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1442 /* 2. set memory high address bits 23:8 */
1443 index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1445 /* 3. set memory low address bits 23:8 */
1446 index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1448 /* 4. interrupt when complete, burst len = 64 bytes*/
1449 index_addr(denali, mode | 0x14000, 0x2400);
1452 /* writes a page. user specifies type, and this function handles the
1453 configuration details. */
1454 static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1455 const uint8_t *buf, bool raw_xfer)
1457 struct denali_nand_info *denali = mtd_to_denali(mtd);
1458 struct pci_dev *pci_dev = denali->dev;
1460 dma_addr_t addr = denali->buf.dma_buf;
1461 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1463 uint32_t irq_status = 0;
1464 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
1465 INTR_STATUS0__PROGRAM_FAIL;
1467 /* if it is a raw xfer, we want to disable ecc, and send
1468 * the spare area.
1469 * !raw_xfer - enable ecc
1470 * raw_xfer - transfer spare
1472 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1474 /* copy buffer into DMA buffer */
1475 memcpy(denali->buf.buf, buf, mtd->writesize);
1477 if (raw_xfer) {
1478 /* transfer the data to the spare area */
1479 memcpy(denali->buf.buf + mtd->writesize,
1480 chip->oob_poi,
1481 mtd->oobsize);
1484 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
1486 clear_interrupts(denali);
1487 denali_enable_dma(denali, true);
1489 denali_setup_dma(denali, DENALI_WRITE);
1491 /* wait for operation to complete */
1492 irq_status = wait_for_irq(denali, irq_mask);
1494 if (irq_status == 0) {
1495 printk(KERN_ERR "timeout on write_page"
1496 " (type = %d)\n", raw_xfer);
1497 denali->status =
1498 (irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
1499 NAND_STATUS_FAIL : PASS;
1502 denali_enable_dma(denali, false);
1503 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
1506 /* NAND core entry points */
1508 /* this is the callback that the NAND core calls to write a page. Since
1509 writing a page with ECC or without is similar, all the work is done
1510 by write_page above. */
1511 static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1512 const uint8_t *buf)
1514 /* for regular page writes, we let HW handle all the ECC
1515 * data written to the device. */
1516 write_page(mtd, chip, buf, false);
1519 /* This is the callback that the NAND core calls to write a page without ECC.
1520 raw access is similiar to ECC page writes, so all the work is done in the
1521 write_page() function above.
1523 static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1524 const uint8_t *buf)
1526 /* for raw page writes, we want to disable ECC and simply write
1527 whatever data is in the buffer. */
1528 write_page(mtd, chip, buf, true);
1531 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1532 int page)
1534 return write_oob_data(mtd, chip->oob_poi, page);
1537 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1538 int page, int sndcmd)
1540 read_oob_data(mtd, chip->oob_poi, page);
1542 return 0; /* notify NAND core to send command to
1543 NAND device. */
1546 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1547 uint8_t *buf, int page)
1549 struct denali_nand_info *denali = mtd_to_denali(mtd);
1550 struct pci_dev *pci_dev = denali->dev;
1552 dma_addr_t addr = denali->buf.dma_buf;
1553 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1555 uint32_t irq_status = 0;
1556 uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
1557 INTR_STATUS0__ECC_ERR;
1558 bool check_erased_page = false;
1560 setup_ecc_for_xfer(denali, true, false);
1562 denali_enable_dma(denali, true);
1563 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1565 clear_interrupts(denali);
1566 denali_setup_dma(denali, DENALI_READ);
1568 /* wait for operation to complete */
1569 irq_status = wait_for_irq(denali, irq_mask);
1571 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1573 memcpy(buf, denali->buf.buf, mtd->writesize);
1575 check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
1576 denali_enable_dma(denali, false);
1578 if (check_erased_page) {
1579 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1581 /* check ECC failures that may have occurred on erased pages */
1582 if (check_erased_page) {
1583 if (!is_erased(buf, denali->mtd.writesize))
1584 denali->mtd.ecc_stats.failed++;
1585 if (!is_erased(buf, denali->mtd.oobsize))
1586 denali->mtd.ecc_stats.failed++;
1589 return 0;
1592 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1593 uint8_t *buf, int page)
1595 struct denali_nand_info *denali = mtd_to_denali(mtd);
1596 struct pci_dev *pci_dev = denali->dev;
1598 dma_addr_t addr = denali->buf.dma_buf;
1599 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1601 uint32_t irq_status = 0;
1602 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
1604 setup_ecc_for_xfer(denali, false, true);
1605 denali_enable_dma(denali, true);
1607 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1609 clear_interrupts(denali);
1610 denali_setup_dma(denali, DENALI_READ);
1612 /* wait for operation to complete */
1613 irq_status = wait_for_irq(denali, irq_mask);
1615 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1617 denali_enable_dma(denali, false);
1619 memcpy(buf, denali->buf.buf, mtd->writesize);
1620 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1622 return 0;
1625 static uint8_t denali_read_byte(struct mtd_info *mtd)
1627 struct denali_nand_info *denali = mtd_to_denali(mtd);
1628 uint8_t result = 0xff;
1630 if (denali->buf.head < denali->buf.tail)
1631 result = denali->buf.buf[denali->buf.head++];
1633 #if DEBUG_DENALI
1634 printk(KERN_INFO "read byte -> 0x%02x\n", result);
1635 #endif
1636 return result;
1639 static void denali_select_chip(struct mtd_info *mtd, int chip)
1641 struct denali_nand_info *denali = mtd_to_denali(mtd);
1642 #if DEBUG_DENALI
1643 printk(KERN_INFO "denali select chip %d\n", chip);
1644 #endif
1645 spin_lock_irq(&denali->irq_lock);
1646 denali->flash_bank = chip;
1647 spin_unlock_irq(&denali->irq_lock);
1650 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1652 struct denali_nand_info *denali = mtd_to_denali(mtd);
1653 int status = denali->status;
1654 denali->status = 0;
1656 #if DEBUG_DENALI
1657 printk(KERN_INFO "waitfunc %d\n", status);
1658 #endif
1659 return status;
1662 static void denali_erase(struct mtd_info *mtd, int page)
1664 struct denali_nand_info *denali = mtd_to_denali(mtd);
1666 uint32_t cmd = 0x0, irq_status = 0;
1668 #if DEBUG_DENALI
1669 printk(KERN_INFO "erase page: %d\n", page);
1670 #endif
1671 /* clear interrupts */
1672 clear_interrupts(denali);
1674 /* setup page read request for access type */
1675 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1676 index_addr(denali, (uint32_t)cmd, 0x1);
1678 /* wait for erase to complete or failure to occur */
1679 irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
1680 INTR_STATUS0__ERASE_FAIL);
1682 denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
1683 NAND_STATUS_FAIL : PASS;
1686 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1687 int page)
1689 struct denali_nand_info *denali = mtd_to_denali(mtd);
1690 uint32_t addr, id;
1691 int i;
1693 #if DEBUG_DENALI
1694 printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
1695 #endif
1696 switch (cmd) {
1697 case NAND_CMD_PAGEPROG:
1698 break;
1699 case NAND_CMD_STATUS:
1700 read_status(denali);
1701 break;
1702 case NAND_CMD_READID:
1703 reset_buf(denali);
1704 /*sometimes ManufactureId read from register is not right
1705 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1706 * So here we send READID cmd to NAND insteand
1707 * */
1708 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1709 index_addr(denali, (uint32_t)addr | 0, 0x90);
1710 index_addr(denali, (uint32_t)addr | 1, 0);
1711 for (i = 0; i < 5; i++) {
1712 index_addr_read_data(denali,
1713 (uint32_t)addr | 2,
1714 &id);
1715 write_byte_to_buf(denali, id);
1717 break;
1718 case NAND_CMD_READ0:
1719 case NAND_CMD_SEQIN:
1720 denali->page = page;
1721 break;
1722 case NAND_CMD_RESET:
1723 reset_bank(denali);
1724 break;
1725 case NAND_CMD_READOOB:
1726 /* TODO: Read OOB data */
1727 break;
1728 default:
1729 printk(KERN_ERR ": unsupported command"
1730 " received 0x%x\n", cmd);
1731 break;
1735 /* stubs for ECC functions not used by the NAND core */
1736 static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1737 uint8_t *ecc_code)
1739 printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
1740 BUG();
1741 return -EIO;
1744 static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1745 uint8_t *read_ecc, uint8_t *calc_ecc)
1747 printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
1748 BUG();
1749 return -EIO;
1752 static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1754 printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
1755 BUG();
1757 /* end NAND core entry points */
1759 /* Initialization code to bring the device up to a known good state */
1760 static void denali_hw_init(struct denali_nand_info *denali)
1762 denali_irq_init(denali);
1763 denali_nand_reset(denali);
1764 denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1765 denali_write32(CHIP_EN_DONT_CARE__FLAG,
1766 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1768 denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
1769 denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1771 /* Should set value for these registers when init */
1772 denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1773 denali_write32(1, denali->flash_reg + ECC_ENABLE);
1776 /* ECC layout for SLC devices. Denali spec indicates SLC fixed at 4 bytes */
1777 #define ECC_BYTES_SLC (4 * (2048 / ECC_SECTOR_SIZE))
1778 static struct nand_ecclayout nand_oob_slc = {
1779 .eccbytes = 4,
1780 .eccpos = { 0, 1, 2, 3 }, /* not used */
1781 .oobfree = {
1783 .offset = ECC_BYTES_SLC,
1784 .length = 64 - ECC_BYTES_SLC
1789 #define ECC_BYTES_MLC (14 * (2048 / ECC_SECTOR_SIZE))
1790 static struct nand_ecclayout nand_oob_mlc_14bit = {
1791 .eccbytes = 14,
1792 .eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
1793 .oobfree = {
1795 .offset = ECC_BYTES_MLC,
1796 .length = 64 - ECC_BYTES_MLC
1801 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1802 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1804 static struct nand_bbt_descr bbt_main_descr = {
1805 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1806 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1807 .offs = 8,
1808 .len = 4,
1809 .veroffs = 12,
1810 .maxblocks = 4,
1811 .pattern = bbt_pattern,
1814 static struct nand_bbt_descr bbt_mirror_descr = {
1815 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1816 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1817 .offs = 8,
1818 .len = 4,
1819 .veroffs = 12,
1820 .maxblocks = 4,
1821 .pattern = mirror_pattern,
1824 /* initalize driver data structures */
1825 void denali_drv_init(struct denali_nand_info *denali)
1827 denali->idx = 0;
1829 /* setup interrupt handler */
1830 /* the completion object will be used to notify
1831 * the callee that the interrupt is done */
1832 init_completion(&denali->complete);
1834 /* the spinlock will be used to synchronize the ISR
1835 * with any element that might be access shared
1836 * data (interrupt status) */
1837 spin_lock_init(&denali->irq_lock);
1839 /* indicate that MTD has not selected a valid bank yet */
1840 denali->flash_bank = CHIP_SELECT_INVALID;
1842 /* initialize our irq_status variable to indicate no interrupts */
1843 denali->irq_status = 0;
1846 /* driver entry point */
1847 static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1849 int ret = -ENODEV;
1850 resource_size_t csr_base, mem_base;
1851 unsigned long csr_len, mem_len;
1852 struct denali_nand_info *denali;
1854 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
1855 __FILE__, __LINE__, __func__);
1857 denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1858 if (!denali)
1859 return -ENOMEM;
1861 ret = pci_enable_device(dev);
1862 if (ret) {
1863 printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1864 goto failed_enable;
1867 if (id->driver_data == INTEL_CE4100) {
1868 /* Due to a silicon limitation, we can only support
1869 * ONFI timing mode 1 and below.
1871 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1872 printk(KERN_ERR "Intel CE4100 only supports"
1873 " ONFI timing mode 1 or below\n");
1874 ret = -EINVAL;
1875 goto failed_enable;
1877 denali->platform = INTEL_CE4100;
1878 mem_base = pci_resource_start(dev, 0);
1879 mem_len = pci_resource_len(dev, 1);
1880 csr_base = pci_resource_start(dev, 1);
1881 csr_len = pci_resource_len(dev, 1);
1882 } else {
1883 denali->platform = INTEL_MRST;
1884 csr_base = pci_resource_start(dev, 0);
1885 csr_len = pci_resource_start(dev, 0);
1886 mem_base = pci_resource_start(dev, 1);
1887 mem_len = pci_resource_len(dev, 1);
1888 if (!mem_len) {
1889 mem_base = csr_base + csr_len;
1890 mem_len = csr_len;
1891 nand_dbg_print(NAND_DBG_WARN,
1892 "Spectra: No second"
1893 " BAR for PCI device;"
1894 " assuming %08Lx\n",
1895 (uint64_t)csr_base);
1899 /* Is 32-bit DMA supported? */
1900 ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
1902 if (ret) {
1903 printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1904 goto failed_enable;
1906 denali->buf.dma_buf =
1907 pci_map_single(dev, denali->buf.buf,
1908 DENALI_BUF_SIZE,
1909 PCI_DMA_BIDIRECTIONAL);
1911 if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
1912 printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
1913 goto failed_enable;
1916 pci_set_master(dev);
1917 denali->dev = dev;
1919 ret = pci_request_regions(dev, DENALI_NAND_NAME);
1920 if (ret) {
1921 printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1922 goto failed_req_csr;
1925 denali->flash_reg = ioremap_nocache(csr_base, csr_len);
1926 if (!denali->flash_reg) {
1927 printk(KERN_ERR "Spectra: Unable to remap memory region\n");
1928 ret = -ENOMEM;
1929 goto failed_remap_csr;
1931 nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
1932 (uint64_t)csr_base, denali->flash_reg, csr_len);
1934 denali->flash_mem = ioremap_nocache(mem_base, mem_len);
1935 if (!denali->flash_mem) {
1936 printk(KERN_ERR "Spectra: ioremap_nocache failed!");
1937 iounmap(denali->flash_reg);
1938 ret = -ENOMEM;
1939 goto failed_remap_csr;
1942 nand_dbg_print(NAND_DBG_WARN,
1943 "Spectra: Remapped flash base address: "
1944 "0x%p, len: %ld\n",
1945 denali->flash_mem, csr_len);
1947 denali_hw_init(denali);
1948 denali_drv_init(denali);
1950 nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
1951 if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
1952 DENALI_NAND_NAME, denali)) {
1953 printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
1954 ret = -ENODEV;
1955 goto failed_request_irq;
1958 /* now that our ISR is registered, we can enable interrupts */
1959 denali_set_intr_modes(denali, true);
1961 pci_set_drvdata(dev, denali);
1963 denali_nand_timing_set(denali);
1965 /* MTD supported page sizes vary by kernel. We validate our
1966 * kernel supports the device here.
1968 if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1969 ret = -ENODEV;
1970 printk(KERN_ERR "Spectra: device size not supported by this "
1971 "version of MTD.");
1972 goto failed_nand;
1975 nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
1976 "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
1977 "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
1978 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
1979 ioread32(denali->flash_reg + ACC_CLKS),
1980 ioread32(denali->flash_reg + RE_2_WE),
1981 ioread32(denali->flash_reg + WE_2_RE),
1982 ioread32(denali->flash_reg + ADDR_2_DATA),
1983 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
1984 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
1985 ioread32(denali->flash_reg + CS_SETUP_CNT));
1987 denali->mtd.name = "Denali NAND";
1988 denali->mtd.owner = THIS_MODULE;
1989 denali->mtd.priv = &denali->nand;
1991 /* register the driver with the NAND core subsystem */
1992 denali->nand.select_chip = denali_select_chip;
1993 denali->nand.cmdfunc = denali_cmdfunc;
1994 denali->nand.read_byte = denali_read_byte;
1995 denali->nand.waitfunc = denali_waitfunc;
1997 /* scan for NAND devices attached to the controller
1998 * this is the first stage in a two step process to register
1999 * with the nand subsystem */
2000 if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
2001 ret = -ENXIO;
2002 goto failed_nand;
2005 /* second stage of the NAND scan
2006 * this stage requires information regarding ECC and
2007 * bad block management. */
2009 /* Bad block management */
2010 denali->nand.bbt_td = &bbt_main_descr;
2011 denali->nand.bbt_md = &bbt_mirror_descr;
2013 /* skip the scan for now until we have OOB read and write support */
2014 denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
2015 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
2017 if (denali->dev_info.MLCDevice) {
2018 denali->nand.ecc.layout = &nand_oob_mlc_14bit;
2019 denali->nand.ecc.bytes = ECC_BYTES_MLC;
2020 } else {/* SLC */
2021 denali->nand.ecc.layout = &nand_oob_slc;
2022 denali->nand.ecc.bytes = ECC_BYTES_SLC;
2025 /* These functions are required by the NAND core framework, otherwise,
2026 * the NAND core will assert. However, we don't need them, so we'll stub
2027 * them out. */
2028 denali->nand.ecc.calculate = denali_ecc_calculate;
2029 denali->nand.ecc.correct = denali_ecc_correct;
2030 denali->nand.ecc.hwctl = denali_ecc_hwctl;
2032 /* override the default read operations */
2033 denali->nand.ecc.size = denali->mtd.writesize;
2034 denali->nand.ecc.read_page = denali_read_page;
2035 denali->nand.ecc.read_page_raw = denali_read_page_raw;
2036 denali->nand.ecc.write_page = denali_write_page;
2037 denali->nand.ecc.write_page_raw = denali_write_page_raw;
2038 denali->nand.ecc.read_oob = denali_read_oob;
2039 denali->nand.ecc.write_oob = denali_write_oob;
2040 denali->nand.erase_cmd = denali_erase;
2042 if (nand_scan_tail(&denali->mtd)) {
2043 ret = -ENXIO;
2044 goto failed_nand;
2047 ret = add_mtd_device(&denali->mtd);
2048 if (ret) {
2049 printk(KERN_ERR "Spectra: Failed to register"
2050 " MTD device: %d\n", ret);
2051 goto failed_nand;
2053 return 0;
2055 failed_nand:
2056 denali_irq_cleanup(dev->irq, denali);
2057 failed_request_irq:
2058 iounmap(denali->flash_reg);
2059 iounmap(denali->flash_mem);
2060 failed_remap_csr:
2061 pci_release_regions(dev);
2062 failed_req_csr:
2063 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
2064 PCI_DMA_BIDIRECTIONAL);
2065 failed_enable:
2066 kfree(denali);
2067 return ret;
2070 /* driver exit point */
2071 static void denali_pci_remove(struct pci_dev *dev)
2073 struct denali_nand_info *denali = pci_get_drvdata(dev);
2075 nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
2076 __FILE__, __LINE__, __func__);
2078 nand_release(&denali->mtd);
2079 del_mtd_device(&denali->mtd);
2081 denali_irq_cleanup(dev->irq, denali);
2083 iounmap(denali->flash_reg);
2084 iounmap(denali->flash_mem);
2085 pci_release_regions(dev);
2086 pci_disable_device(dev);
2087 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
2088 PCI_DMA_BIDIRECTIONAL);
2089 pci_set_drvdata(dev, NULL);
2090 kfree(denali);
2093 MODULE_DEVICE_TABLE(pci, denali_pci_ids);
2095 static struct pci_driver denali_pci_driver = {
2096 .name = DENALI_NAND_NAME,
2097 .id_table = denali_pci_ids,
2098 .probe = denali_pci_probe,
2099 .remove = denali_pci_remove,
2102 static int __devinit denali_init(void)
2104 printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
2105 __DATE__, __TIME__);
2106 return pci_register_driver(&denali_pci_driver);
2109 /* Free memory */
2110 static void __devexit denali_exit(void)
2112 pci_unregister_driver(&denali_pci_driver);
2115 module_init(denali_init);
2116 module_exit(denali_exit);